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A NEW TEST FOR CONVERGENCE

OF POSITIVE SERIES

Vyacheslav Abramov, Meitner Cadena, and Edward Omey

Abstract. The paper provides a new test of convergence and divergence of
positive series. In particular, it extends the known test by Margaret Martin
[Bull. Amer. Math. Soc. 47 (1941), 452–457].

1. Introduction

The tests for convergence/divergence of positive series have a long history going
back to d’Alembert [9] and Cauchy [7], who established the first most elementary
results on their convergence or divergence. The further extensions of the origi-
nal studies were provided by Raabe, Gauss, Bertrand, De Morgan, Kummer and
many other mathematicians. Nowadays there is a large variety of tests on con-
vergence/divergence of positive series, and most of the existing practical problems
that involve positive series are resolved. Nevertheless, the problem has a number
of important theoretical applications arising in the theory of probability, stochastic
processes and their real life applications (e.g. [1, 6, 8]).

In most of the earlier studies the known tests of convergence/divergence of
positive series were supposed to be closely connected with the classes of functions
regularly varying at infinity (e.g. Bingham, Goldie and Teugels [2]). Recently,
Cadena, Kratz and Omey [5] described a new class of functions that covers the
class of functions regularly varying at infinity, and in the other recent paper of
these authors [6] that new class of functions was used for characterization of the
tail probability distribution functions under general settings. Taking that new
class into consideration enables us to further reconsider and develop the earlier
tests on convergence/divergence of positive series. The approach of the present
paper is based on studying these problems on convergence/divergence from this
new position.

The starting point in the present paper is Raabe’s test. The test implies a
simple logarithmic test, which is known as Cauchy’s second test. This simple test
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can be extended and leads to a new test based on logarithms. The same framework
has been used by Řehák [13, 14] to extend the formula of Raabe. We show how
the new definitions lead to new convergence/divergence tests. For the undecided
cases, we generalize an old result of Martin [11]. In the final remarks, we provide
some one-sided results.

The rest of the paper is organized as follows. In Section 2, we first recall Raabe’s
test, provide its extended version and establish the connection between Raabe’s test
and a simple log-test. In Section 3, we first extend the simple log-test, and on the
basis of that extension, we derive the main conditions on convergence or divergence
of positive series. In Section 4, we study the case under which no direct decision
can be made. In Section 5, we conclude the paper, where the possible development
of the theory is discussed, as well as some one-sided results are provided.

2. A simple log test

The test of Raabe deals with sequences of positive numbers (an). The sequence
is called a Raabe sequence if the following limit exists:

(2.1) lim
n→∞

n
(an+1

an

− 1
)

= θ.

In traditional applications of Raabe sequences, limit relation (2.1) implies that

(2.2)











∑

∞

i=1 ai = ∞, if θ > −1,
∑

∞

i=1 ai < ∞, if θ < −1,

no decision can be made, if θ = −1.

For a recent review of Raabe’s test, we refer to Hammond [10].
However actually limit relation (2.1) is more informative than that is presented

by (2.2). It is well known that (2.1) implies that (an) is a regularly varying sequence
(e.g. Bingham, Goldie and Teugels [2, Chapter 1.9] or Bojanic and Seneta [3]),
and Karamata’s theorem (see [2, Chapter 1.9]) can be used for establishing the
properties of partial sums. Namely, we have the following result.

Lemma 2.1. Assume that (2.1) holds.

(i) If θ > −1, then
∑n

i=1 ai → ∞ and
∑n

i=1 ai ∼ nan/(1 + θ).
(ii) If θ < −1, then

∑

∞

i=1 ai < ∞ and
∑

∞

i=n ai ∼ −nan/(1 + θ).
(iii) If θ = −1, then test (2.1) is inconclusive.

Lemma 2.1 shows not only convergence/divergence of
∑n

i=1 ai, but also the
precise rate at which this happens.

Now we rewrite (1) by using logarithms. First observe that n ln(1 + 1/n) → 1.
Also observe that (2.1) implies that an+1/an → 1. Since ln(z) ∼ z − 1 as z → 1,
then it follows that (2.1) is equivalent to

(2.3) lim
n→∞

ln(an+1/an)
ln(w(n + 1)/w(n))

= lim
n→∞

∆ ln an

∆ ln w(n)
= θ.

where w(n) = n, n > 1, and ∆αn = αn+1 − αn.
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By using the Stolz–Cesàro lemma and taking sums in (2.3), we obtain

(2.4) lim
n→∞

ln an

ln w(n)
= θ.

For further use, we denote by RVα the class of regularly varying functions of
index α. The integer part of x is denoted by [x].

Whenever lim supx→∞
f(x)/g(x) < ∞, we write f(x) � g(x). The relation �

is a partial order. If f(x) � g(x) and g(x) � f(x), the functions f(x) and g(x) are
called equivalent and we write f(x) ≍ g(x). If f(x) � g(x) and g(x) � h(x), then
also f(x) � h(x).

Cadena, Kratz and Omey [5] showed that (2.4) (with w(n) = n) holds if and
only if f(x) = a[x] satisfies the following property.

Lemma 2.2. Assume that w(x) = x, and let f(x) = a[x]. Then (2.4) holds if

and only if there exist functions A(x), B(x) ∈ RVθ so that A(x) � f(x) � B(x).
Moreover we have:

(i) If θ > −1, then
∑n

i=1 ai → ∞, nA(n) �
∑n

i=1 ai � nB(n), and

lim
n→∞

ln(
∑n

i=1 ai)
ln n

= θ + 1.

(ii) If θ < −1, then
∑

∞

i=1 ai < ∞, nA(n) �
∑

∞

i=n ai � nB(n), and

lim
n→∞

ln(
∑

∞

i=n ak)
ln n

= θ + 1.

This test about convergence/divergence of the series
∑

ai is sometimes called
Cauchy’s second test [5]. It was re-invented, for example, in Rao [12]. Here in
Lemma 2.2 the asymptotic estimates for the partial sums are added.

3. An extension

We reconsider (2.4) for a general type of the functions w(x). We make the
following assumptions:

(a) w(x) ↑ ∞ is strictly increasing; the inverse of w(x) is denoted by wi(x).
(b) ∀y we have limx→∞ w(x + y)/w(x) = 1.

In the sequel we shall assume that w(x) satisfies these assumptions. Under the
assumption that (2.4) holds we have the following new result.

Proposition 3.1. We take f(x) = a[x]. The following are equivalent:

(3.1) (i) lim
n→∞

ln an

ln w(n)
= θ,

(ii) There exist functions A(x), B(x) ∈ RVθ such that

(3.2) A(w(n)) � an � B(w(n)).

Proof. Using f(x) = a[x] we see that (3.1) holds if and only if ln f(x)/ ln w(x)
→ θ. Replacing x by wi(x) it follows that

lim
x→∞

ln f(wi(x))
ln x

= θ.
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As in Lemma 2.2, from Cadena, Kratz and Omey [5], we obtain A(x) � f(wi(x)) �

B(x) with A, B ∈ RVθ, and (3.2) follows. Starting from (3.2) we use a property
of regular variation: If U(x) ∈ RVα, then ln U(x)/ ln x → α, see [2], to obtain
(3.1). �

Now we reconsider (2.3) for general w(n). Since the requirement is stronger
than (3.1), we obtain the stronger result. The result has been stated and proved
in [13], but we provide an alternative proof that has the advantage that it can be
easily extended in order to obtain one-sided results given in the concluding remarks.

Proposition 3.2. Assume that (2.3) holds, and let f(x) = a[x]. Then f(x)
can be presented in the form f(x) = h(w(x)), where h(x) is regularly varying with

index θ, and the following representation holds:

f(x) = a(x) exp
∫ w(x)

a

λ(y)
1
y

dy, x > a,

in which a(x) → a > 0, and λ(x) → θ, as x → ∞.

Proof. We start from (2.3) and write

ln
(an+1

an

)

= θ(n) ln
(w(n + 1)

w(n)

)

,

where θ(n) → θ as n → ∞. For ǫ > 0, we choose n◦ so that θ − ǫ 6 θ(n) 6 θ + ǫ,
∀n > n◦. Taking sums, we find that for M > N > n◦,

(θ − ǫ)
M−1
∑

i=N

ln
(w(i + 1)

w(i)

)

6

M−1
∑

i=N

ln
(ai+1

ai

)

6 (θ + ǫ)
M−1
∑

i=N

ln
(w(i + 1)

w(i)

)

,

or

(θ − ǫ) ln
(w(M)

w(N)

)

6 ln
(aM

aN

)

6 (θ + ǫ) ln
(w(M)

w(N)

)

.

Using f(x) = a[x], we find that for y > x > n◦,

(θ − ǫ) ln
(w([y])

w([x])

)

6 ln
( f(y)

f(x)

)

6 (θ + ǫ) ln
( w([y])

w([x])

)

.

We continue with the inequality on the right hand side of this expression. It follows
that

ln
(f(y)

f(x)

)

6 (θ + ǫ) ln
(w(y)

w(x)

)

+ (θ + ǫ) ln
(w([y])w(x)

w([x])w(y)

)

.

For x, y sufficiently large, we obtain

ln
(f(y)

f(x)

)

6 ǫ + (θ + ǫ) ln
(w(y)

w(x)

)

,

or equivalently

ln
( f(wi(y))

f(wi(x))

)

6 ǫ + (θ + ǫ) ln
( y

x

)

.
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Now we fix t > 1 and replace y by y = xt. For x sufficiently large, we find

ln
(f(wi(tx))

f(wi(x))

)

6 ǫ + (θ + ǫ) ln t.

In a similar way we also obtain

−ǫ + (θ − ǫ) ln t 6 ln
(f(wi(tx))

f(wi(x))

)

.

Since ǫ is arbitrary, we conclude that

lim
x→∞

ln
(f(wi(tx))

f(wi(x))

)

= θ ln t.

It follows that f(wi(x)) is regularly varying with index θ. The representation
theorem in [2] finalizes the proof of the result. �

Remark 3.1. Assume that an = f(w(n)), where f(x) is a normalized regularly
varying function, i.e. f(x) satisfies xf ′(x)/f(x) → θ as x → ∞. In this case we
have ∆ ln an = ln f(w(n+1))− ln f(w(n)). Since (ln f(x))′ = f ′(x)/f(x), the mean
value theorem yields

∆ ln an =
f ′(αn)
f(αn)

(w(n + 1) − w(n)),

where w(n) 6 αn 6 w(n + 1). Since w(n + 1) ∼ w(n), we have αn ∼ w(n) and it
follows that

∆ ln an =
αnf ′(αn)

f(αn)

(w(n + 1)
w(n)

− 1
)w(n)

αn

.

Using ∆ ln w(n) ∼ (w(n + 1)/w(n) − 1), we conclude that (2.3) holds.

Now we generalize Lemma 2.2 as follows. The following test is new and to our
knowledge has not been stated yet.

Theorem 3.1. Assume that

(3.3) lim
n→∞

ln(an/∆w(n))
ln w(n)

= θ.

Then there exist functions A(x), B(x) ∈ RVθ so that the following holds:

(i) If θ < −1, then
∑

∞

i=1 ai < ∞, w(n)A(w(n)) �
∑

∞

i=n ai � w(n)B(w(n)),
and

lim
n→∞

ln(
∑

∞

i=n ai)
ln w(n)

= θ + 1.

(ii) If θ > −1, then
∑

∞

i=1 ai = ∞, w(n)A(w(n)) �
∑n

i=1 ai � w(n)B(w(n)),
and

lim
n→∞

ln(
∑n

i=1 ai)
ln w(n)

= θ + 1.
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Proof. From Proposition 3.1 and (3.3) we have

A(w(n)) �
an

∆w(n)
� B(w(n)),

where A, B ∈ RVθ. It follows that ∆w(n)A(w(n)) � an � ∆w(n)B(w(n)). Using
the regular variation of A and B and using w(n + 1) ∼ w(n), we find that

∫ w(n+1)

w(n)
A(z)dz � an �

∫ w(n+1)

w(n)
B(z)dz.

Now first assume that θ < −1. In this case
∫

∞

b
A(z)dz +

∫

∞

b
B(z)dz < ∞, and

∫

∞

x

A(z)dz ∼ −
xA(x)
θ + 1

,

∫

∞

x

B(z)dz ∼ −
xB(x)
θ + 1

.

It follows that
∑

∞

i=i◦ ai < ∞ and
∫

∞

w(n)
A(z)dz �

∞
∑

i=n

ai �

∫

∞

w(n)
B(z)dz,

so that

w(n)A(w(n)) �

∞
∑

i=n

ai � w(n)B(w(n)).

If θ > −1, we have
∫ x

b

A(z)dz ∼
xA(x)
θ + 1

,

∫ x

b

B(z)dz ∼
xB(x)
θ + 1

,

and now it follows that

w(n)A(w(n)) �

n
∑

i=1

ai � w(n)B(w(n)). �

Remark 3.2. Theorem 3.2 not only provides conditions for convergence and
divergence, but also provides estimates for the partial sums.

Remark 3.3. In Bourchtein et al. [4], the authors consider a function F (x) > 0
so that F ′(x) > 0 is nonincreasing and

∑

∞

i=1 F ′(i) = ∞. Then the authors consider
sequences (an) of positive numbers so that the limit

lim
n→∞

ln(an/F ′(n))
ln F (n)

= θ

exists. The conclusions about convergence or divergence of
∑

ai are the same as
in Theorem 3.1.

Example 3.1. Take w(n) = ln n. We have

w(n + 1) − w(n) = ln
(

1 +
1
n

)

=
1
n

−
1

2n2 + o
( 1

n2

)

.

Assumption (3.3) in this case is

lim
n→∞

ln(an/ ln(1 + 1/n))
ln ln n

= θ.
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We have ln(an/ ln(1 + 1/n)) = ln(nan) − ln n ln(1 + 1/n)). Now note that we have
the following expansion:

ln
(

n ln
(

1 +
1
n

))

= ln
(

1 −
1

2n2 + o
( 1

n2

))

= O
( 1

n2

)

.

Hence the condition can be simplified and given by

lim
n→∞

ln(nan)
ln ln n

= θ.

Example 3.2. We study the sequence an = (ln n)θ/n. In this case (2.3) leads
to ln an/ ln n → −1, and we cannot decide about convergence or divergence of
∑

an. Using the new test, we have ln(nan) = θ ln ln n, and we have conver-
gence/divergence depending on θ < −1 resp. θ > −1.

Example 3.3. Taking w(n) = ln(ln n), we find that (3.3) leads to

lim
n→∞

ln((n ln n)an)
ln(ln(ln n))

= θ,

and we have convergence/divergence of the series when θ < −1, resp. θ > −1. It
is not hard to extend this, cf. Martin [11].

Using Proposition 3.2, we have the following theorem presented below. The
main point of the next theorem is that it not only provides a condition to conclude
convergence or divergence, but also gives information about the rate at which this
happens. This result is also available in [14].

Theorem 3.2. Let bn = an/∆w(n) and assume that

lim
n→∞

∆ ln bn

∆ ln w(n)
= θ.

(i) If θ > −1, then
∑

∞

i=1 ai = ∞, and

n
∑

i=1

ai ∼
1

1 + θ
w(n)h(w(n)) ∼

1
1 + θ

·
w(n)

w(n + 1) − w(n)
an.

(ii) If θ < −1, then
∑

∞

i=1 ai < ∞, and

∞
∑

i=n

ai ∼ −
1

1 + θ
w(n)h(w(n)) ∼

−1
1 + θ

·
w(n)

w(n + 1) − w(n)
an.

Proof. Let f(x) = b[x]. From Proposition 3.2 we have f(x) = h(w(x)), where
h(x) ∈ RVθ. Hence,

an

w(n + 1) − w(n)
= h(w(n)),

so that an = (w(n + 1) − w(n))h(w(n)). For n → ∞, we find that, as n → ∞,

an ∼
∫ w(n+1)

w(n) h(z)dz. Now the result follows from Karamata’s theorem. �

Remark 3.4. It is shown in Řehák [14] that (2.3) is equivalent to Kummer’s
test. Compared to Kummer’s test, we obtained the explicit expressions for the
partial sums.
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4. The undecided case θ = −1

4.1. Results related to Theorem 3.1. Let α(n) be defined as

α(n) =
ln(an/∆w(n))

ln w(n)
.

If α(n) → θ = −1, then Theorem 3.1 does not lead to the decision.
We prove three types of results.
a) In the first type of results, we assume that α(n) + 1 → 0 at certain rate.

Apparently,

(α(n) + 1) ln w(n) = ln
( an

∆w(n)

)

+ ln w(n) = ln
(w(n)an

∆w(n)

)

,

and then
an

∆w(n)wi(n)
= exp(α(n) + 1) ln w(n).

Proposition 4.1. (i) Assume that exp(α(n) + 1) ln w(n) > B > 0. Then
∑

∞

i=1 ai = ∞ and
∑n

i=a ai � ln w(n).

(ii) Assume that exp(α(n)+1) ln w(n) → C where 0 < C < ∞. Then
∑

∞

i=1 ai = ∞

and
∑n

i=1 ai ∼ C ln w(n).

Proof. (i) If exp(α(n) + 1) ln w(n) > B > 0 then

an > B∆w(n)wi(n) �

∫ w(n+1)

w(n)

1
z

dz.

It follows that
∑N

i=a ai �
∫ w(N)

b
z−1dz, and hence

∑N

i=1 ai � ln w(N).

(ii) We have

an ∼ C∆w(n)wi(n) ∼ C

∫ w(n+1)

w(n)

1
z

dz.

The result follows by summation. �

Example 4.1. We study the case an = n−1(ln n)p. Using w(n) = n we have
∆ ln an/∆ ln w(n) → −1, that is inconclusive case.

Now we take w(n) = ln n. We find:

ln(an/∆w(n)) = ln an − ln ∆w(n)

= − ln n + p ln ln n − ln
(

ln
(

1 +
1
n

))

= p ln ln n − ln
(

n ln
(

1 +
1
n

))

= p ln ln n − ln
(

1 +
(

n
(

ln(1 +
1
n

))

− 1
)

,

and then

ln(an/∆w(n)) − p ln ln n ∼ n ln
(

1 +
1
n

)

− 1 ∼ −
1

2n
.
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We find

α(n) =
ln(an/∆w(n))

ln w(n)
→ p,

and for p 6= −1, we can apply Theorem 3.1.
In the case of p = −1, we have

α(n) + 1 =
ln(an/∆w(n)) + ln ln n

ln ln n
∼ −

1/2
n ln ln n

,

ln w(n)(α(n) + 1) ∼ −
1

2n
→ 0.

Now Proposition 4.1 (ii) (with C = 1) is applicable, and we arrive at
∑n

i=1 ai ∼

ln w(n).

b) In the second type of results, we start from

ln(an/∆w(n))
ln w(n)

→ −1,

making the stronger assumption of existence of the following limit

(4.1)
ln(an/∆w(n)) + ln w(n)

ln ln w(n)
=

ln(w(n)an/∆w(n))
ln ln w(n)

→ β.

Proposition 4.2. Assume that (4.1) holds.

(i) If β < −1, then
∑

∞

i=1 ai < ∞ and

(4.2)
ln(

∑

∞

i=n ai)
ln ln w(n)

→ β + 1.

(ii) If β > −1, then
∑

∞

i=1 ai = ∞ and

(4.3)
ln(

∑n

i=1 ai)
ln ln w(n)

→ β + 1.

Proof. Assume that (4.1) holds. For ǫ > 0 we have

ln
(w(n)an

∆w(n)

)

6 (β + ǫ) ln ln w(n), n > n◦,

and then

an 6 ∆w(n)wi(n)(ln w(n))β+ǫ �

∫ w(n+1)

w(n)
(ln z)β+ǫ 1

z
dz.

Similarly we have

an �

∫ w(n+1)

w(n)
(ln z)β−ǫ 1

z
dz.

If β < −1, then
∑

∞

i=1 ai < ∞, and

(ln w(n))β−ǫ+1 �

∞
∑

i=n

ai � (ln w(n))β+ǫ+1.

Relation (4.2) follows.
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If β > −1, then
∑

∞

i=1 ai = ∞, and

(ln w(n))β+1−ǫ �

n
∑

i=1

ai � (ln w(n))β+1+ǫ.

Relation (4.3) follows. �

Example 4.2. Consider an = (ln ln n)p

n ln n
, and w(n) = ln n. Note that ∆w(n) ∼

1/n, and we then obtain

ln(an/∆w(n))
ln ln n

=
ln((ln ln n)p/ ln n)

ln ln n
=

p ln ln ln n − ln ln n

ln ln n
→ −1,

as n → ∞. Also we have
ln(w(n)an/∆w(n))

ln ln ln n
=

ln((ln ln n)p)
ln ln ln n

→ p,

as n → ∞. Hence, by applying Proposition 4.2, for p < −1 we obtain
∞

∑

i=1

ai < ∞, and
ln (

∑

∞

i=n ai)
ln ln ln n

→ p + 1, as n → ∞.

If p > −1, then
∞

∑

i=1

ai = ∞, and
ln (

∑n

i=1 ai)
ln ln ln n

→ p + 1, as n → ∞.

If p = −1, we cannot arrive at the conclusion from Proposition 4.2.

c) We prove a generalization of an old result of Martin [11]. Let ln(0) z = z,
ln(1) z = ln z and ln(k+1) z = ln ln(k) z for k = 1, 2, . . . Note that for k > 0 we have

(ln(k+1)(z))′ =
(ln(k)(z))′

ln(k)(z)
= · · · =

1
z × ln(1) z × ln(2) z × · · · × ln(k) z

.

If (4.1) holds with β = −1, Proposition 4.2 cannot be used. In this case, we
are to replace (4.1) by the stronger assumption

lim
n→∞

ln(w(n)an/∆w(n)) − ln(2) w(n)

ln(3) w(n)
=

ln(w(n) ln(1) w(n)an/∆w(n))

ln(3) w(n)
= β.

As in Proposition 4.2, this leads to the case β = −1, at which we cannot make
a decision. In general, for k = 1, 2, . . . we assume

lim
n→∞

ln(w(n)Πk
i=1 ln(i) w(n)an/∆w(n))

ln(k+2) w(n)
= βk,

and consider the case of β1 = β2 = · · · = βk−1 = −1.

Proposition 4.3. Under the above assumptions we have as follows.

(i) If βk < −1, then
∑

∞

i=1 ai < ∞, and

lim
n→∞

ln(
∑

∞

i=n ai)
ln(k+2) w(n)

= βk + 1.
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(ii) If βk > −1, then
∑

∞

i=1 ai = ∞, and

lim
n→∞

ln(
∑n

i=1 ai)
ln(k+2) w(n)

= βk + 1.

(iii) If βk = −1, then assumptions (i) and (ii) should be taken for k + 1, i.e.,

assumption βk < −1 should be replaced by βk+1 < −1 and assumption

βk > −1 should be replaced by βk+1 > −1.

Proof. For ǫ > 0 we have

ln
(w(n)

∏k

i=1 ln(i)(w(n)an)

∆w(n)

)

6 (βk + ǫ) ln ln(k+1) w(n), n > n◦.

It follows that

w(n)
∏k

i=1 ln(i)(w(n)an)

∆w(n)
6 (ln(k+1) w(n))βk+ǫ,

an 6 ∆w(n)
(ln(k+1) w(n))βk+ǫ

w(n)
∏k

i=1 ln(i) w(n)
.

It follows that

an �

∫ w(n+1)

w(n)

(ln(k+1)(z))βk+ǫ

z
∏k

i=1 ln(i) z
dz.

Similarly we find

an �

∫ w(n+1)

w(n)

(ln(k+1)(z))βk−ǫ

z
∏k

i=1 ln(i) z
dz.

Now we consider the case βk < −1. Using
∫

∞

q

(ln(k+1)(z))βk+ǫ

z
∏k

i=1 ln(i) z
dz = −

(ln(k+1)(q))βk+ǫ+1

βk + ǫ + 1
< ∞,

we find that
∑

∞

i=1 ai < ∞, and

(ln(k+1) w(n))βk−ǫ+1 �

∞
∑

i=n

ai � (ln(k+1) w(n))βk+ǫ+1.

Now it follows that

lim
n→∞

ln(
∑

∞

i=n ai)
ln(k+2) w(n)

= βk + 1.

In the case of βk > −1, we find that
∑

∞

i=1 ai = ∞, and

(ln(k+1) w(n))βk−ǫ+1 �

n
∑

i=1

ai � (ln(k+1) w(n))βk+ǫ+1.

Finally, we arrive at

lim
n→∞

ln(
∑n

i=1 ai)
ln(k+2) w(n)

= βk + 1. �
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Example 4.3. Assume that in Example 4.2 we have p = −1. According to
Proposition 4.2, we cannot conclude on either convergence or divergence of

∑n

i=1 ai

as n → ∞. From the above we have
ln((ln n)an/∆w(n))

ln ln ln n
→ −1,

as n → ∞. Further, for n > exp(exp(exp(exp(1)))) we obtain

ln((ln n)(ln ln n)an/∆w(n))
ln ln ln ln n

=
ln((ln ln n)(ln ln n)−1)

ln ln ln ln n
=

ln 1
ln ln ln ln n

= 0.

Hence, Proposition 4.3 allows us to conclude that
∞

∑

i=1

ai = ∞, and
ln (

∑n

i=1 ai)
ln ln ln ln n

→ 0, as n → ∞.

4.2. Results related to Theorem 3.2. We define α(n)

α(n) =
∆ ln(an/∆w(n))

∆ ln w(n)
.

If α(n) → θ = −1, Theorem 3.2 does not provide information on convergence or
divergence. We provide three types of results.

a) Apparently, (α(n) + 1)∆ ln w(n) = ∆ ln(anw(n)/∆w(n)). Then taking the
sums

∑N

a we obtain

ln
( w(N)

∆w(N)
aN

)

= c +
N

∑

i=a

(α(i) + 1) ln w(i)

for some constant c, and

w(n)
∆w(N)

aN = C exp
N

∑

i=a

(α(i) + 1) ln w(i)

for some constant C > 0.

Proposition 4.4. (i) If exp
∑N

i=a(α(i) + 1) ln(w(i)) > B > 0,

then
∑n

i=a ai � ln w(n).

(ii) If exp
∑N

i=a(α(i) + 1) ln(w(i)) → D, then
∑

∞

i=1 ai = ∞, and
∑n

i=1 ai ∼ E ln w(n) for some constant E > 0.

Proof. (i) If exp
∑N

i=a(α(i) + 1) ln w(i) > B, then

aN �
∆w(N)
w(N)

�

∫ w(N+1)

w(N)

1
z

dz.

It follows that
∑n

i=a ai �
∫ w(n+1)

w(a) z−1dz ≍ ln w(n), and hence we find that
∑n

i=a ai

� ln w(n).

(ii) If exp
∑N

i=a(α(i) + 1) ln w(i) → D (finite), then

w(N)
∆w(N)

aN → CD := E.
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It follows that aN ∼ E
∫ w(N+1)

w(N) z−1dz. The result follows by summation. �

b) To obtain the second type of results similar to that is given in (4.1), we
assume

(4.4) lim
n→∞

∆ ln(w(n)an/∆w(n))
∆ ln ln w(n)

= β.

Proposition 4.5. Assume that (4.4) holds.

(i) If β < −1, then
∑

∞

i=1 ai < ∞ and

lim
n→∞

ln(
∑

∞

i=n ai)
ln ln w(n)

= β + 1.

(ii) If β > −1, then
∑

∞

i=1 ai = ∞, and

lim
n→∞

ln(
∑n

i=1 ai)
ln ln w(n)

= β + 1.

Proof. From (4.4) it follows that for ǫ > 0 we have

β − ǫ 6
∆ ln(w(n)an/∆w(n))

∆ ln ln w(n)
6 β + ǫ, n > n◦.

Hence,

(β − ǫ)∆ ln ln w(n) 6 ∆ ln
w(n)an

∆w(n)
6 (β + ǫ)∆ ln ln w(n), n > n◦.

Taking the sums
∑N

n◦ leads to

C + (β − ǫ) ln ln w(N) 6 ln
w(N)aN

∆w(N)
6 D + (β + ǫ) ln ln w(N), N > n◦,

∆w(N)
w(N)

(ln w(N))β−ǫ � aN �
∆w(N)
w(N)

(ln w(N))β+ǫ.

It follows that
∫ w(N+1

w(N)

1
z

(ln z)β−ǫdz � aN �

∫ w(N+1)

w(N)

1
z

(ln z)β+ǫdz. �

c) As in the previous subsection, we can obtain a hierarchy of results. Note
that (4.4) reduces to

lim
n→∞

∆ ln(w(n)an/∆w(n))
∆ ln(2) w(n)

= β.

Now we make the following assumption: for k > 1 assume that

lim
n→∞

∆ ln(w(n)
∏k

i=1 ln(i) w(n)an/∆w(n))

∆ ln(k+2) w(n)
= βk,

where β1 = · · · = βk−1 = −1.

Proposition 4.6. Under the above assumptions we have
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(i) If βk < −1, then
∑

∞

i=1 ai < ∞, and

lim
n→∞

ln(
∑

∞

i=n ai)
ln(k+2) w(n)

= βk + 1.

(ii) If βk > −1, then
∑

∞

i=1 ai = ∞, and

lim
n→∞

ln(
∑n

i=1 ai)
ln(k+2) w(n)

= βk + 1.

(iii) If βk = −1, then assumptions (i) and (ii) should be taken for k + 1, i.e.,

assumption βk < −1 should be replaced by βk+1 < −1 and assumption

βk > −1 should be replaced by βk+1 > −1.

Proof. For ǫ > 0 we have

∆ ln
(w(n)

∏k

i=1 ln(i) w(n)an

∆w(n)

)

6 (βk + ǫ)∆ ln(k+2) w(n), n > n◦.

Taking the sums
∑N

n◦ yields

ln
(w(N)

∏k

i=1 ln(i) w(N)aN

∆w(N)

)

6 A + (βk + ǫ) ln(k+2) w(N), N > n◦,

aN � ∆w(N)
(ln(k+1) w(N))βk+ǫ

w(N)
∏k

i=1 ln(i) w(N)
�

∫ w(N+1

w(N)

(ln(k+1)(z))βk+ǫ

z
∏k

i=1 ln(i) z
dz.

Similarly,

aN �

∫ w(N+1

w(N)

(ln(k+1)(z))βk−ǫ

z
∏k

i=1 ln(i) z
dz.

Now, the result follows by summation. �

5. Concluding remarks

1) In this paper we studied the consequences of the assumptions

lim
n→∞

ln an

ln w(n)
= θ, lim

n→∞

∆ ln an

∆ ln w(n)
= θ.

It could be interesting to study assumptions of the type

lim
n→∞

∆2 ln an

∆2 ln w(n)
= θ,

or higher order differences.
2) When studying functions, we can also consider statements of the form

lim
x→∞

ln f(x)
ln w(x)

= θ, or lim
x→∞

(ln f(x))′

(ln w(x))′
= θ.

In the first case we proved that there exist functions A(x), B(x) ∈ RVθ so that
A(w(x)) � f(x) � B(w(x)). In the second case, we found that f(x) = h(w(x)),
where h(x) ∈ RVθ.
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3) Along with the cases where the limits exist, we considered the cases where
the limits are replaced with lim sup and lim inf. For example we have the following
statements.

Proposition 5.1. (i) Assume that

lim sup
n→∞

ln(an/∆w(n))
ln w(n)

= θ < −1,

then
∑

∞

i=1 ai < ∞.

(ii) Assume that

lim inf
n→θ

ln(an/∆w(n))
ln w(n)

= θ > −1,

then
∑

∞

i=1 ai = ∞.

Proposition 5.2. Let f(x) = a[x], and assume that

α = lim inf
n→∞

∆ ln an

∆ ln w(n)
6 lim sup

n→∞

∆ ln an

∆ ln w(n)
= β.

Then, for all t > 1, we have

lim inf
x→∞

f(tx)
f(x)

> tα, and lim sup
x→∞

f(tx)
f(x)

6 tβ .

Proposition 5.2 shows that f(x) is in the class of so-called O− regularly varying
functions studied among the others in [2].
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