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Abstract

Motivation:Proteins able to undergo Liquid-Liquid Phase Separation (LLPS) in-vivo and in-vitro are
drawing a lot of interest, due to their functional relevance for cell life. Nevertheless, the proteome-scale
experimental screening of these proteins seems unfeasible, because besides being expensive and time
consuming, LLPS is heavily influenced by multiple environmental conditions such as concentration, pH
and temperature, thus requiring a combinatorial number of experiments for each protein.
Results: To overcome this problem, we propose an Neural Network model able to predict the LLPS
behavior of proteins given specified experimental conditions, effectively predicting the outcome of in-vitro
experiments. Our model can be used to rapidly screen proteins and experimental conditions searching
for LLPS, thus reducing the search space that needs to be covered experimentally. We experimentally
validate Droppler’s prediction on the the TAR DNA-binding protein in different experimental conditions,
showing the consistency of its predictions.
Contact: yves.moreau@kuleuven.be, joost.schymkowitz@kuleuven.be frederic.rousseau@kuleuven.vib.be
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Recently, much effort has been devoted to the study of proteins able to
undergo a phase transition called Liquid-Liquid Phase Separation (LLPS)
(Orlando et al., 2019; Wang et al., 2018) under certain biophysical
conditions or thanks to the presence of macromolecules such as RNA
(Weber and Brangwynne, 2012). In LLPS, the proteins undergo reversible
demixing, thus forming suspended condensates similar to droplets (Banani
et al., 2017), that, in eukaryotic cells, might act as membraneless organelles
(Nott et al., 2015a; Feric et al., 2016). Recent studies showed that the
formation of these organelles might have an important role in various

biological processes (Shin and Brangwynne, 2017; Banani et al., 2017),
such as RNA metabolism (Uversky, 2017).

Although the biophysical characteristics of the protein sequences
are important determinants for the LLPS behavior, such as cation-π
interactions between Tyr and Arg residues (Wang et al., 2018), the
presence of RNA-recognition motifs (RRMs) and Prion-like Domain
(PLD) separated by spacer regions (Wang et al., 2018; Orlando et al.,
2019), experimental and environmental conditions such as temperature,
pH and salt concentration play a crucial role in modulating LLPS behavior
(Li et al., 2019; Wang et al., 2018).

In our previous work (Orlando et al., 2019), we developed an
unsupervised probabilistic model for the detection of sequences with LLPS
behavior similar to the one observed in FUS-like proteins (Wang et al.,
2018). Our method, called PSPer, was able to prioritize and identify
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2 Raimondi et al.

proteins forming membraneless organelles in eukaryotic cells and to
determine which mutations were more likely to alter the LLPS propensity.

PSPer was based on empirical rules defined for a small class of proteins
(FUS-like family) (Wang et al., 2018) because very little data about other
LLPS proteins were available at the time. Other sequence-based LLPS
predictors have also been developed afterwards, using Machine Learning
(ML) classifiers such as Random Forest (Saar et al., 2020) or Support
Vector Machines (Sun et al., 2019). A deeper analysis of the current state
of the art LLPS predictors from sequence only is available in Vernon and
Forman-Kay (2019)

Recently, more data related to LLPS proteins have been gathered in
publicly available databases (Mészáros et al., 2020; You et al., 2020). In
particular, thanks to the publication of LLPSDB (Li et al., 2019), which is
a database collecting in a standardized way the outcomes and the details
of LLPS experiments, it has become possible to take another step towards
improving the in-silico prediction of the LLPS behavior, modeling for
the first time the interaction between protein sequence and experimental
conditions. From this resource we could indeed gather enough in-vitro
experimental data to train a supervised model, called Droppler, able
to predict in-silico the outcomes of such experiments. From the ML
perspective, our model is the first to jointly model the role of the protein
sequence and the experimental conditions towards the prediction of LLPS.

Droppler is an end-to-end Neural Network (NN) model which uses a
novel multi-head neural attention mechanism, a class of machine learning
algorithms that have already been proving their strength in other prediction
tasks (Raimondi et al., 2020). The network is trained to predict, for each
input protein sequence, its likelihood to undergo LLPS given an user-
specified set of experimental conditions such as temperature, salt and
protein concentration, presence of crowding agent and pH. From the ML
methodological standpoint, this end-to-end neural attention architecture
allows us to i) natively deal with variable-length input sequences (which is
usually a non-trivial task for conventional ML approaches) and ii) provide
a way to interpret the prediction, thus shedding light on the molecular
mechanisms driving the LLPS.

To the best of our knowledge, Droppler is the first model designed
to predict the likelihood of proteins to undergo LLPS given a specific
set of experimental conditions because existing approaches (Saar et al.,
2020; Sun et al., 2019; Vernon and Forman-Kay, 2019; Orlando et al.,
2019) focus only on the protein sequence and predict some sort of average
LLPS propensity or in very specific experimental conditions. For instance,
in Saar et al. (2020) the authors only predict the LLPS propensity of
a protein in "nearly physiological conditions". Thanks to the explicit
modeling of the experimental conditions, Droppler could be used instead
to directly prioritize the in-vitro experiments that should be performed
for i) the discovery of novel LLPS proteins and ii) to efficiently explore
the experimental conditions space in order to find the physico-chemical
settings that maximize the likelihood of LLPS for each specific protein
sequence. Droppler predictions are instantaneous and thus large sets of
combinations of pH, temperature, salt and protein concentrations can be
explored in a very short time.

While the task of predicting in-silico the outcome of LLPS experiments
is challenging, as indicated by the low AUC, we show that the relatively
high Sensitivity and Precision of Droppler allows it to screen the
(protein, experimental conditions) space identifying 75% of the
experiments in which LLPS occurs, while discarding 50% of the negative
experiments. Thanks to a relatively high precision, 70% of the times
Droppler indicates that LLPS is likely to happen, its prediction is indeed
correct. To show that Droppler can be used to explore in-silico the
experimental conditions landscapes of specific proteins, identifying the
pH, salt and protein concentrations or temperature regions in which LLPS
is likely to occur, we experimentally validated its prediction on the terminal
domain of TAR DNA-binding protein 43 (TDP-43_LCD), showing that the

protein behaves consistently with Droppler’s predictions in the region of
experimental conditions space explored.

Moreover, the interpretable nature of the neural attention allowed
us to investigate where the NN focuses its attentions in order to
compute its predictions, and indeed we show that the Prion-Like Domain
(PLD) described in (Wang et al., 2018) is consistently attended by our
model, indicating that the learned patterns indeed correlate with known
biophysical aspects related to LLPS. Additionally, our tool works from
single sequence, without using any evolutionary information as input. This
grants both fast predictions and the absence of selection biases described
in Orlando et al. (2016).

Droppler’s code is freely available at https://bitbucket.org/grogdrinker/droppler
and the multi-head architecture that we propose could be applied to many
protein bioinformatics problems.

2 Methods

2.1 Datasets

We trained and tested our model on the data extracted from the recently
published LLPSDB (Li et al., 2019) database, which contains a manually
curated list of proteins undergoing LLPS in-vitro and the correspondent
experimental conditions. LLPSDB contains in total 1182 experiments
on 273 proteins, but before performing our analysis we applied various
consistency filters to the data, ending up with 896 experiments on 366
unique sequences obtained from 137 proteins. This is due to the fact that
many experiments were indeed performed on mutated proteins.

In our filtering we first considered only experiments involving just
one protein at a time (instead of pairs of proteins or proteins plus RNA).
Then we filtered out experiments for which we could not i) properly
parse the experimental conditions values or ii) convert the measure units
or iii) some experimental conditions values were missing. Moreover,
since some experiments were reporting extreme conditions, we decided to
remove the outliers, defined as the top and bottom 10% of the distribution
of each experimental condition taken into consideration. The selected
experiments used as training samples are available from our git repository:
https://bitbucket.org/grogdrinker/droppler.

2.2 Processing of the experimental conditions

The annotation of experimental conditions may have varying degrees of
consistency. For example, different measure units are used to indicate salt
concentrations, temperature ranges and protein concentrations. We parsed
and uniformed these values, defining a standardized encoding for each
characteristic.

For what concerns the salt concentration, since different types of salts
are mentioned (NaCl, KCl, MgCl), we described them by using the ionic
strength. When only ranges of salt concentrations were indicated, we took
the mean value.

Temperatures are often represented as ranges (e.g. < 40◦C, 0-20◦C,
>281K) instead of precise values. We first uniformed them to Celsius and
then we decided to represent the ranges as 10 bins from 0 to 100◦C (e.g.
< 40◦C becomes [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]).

From the description of the buffer used in each experiment we extracted
the pH values and the presence of crowding agent (such as PEG, Dextran
or Ficoll), which we encoded as 1 or 0 values (present or absent).

These experimental conditions are thus concatenated into a numeric
vector, that is used as input to Droppler, alongside the target protein
sequence. The conditions considered are Temperature (10 dimensions),
Protein concentration (1 dimension), ionic strenght (1 dimension),
presence of crowding agent (1 dimension) and buffer pH (1 dimension),
for a total of 14 dimensions.
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In silico LLPS experiments 3

2.3 Multi-head neural attention for protein sequences

Droppler is a Neural Network (NN) that uses the multi-head neural
attention mechanism to predict the outcome of LLPS experiments. The NN
model takes as input one protein sequence and a specific set of experimental
conditions and predicts the likelihood of the input protein to show in-vitro
LLPS behavior given the specified experimental conditions.

Although it is a very common necessity in bioinformatics, feeding
variable-length sequences to ML methods is still a non trivial task because
most of the conventional ML algorithms are designed to take fixed-length
input vectors (e.g. Support Vector Machine, Random Forest). While
various forms of quantization or compression of the input have been used
in literature (Raimondi et al., 2018; Xiao et al., 2018; Clark and Radivojac,
2014), to translate the variable-length inputs into fixed-size encoding,
methods that can natively take as input variable-length sequences are still
uncommon.

In the following we describe the details of this architecture, which is
also shown in Fig. 1.

Feeding the experimental condition to the NN: As described in 2.2, the
experimental conditions are encoded as 14-dimensional vectors. Since
each of these features has its own specific range of values, we scaled each
one by using thescikit-learn (Pedregosa et al., 2011) minMaxScaler.
As shown in the rightmost branch in Fig. 1, this input vector of condition
is then processed by a 1-layer feed-forward NN, with Dropout (p = 0.2)
and Tanh activation, transforming it into a 10 dimensional vector that will
be used later in the NN.

Feeding the target protein sequence to the NN: As shown in the left branch
of Fig. 1 the target protein sequence is initially treated separately from the
experimental conditions. First, we encoded the amino acid sequence with
a 20-dimensional trainable embedding, obtaining a 20 × L dense matrix
encoding each input protein, where L is the protein length. This matrix is
used as input for the neural attention architecture (left branch in Fig. 1),
whose final output is then joined to the processed condition vector.

Similar to the SKADE model presented in (Raimondi et al., 2020),
the branch of the NN that processes the protein sequence of Droppler is
composed by two almost identical sub-networks, the attention (A) and
the predictor (P) (see Fig. 1). Both A and P take the 20 × L sequence
embedding and feed it into a 2 layers bi-directional Gated Recurrent Unit
network with 10 hidden neurons and Dropout (p = 0.2) between each
layer. The final output of the GRU is thus a (10 + 10) × L output
describing the entire sequence. This matrix is then processed by a feed
forward network (yellow and orange dots in Fig. 1) that slides on the
20 × L output of the GRU, taking as input each 20 dimensional column
and transforming it into a 10 dimensional column, thus producing a 10×L
tensor, as shown in Fig. 1.

Both the A and P sub-networks are completely symmetrical up to this
point. The only difference (see Fig. 1) is that the A subnetwork applies a
SoftMax activation to each of the 10 rows of the 10 × L output tensor,
which will act as 10 heads in the multi-head attention mechanism (Vaswani
et al., 2017). The P network applies the same non-linear activation used
so far, the Tanh.

The A and P sub-networks are then joined with a series of row-wise
dot products between the 10 × L tensor produced by P and the 10 × L
SoftMaxed tensor produced by A, obtaining a 10 × 1 vector. Each of
these dimensions contain the values produced by the predictor P network
mediated by the SoftMaxed values produced by the multi-head attention
computed by the attention network A. In other words, the P sub-network
generates a residue-based prediction, while A a residue-based weight used
to distribute a certain attention budget (SoftMax values sum to 1) over the
most relevant residues in the predictions generated by P. The attention is
thus acts as a filter able to ignore the less relevant sequence positions, and

the SoftMax forces the NN to select a limited number of them. The dot
product of these two vector produces the final prediction of each head of the
multi-head architecture, which produces the 1 × 10 vector summarizing
the information contained in the protein sequence. With this procedure we
are able to obtain a fixed-length vector that encodes a protein sequence of
arbitrary length.

Joining sequence and experimental condition information: Finally, the
10 dimensional vector containing the results of the multi-head attention
applied on the input sequence are concatenated with the 10 dimensional
vector representing the experimental conditions (see Fig. 1) and sent
through the final 2-layer feed-forward NN with 10 hidden neurons and
Tanh activation that produce the final prediction, with a final Sigmoid
activation that provides a probability-like score. Suppl. Fig. S1 shows a
diagram of the whole pipeline of Droppler.

Training parameters: The NN described here has been implemented in
pyTorch (Paszke et al., 2017) and contains 8891 trainable parameters.
It has been trained for 50 epochs with Adam optimizer with batch size of
101, L2 regularization with λ = 1× 10−5 and learning rate of 0.01.

Fig. 1. Figure showing the architecture of Droppler. The protein sequence is translated into
a 20 dimensional embedding and then passed to the predictor network P and the attention
network A. Each of these sub-networks contain 2 layers of bi-directional GRU network,
followed by a feed-forward NN. The predictor ends with a Tanh activation, while the
attention network has a SoftMax activation. Finally, the 1× 10 outputs of the sub-network
processing the sequence (left block) and the one processing the experimental conditions
(right block) are concatenated and fed to the final feed-forward module, which computes
the final probability-like prediction.

2.4 Computational validation procedure and performance
evaluation

To evaluate the performances of Droppler we performed a 5 folds stratified
cross-validation. When creating each train-test split, we ensured that
proteins in the training set shared less than 20% of Sequence Identity
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4 Raimondi et al.

(SI) at 90% of coverage with proteins in the test set, using BLASTCLUST
(Altschul et al., 1990).

We evaluated the performance of Droppler by computing the classical
metrics to evaluate the quality of a binary classification, such as Sensitivity
(Sen), Specificity (Spe), Balanced Accuracy (BAC), Precision (Pre),
Matthews Correlation Coefficient (MCC), Area Under the ROC Curve
(AUC) and Area Under the Precision Recall Curve (AUPRC).

2.5 Experimental evaluation of phase separation in
TDP-43_LCD

For the optical density measurements unlabelled TDP-43_LCD (stock
concentration of 40 µM in a 20mM MES buffer pH5) was mixed 1:1
with each buffer condition (50 mM buffers) and immediately transferred
to a 96-well plate (Corning, half area, non-binding plate) and OD600
measurements were performed with a FluoOmega plate reader (BMG
LABTECH). At least four independent repeats were performed. For the
imaging experiments, purified protein stored in MES buffer was combined
with tagged TDP-43_LCD. Alexa Fluor™ 488 NHS Ester was used to tag
TDP-43_LCD, which was mixed with unlabelled protein at a 1:50 ratio.
The protein was added at a 1:1 ratio with buffer 1 or buffer 2 at a final
concentration of 20uM. The sample left to incubate for 10 minutes before
images were obtained using the Nikon A1R Eclipse Ti (Japan).

3 Results

3.1 Droppler predicts the outcome of LLPS experiments

Droppler is an end-to-end Neural Network (NN) model that takes as inputs
i) a protein sequenceS and ii) a list of experimental conditions and predicts
the likelihood ofS to undergo liquid-liquid phase separation (LLPS) given
the choice of experimental conditions.

To train and test it we used the 896 LLPS experiments on 137
proteins (corresponding to 366 unique sequences due to mutations) that
we extracted from LLPSDB (Li et al., 2019), which is a recently published
database containing the details and outcomes of LLPS experiments
collected from literature (see Methods for more details).

Each of those 896 experiments are annotated with experimental
conditions such as temperature, the pH and salt concentration of the buffer,
the presence of crowding agent and the protein concentration. We manually
cleaned the data, we uniformed the measurement units and we translated
them into a notation suitable for ML applications. For example, we
transformed the salt concentration into ionic strength and we encoded the
temperature as a binary 10-dimensional vector, in which each dimension
represents a 10◦C degree range. This allowed us to consider ranges of
temperatures (e.g. < 40◦C, 50 − 60◦C) as input. The total range of
temperatures considered by Droppler goes from 0 to 99◦C.

To evaluate the performance of Droppler, we ran a 5 folds stratified
cross-validation. We used BLASTCLUST to ensure that the proteins in
each cross-validation set shared less than 20% sequence identity at 90%
coverage with proteins in other sets, thus ensuring an unbiased evaluation
of the performance. The final performance scores have been obtained
by concatenating the cross-validation results and computing the metrics
described in Methods.

Suppl. Table S1 show Droppler’s performance. Suppl. Fig. S2 shows
the corresponding ROC curve and the confusion matrix. From the relatively
low AUC of 0.64, we can see that the task of predicting LLPS behavior of
proteins given their sequence and the experimental conditions is quite hard.
On the other hand, the Sensitivity of 0.75 indicates that Droppler is able
to detect 75% of the positive cases, while discarding half of the negatives
(Spe= 0.49). The Precision score is also quite high (0.69), meaning that
roughly 70% of the times Droppler predicts that a protein undergoes LLPS
under certain conditions, the prediction is indeed correct. This means that

our method can be used to prioritize experiments that are likely to provide
positive results among all the possible experiments that can be performed,
thus likely improve the efficiency of discovery of novel LLPS proteins or
conditions sets.

3.2 There is no clear correlation between experimental
conditions and LLPS

In Fig. 2 we analyze the relation between the experimental conditions and
the LLPS label and the Droppler predictions over the entire dataset. In this
plot we compare the distribution of the conditions considered by Droppler
(pH, Crowding agent, Salt and protein concentration) with respect to the
positive and negative labels (LLPS positive, LLPS negative) and with
respect to Droppler predictions (Positive preds, Negative preds), trying to
detect a possible correlation or linear dependence. This plot shows that
the conditions by themselves do not correlate with the LLPS propensity
of the proteins. The Pearson correlation between each condition and the
LLPS labels is always ≤ 0.07. Moreover, we see that not even Droppler
predictions linearly correlate with these conditions, indicating that i)
the interaction between experimental conditions and protein sequence
is indeed much more complex and ii) also the modeling performed by
Droppler does not rely on univariate correlations.

Fig. 2. Plot showing the distribution of the target conditions used by Droppler (pH,
Crowding agent, Salt and portein concentration) with respect to the positive and negative
labels (LLPS positive, LLPS negative) and with respect to Droppler predictions (Positive
preds, Negative preds).

3.3 Droppler can be used to explore the LLPS
experimental conditions landscape

Droppler predictions are nearly instantaneous, meaning that it can be used
to perform a large scale in-silico exploration of the experimental conditions
space and find the combinations that are more likely to allow the protein
S to form LLPS condensates. Due to the emergent nature of protein
folding and of the LLPS behavior, the landscape of the LLPS likelihood
as a function of the protein sequence plus the 5 experimental conditions
considered is highly complex and thus requires an highly non-linear model
such as the multi-head attention architecture (see Methods).

Fig. 3A and 3B show how the predicted LLPS likelihood for
the Heterogeneous nuclear ribonucleoprotein A1 (Uniprot ID: P09651)
changes according to the variation of protein concentration and,
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In silico LLPS experiments 5

respectively, the pH (Fig. 3B) and the ionic strength of the buffer (Fig. 3A).
The other experimental conditions (temperature, presence of crowding
agent) are kept constant. The red and blue dots represent the real outcomes
of experiments performed on P09651 in the same experimental conditions,
and have been extracted from the LLPSDB database (Li et al., 2019).
The red dots indicate experiments successfully showing LLPS behavior,
while the blue dots indicate that no phase transition was registered at those
combinations of conditions.

3.4 Analysis of the temperature change in the in-silico
experiments

Temperature is another factor that influences the LLPS behavior
(Ambadipudi et al., 2017; Molliex et al., 2015; Nott et al., 2015b). Droppler
encodes the temperature information in a binary 10-dimensional vector,
thus allowing ranges of temperature. Each dimension represents a bin of
10 degrees, and Droppler has a range of 0 to 99 degrees Celsius.

By running Droppler, we can investigate the relationship between
temperature, protein concentration and LLPS behavior in-silico, exploring
the entire landscape determined by the variation of these two experimental
conditions. In Fig. 3C, we show this LLPS landscape for the ATP-
dependent RNA helicase laf-1 protein (D0PV95). The blue and red dots are
the experiments annotated in LLPSDB as LLPS000008. Red indicate sets
of conditions at which D0PV95 undergoes LLPS, while blue are negative
experimental outcomes. We can see that the LLPS likelihood predicted by
Droppler mirrors the experimental results, since it assigns lower (darker)
colors in the regions with blue dots and lighter colors where most of the
positive experiments (red dots) are located.

3.5 Experimental validation on human TAR DNA-binding
protein 43 shows results consistent with the predictions

We experimentally validated the ability of Droppler to predict the LLPS
behavior of the terminal domain of TAR DNA-binding protein 43 (TDP-
43_LCD) given varying experimental conditions. To do so, we used
Droppler to screen the salt concentration and pH conditions that would
respectively minimize and maximize the LLPS propensity of TDP-
43_LCD. Temperature and concentration have been kept constant (25°C
and 20µM respectively). The condition at which Droppler predicted the
highest LLPS probability is high pH (> 10) and no salt, while the
conditions that minimize the LLPS probability are low pH (< 4) and
salt concentration of 0.018 M. To verify these predictions, we expressed
the protein and tested how the two buffers modified its behavior. Figure
4 shows the results of the experiments: panel C and D are the images
obtained with transmission microscopy for condition 1 (low predicted
LLPS probability) and 2 (high predicted LLPS probability). Panel A and B
show the images obtained with fluorescent microscopy for condition 1 and
2 respectively and panel E shows the difference in absorbance at OD600.

From the four microscopy images (Fig. 4, A, B, C and D) it can
be noticed that buffer number 2 makes TDP-43_LCD form a cloud of
small droplets, while the first one only generates few larger and sparse
droplets. The usage of buffer 2 results therefore in the detection of diffuse
fluorescence when observed with a fluorescence microscopy. The average
number of droplets observed per image acquired (taking the mean of
3 observations as true value) is 63.7 and 200.0 for condition 1 and 2
respectively. The measure of the absorbance at OD600 is consistent with
what observed at the microscopy, showing a much larger absorbance at in
condition 2.

It is important to notice that TDP-43_LCD is known to undergo LLPS,
so the relevance of Droppler’s prediction is that it is able to identify
regions in the experimental conditions space in which its LLPS capability
is reduced.

3.6 The neural attention detects protein regions that are
crucial for LLPS

Droppler is a NN model that uses a multi-head neural attention architecture
to process the input sequences (Raimondi et al., 2020; Vaswani et al.,
2017). This means that, as shown in Fig. 1, the part of its architecture
devoted to sequence processing is composed by two sub-networks, called
P and A, which are respectively tasked to extract predictive values from
the sequence (P) and determine to which protein regions the network
should focus its attention (A). One interesting aspect of neural attention
architectures is that they allow a certain level of understanding of their
inner decision process, since just by looking at where the NN is focusing its
attention we can identify the regions that have been deemed most relevant
for the prediction.

From Droppler, we thus extracted the per-residue attention values
produced while predicting the RNA-binding protein FUS (P35637) and
the RNA-binding protein 14 (Q96PK6), whose biophysical properties in
relation to its LLPS behavior have been experimentally investigated in
great detail in (Wang et al., 2018). We decided to use these two case studies
because in the aforementioned paper there is an in-depth analysis of the
features and relative mutations that enhance or reduce their capability of
undergo to LLPS. Moreover, they are involved in many cellular processes
(Yamaguchi and Takanashi, 2016) and they are known to form liquid
droplets in-vitro. Their LLPS behavior is determined by the interaction
of regions with different biophysical and structural characteristics (Wang
et al., 2018; Orlando et al., 2019) and these features are also common to
certain number of evolutionarily unrelated proteins, called the FUS-like
family (Wang et al., 2018; Orlando et al., 2019).

The FUS-like proteins have a peculiar organization (Orlando et al.,
2019), which consists in two main elements: a large Tyr-rich disordered
domain, called prion-like domain (PLD), and one or more RNA-binding
motifs (RRMs). PLD and RRM are separated by shorter Arg-rich linker
regions called Spacers (Wang et al., 2018; Orlando et al., 2019).

The upper panel of Fig. 3D shows the attention profile extracted from
Droppler for the human FUS protein (P35637), along with the annotations
of PLD, RRMs and Spacers regions on P35637 annotated with (Orlando
et al., 2019). in order to normalize the attention values and allow an easier
visualization, we applied a quantile normalization to the attention scores
(Pedregosa et al., 2011). We can see that Droppler focuses most of its
attention on the PLD domain (blue), that is indeed crucial for the LLPS
behavior of P35637, due to the cation-π interactions occurring between
Tyr and Arg side-chains (Wang et al., 2018; Vernon et al., 2018). The NN
focuses also on the RRM region (red), which is indeed also very important
(Wang et al., 2018; Orlando et al., 2019) and in two smaller peaks in the
uncharacterized "Other" annotations.

In the lower half of Fig. 3D we plotted the attention profile for the
RNA-binding protein 14 (Q96PK6). Similarly to the previous example,
we see that Droppler focuses most of its attention on the central PLD
region (blue), but also on the first RRM domain (red), with smaller peaks
in two of the Other regions (green).

These two examples show that Droppler focuses its attention on regions
that are known to be essential for the LLPS of the protein (Wang et al.,
2018). In particular, it learned to recognize the PLD and RRM domains,
without being explicitly taught of their relevance. It is important to
highlight that Droppler is completely agnostic about these features. In
other words, we do not define them in the encoding scheme, but the neural
network learns them automatically from the data.

Further interpretation studies on more complex models based on larger
amounts of data could indeed provide insights on the NN’s take about the
molecular processes behind LLPS in different proteins.
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6 Raimondi et al.

Fig. 3. Computational evaluation of the neural network outputs. Plots A, B and C show the effects of different experimental conditions on the predicted LLPS likelihood for Heterogeneous
nuclear ribonucleoprotein A1 (panels A and B) and ATP-dependent RNA helicase laf-1 (panel C). (A) shows how the combination of pH and protein concentration influences the predicted
LLPS likelihood, (B) shows the ionic strength versus protein concentration likelihood landscape and (C) shows the temperature versus protein concentration. Red dots represent actual
experiments extracted from LLPSDB (Li et al., 2019) that showed the formation of LLPS, while the blue ones experiments that did not show the presence of LLPS. Panel D shows the output
of the attention branch obtained from the application of droppler to FUS and RBM14. The The colored regions represent the domain annotation as predicted by PSPer: blue: PLD,red:RRM,
grey:spacer, green: other. The blue and red dots represent the tyrosines and arginine respectively.

Fig. 4. Experimental evaluation of the effect of different buffers on the behavior of TDP-
43_LCD: Panels C and D are images obtained with transmission microscope for condiitons
1 (low LLPS probability) and 2 (high LLPS probability) respectively. Panels A and B are
images obtained with fluorescence microscope for conditions 1 and 2 respectively. Panel E
shows the difference in absorbance at OD600 for the two conditions.

4 Discussion

4.1 Droppler solves a different prediction problem with
respect to existing methods

Droppler is, to the best of our knowledge, the first LLPS predictor able to
predict in-silico the outcome of in-vitro LLPS experiments given different
proteins and experimental conditions. The growing interest in LLPS has
been rapidly followed by the development of computational methods

able to prioritize proteins that are likely to undergo LLPS (Saar et al.,
2020; Sun et al., 2019; Orlando et al., 2019; Vernon and Forman-Kay,
2019), in an effort towards helping reducing the search space that must
be experimentally visited in order to discover new LLPS proteins. These
methods nevertheless perform their predictions while considering only the
target protein sequence, thus ignoring environmental conditions such as
temperature, pH, protein concentration, which are crucial for the LLPS
behavior (Saar et al., 2020; Sun et al., 2019). This implementation choice
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was due to the fact that, until very recently, only extremely limited data
regarding LLPS proteins were available. For example, this scarcity of data
forced us to adopt an unsupervised, rule-based model for our previous
attempt at modeling LLPS behavior (Orlando et al., 2019).

With the publication of the LLPSDB database (Li et al., 2019), which
collects in a standardized way the outcome and the details of hundreds
of LLPS experiments, we could finally relax the sequence-only limitation
of the previous attempts at modeling the LLPS behavior, including also
the experimental conditions (in the form of temperature, pH, protein
concentration, crowding agent) in our model. We thus trained a supervised
model with the goal of replicating in-silico the outcome of the hundreds
of in-vitro LLPS experiments that have been published so far. Droppler
thus addresses a different prediction problem with respect to the existing
LLPS predictors, which focus only on the protein sequence. Given a
protein P, Droppler is indeed trained to predict it as LLPS if the associated
experimental conditions are suitable, or non-LLPS if the conditions do not
allow the phase transition. Fig. 3C show an example of this behavior, where
the same protein (laf-1) shows a temperature-driven LLPS capability. Due
to the different nature of the prediction problem solved by Droppler and
existing LLPS predictors, it is thus not possible to provide a fair comparison
between them, because they are conceptually different: the existing tools
can not differentiate between the LLPS behavior of laf-1 above 40° Celsius
degrees from laf-1 below 30°C, which, with the remaining conditions
fixed, respectively impair or allow LLPS. Our tool therefore expands the
boundaries of the state of the art models, including experimental conditions
as variables of the model.

4.2 Predicting the outcome of in-vitro LLPS experiments is
hard

The possibility to screen the optimal experimental conditions for the
emergence of the LLPS behavior with Droppler could significantly reduce
both the time and resources required to generate new experimental data,
thus boosting the discovery of new LLPS proteins.

Nevertheless, truly understanding the LLPS molecular mechanisms
and driving forces is an extremely complex task and the currently available
data are insufficient to model all its facets, and this is mirrored by the
relatively low prediction performances of Droppler. Notwithstanding these
difficulties, we believe it is important to start these attempts at modeling
the LLPS behavior including the experimental conditions, as a building
block for future approaches.

In our view, the major aspects that currently impair the quality of the
prediction are the following. First, the available experimental data are
very sparse. It is indeed still rare to find experiments that are performed
in similar settings, providing a more or less “continuous” landscape for
a certain experimental condition. The neural network is thus forced very
often to impute the missing data. We expect the quality of the machine
learning model to increase with the amount of available data. Second,
the available experimental conditions are sometimes inconsistent or not
specific enough. An example of this are the “ranges” of temperature (>
40°C, 0-20°C, >281K) that are sometimes reported instead of specific
values. This clearly reduces the amount of information available for the
model on the “temperature” dimension, which might carry instead crucial
information when it comes to predict the LLPS behavior. Third, there
is likely a bias towards positive results (successful LLPS experiments),
because there are way more studies that report conditions in which LLPS
occurs, due to the fact that negative results (that are would be extremely
valuable for machine leaning purposes) are generally considered “less
interesting” by the scientific community. Finally, the problem presents
severe intrinsic difficulties, because determining which proteins are able
to undergo LLPS given certain environmental condition heavily depends
on folding-related structural properties of the target proteins and thus these

aspects have to be modeled from the input sequence, which is a non-trivial
task. Moreover, the relation of these properties with the environmental
conditions is highly non-linear. For example, some proteins increase their
LLPS propensity with temperature, some decrease it and some have a range
of temperatures in which they undergo LLPS. Temperature is only one of
the conditions we consider, and also the others (pH, salt concentration,
protein concentration) are likely to show similar behaviors, making this
problem non-linear over a complex multi-dimensional landscape.

Nevertheless, even if including the experimental conditions causes the
prediction problem to become more complex with respect to considering
only the protein sequence, we believe that this is the most realistic way
to address the LLPS prediction, because for each protein that is able
to undergo LLPS, we can imagine a set of protein concentration, salt
concentration, temperature at which the LLPS does not occur.

Even if the results obtained with Droppler are promising, this is just
a first attempt to discover the biophysical rules that stay behind LLPS.
The relatively low performances of the model highlight the necessity of
additional efforts in the subject, especially for proteins and experimental
settings in which our model fails to provide a reliable prediction. In order
to facilitate this, in Suppl. Table S2 we provide a list of the experiments
for which the prediction are completely wrong (difference between the
ground truth and the prediction greater than 0.9).

4.3 The neural attention architecture is suitable for
sequence-based prediction tasks

Another novelty in the approach we presented in this paper is the
multi-head attention NN architecture for protein sequences. Performing
inference on protein sequences is a common task in bioinformatics, but
most of the existing ML methods (e.g. SVM, Random Forest) are not
able to natively deal with variable length input sequences, because they
expect a fixed size input. People circumvent this issue using for example
various forms of quantization of the sequences (Clark and Radivojac, 2014;
Yang et al., 2016; Leslie et al., 2001) or compression (Raimondi et al.,
2018), but these methods almost always imply either i) the loss of the
intrinsic sequential nature of the input or ii) a loss of information due to
the compression needed to shrink arbitrary length proteins into a fixed-size
feature vector (Raimondi et al., 2018).

The main advantages of our neural attention are that it can directly take
as input sequences of any length i) without requiring pre-processing (thus
making it an end-to-end approach), ii) without loss of information due
to compression and iii) while preserving the information encoded in the
sequential ordering of the amino acids. Second, even though the NN used is
arbitrarily complex and highly non-linear, the neural attention mechanism
provides an elegant tool for the interpretation of the predictions, because
attention makes straightforward to look at the regions of the input sequence
that have been used to compute the predictions, as shown for the Q96PK6
and P35637 proteins in Fig. 3.

Another peculiarity is that the end-to-end information flow within
Droppler is as straightforward as possible. For example, we encoded each
protein sequence into a 20 dimensional trainable embedding, thus letting
the NN optimize the numeric description of each amino acid specifically
for the task at hand, avoiding pre-processing the sequence by encoding
it into a feature vector using predicted or pre-computed features such as
biophysical propensity scales, which have been shown to be sub-optimal
for many similar bioinformatics tasks (Raimondi et al., 2019).

Finally, the GPU-ready Pytorch (Paszke et al., 2017) implementation
allows Droppler to predict thousands of sequences and conditions in
seconds, making it useful to rapidly screen both the mutational and the
experimental LLPS landscape of proteins.
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