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Motivation
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* Improve Natural Language Understanding
Improve quality of general-purpose representations

@ Train with internal self-prediction loss'%>*
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Implementation
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Contrastive

Activation for which prediction is

New

shown marked with =

To p-d own + L2-distance )
adjacent input

LITLT)

Dx Transformer Encoder layer

Language
Modelling SOP head Contrastive
Head loss

From-right

Tiaein = C§Teiini

Per layer loss Contrastive loss
e Prevent “cheating” by the model
e Bonus: induce desirable “slow features”

Transformer Internal
Encoder layer regression

sequence
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SuperGLUE® benchmark

A = 0 (baseline) | 61.2+0.7 | Negative result: no significant

A=04 61.5+0.7] improvement over baseline
A=10.9 60.9+0.9

-
-
-~
Avg BoolQ B COPA  MultiRC ReCoRD RTE WiC WSC AXj, AXg

I Accg® Acc./F1  Acc. F1,/EM F1/EM Acc. Acc. Acc. MCC Ace./GPS

Avg Avg Avg
A =0 (baseline) | 61.2+0.7 || 75.4+0.7 T1+4.5 55428 43.84+08 45.4429 71.7+0.9 68.6+1 59.1+22  19.142  50.6+1.3/96.8+1.5
A=04 61.5+0.7 || 74.9+0.8 T0.3+1.8 5H4.7+46 44.4+0.3 48.2+1.3 71.6£15  68.7+0.9 59.3+£0.6 19.2+1.3 50.6+0.5/97.2+0.6
A=09 60.9+0.9 | 75.7+0.7 70.9+82 55.3+2.5 43.6+£06 43.1+2.1 71.6+08  67.8+08 59.3+39 17.241.3 51.442.3/97.6+1.2
A=1 12824 62.2+0 36.1+0 53.5+£78 9.4+11.8  13.8+04 47.1£03 500 63.5+0 00 51.7+X/100+X
Most Frequent | 47.7 62.2 36.1 55.0 30.4 32.0 52.7 50.0 63.5 0.0 50/100
CBoW 47.7 62.4 60.5 63.0 10.3 14.1 54.2 55.3 61.5 -0.4 50/100
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Internal loss

First layers are
hardest to
self-predict

Top-down signal
doesn’t add value

Figure 3: Evolution of DIR loss at different layers, shown for A = 0.4.
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Figure 4: Inner self-prediction loss for different ablations of input for self-prediction.
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L essons learned
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Lessons learned

> Stepping back
o Actually complementary?

> Contrastive loss red herring
o slow features < local input
o minmax objective as alternative cheating-prevention
m more biologically plausible too?
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Goal hierarchy

- € Better world

e = Internal self-prediction loss (this work)
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Goal hierarchy

- € Better world

. Increased automation

=« Better language-understanding machines

Better general-purpose NLU representations

&2 neuro-for-Al

alalalala

e = Internal self-prediction loss (this work)
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Baseline Transformer <I>

Step 1: Pretraining on SuperGLUE
. task loss
massive unlabeled data

Task-specific head

Transformer Encoder

Step 2: Finetune layer
pretrained model on

variety of downstream h,dden LW ===

asks DDDDDD]

sequenc

botch :
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Proposed extension

Distributed Internal Regression
Transformer (DIRT)

MLM loss

Language
Modelling Head

Transformer Encoder
layer

Internal regression

@Uiﬁﬁiim

botch

sequenc
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DIRT-as-objective

Start with pretrained weights

2. Do additional pretraining with MLM foss

anticipation-inspired contrastive loss

Language

Modelling Head

Total loss

<[>

3. Finetune on downstream tasks

N Transformer Encoder
X
layer

Contrastive
loss

Internal regression

DL i)

botch :

sequenc
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Detailed view

Contrastive
loss

Activation for which prediction is

Distonce shown marked with

Contrastive
loss

Internal regression
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Detailed view

<[>

Porting to NLU model /

E m shown marked with =
[ Project ] ;

Autoregressing to masked
internal states

Activation for which prediction is
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Detailed view </>

Porting to NLU model /

Activation for which prediction is

E m shown marked with =
[ Project ] ;

Autoregressing to masked
internal states

Input from neighbouring
timesteps + top-down
timesteps

/
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Detailed view </>

Porting to NLU model /

Activation for which prediction is

m shown marked with =

Project ] ;

Autoregressing to masked
internal states

Input from neighbouring
timesteps + top-down
timesteps
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Detailed view </>

Contrastive

Porting to NLU model 0ss

Activation for which prediction is

Distance

shown marked with =
Internal losses

« Grounding via
contrasting

Autoregressing to masked
internal states

m=m (il
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