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March 2020 July 2020 November 2020

Abstract: paper 
idea

Negative results: 
paper stopped

NAISys 2020
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💬 Improve Natural Language Understanding

     Improve quality of general-purpose representations

🧠 Train with internal self-prediction loss1,2,3,4
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Per layer loss Contrastive loss
● Prevent “cheating” by the model
● Bonus: induce desirable “slow features”

Top-down + 
adjacent input
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SuperGLUE5 benchmark

Negative result: no significant 
improvement over baseline
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Internal loss

Top-down signal 
doesn’t add value

First layers are 
hardest to 
self-predict
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➢ Stepping back
○ Actually complementary?

➢ Contrastive loss red herring
○ slow features ⇔ local input
○ minmax objective as alternative cheating-prevention

■ more biologically plausible too?
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Lessons learned
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Goal hierarchy
• 🌍 Better world

• 📄 Internal self-prediction loss (this work)
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Goal hierarchy
• 🌍 Better world

● ⏱ Increased automation

• 💬 Better language-understanding machines

•       Better general-purpose NLU representations

• 🧠 neuro-for-AI

• 📄 Internal self-prediction loss (this work)
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Baseline Transformer

Step 1: Pretraining on 
massive unlabeled data

N✕
Transformer Encoder 

layer

MLM loss

Language 
Modelling Head

dbatch
dsequenc
e

dhidden

SuperGLUE 
task loss

Task-specific head

Step 2: Finetune 
pretrained model on 
variety of downstream 
tasks



Faculty of Engineering Science, 
Department of Computer Science, 

HCI unit

18

Proposed extension

Distributed Internal Regression 
Transformer (DIRT)

N✕
Transformer Encoder 

layer Internal regression

MLM loss

Language 
Modelling Head

dbatch
dsequenc
e

dhidden



Faculty of Engineering Science, 
Department of Computer Science, 

HCI unit

19

DIRT-as-objective
1. Start with pretrained weights

2. Do additional pretraining with 
anticipation-inspired contrastive loss

3. Finetune on downstream tasks
N✕

Transformer Encoder 
layer Internal regression

MLM loss

Language 
Modelling Head

dbatch
dsequenc
e

dhidden

Total loss

Contrastive 
loss

× λ× (1-λ)
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Detailed view
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Detailed view

Porting to NLU model

Autoregressing to masked 
internal states
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Detailed view

Porting to NLU model

Autoregressing to masked 
internal states

Input from neighbouring 
timesteps + top-down 
timesteps
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Detailed view

Porting to NLU model

Autoregressing to masked 
internal states

Input from neighbouring 
timesteps + top-down 
timesteps
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Detailed view

Porting to NLU model

Autoregressing to masked 
internal states

Input from neighbouring 
timesteps + top-down 
timesteps

Internal losses

• Grounding via 
contrasting


