

DIRT: Distributed Internal Regression Transformer

This research is financed by the CALCULUS project - Commonsense and Anticipation enriched Learning of Continuous representations

European Research Council Advanced Grant H2020-ERC-2017-ADG 788506

Nathan Cornille Damien Sileo Marie-Francine Moens

Department of Computer Science

November 9-12, 2020

Context

Abstract: paper idea Negative results: paper stopped NAISys 2020

Motivation

Implementation

Per layer loss

Contrastive loss

- Prevent "cheating" by the model
- Bonus: induce desirable "slow features"

Results

SuperGLUE⁵ benchmark

Negative result: no significant improvement over baseline

	Avg	BoolQ Acc	CB Acc./F1	COPA Acc.	$\begin{array}{l} \text{MultiRC} \\ \text{F1}_{\alpha}/\text{EM} \end{array}$	ReCoRD F1/EM	RTE Acc.	WiC Acc.	WSC Acc.	AX_b MCC	AX_g Acc./GPS
			Avg		Avg	Avg					
$\lambda = 0$ (baseline)	61.2 ± 0.7	$75.4 {\pm} 0.7$	$71{\pm}4.5$	55 ± 2.8	$43.8{\pm}0.8$	$45.4{\pm}2.9$	$71.7{\pm}0.9$	$68.6{\pm}1$	$59.1 {\pm} 2.2$	19.1 ± 2	50.6±1.3/96.8±1.5
$\lambda = 0.4$	$61.5{\pm}0.7$	$74.9{\pm}0.8$	$70.3{\pm}1.8$	$54.7 {\pm} 4.6$	$44.4{\scriptstyle\pm0.3}$	$48.2{\pm}1.3$	71.6 ± 1.5	$68.7{\scriptstyle\pm0.9}$	$59.3{\pm}0.6$	$19.2{\pm}1.3$	$50.6 \pm 0.5 / 97.2 \pm 0.6$
$\lambda = 0.9$	60.9 ± 0.9	$75.7{\scriptstyle\pm0.7}$	$70.9{\pm}8.2$	$55.3{\scriptstyle \pm 2.5}$	$43.6{\pm}0.6$	$43.1 {\pm} 2.1$	$71.6{\pm}0.8$	$67.8{\pm}0.8$	$59.3{\pm}3.9$	17.2 ± 1.3	$51.4{\pm}2.3/97.6{\pm}1.2$
$\lambda = 1$	42 ± 2.4	62.2 ± 0	36.1 ± 0	53.5 ± 7.8	$9.4{\pm}11.8$	$13.8 {\pm} 0.4$	47.1 ± 0.3	50 ± 0	$63.5{\pm}0$	0 ± 0	$51.7{\pm}X/100{\pm}X$
Most Frequent	47.7	62.2	36.1	55.0	30.4	32.0	52.7	50.0	63.5	0.0	50/100
CBoW	47.7	62.4	60.5	63.0	10.3	14.1	54.2	55.3	61.5	-0.4	50/100

Internal loss

First layers are hardest to self-predict

Figure 3: Evolution of DIR loss at different layers, shown for $\lambda = 0.4$.

Figure 4: Inner self-prediction loss for different ablations of input for self-prediction.

Top-down signal doesn't add value

Faculty of Engineering Science, Department of Computer Science, HCI unit

Lessons learned

Lessons learned

Stepping back

• Actually complementary?

Contrastive loss red herring

- slow features ⇔ local input
- minmax objective as alternative cheating-prevention
 - more biologically plausible too?

KU LEUVEN

References

- 1. K. L. Downing. Predictive models in the brain.Connection Science, 21(1):39–74, 3 2009.
- 2. L. Grisoni, B. Mohr, and F. Pulvermüller. Prediction mechanisms in motor and auditory areas and their role in sound perception and language understanding.NeuroImage, 199:206–216, 10 2019.
- 3. A. Modi, I. Titov, V. Demberg, A. Sayeed, and M. Pinkal. Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction. Transactions of the Association for Computational Linguistics, 5:31–44, 12 2017.
- 4. A. F. Morse, H. Svensson, and T. Ziemke. Representation as Internal Simulation : A Minimalistic Robotic Model, 2009.
- 5. A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. 5 2019.

DIRT: Distributed Internal Regression Transformer

- Context
- Motivation
- Implementation
- Results
 - Lessons learned

This research is financed by the CALCULUS project - Commonsense and Anticipation enriched Learning of Continuous representations

European Research Council Advanced Grant H2020-ERC-2017-ADG 788506

Nathan Cornille Damien Sileo Marie-Francine Moens

Department of Computer Science

November 9-12, 2020

Better world

Internal self-prediction loss (this work)

Goal hierarchy

Better world

Increased automation

💬 Better language-understanding machines

Better general-purpose NLU representations

🧠 neuro-for-Al

Internal self-prediction loss (this work)

Faculty of Engineering Science, Department of Computer Science, HCI unit

Step 2: Finetune pretrained model on variety of downstream tasks

sequenc

е

Baseline Transformer

Proposed extension

Distributed Internal Regression Transformer (DIRT)

</>>

DIRT-as-objective

- 1. Start with pretrained weights
- 2. Do *additional pretraining* with anticipation-inspired contrastive loss
- 3. Finetune on downstream tasks

Porting to NLU model

Autoregressing to masked internal states

Porting to NLU model

Autoregressing to masked internal states

Input from neighbouring timesteps + top-down timesteps

Porting to NLU model

Autoregressing to masked internal states

Input from neighbouring timesteps + top-down timesteps

Porting to NLU model

Internal losses

Grounding via
contrasting

Autoregressing to masked internal states

Input from neighbouring timesteps + top-down timesteps

