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Abstract:  

While it is commonly accepted that the activation energy of the thermally activated polaron 

hopping transport in disordered organic semiconductors can be decoupled into a disorder and 

a polaron contribution, their relative weight is still controversial. This feature is quantified in 

terms of the so-called 𝐶-factor in the expression for the effective polaron mobility: 𝜇𝑒 ∝

𝑒𝑥𝑝[−𝐸𝑎 𝑘𝐵𝑇 − 𝐶(𝜎 𝑘𝐵𝑇⁄ )2⁄ ], where 𝐸𝑎 and 𝜎 are the polaron activation energy and the 

energy width of a Gaussian density-of-states (DOS), respectively. A key issue is whether the 

universal scaling relation (implying a constant 𝐶-factor) regarding the polaron formation 

energy is really obeyed in the same disordered system, as recently claimed in literature [J. 

Chem. Phys. 145, 034106 (2016)]. In the present work, we reinvestigate this issue on the basis 

of the Marcus transition rate model using extensive kinetic Monte Carlo simulations as a 

benchmark tool. We compare the polaron-transport simulation data with results of analytical 

calculations by the effective medium approximation (EMA) and multiple trapping and release 

(MTR) approaches. The key result of this study is that the 𝐶-factor for Marcus polaron 

hopping depends on the degree of carrier localization, i.e., the coupling between the sites, on 

whether quasi-equilibrium has indeed been reached, and the 𝜎 𝐸𝑎⁄  ratio. This implies that 

there is no universal scaling with respect to the relative contribution of polaron and disorder 

effect. Finally, we demonstrate that virtually the same values of the disorder parameter 𝜎 are 

determined from available experimental data using the 𝐶-factors obtained here irrespective to 

whether the data are interpreted in terms of Marcus or Miller-Abrahams rates. This implies 

that molecular reorganization contributes only weakly to charge transport, and it justifies the 

use of the zero-order Miller-Abrahams rate model for evaluating the DOS width from 

temperature dependent charge transport measurements regardless to whether or not polaron 

effects are accounted for.  
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1. INTRODUCTION 

Charge-carrier transport in amorphous organic semiconductors (AOS) occurs by non-

coherent hopping through the manifold of localized states distributed in space and energy, 

which is commonly described by a Gaussian Density-of-States (DOS) distribution of 

energetic width 𝜎. The latter is a measure of the energetic disorder that is generally accepted 

to be a dominant factor governing the charge transport in AOS films. Although the pertinent 

energetic disorder can account for a broad variety of experimental observations in AOSs, such 

as the mobility temperature- and electric-field- dependences, or the transition from 

nondispersive to dispersive transport regimes upon lowering temperature [1], in some organic 

systems polaron formation is sometimes taken into account. This is because an organic 

molecule or a subunit of a conjugated polymer can undergo structural reorganization upon 

charging. Depending on the value of the reorganization energy, this could result in a 

significant polaronic nature of charge transport, and consequently, the observed temperature 

dependence of the carrier mobility may be governed by the superposition of disorder and 

polaron effects.   

Although a large amount of work was done on the description of charge-carrier 

transport in AOSs for the last decades, an adequate theoretical description of the polaronic 

transport in disordered media remains challenging. In particular, there has been a long-

standing discussion concerning the expression for the effective polaron mobility 𝜇𝑒 obtained 

for energetically disordered organic semiconductors when using a Marcus-type intersite 

hopping rate model. The commonly accepted relation, which was heuristically suggested, 

splits the activation energy of the zero-electric-field mobility into a disorder and a polaron 

term. It reads as follows [2]: 

𝜇𝑒 = 𝜇0 𝑒𝑥𝑝 [−
𝐸𝑎

𝑘𝐵𝑇
− 𝐶 (

𝜎

𝑘𝐵𝑇
)

2

]                                                          (1) 

The argument presumes that transport occurs by hopping in a Gaussian-shaped distribution of 

energy sites, but each jump is associated with an additional constant activation energy, that is 

the polaron activation energy aE , which is equal to a quarter of the total reorganization 

energy associated with the charge transfer (𝐸𝑎 = 𝜆 4⁄ ). The prefactor 𝜇0 is the infinite 

temperature mobility. What is still in dispute for decades is the numerical value of the 𝐶-

factor (coefficient) which weights the relative contribution of disorder and polaron effects. In 

their original paper [2], Bässler, Borsenberger, and Perry suggested long time ago to consider 

the 𝐶-factor in Eq. (1) as a constant that is determined entirely by the energetic disorder 
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effects and consequently, to adopt the same value as that derived before for the charge 

transport in a polaron free system (i.e. 𝐶 = 4/9 ≈ 0.44) within Miller-Abrahams rate model [1]. 

Recently, this issue was thoroughly investigated [3-5] by combining Monte Carlo simulation 

studies and analytical calculations using an effective medium approximation (EMA), and a 

dependence of the 𝐶-factor on the 𝜎 𝐸𝑎⁄  ratio was shown. The latter effect has also been 

confirmed by several different theoretical approaches [6-8].  

 Nevertheless, recently Seki and Wojcik [9] have questioned the variability of the 𝐶-

factor in Eq.(1) and the existence of a nonlinear dependence of the relative weights of polaron 

and disorder contributions to the hopping transport on the 𝜎 𝐸𝑎⁄  ratio. They performed both 

kinetic Monte Carlo (kMC) numerical simulations and EMA calculations considering the 

nearest neighbor hopping regime. They used Marcus rates and found that the 𝐶-factor is 

virtually independent of aE . A value of 𝐶 ≅ 1 2⁄  was obtained by EMA, while the kMC data 

revealed slightly different values of 𝐶=0.42 and 0.5 for 3D and 2D transport system, 

respectively. This would imply a universal scaling relation for the polaronic mobility with the 

polaron formation energy. A similar conclusion was also drawn in Ref. [10] where a very 

weak 𝜎 𝐸𝑎⁄ -dependence of 𝐶-factor was reported. It is important to mention that the authors 

of Ref. [9] actually used a simplified Marcus relation, where the prefactor was assumed to be 

constant. 

In the present paper, we reinvestigate the 𝐶-factor issue on the basis of Marcus theory 

for polaron hopping rates by combining kinetic Monte Carlo simulations and two alternative 

theoretical approaches – EMA and a multiple-trapping and release (MTR) formalism. We 

have advanced these methods for considering the hopping transport problem for different 

rates, and obtained the 𝐶-factor in the context of Eq. (1). Our work brings new insights to 

light on aspects related to polaronic hopping transport that have not been considered so far. 

We demonstrate that the 𝐶-factor turns out to depend on whether transport has reached 

equilibration or not, and on the degree of carrier localization. Moreover, it changes with the 

𝜎 𝐸𝑎⁄  ratio. Thus, our study is in sharp contrast to the notion of a “universal scaling law” 

recently published by Seki and Wojcik in Ref.[9], and we clarify that and why there is no 

universal scaling regarding the polaron formation energy. The present results help to build an 

understanding on the interplay of disorder and polaronic effects, and their quantitative 

dependence on different transport parameters.  

This paper is organized as follows. First, we describe our kinetic Monte-Carlo 

simulation method (Sec. 2) and the theoretical formulation of our EMA and MTR analytic 
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approaches (Sec. 3).  In Sec. 4 we present the results of the kMC simulations and the 

theoretical calculations of the temperature dependent diffusivity obtained for MA and Marcus 

hopping rates for the nearest-neighbor hopping regime, and the corresponding 𝐶-factors are 

evaluated as a function of the 𝜎 𝐸𝑎⁄  ratio. Subsequently we consider the impact of variable-

range hopping. In Sec. 5 we apply the new results to re-analyze available experimental data, 

and a concluding discussion is given in Sec. 6.  

 

2.  MONTE CARLO SIMULATIONS 

The thermally activated hopping of excitations in a disordered organic solid is studied 

using a grid-based kinetic Monte Carlo (kMC) method to monitor the motion of excitations as 

hopping events. We place a particular emphasis on the dependence of the 𝐶-factor on the 

𝜎 𝐸𝑎⁄  ratio and the degree of excitation localization. The excitation can, in principle, be 

equally well a charge-carrier or a triplet exciton since (i) both move by an exchange 

mechanism, and (ii) the transfer of a triplet can, to first order, be described as a correlated 

exchange of two charges. The physical meaning of the excitation depends on the value chosen 

for the energetic disorder and the reorganization energy. The kMC simulations were done by 

employing an isotropic three-dimensional (3D) simulation box (50 x 50 x 50 lattice sites) with 

a lattice constant of 1.5 nm.  Since energetic disorder is inherent to conventional thin-film 

organic semiconductors, the lattice sites are assigned a random energy drawn from a Gaussian 

distribution 𝑔(𝜀) with a standard deviation σ centered at zero energy, i.e. 𝜀0 = 0. 

𝑔(𝜀) =
𝑁

𝜎√2𝜋
 𝑒𝑥𝑝 [−

1

2
(

𝜀−𝜀0

𝜎
)

2

]                                                     (2) 

where, N is the density of localized states. To describe the diffusion of excitations through the 

disordered medium, both Miller-Abrahams (MA) and Marcus hopping rates have been used. 

This is done to find out whether the hopping process and thus the value of the 𝐶-factor is 

altered by the hopping rate chosen for determining the diffusivity of the excitations. The MA 

hopping rate between an initial site of energy 𝜀𝑖 and final site of energy 𝜀𝑗 is given by [11]: 

𝑊𝑖𝑗 = 𝑊0 𝑒𝑥𝑝 [−
|𝜀𝑗−𝜀𝑖|+(𝜀𝑗−𝜀𝑖)

2𝑘𝐵𝑇
] ,    (3) 

𝑊0 = 𝜈0 𝑒𝑥𝑝(−2𝛾𝑅𝑖𝑗), 

where 𝑊0, the MA rate prefactor, is determined by the hopping distance 𝑅𝑖𝑗. The inverse 

localization radius 𝛾 is related to the electronic coupling matrix element between adjacent 
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sites. 𝜈0 is the attempt-to-escape frequency usually being close to a intermolecular phonon 

frequency, 𝑘𝐵 is the Boltzmann constant and 𝑇 is temperature. The parameter 𝛾 is assumed to 

be isotropic in all directions. The MA formalism does not consider any polaronic effects 

related to the reorganization energy. These effects can be taken into account by considering a 

semi-classical Marcus –type hopping rate [12,13]: 

                                       

 

𝑊𝑖𝑗 = 𝑊1𝑒𝑥𝑝 [−
𝐸𝑎

𝑘𝐵𝑇
−

𝜀𝑗−𝜀𝑖

2𝑘𝐵𝑇
−

(𝜀𝑗−𝜀𝑖)
2

16𝐸𝑎𝑘𝐵𝑇
] ,   (4) 

𝑊1 = (𝐽𝑖𝑗 ℏ⁄ )√𝜋 4𝐸𝑎𝑘𝐵𝑇⁄ , 

where 𝑊1 denotes the Marcus prefactor that, in contrast to MA rate, depends on temperature.  

𝐽𝑖𝑗 = 𝐽0
2 𝑒𝑥𝑝(−2γ𝑅ij) represents the electronic coupling, 𝐽0 is the nearest neighbor coupling 

constant, 𝐸𝑎 is the small-polaron activation energy related to the reorganization energy 𝜆 by 

𝐸𝑎 = 𝜆 4⁄ . 

In conventional Monte Carlo simulations, the initial site energy is typically sampled 

from the DOS distribution centered at 𝜀0 = 0. Therefore, an excitation generated at a site with 

arbitrary energy in the DOS first energetically relaxes towards the tail states. While the 

energetically downward hops are dominant initially, a quasi-equilibrium between the 

thermally activated upward hops and the downward hops is eventually obtained at later times. 

Therefore, the diffusivity within a disordered semiconductor is time-dependent until the 

excitation has relaxed to a mean equilibrium energy below the center of the DOS (𝜀𝑒𝑞 =

− 𝜎2 𝑘𝐵𝑇⁄ ). This time dependence, i.e. the non-equilibrium nature of the simulated 

diffusivity, affects the resulting transport properties [14,15]. Thus, the diffusion coefficient 

can critically depend on whether the initial energy is chosen from the DOS (centered at 0 eV) 

or the occupied DOS (ODOS) distribution centered at the equilibrium energy 𝜀𝑒𝑞 below the 

DOS center, with the same 𝜎. Since the analytical theories in the present paper (and, in 

general) are formulated under the premise of equilibrium transport; in order to provide an 

adequate comparison with the analytical results, our kMC simulations are thus performed 

under the conditions that the initial energy of an excitation is sampled from a Gaussian ODOS 

distribution of width σ centered at 𝜀0 = 𝜀𝑒𝑞 = − 𝜎2 𝐾𝐵𝑇⁄ . Hereafter we refer to this as 

“ODOS approach” to distinguish it from the conventional “DOS approach”.  

At the beginning of the simulation, t = 0, an excitation is generated randomly at one of 

the lattice sites. In case that the simulation is intended to start with an excitation in the ODOS, 

the energy of that lattice site is manually adjusted to be part of the ODOS. At each kinetic 
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step, the excitation can hop to any of the nearest-neighbor sites. For the case of variable range 

hopping (VRH) simulations, excitations are also allowed to access non-nearest hopping sites. 

Every permissible hop is treated as an event and for each event i, the rate 𝑊𝑖 is calculated. For 

the selection of an event, firstly, for each event i the partial sum 𝑆𝑖 = ∑ 𝑊𝛽
𝑖
𝛽=1  is calculated. 

A random number φ is drawn from the interval (0, WT], with 𝑊𝑇 = ∑ 𝑊𝛽
𝑁𝐸
𝛽=1 , NE being the 

total number of events (permissible hops). From all possible events, the event i for which 

𝑆𝑖−1 < 𝜑 ≤ 𝑆𝑖 holds is selected. The selected event is executed for the corresponding 

excitation and the simulation time (t) is updated by the waiting time, 𝜏𝑤 = − 𝑙𝑛(𝑋) 𝑊𝑇⁄  

where X is a random number between 0 and 1. The simulation stops after 105 hops. The initial 

(𝑡 =  0) and final (after 105 hops) position of the excitation in the lattice are used to 

determine the values for mean diffusivity, 𝐷 = ∆𝑥2 𝑡⁄ . Results are obtained by averaging over 

5000 simulation trials accounting for different disorder configurations. The simulations do not 

take the effect of conjugation or correlated disorder into consideration. 

 

3.  THEORETICAL FORMULATION 

3a)  Effective Medium approximation approach  

The effective medium approximation (EMA) is an analytic method that has been often 

used to describe different aspects of the charge transport properties in disordered 

semiconducting materials. This approach is conventionally used for the nearest neighbor 

hopping transport in a periodic cubic lattice of different spatial dimensionalities from 1D to 

3D. Within the EMA approach, the disordered organic medium with localized states for 

charge carriers is replaced by an effective ordered cubic 3D lattice with spacing  𝑎 = 𝑁−1 3⁄  

equal to the average distance between the localized states, where N is the density of the 

localized states. We consider that the energy   of the localized states is randomly distributed 

and their DOS can be described by a Gaussian function with width 𝜎, represented by Eq. (2). 

Such kind of DOS distribution is applicable for both charged- and neutral excitations 

(excitons) in organic disordered solids. Polaron effects arising at sufficiently large electron-

phonon coupling and/or high enough temperatures can be accounted for by employing the 

Marcus rate for nonadiabatic hopping transfer given by Eq. (4). Recently, we suggested a 

generalized EMA approach [5] which is applicable for an arbitrary polaron activation energy 

𝐸𝑎 compared to the energetic disorder parameter 𝜎. This approach is based on the following 
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self-consistency equation suggested earlier by Kirkpatrick [16] for the effective conductivity 

aGee =  characterizing the whole disordered system  

0
)1(12

12 =
−+

−

e

e

d 


                                                            (5) 

where aG1212 =  is conductivity in two-site cluster approximation, d is the dimensionality of 

the hopping transport system, 
12G  is two-site conductance, and angular brackets ...  denote 

the configuration averaging. The above mentioned EMA study, similar to that in the paper by 

Seki and Wojcik [9], was done using a constant Marcus rate prefactor 𝑊1 = 1 in Eq. (4) This 

approach will be hereafter mentioned as a “simplified Marcus” rate approach.  

 In the present work, we performed EMA calculations of the effective diffusion 

coefficient by using the full Marcus rate equation, i.e. explicitly taking into account the 

temperature-dependent prefactor. We focus our consideration here on the low carrier 

concentration transport regime and the limit of weak electric fields, when 𝑒𝐹∆𝑅𝑖𝑗 ≪ 𝜎. ∆𝑅𝑖𝑗 

is the hopping distance which, implicitly, depends on the energetic disorder. As demonstrated 

in Ref. [5], the effective diffusivity is 2

e eD a W= , where eW  is effective jump rate between 

neighboring localized sites. It can be derived within the EMA approach by the following 

integral equation obtained as a result of configuration averaging in Eq. (5): 

( )
( ) ( )

( ) ( ) ( )

21 2 2

1 2 1 2
2

2 2

1 2 1 2
21 2 2

1 2 1 2

1
exp

16 2 21
exp 0

2 1
exp 1

16 2 2

e

a

e

a

x x
x t t t t x X

x
dt dt t t

x x
x t t t t x d X

x

 

− −

 
− − − + − − 

   − + =    
− − − + − + − 
 

  ,            

(6) 

where 0e eX D D= , ( ) ( )2

0 4 expa aD a J E x x = −h , Bx k T= , a ax E = . d  

represents the spatial dimensionality of the transport problem. It is worth noting that in the 

EMA approach we use direct configurational averaging over a DOS distribution, which 

avoids shortcomings involved in the effective transport energy 𝜀𝑡𝑟𝑎𝑛𝑠 or percolation concepts. 

The EMA is in particular a suitable method for studying hopping transport in disordered 

materials with not very large energetic disorder and it naturally allows accounting for the 

dimensionality of the system.  
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3b)  Multiple Trapping and Release approach 

The multiple trapping and release (MTR) theory was initially developed for the 

description of trap-controlled transport in inorganic semiconductors with band conduction. 

Thus, according to the MTR, charge carriers can only be transported via conductive 

delocalized states lying above the so-called mobility edge 𝜀𝑐. The carriers interact with 

localized states (traps) through trapping and thermal release. Despite the fact that all 

electronic states in conventional organic semiconductors are localized; a relatively simple 

MTR formalism can still be used to describe the hopping transport. The MTR description is 

commonly based on the concept of the transport energy 𝜀𝑡𝑟𝑎𝑛𝑠 playing the role of the mobility 

edge in the classical MTR model. There are two general approaches to define the transport 

energy. The first one considers the transport level 𝜀𝑡𝑟𝑎𝑛𝑠 as a characteristic energy of the 

states predominantly contributing to the electric conductivity [17-20]. Due to the energetic 

disorder, such “conductive states” are actually distributed over a certain energy interval. 

Another approach (the effective transport energy concept) [18,19,21-26] considers the 

transport level as a parameter in the mean release rate of carriers from rather deep, mostly 

populated states. This release rate can be approximated in a form similar to the MTR model: 

𝜔(𝜀) = 𝜔0 𝑒𝑥𝑝 (−
𝜀𝑡𝑟𝑎𝑛𝑠−𝜀

𝑘𝐵𝑇
)                                                  (7) 

where 𝜀 is the energy of initial state, and 𝜔0 is the frequency factor which is different from 

𝑊0 in Eq. (3). 

It should be noted that there are many reports (see for instance, [17-21,24,25]) on 

derivations of the transport energy for non-polaronic hopping transport in Gaussian DOS, 

which were formulated for Miller-Abrahams rate. To the best of our knowledge, the effective 

transport energy concept has not yet been applied to the Marcus rate model, except to its 

truncated form [22,23]. On the other hand, the transport energy approach does not need to be 

invoked explicitly to apply the MTR method to the hopping transport. Instead, the problem of 

defining the transport energy can be circumvented in the event that one can split all the 

available states into “transporting” states, which provide the principal contribution to the 

transport and “trapping” states, which delay carriers. The former states can be referred as 

conductive states in a similar manner to the classical MTR model, and the latter ones can be 

considered as traps. This idea was proposed long ago by Schmidlin [27]; however, no general 

calculation method has been developed so far to obtain transport parameters with this 

approach. Below, we present our MTR approach, which makes use of this idea by Schmidlin. 

Our approach is quite general and is suitable for the description of hopping transport 
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irrespective of a jump rate model. We apply it to the analysis of temperature-dependent carrier 

diffusivity for both MA and Marcus rates in the limit of small carrier concentration and low 

electric fields. The gist of our approach lies essentially in reducing the well-known master 

equation of hopping transport [24,27,28] to the balance equation of the MTR model at 

arbitrary jump rates (see the Appendix for more details). 

  In practice, we identify a “conductive” state by the condition that the escape time 

from this state does not exceed a certain time 𝑡0. Since the carrier release is a stochastic 

process, the probability that a given state is “conductive”, is determined by the Poisson 

distribution as  

𝜑(𝜀) = 1 − 𝑒𝑥𝑝[−𝜔(𝜀)𝑡0] ≈ 𝜔(𝜀)𝑡0,       𝜔(𝜀)𝑡0 ≪ 1                         (8) 

provided that the critical time 𝑡0 is rather small relative to a typical hopping time. Note that 

the approximation (7) is not relevant anymore to Eq. (8) and to the subsequent equations. The 

trap-controlled diffusivity in the MTR approach can then be expressed as [25,29]: 

   c
c

p
D D

p
=  (𝑎2 𝑡0⁄ )

∫ 𝑑 𝑔ODOS( ) ( ) ∞
−∞

∫ 𝑑 𝑔ODOS( )
∞

−∞

 ,   (9) 

where 𝑝𝑐 and 𝑝 are the carrier concentration in “conductive” states and the total concentration, 

respectively. 𝐷𝑐 ≈ 𝑎2 𝑡0⁄  is the carrier diffusivity in “conductive” states, 𝑎 ≈ 𝑁−1 3⁄  is the 

mean hopping distance in “conductive” states, and 𝑔𝑂𝐷𝑂𝑆( ) is the ODOS distribution 

proportional to the product 𝑔( ) 𝑒𝑥𝑝(−  𝑘𝐵𝑇⁄ ) under quasi-equilibrium conditions. The 

parameter 𝑡0 cancels in Eq. (9) after combing Eqs. (8) and (9), and therefore the diffusivity is 

proportional to the mean release rate averaged over the ODOS distribution. The resulting 

relation reads as: 

  𝐷 ≈ 𝑎2 〈 ( )  〉 = 𝑎2  
∫ 𝑑 ( )  𝑔( )

∞
−∞ 𝑒𝑥𝑝(− 𝑘𝐵𝑇⁄ )

∫ 𝑑 𝑔( )𝑒𝑥𝑝(− 𝑘𝐵𝑇⁄ )
∞

−∞

   (10) 

Further, to determine the mean release rate ( )   and to consider the variable-range 

hopping (VRH) regime, we use the mean hopping parameter method suggested by Arkhipov 

et al. [30], which is virtually similar to the method proposed by Apsley and Hughes [31] for a 

weak electric field and low carrier concentration limit. The function 𝜔(𝜀) can be expressed as 

follows: 

 𝜔(𝜀) = 𝜔0𝑒−〈𝑢〉(𝜀), 〈𝑢〉(𝜀) = ∫ 𝑑𝑢 
∞

0
𝑒−𝑛(𝜀,𝑢)   (11) 
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where u is the hopping parameter, 𝑛(𝜀, 𝑢) is the average number of target neighbor sites 

whose hopping rates are not smaller than a given value of 𝜔0 𝑒𝑥𝑝(−𝑢). An important 

modification was done here with respect to the previous works [30,31] in order to preclude 

multiple carrier jumps within pairs of occasionally close localized states: hopping neighbors 

for which return jumps to initially occupied states are more probable than jumps to other 

states are excluded from 𝑛(𝜀, 𝑢). This also implies including the percolation effects [24,32,33] 

in a first approximation (see the Appendix for details). If the oscillations of a carrier within 

pairs of localized states are not excluded, then our MTR approach for the MA rate leads to a 

similar  low-field mobility as obtained in Ref. [30]. This similarity applies within the accuracy 

of the prefactor 𝑎2, and using Einstein relation 𝜇 = 𝑒𝐷 𝑘𝐵𝑇⁄ . It should be mentioned that 

results of the calculation with Eq. (11) for the MA rates showed that Eq. (7) can be considered 

as a good approximation for the release frequency 𝜔(𝜀) when the localized states are rather 

deep 𝜀 < 𝜀𝑡𝑟𝑎𝑛𝑠. Upon applying Eq. (7) and the Einstein relation, Eq. (10) reduces to the well-

known result from the transport level method: 𝜇 ≈

(𝑒𝜔0𝑎2 𝑘𝑇⁄ )𝑒𝑥𝑝 [− trans 𝑘𝐵𝑇 − 0.5(𝜎 𝑘𝐵𝑇⁄ )2⁄ ] [17-21,24,25]. However, using Eq. (7) as an 

approximation is generally inappropriate in the case of the Marcus rate model. 

 

4.   RESULTS 

4a)   The 𝑪-factor in the limit of purely disorder-controlled transport 

To find the value of the 𝐶-factor, which weighs the polaronic and disorder contributions 

to the temperature dependence of the mobility [Eq. (1)], we first consider simulations of 

charge carrier transport using the kinetic Monte Carlo method. We differentiate between two 

cases, that is transport in thermal equilibrium, and transport out of thermal equilibrium. It is 

well-known that, in many experimental situations, e.g., in Time-of-Flight (ToF) and transient 

electroluminescence (TEL) measurements, one observes an initial short, sharp spike-like 

decay of the signal. This is because immediately after carrier injection or creation somewhere 

within the DOS, the carrier is usually not in thermal equilibrium. Rather, it relaxes 

energetically through a sequence of energetically downhill jumps until a quasi-equilibrium 

transport is achieved, where thermally activated uphill jumps are in balance with downhill 

jumps. Experimentally, this is visible as a plateau in the intensity of the transient signal. This 

implies that the carrier moves between states that are energetically distributed, statistically 

with same width (σ) as before, yet centred around an equilibrium energy, 𝜀𝑒𝑞 = − 𝜎2 𝑘𝐵𝑇⁄ , 

below the centre of the full DOS. The energetic distribution of these states is referred to as 
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Occupied Density of States (ODOS). The relaxation behaviour is well reproduced in kMC 

simulations when a carrier is initially placed at a random site within the full DOS. Following 

the carrier’s trajectory implies following the relaxation process [1,14,15]. Transport in 

thermal equilibrium is reached and monitored eventually, yet long simulation times may be 

needed to arrive at this stage. A different situation prevails when the carrier moves under 

equilibrium conditions. This is the case, for example, in CELIV-experiments. Here, the carrier 

moves only within the ODOS. In kMC simulations, this can be realized by imposing the 

condition that the carrier starts its trajectory on a site within the equilibrium distribution, i.e., 

within the ODOS. The impact of non-equilibrium transport on the diffusivity is thus 

eliminated. For our kMC study, we consider both, transport under equilibrium and out of 

equilibrium. The analytical EMA method and the MTR formalism in the present study apply 

only to the case of equilibrium transport.  

Here, we first assess the impact of the two different kMC simulation approaches (DOS 

vs. ODOS) on the temperature dependence of a quasiparticle diffusion coefficient (𝐷) within 

the premise of the Miller-Abrahams rate model, using Eq. (3) for the hopping rate. This 

implies that we neglect any polaronic disorder, corresponding to the situation of Ea = 0 in Eq. 

(1). We expect ln(𝐷) to be proportional to −𝐶(𝜎 𝑘𝐵⁄ 𝑇)2 from Eq. (1), so that the value of 𝐶 

corresponds to the slope in a ln(𝐷) vs. (𝜎 𝑘𝐵⁄ 𝑇)2 plot, as shown in Figure 1. The results 

obtained for equilibrium transport are compared against those obtained using the EMA 

method and the MTR formalism in Figure 1(a). The simulations were done employing our 

ODOS simulation method for a lattice representing an isotropic 3D disordered organic system 

with different widths of the Gaussian ODOS (𝜎 = 50, 70, and 100 meV), and considering 

solely the nearest-neighbor hopping (coordination number N=6).  Since all excitations are 

thermally equilibrated right from the start of the simulation, a perfect linear dependence of 

ln(𝐷) vs. (𝜎 𝑘𝐵⁄ 𝑇)2, depicted by a dotted line, is observed over a broad temperature range 

irrespective of the energetic disorder. The slope of this dependence yields a 𝐶-factor of about 

0.47. The temperature dependences of the diffusion coefficient calculated by effective 

medium and MTR theories are presented by solid and dashed lines, respectively, and are 

vertically translated for clarity of display. They demonstrate almost perfect agreement with 

the kMC simulation data over a broad range of 𝜎 𝑘𝐵⁄ 𝑇, yielding virtually the same 𝐶-factor 

(0.43…0.44) for the Miller-Abrahams hopping in conjunction with the nearest-neighbor 

hopping regime. This testifies the reliability of our ODOS-based simulation approach, which 

can be adequately compared against analytic theories formulated just for the non-dispersive 

transport in disordered organic solids. 
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Figure 1(b) presents the temperature dependent diffusivity simulated in the more 

conventional way, i.e., when the energy of an initial site is sampled from the DOS 

distribution. The figure demonstrates that the diffusion coefficient obtained by the 

conventional DOS-simulation approach follows the predicted ln(𝐷) ∝ −𝐶(𝜎 𝑘𝐵⁄ 𝑇)2 

dependence (depicted by a dotted line) only at relatively low energetic disorder or high 

temperatures (𝜎 𝑘𝐵⁄ 𝑇 ≤ 3.3). The dependence progressively deviates from a straight line at 

larger 𝜎 𝑘𝐵⁄ 𝑇 values. This is a well expected result indicative of the contribution from the 

non-equilibrium (dispersive) transport to the simulated diffusivity, which consequently leads 

to an overestimation of diffusion coefficients at larger 𝜎 𝑘𝐵⁄ 𝑇. Hence, the 𝐶-factor can be 

derived only from the high-temperature branch of the obtained dependence, where it is 0.47 as 

in the case of equilibrium transport. 

 

FIG.1. Kinetic Monte Carlo simulations (symbols) of the diffusion coefficient as a 

function of disorder-normalized temperature for the Miller-Abrahams rate and the 

nearest-neighbor hopping regime in an isotropic 3D disordered organic system with 

different energetic disorder values (σ = 50, 70, and 100 meV, indicated by red squares, 

green circles and blue triangles, respectively). The kMC simulations are performed (a) 



 

 14 

public 

for equilibrium transport, using the ODOS and (b) for non-equilibrium transport, using 

a conventional DOS as starting distribution.  Dotted lines in both figures represent a 

linear fit to ln (𝐷) ∝ −𝐶(𝜎 𝑘𝐵⁄ 𝑇)2. Dashed and solid curves in (a) are the results 

obtained by MTR and EMA theories, respectively. These calculated curves are shifted 

vertically relative to each other for clarity. The arrow in (b) depicts the crossover from 

non-dispersive to dispersive transport. 

 

4b)   The 𝑪-factor when a polaronic contribution is considered 

Next, we test our equilibrated Monte Carlo simulation approach for the Marcus rate 

model, using Eq. (4) for the hopping rate. This is equivalent to the situation of 𝐸𝑎 ≠ 0, and 

𝜎 ≠ 0 in Eq. (1). Figures 2(a) and (b) show temperature-dependent diffusion coefficients, 

parametric in the number of hops during simulations, obtained for equilibrium transport 

(ODOS approach) and non-equilibrium transport (DOS approach), respectively. We used 𝜎 = 

100 meV and 𝐸𝑎 = 30 meV, and hopping is restricted to the nearest-neighbor lattice sites. A 

general observation is that the diffusivity increases as the temperature increases, and this is 

accompanied by a decrease in the rate of increment. This is a typical behavior for thermally 

activated hopping transport [1]. The results for the two simulation approaches differ insofar 

that for the ODOS approach, representing equilibrium transport, the temperature dependence 

of diffusivity remains almost identical irrespective of the number of hops after which the 

diffusion coefficient is evaluated. When plotting 𝑙𝑛(𝐷 𝑒𝑥𝑝(−𝐸𝑎 𝑘𝐵𝑇⁄ )⁄ )  versus (𝜎 𝑘𝐵𝑇⁄ )2 

such as to readily read off the value of 𝐶 from the slope in Figure 2(c), the expected linear 

dependence (with 𝐶 = 0.4) is obtained irrespective of the number of hops executed by the 

excitation (with minor deviations at lower number of hops). In contrast, when transport is not 

in equilibrium, represented by the conventional DOS-approach, the temperature dependence 

of the diffusivity depends on the number of hops executed, and 𝑙𝑛(𝐷 𝑒𝑥𝑝(−𝐸𝑎 𝑘𝐵𝑇⁄ )⁄ ) 

deviates significantly from the linear dependence on (𝜎 𝑘𝐵𝑇⁄ )2, suggesting an overestimation 

of diffusivity values at lower temperatures [Fig. 2(d)], analogous to the behavior of the 

diffusivity for the case of MA rates in Fig. 1(b). Moreover, the dependence on the number of 

hops complicates the determination of the exact 𝐶-factor even when considering the high 

temperature (low 𝜎 𝑘𝐵𝑇⁄ ) range since the lower the number of hops, the further away the 

transport is from equilibrium. Extrapolating the high temperature regime by linear fits, shown 

as dashed lines in Fig. 2(d), yields a 𝐶-factor that increases progressively from 𝐶 = 0.22 (for 

103 hops) to 0.32 (104 hops) and to 0.35 (105 hops).  
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To summarize the results obtained so far, in section 4a we considered the value of 𝐶, 

allowing for only nearest-neighbor hops, for a purely disorder-controlled transport for the 

case of both, transport in and out of equilibrium. In thermal equilibrium, the values obtained 

by three independent approaches, that is kMC simulation, EMA theory and the MTR 

formalism agree on a value of 𝐶 = 0.45 ± 0.02. Out of thermal equilibrium, kMC predicts a 

lower value that depends on the deviation from the equilibrium situation. In section 4b we 

extended our kMC study to the case of transport in a disordered energy landscape with 

consideration of reorganization energy, exemplary using 𝜎 = 100 meV and 𝐸𝑎 = 30 meV 

(
𝜎

𝐸𝑎
= 3.3). A value of 𝐶 = 0.40 is approached asymptotically as carriers reach thermal 

equilibrium. This value is lower than what we obtained for the case when polaronic 

contributions are neglected. In the next section, we focus on the dependence of the 𝐶-factor 

on the relative size of the disorder to the reorganization energy, still restraining our 

simulations to nearest neighbor hops.    

 

 

FIG.2. Temperature dependencies of the diffusion coefficient obtained for the Marcus 

rate by kinetic Monte Carlo simulations (symbols) for the nearest-neighbor hopping in 

an isotropic 3D disordered organic system at different number of hops during 
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simulations (ranging from 103 to 105) performed using (a, c) conventional DOS- and (b, 

d) equilibrated ODOS simulation approaches. Simulations are done at 𝜎 = 100 meV and 

𝐸𝑎 = 30 meV. Straight lines in (c) and (d) represent the linear fit of the above simulated 

super-Arrhenius plot (symbols) made in the temperature range where the 

𝑙𝑛(𝐷 𝑒𝑥𝑝(−𝐸𝑎 𝑘𝐵𝑇⁄ )⁄ ) ∝ (𝜎 𝑘𝐵𝑇⁄ )2 law is obeyed. 

 

4c)  The impact of the reorganization energy on the C-factor  

Having seen that the value of the 𝐶-factor is modified when a polaronic contribution to 

the transport is taken into account, we systematically addressed the dependence of the 𝐶-

factor on the magnitude of the polaronic contribution. Figure 3 presents the 𝐶-factor as a 

function of the 𝜎 𝐸𝑎⁄  ratio. As before, we used the Marcus-type hopping rate in the presence 

of disorder, Eq. (4), and allowed only for nearest-neighbor hops. In addition to the results 

obtained for equilibrium (ODOS) and non-equilibrium (DOS) transport, we show the results 

from the MTR formalism and the EMA calculations, which treat the equilibrium situation. For 

comparison, we also include the values obtained with the simplified Marcus expression used 

previously by Seki and Wojcik [9], where the pre-exponential factor (𝑊1 in Eq. (4)) is 

approximated by a constant (𝑊1 = 1).  

For all approaches we obtain the same qualitative result, that is that the factor 𝐶 

increases with increasing 𝜎 𝐸𝑎⁄  ratio, i.e., with increasing the relative strength of the disorder 

effect. This is in line with our previous finding [5]. We note that the 𝐶-factor obtained under 

inclusion of polaronic effects is always smaller than that obtained using a pure Miller-

Abrahams rate (𝐶 ≅ 0.44). Evidently, any contribution from geometric reorganization of the 

molecule reduces the relative weight of the disorder-contribution to transport. However, in the 

limit of vanishing 𝐸𝑎, exemplified by the data point at 𝜎 𝐸𝑎⁄ = 10 in Fig. 3, the MA - result is 

recovered asymptotically. 

Regarding the results, we again find a gratifying quantitative agreement between the 

three different equilibrium NNH approaches used, that is the kMC simulation (ODOS), the 

MTR formalism and the EMA calculations, as depicted in Fig. 3 by stars and solid line, 

respectively. As expected, the EMA calculations agree with simulation data only at low to 

moderate energetic disorder (𝜎 𝐸𝑎⁄ < 2), where EMA formalism is more justified. In the 

present study we used a conventional EMA approach based on a self-consistency equation 

(5), which is not suitable for strongly inhomogeneous medium, or in other words, for high 

disorders. This explains the disagreement between the kMC ODOS simulations and EMA at 



 

 17 

public 

large 𝜎 𝐸𝑎⁄  values [34]. The agreement between the three different and independent 

approaches gives confidence in the absolute values obtained for the factor 𝐶. 

Analogous to the results in the previous sections, calculations carried out using a 

conventional kMC approach, where the carrier is placed at random in the DOS and then 

relaxes, yields a reduced value of the factor 𝐶 as compared to the ODOS approach, i.e., a 

lower contribution of the disorder to transport, depending on how far from equilibrium the 

transport takes place. In contrast, an increased value of the factor 𝐶 is obtained when the 

Marcus-type hopping rate is simplified by assuming a constant pre-factor. We obtain 

principally the same results as that obtained before for 𝑊1 = 1 in the paper by Seki and 

Wojcik [9]. Evidently, this simplification is a rather coarse approximation that overestimates 

the 𝐶-factor. 

 

FIG.3. 𝐶-factor vs. 𝜎 𝐸𝑎⁄  derived from kinetic Monte Carlo simulations of the nearest-

neighbor hopping diffusivity 𝐷(𝑇) using a Marcus rate in an isotropic 3D system and 

2𝛾𝑎 = 10. Also shown are results from analytic MTR and EMA calculations. The kMC 

simulations marked “DOS, full” refer to the case of non-equilibrated transport, all other 

data is obtained for transport under equilibrium. For comparison, values obtained using 

a Marcus-type hopping rate with a constant pre-exponential factor is also shown 

(“ODOS, simpl.”)  

 

4d)  C-factor in variable-range hopping (VRH) regime 

The nearest-neighbor hopping (NNH) considered in the preceding section was modeled 

assuming just six nearest neighbors of a site 𝑖 on a cubic 3D lattice (N=6). However, it is 

well-known that hops between the non-nearest-neighboring sites can also contribute to the 
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hopping transport. This is described by variable-range hopping (VRH) [6] which is a more 

general approach and considers transitions of carriers to further neighbors than the nearest 

ones. Here VRH was implemented in the kMC simulations by allowing long-distance jumps 

to as many as N=26 neighbors in total, i.e., up to the 3rd-nearest neighbor. The probabilities of 

such jumps are determined by the carrier localization parameter (2γa). Figure 4 presents the 

C-factor obtained as a function of 2γa, with larger values implying stronger localization. 

Simulation results are shown for jumps to the 3rd-nearest neighbor (N=26 sites), thus enabling 

the VRH regime (filled triangles), and they are compared to those allowing for hopping to 

next-nearest neighbors (N=6, empty triangles). We only considered the case of equilibrium 

transport, once for purely disorder-controlled transport, using a Miller-Abrahams type 

hopping rate (Eq. (3)) and once when including polaronic effects through a Marcus-type 

hoping rate (Eq. 4). Also shown are values obtained using the MTR formalism. For the EMA 

calculations that we used in the previous section, a distinction between NNH and VRH cannot 

be implemented explicitly. 

 

 

FIG. 4. The 𝐶-factor as a function of localization derived from kinetic Monte Carlo 

simulations of hopping diffusivity D(T) in both the nearest-neighbor hopping (empty 

symbols) and variable-range hopping (filled symbols) regimes using (a) a Miller-

Abrahams or (b) a Marcus type hopping rate. Results of analytic MTR calculations in 

VRH regime for MA and Marcus rates are shown by red stars in (a) and (b), 

respectively.  
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As expected, no dependence of the 𝐶-factor on the localization length was observed for 

the case of NNH because this regime is preserved at N=6 irrespective to the inverse 

localization length (γ) value. On the other hand, Fig. 4(a) and (b) demonstrate a clear decrease 

in 𝐶-factor with decreasing 2𝛾𝑎 in the VRH regime as found by both kMC simulations (filled 

triangles) and the MTR theoretical calculations (stars). At large localization, the values 

converge to the value of NNH for all the simulations, which is a trivial observation, since at 

large localization or very poor electronic coupling, the NNH regime becomes dominating. We 

note the difference between the kMC and the MTR obtained vales for 𝐶 in the limit of large 

localization. While this is a minor effect for pure disorder-dominated transport, it is 

significant when polaronic contributions are included. We speculate whether in this case, 

MTR is less suitable, since the distinction between “transporting” and “trapping” states, on 

which this formalism is based, becomes blurred [33]. 

Overall, the results obtained so far have demonstrated that  

(i) There is very good agreement between three approaches for the 𝐶-factor for 

equilibrium transport. Depending on conditions, values range from 0.30 to 0.47.  

(ii) The value of the 𝐶-factor decreases when transport is out of equilibrium. 

(iii) The value of the 𝐶-factor decreases when reorganization contributes to the 

transport. 

(iv) The value of the 𝐶-factor decreases when the wavefunction of the charge or 

excitation is less localized.  

This behavior is not consistent with the notion of a “universal scaling law”, at least not in the 

strict mathematical sense. For practical purposes, one may consider that, in thermal 

equilibrium, the values for 𝐶 range around 0.40 ± 0.05.  We shall therefore evaluate the 

impact of this variation in the next section. 

 

5.    ANALYSIS OF EXPERIMENTAL DATA 

The theoretical and simulation results obtained in the previous sections are utilized here 

to analyze earlier experimental transport data. A frequently encountered albeit problematic 

procedure adopted in the community to obtain the polaronic activation energies (𝐸𝑎) for 

transport is to analyze the 1/𝑇 dependence of zero-field mobility using Eq. (1) presuming 

zero disorder, i.e., Eq. (12a). Similarly, the energetic disorder can be obtained by analyzing 

the temperature-dependence of the zero-field mobility (1/𝑇2 dependence) assuming 𝐶 =
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 0.44 within a purely disorder-controlled MA formalism, i.e. 𝐸𝑎 = 0, as established by 

previous kMC and EMA approaches [1], see Eq. (12b):  

𝜇(𝑇) = 𝜇0 𝑒𝑥𝑝 [− (
𝐸𝑎

𝑘𝐵𝑇
) ]                                                  (12𝑎) 

𝜇(𝑇) = 𝜇0 𝑒𝑥𝑝 [−0.44 (
𝜎

𝑘𝐵𝑇
)

2

]                                                  (12𝑏) 

However, this procedure has serious shortcomings, because disorder and reorganization 

energy are entangled, as reflected in the use of the unified model, Eq. (1).  

In this section, we illustrate how much difference can be expected in the 𝜎 and 𝐸𝑎 values 

when using different formalisms to fit the data. For this assessment, we analyze the 

temperature dependence of the zero-field ToF mobility for holes in a series of conjugated 

alternating phenanthrene indenofluorene copolymers reported by Hoffmann et al. [35] We 

analyze four copolymers from this paper labeled as copolymer 1, 3, 7 and 9 (see SI or Ref. 

[35] for chemical structure). For reference, we quote in Table 1 the values obtained in Ref. 

[35] from fitting the mobilities of the copolymers with Eq. (12). 

 

Table 1: 𝐸𝑎 and 𝜎 values obtained from fitting with Eq. (12). Also given are 𝐸𝑎 values 

obtained from DFT-calculations (From Ref. [35]).  

copolymer 𝐸𝑎 (meV)  

by Eq. (12a) 

𝜎 (meV) 

by Eq. (12b) 

𝐸𝑎 (meV) 

by DFT 

1 178±2 109±2 46 

3 235±2 102±2 38 

7 329±2 89±2 25 

9 397±2 91±2 31 

 

As discussed in detail in Ref. [35], it turns out that the 𝜎 values obtained from Eq. (12) 

are consistent with those obtained by other methods, while the 𝐸𝑎 values are unrealistically 

large. Thus, one needs to obtain estimation for 𝐸𝑎 by other means, such as density-functional 

theory (DFT) calculations. 

 If we wish to assess how the values derived for 𝜎 and 𝐸𝑎 depend on the 𝐶-factor used, 

a straightforward test is therefore to take the DFT-calculated 𝐸𝑎 value and subsequently 
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employ Eq. (1) to determine σ for several values of 𝐶. Figure 5a presents the experimental 

mobility data reported by Hoffmann et al. [35] (symbols) plotted against 1/𝑇2 on a semi-

logarithmic scale. The solid lines are the corresponding fits done using Eq. (1) with 𝐶 = 0.40 

and using the DFT-calculated 𝐸𝑎 values summarized in Table 1. A comparison of the fits to 

the experimental data with Eq. (1) for 𝐶 = 0.35, 0.40 and 0.44 is shown exemplary for 

copolymer 1 in Figure 5b. It illustrates that the fits with different approaches coincide 

perfectly and are almost indistinguishable. Given the limited temperature range from 300 K to 

350 K for which the mobility was determined, this is expected. The data for copolymers 3, 7 

and 9 agree similarly well and are shown in the Supplemental Information. The disorder 

parameter obtained as a result of fittings are summarized in Table 2. 

 

 

FIG. 5: (a) The temperature dependence of the mobility plotted as µ vs 1/𝑇2 on a semi-

log scale, along with the zero-field ToF mobility for copolymers 1 (red squares), 3 

(green circles), 7 (pink triangles) and 9 (blue diamonds) as reported in Ref. [35]. Solid 
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lines represent the fitting results using Eq. (1) with 𝐶 =  0.40 and Ea values presented 

in Table 1. (b) Comparison of the fits done by using Eq. (1) with 𝐶 =  0.35, 0.40 and 

0.44, and by using Eq. (12b) (MA rate).  

 

Table 2: The 𝜎 values obtained from fitting with Eq. (1), using the DFT-calculated 𝐸𝑎 values 

from Table 1. 

copolymer 𝜎  (meV) 

by Eq. (1), 𝐶=0.35 

𝜎  (meV) 

by Eq. (1), 𝐶=0.40  

𝜎  (meV) 

by Eq. (1), 𝐶= 

0.44 

1 116±2 108±2 103±2 

3 108±2 101±2 96±2 

7 95±2 89±2 85±2 

9 97±2 91±2 86±2 

 

We observe that the 𝜎 values obtained when using a pure MA approach, Eq. (12b), or 

a unified approach, i.e., Eq. (1), with different values for 𝐶 differ by less than 10% from each 

other. This is within the typical experimental error range (note that the error given refers to 

the fitting procedure). Our result implies that the consideration of the polaronic contribution 

to the transport description, and the question of how much weight this should be given, is not 

critical for the determination of the disorder value as long as 𝐶 ranges around 𝐶 = 0.40 ±

0.05.  

However, a very different result is obtained when the disorder value from the pure MA 

approach is used in Eq. (1), and 𝐸𝑎 is determined parametric in the 𝐶-factor. Table 3 

summarizes the values obtained. The fits to the experimental data are as good as in Figure 5. 

They can be found in the Supplemental Information for reference. However, the 𝐸𝑎 values 

span a much wider range, implying that the fitting approach has a huge effect. This 

demonstrates that the value obtained for 𝐸𝑎 depends more strongly on the correct choice of 

the 𝐶-factor than the values obtained for 𝜎. It seems that the range of values obtained using 

Eq. (1) with 𝐶 = 0.40 ± 0.03 is reasonably realistic (c.f. Supplemental Information for 

detailed discussion), while a full neglect of disorder contributions as in a pure Marcus model, 

Eq. (12a), results in values that are at variance with other experiments.  
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Table 3:  𝐸𝑎  values obtained from fitting with Eq. (1), using σ values from Table 1. 

copolymer  𝐸𝑎  (meV) 

by Eq. (1), 𝐶=0.35 

 𝐸𝑎  (meV) 

by Eq. (1), 𝐶=0.40  

 𝐸𝑎  (meV) 

by Eq. (1), 𝐶= 

0.44 

1 78±2 35±2 0±2 

3 69±2 33±2 0±2 

7 50±2 21±2 0±2 

9 54±2 24±2 0±2 

 

 

6.   DISCUSSION AND CONCLUSIONS  

This study illuminates several points regarding the description of charge transport. It 

clarifies that the relative contribution of polaron and disorder effects to the charge carrier 

mobility, as quantified through the value of the 𝐶-factor, depends on various factors.  

One aspect is whether charge transport takes place in equilibrium or out of 

equilibrium: The further away the transport is from equilibrium, the lower is the contribution 

of disorder, and thus the lower is the 𝐶-factor. It is straightforward that disorder should play a 

lesser role when hops occur mostly downwards in energy. One may need to bear this in mind 

when analyzing experimental data where transport is far out of equilibrium, e.g., on very short 

timescales after carrier generation. Our study, notably Figures 1 and 2, indicate that this is of 

relevance to both, MA as well as Marcus rates. Correspondingly, it can become important to 

perform the kMC calculations under equilibrium conditions, e.g., by starting from the ODOS 

distribution instead of the full DOS, if one wishes to obtain a reliable value that is 

independent of simulation time or temperature. This is an important insight, as most available 

kMC simulations are premised on the condition that the initial energy of an excitation is 

sampled from a DOS distribution. 

Another aspect is that the value of the 𝐶-factor depends on the ratio between the 

reorganization energy and the disorder. This had been noted before by several groups 

[5,6,22], though there are also disagreeing calculations [9]. The gratifying feature in our work 

is the quantitative agreement of 𝐶(𝜎, 𝐸𝑎) obtained via three independent approaches, that is 

kMC simulations, EMA calculations and the MTR formalism. As discussed above, EMA 
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calculations apply to the range of lower disorder values, while the MTR formalism is more 

meaningful for the range of higher disorder values where the distinction between conducting 

and trapping states is maintained. kMC applies over the entire range of disorder values, 

though for comparison with the EMA and MTR formalism, one needs to ensure that the 

simulations is conducted for the quasi-equilibrium case. In this context, we noticed the 

importance of using the full Marcus-type hopping rate, i.e., including the temperature-

dependent prefactor. The evolution of 𝐶(𝜎, 𝐸𝑎) was only rendered consistently between the 

three approaches when using Eq. (4) with the temperature-dependent prefactor. This may 

account for the difference to the work by Seki and Wojcik, who assumed a constant Marcus 

pre-factor [9]. 

A further aspect concerns the dependence of the 𝐶-factor on the delocalization of the 

carrier wavefunction. We revealed the effect of the degree of carrier localization in organic 

semiconductors on C-factor for Marcus polaron hopping. It was found to feature a 

qualitatively similar trend to that obtained for MA hopping of non-polaronic carriers (Fig. 4). 

In both cases the weak carrier localization gives rise to significantly lower C-factor. This is 

equivalent to the earlier noticed dependence of the 𝐶-factor on lattice geometry, coordination 

number or dimensionality [36-38]. Our study implies a reduced contribution of disorder when 

more lattice sites are accessible for transport. It is easy to see that disorder should matter less 

when a particular energy barrier can simply be circumvented by a different pathway, so that 

an increase in dimensionality, coordination number or accessible neighbor sights all reduce 

the contribution of disorder. This aspect is easily overlooked, and perhaps not always 

sufficiently appreciated. For example, in our earlier work [5], we reported a stronger 

dependence of the 𝐶-factor on 𝜎 𝐸𝑎⁄  than here. The reason is that in the earlier work, the 

lattice chosen was not a strictly simple cubic lattice but a slightly orthorhombic one. This was 

done in order to match the experimental conditions and it resulted in a stronger evolution of 

𝐶(𝜎, 𝐸𝑎). This dependence on dimensionality and available lattice sites implies that the 

distribution of chromophores in a film, and in particular, any existence of partial order, will 

have a significant impact on the appropriate value of the 𝐶-factor. 

 Given the variation of the 𝐶-factor with experimental conditions, one may question 

what can be learned from an analysis of temperature dependent mobility data in the 

framework of Eq. (1). The investigation we performed clearly indicated that such an analysis 

provides a reasonable basis for the assessment of disorder using a 𝐶-factor of 𝐶 = 0.40 ±

0.03. “Reasonable” means here that the values are within 10% of each other and the value 

obtained from a pure MA approach, and agree with any other information available from 
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experiments [35].  In this way, our work eventually provides a “legitimization” for the use of 

the simple MA rate model to the description of the charge transport in realistic disordered 

organic solids. This is a key message of our paper, especially relevant for experimentalists, 

who routinely use the GDM for their data analysis and naturally want to know to what extent 

this zero-order approach is accurate in determination of the width of the DOS. We emphasize 

that Eq. (1) with 𝐶 = 0.40 ± 0.03 is fully applicable only when the carrier transport is in 

quasi-equilibrium. This is when (𝜎 𝑘𝐵𝑇⁄ )2 < 10, i.e. 𝜎 𝑘𝐵𝑇⁄ < 3.3 as evident from Figures 1 

and 2. Experimentally, these conditions are usually fulfilled for CELIV-measurements or for 

non-dispersive TOF-measurements where the plateau and the subsequent kink in the current 

transients are clearly visible. Note that our conclusion about the appropriateness of MA rate is 

consistent with the recent finding by de Vries at al. in Ref. [39] based on full quantum 

mechanical treatment; however, in our work the problem was tackled from the standpoint of 

established hopping-transport theories and computer simulations. As also mentioned by de 

Vries, the values obtained for the reorganization energy are significantly less reliable. Typical 

value of the reorganization energy in conventional organic semiconductor has been estimated 

as λ=100-200 meV [40]. 

Further, we would like to note that, although the impact of carrier equilibration on the 

C-factor was indeed shown before for the case of non-polaronic transport (MA rates), to the 

best of our knowledge, it has never been considered for the polaronic hopping transport given 

by Marcus rate. Also, the effect of the degree of carrier localization in organic semiconductors 

on C-factor was not reported before for the Marcus hopping rate, while it has been 

demonstrated for the non-polaronic transport regime. In addition, almost all theoretical efforts 

in the description of variable-range hopping (VRH) in organic semiconductors were based so 

far just on the MA rate model and the VHR remains virtually unexplored for Marcus rate 

model. Our work resolves the long-standing controversy regarding the C-factor and explains 

why different values were obtained in literature. We identify differences in the approaches 

used in the previous works and their specific aspects leading to the contradictory results. 

Our initial question on how strongly the reorganization energy contributes to charge 

transport in disordered organic semiconductors may thus be answered in a brief way as “not 

much”. The polymers of Ref. [35] that we used as experimental example are typical 

conjugated polymers insofar that their backbones consist of bridged or fused, i.e. rigid, phenyl 

rings as well as more flexible triphenylamines. They have a disorder parameter around 100 

meV and an 𝐸𝑎 of less than 50 meV, i.e. a reorganization energy 𝜆 of less than 200 meV. 

These values can be considered as representative. We found that entirely ignoring the 



 

 26 

public 

polaronic contribution by analyzing the 𝜇(𝑇)-data in terms of the simple Gaussian disorder 

model overestimates the disorder by roughly 10%. This can be taken as an indication that the 

polaronic contribution is small.  

Finally, in the present paper we made important methodological advancements in both 

analytical treatment and computer simulations of polaron transport. In particular, we have 

extended the multiple tapping and release (MTR) theoretical approach to describe the Marcus 

polaron hopping. An important advantage of the suggested approach is that it allows avoiding 

the transport energy (TE) concept, as the calculation of the TE for Marcus rates turned out to 

be very problematic, which is in contrast to MA rates where this concept is conventionally 

used. Further, we have improved the algorithm of kinetic Monte-Carlo simulations (kMC) to 

consider adequately the equilibrated polaron transport in a Gaussian DOS, which can be 

ensured under the conditions that the initial energy of an excitation is sampled from a 

Gaussian occupational DOS (ODOS) distribution shifted by the equilibrium energy below the 

DOS center. We found that this aspect has a significant impact of the polaron transport, which 

has normally been overlooked in previous relevant kMC simulation studies. 

 

 

 

APPENDIX A: ON THE APPLICABILITY OF THE MULTIPLE TRAPPING MODEL TO 

THE DESCRIPTION OF HOPPING TRANSPORT 

We start from the well-known master equation of hopping transport for the occupation 

probability, 𝑓𝑖, of the ith hopping state: [21,23] 

 𝜕𝑓𝑖 𝜕𝑡 = ∑ [𝜈𝑗𝑖𝑓𝑗(1 − 𝑓𝑖) − 𝜈𝑖𝑗𝑓𝑖(1 − 𝑓𝑗)]𝑗≠𝑖⁄ ,   (A1) 

where 𝜈𝑖𝑗 is the hopping rate of a carrier from ith state to the jth state. We assume that the 

release of carriers from the rather deep states i, the rate of release from which determines the 

magnitude of diffusivity and mobility, occurs preferably to relatively shallow energy states j 

having very low occupation probability, 𝑓𝑗 ≪ 1. This contrasts with mechanism of the Mott-

type conductance near the Fermi level, which might typically be realized in the low-

temperature limit and is not considered here [25]. The low occupation probability results from 

low mean occupation time of these states, since most of the jumps per unit time occur via 

these shallow j-states. Particularly, capture of carriers by the deep i- states occurs from these 

“fast” j-states. Further, we assume that the population of the “fast” states (of the energies 𝜀𝑗) 

can be described by the quasi-equilibrium Boltzmann’s function, 𝑓𝑗 = 𝑓0𝑒𝑥𝑝 [−
𝑗

𝑘𝐵𝑇⁄ ].  At 



 

 27 

public 

the same time, the deep states of the energies 𝜀𝑖 can be filled with much higher probability 

𝑓𝑖 ≅ 1; their population can also be far from a quasi-equilibrium distribution if the initial 

energy distribution of carriers is not equilibrated as a consequence of rather small number of 

the release events from i-states Using the detailed balance principle, 𝜈𝑗𝑖 =

𝜈𝑖𝑗𝑒𝑥𝑝 [(
𝑗

− 
𝑖
) 𝑘𝐵𝑇⁄ ], and introducing the symbol 𝜔𝑖 = ∑ 𝜈𝑖𝑗𝑗≠𝑖 , one can rewrite the 

balance equation (A1) as follows: 

𝜕𝑓𝑖 𝜕𝑡 = 𝑓0(𝑥, 𝑡)𝑒𝑥𝑝[−
𝑖

𝑘𝐵𝑇⁄ ]⁄ (1 − 𝑓𝑖)𝜔𝑖 − 𝑓𝑖𝜔𝑖   (A2) 

where x is the set of spatial coordinates. One may assume that the prefactor 𝑓0 in Eq. (A2) is j- 

independent, provided that the spatial and time scale of variations of this prefactor is much 

larger than several hopping lengths.  

The magnitude of the release frequency of a carrier from the state i, 𝜔𝑖, not only 

depends on its energy, 
𝑖
, but also on other characteristics (such as energies, distances and 

orientations) of the surrounding states. It is known from percolation theory that the states, 

which contribute to the transport predominantly, form a network with some characteristic size 

𝑟𝑐0 (correlation radius of percolation cluster) [29, 30, 34]. One can simplify the description of 

transport, provided that the function f in Eq. (A1) is averaged on the spatial scale of 𝑟𝑐0 

(which is temperature and disorder dependent) and on the respective time scale, 𝑡𝑐0 (the 

diffusion time for the distance 𝑟𝑐0). One can select the “conductive” states among the “fast” 

states by relating the prefactor 𝑓0(𝑥, 𝑡) and the concentration of carriers (the “mobile” 

carriers) in these states, 𝑝𝑐(𝑥, 𝑡), 

    𝑓0(𝑥, 𝑡) = 𝑝𝑐(𝑥, 𝑡) 𝑁𝑐⁄       (A3) 

where 𝑁𝑐 is an effective concentration of “conductive” states. This concentration does not 

depend on coordinates and time due to quasi-equilibrium occupation of conductive states and 

macroscopic uniformity of the material. The other “fast” states and i- states are considered 

below as traps (the shallower and the deeper fraction, respectively). Then one can rewrite Eq. 

(A2) in the continual form, introducing the spatially uniform energetic distribution function of 

traps 𝑔𝑡( ), energy-dependent release frequency 𝜔( ) instead of 𝜔𝑖, the averaged 

occupation probability 𝑓( , 𝑥, 𝑡), and the distribution of occupied traps  𝜌( , 𝑥, 𝑡) =

𝑔𝑡( )𝑓( , 𝑥, 𝑡). Multiplying Eq. (A2) by 𝑔𝑡( ), and using Eq. (A3), one obtains the balance 

equation of the MTR model [24], 

𝜕𝜌( ,𝑥,𝑡)

𝜕𝑡

1

𝑐( )
= [𝑔𝑡( ) − 𝜌( , 𝑥, 𝑡)]𝑝𝑐(𝑥, 𝑡) − 𝑁𝐶𝜌( , 𝑥, 𝑡)𝑒𝑥𝑝 (


𝑘𝐵𝑇

)   (A4) 
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where 𝑐( ) = [𝜔( ) 𝑁𝐶⁄ ]𝑒𝑥𝑝(− 𝑘𝐵𝑇⁄ ) is the capture rate of a carrier on a trap of given 

energy. A model of hopping rates, 𝜈𝑗𝑖, defines only the shape of the function  𝜔(𝜀), and hence 

𝑐(𝜀), аnd the value of 𝑁𝐶. One can find the latter value from the equation which follows from 

Eq. (A3) and the definition of the function, 𝜑(𝐸), see Eq. (8),  

𝑝𝑐(𝑥, 𝑡) =
𝑝𝑐(𝑥,𝑡)

𝑁𝐶
∫ 𝑑𝐸𝑔( )𝜑( )𝑒𝑥𝑝 (−


𝑘𝐵𝑇

)
∞

−∞
                   (A5) 

eliminating 𝑝𝑐(𝑥, 𝑡) from both sides of this equation. Since ( ) ( ) 0t    , hence 𝑔𝑡( ) ≈

𝑔( ). Provided that 𝑝(𝑥, 𝑡) ≈ ∫ 𝑑 𝜌( , 𝑥, 𝑡)
∞

−∞
, under quasi-equilibrium Eq. (A4) yields 

   p(𝑥, 𝑡) = 𝑝𝑐(𝑥, 𝑡) ∫ 𝑑𝐸
𝑔( )

𝑁𝐶
𝑒𝑥𝑝 (−


𝑘𝐵𝑇

)
∞

−∞
    (A6) 

Eq.(10)  follows from Eqs. (9), (A5) and (A6). 

 Thus, one needs to calculate the release frequency 𝜔( ) for defining 𝑐( ) and 𝑁𝐶 in 

Eq. (A4). In this work, we calculate it from Eq. (11), where  

 𝑛(𝜀, 𝑢) = ∬ 𝑑𝜀′
Ω(𝜀,𝑢)

𝑑3𝑟𝑔(𝜀′)𝑃(𝜀, 𝜀′, 𝑢)    (A7) 

where the integration volume Ω(𝜀, 𝑢) in the 𝜀′ − 𝑟 space (𝑟 is the distance to a neighbor state 

and 𝜀′ is its energy) is defined by the condition that the hopping rate from the initial state to 

any state in this volume is not smaller than a given value, 𝜔0 𝑒𝑥𝑝(−𝑢), where 𝑢 is the 

hopping parameter; 𝑃(𝜀, 𝑢) is the probability that the jump is not followed by returning to the 

initial state (of the energy 𝜀): 

𝑃(𝜀, 𝜀′, 𝑢) = {
0,  𝑛0(𝜀′, 𝑢′) ≤ 1 

1 − 𝑒−[𝑛0(𝜀′,𝑢′)−1],  𝑛0(𝜀′, 𝑢′) > 1 
   (A8) 

where 𝑢′(𝜀, 𝜀′, 𝑢) = 𝑢 + (𝜀 − 𝜀′) 𝑘𝐵𝑇⁄  is the hopping parameter for the returning jump, and  

   𝑛0(𝜀, 𝑢) = ∬ 𝑑𝜀′
Ω(𝜀,𝑢)

𝑑3𝑟𝑔(𝜀′)        (A9) 

Thus, the neighbor states, for which the initial state is the nearest hopping neighbor (in u-

space), are not considered. The term 𝑛0 − 1 appears in eq. (A8), because one state (the initial 

state) definitely persists for the most relevant (i.e. upward in energy) jumps. The integration 

volume Ω depends on the model of hopping rates (for example, MA or Marcus). 
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