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Samenvatting 

Het brein is het meest complexe en mysterieuze orgaan van het menselijk lichaam. Een groot deel 

van het neurologische wetenschappelijk onderzoek gaat over het achterhalen van de werking van het 

brein alsook de invloed van stoornissen geassocieerd met neurologische problemen. Nog maar enkele 

decennia geleden nam de wetenschap aan dat het brein relatief onveranderd bleef na de kindertijd. 

Daarnaast veronderstelde men dat als delen van het brein beschadigingen opliepen, de aangetaste 

functies bestuurd door deze gebieden vooraltijd verloren zouden zijn. Het feit dat personen die een 

beroerte of een traumatische breinbeschadiging opliepen spontaan herstellen, spreekt de voorgaande 

theorie tegen. Elk deel van het brein is continu aan het aanpassen en evolueren in reactie tot wat wij 

denken, zien en doen. Indien het brein forceert om nieuwe neurologische connecties aan te maken, zal 

het dit ook doen tijdens elk moment van zijn bestaan. Omdat het brein emotionele gezondheid, 

psychologische gezondheid en alle lichaamssystemen controleert, zullen er substantiele effecten 

optreden bij het gedrag indien het brein beter leert werken. Dit kan met doen met technologische 

oplossingen zoals “neurofeedback” en “closed-loop neuromodulatie” gebaseert op transcraniële 

wisselstroom simulatie (tACS). Deze oplossingen zijn beperkt in termen van data analyse. Ten eerste, 

meerdere kanalen dataverwerking, zoals in het geval van EEG, is computationeel zeer intensief. Dit leidt 

typisch tot de prestatie van EEG analyses op het niveau van de sensor i.p.v. aan de bron. Daarbij komt 

ook nog dat oog, musculaire en cardiale artifacten aanwezig zijn in EEG opnames. Daarnaast kan men 

een prominent artifact geïnduceerd door tACS vinden in EEG data door closed-loop neuromodulatie 

experimenten. 

Met name hiervoor beschikken wetenschappers over verschillende empirische methodes om 

breinfuncties te onderzoeken. Hierbij is het van belang om te vertrouwen op niet-invasieve methodes 

om hersenactiviteit te onderzoeken bij gezonde mensen en patiënten. Een opkomende techniek voor 

beeldvorming van de hersenen is “hoge-densiteit elektro-encefalografie” (hdEEG), waarbij men 

electrische potentialen van de hoofdhuid meet. De variaties in potentiaal zijn daarbij direct gerelateerd 

aan de neurologische activiteit in de grijze materie. HdEEG- systemen maken gebruik van meer dan 100 

electroden geplaatst op de hoofdhuid. De bekomen hdEEG-data, gecombineerd met precieze infomatie 

over de anatomie van het brein en uitgebreide algoritmes voor bronlokalisatie, laten toe om neurale 

activiteit van de hersenen te reconstrueren. Er zijn echter verschillende stappen nodig om te gaan van 

EEG opnames naar driedimensionale afbeeldingen van neurale activiteit. Tegenwoordig gebeuren 

hdEEG analyses offline, want om real-time hdEEG-analyses uit te voeren is het nodig om nog 

verschillende technische obstakels aan te pakken.  

Het doel van deze doctoraatsthesis is om een complete workflow-analyse te ontwikkelen voor 

eenvoudige real time analyse van hdEEG-data op bronniveau om te kunnen gebruiken in de context van 

neurofeedback en closed-loop neuromodulatie experimenten. Om betrouwbare real-time bron activiteit 

te verzekeren bij het gebruik van EEG, streven we ernaar om computationeel-efficiente artifact 

verwijderingstechnieken en efficiënte bronlokalisatie te ontwikkelen. Dit hebben we opgelost door een 
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nieuwe online EEG artifact verwijderings methode te onwikkelen. Hierbij hebben we offline 

verwerkings gereedschap, die ontwikkeld zijn voor hdEEG, geïmplementeerd als ruimtelijke filters. 

Onze aanpak toont de noodzaak van een calibratieve opnamemethode voor de initialisatie van de 

ruimtelijke filter. Deze vernieuwende methode overtrof alternatieve methodes in termen van artifact 

verwijderings accuraatheid en computationele efficiëntie. In het bijzonder verzwakte het verschillende 

soorten artefacten met een precisie die vergelijkbaar is met die van een offline methode, terwijl de echte 

neurale activiteit behouden bleef. 

De sterke artefacten die worden geïnduceerd door gelijktijdige tACS zijn erg groot, en dit is tot dusver 

een sterke hindernis geweest voor de studie van neurale dynamica tijdens stimulatie. De meeste EEG-

tACS-onderzoeken zijn tot dusverre uitgevoerd waarbij men de EEG-data verzameld in de periode 

zonder stimulatie zijn geanalyseerd. Om closed-loop neuromodulatie toepassingen mogelijk te maken, 

hebben we een nieuwe online techniek voor het verwijderen van tACS-artefacten met lage 

rekencomplexiteit geïntroduceerd. Dit was nodig om verzwakking van het stimulatieartefact in real-

time mogelijk te maken. Onze technologische oplossing bleek beter te presteren dan andere methoden 

in termen van nauwkeurigheid bij het verwijderen van artefacten en rekentijd, met behoud van echte 

neurale activiteit. 

Ten slotte zijn montages met hoge dichtheid vereist om bronlokalisaties uit te voeren met behulp van 

EEG-data. Toegewijde tools om real-time reconstructie van neurale activiteit uit te voeren, ontbreken 

momenteel. Dit lossen we op door een real-time niet-invasieve elektrofysiologische toolbox te 

ontwikkelen, die via een speciale grafische gebruikersinterface online artefactverwijdering en 

bronlokalisatie mogelijk maakt. Hiervan evalueren we de effectiviteit en validiteit door te vergelijken 

met echte hdEEG-data. We hebben met name de neurale activiteit die is gereconstrueerd in een online 

modaliteit vergeleken met die verkregen met behulp van een offline analyse-workflow. Over het 

algemeen maakte onze software het mogelijk om real-time neurale activiteit te schatten met een 

nauwkeurigheid die vergelijkbaar is met offline methoden. Daarnaast hebben we een 

gebruikersinterface ontwikkeld die real-time 2D- en 3D-visualisatie van sensor- en brongegevens 

mogelijk maakt. Onze software kan het werk vergemakkelijken van onderzoekers die niet vertrouwd 

zijn met complexe analyse workflow en software, dankzij de grafische gebruikersinterface. 

Over het algemeen suggereren onze resultaten dat het mogelijk is om hdEEG te gebruiken als een 

niet-invasieve techniek voor real-time schatting van neuronale activiteit. Wij zijn van mening dat de 

analysetools die we hebben ontwikkeld voor real-time hdEEG-data-analyse verschillende nieuwe 

toepassingen kunnen vinden, specifiek voor hersenverbetering en voor de behandeling ervan. In de 

context van prestatieverbetering kan bron-gebaseerde neurofeedback erg belangrijk zijn voor 

topsporters, en in het bijzonder voor profvoetballers en andere topsporters. Neurofeedback biedt in dit 

geval de mogelijkheid voor een gerichte training van motorische, perceptuele en cognitieve functies die 

cruciaal zijn voor sportprestaties, wat nauwelijks bereikt kan worden door alleen fysieke training. 

Daarentegen kan men door euromodulatie met gesloten lus ziekten te behandelen door het perifere 



  VI 

zenuwstelsel elektrisch te stimuleren als reactie op fysiologische veranderingen. Er is aanzienlijk 

experimenteel en computationeel bewijs dat closed-loop-systemen gebaseerde op tACS effectief kunnen 

meesleuren, wat leidt tot veranderingen in zicht, beweging en auditie. Met name closed-loop 

neuromodulatie kan men gebruiken voor een verscheidenheid aan klinische doeleinden, waaronder de 

behandeling van farmaco-resistente epilepsie, bewegingsstoornissen en mogelijk psychiatrische 

stoornissen, waaronder depressie en drugsverslaving. 
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Summary 

The brain is the most complex organ of our body, and a large bulk of research is conducted to 

understand its basic mechanisms and its impairments associated with neurological deficits. Just a few 

decades ago, it was widely assumed that the brain remained relatively unchanged after childhood. And 

it was presumed that if parts of the brain were damaged, the functions governed by those areas would 

be lost forever. The fact that people who have had a stroke or a traumatic brain injury recover 

spontaneously, for example, contradicts this theory. Every part of the brain is continually evolving and 

adapting in reaction to what we think, see, and do. If the brain is asked to do so, it may form new neuronal 

connections at any time during its existence. Since the brain controls emotional health, psychological 

health, and all of the body's systems, teaching it to work better can have substantial effects at the 

behavioral level. This can be done using technological solutions such neurofeedback and closed-loop 

neuromodulation based on transcranial alternating current stimulation (tACS). These solutions have 

however still some limitations in terms of data analysis. First of all, processing of multi-channel data, as 

in the case of EEG, is computationally intensive. This typically leads to the performance of EEG data 

analyses at the level of the sensors, instead of the sources. Also, ocular, muscular and cardiac artifacts 

are typically present in the EEG recordings. In addition, a prominent artifact induced by tACS can be 

found in EEG data from closed-loop neuromodulation experiments.  

Notably, there are a variety of empirical methods that allow scientists to examine brain functioning. 

In particular, it is necessary to rely on non-invasive techniques to study brain activity in healthy people 

and patients. An emerging technique for brain imaging is the high-density electroencephalography 

(hdEEG), which records the changes in electrical potential on the scalp. These variations are directly 

related to neuronal activity in the gray matter. HdEEG systems have more than 100 electrodes placed 

over the scalp. HdEEG data, if combined with precise information of the head anatomy and sophisticated 

source localization algorithms, permit the reconstruction of neural activity in the brain. However, 

several processing steps are needed to move from EEG recordings to 3-dimensional images of neuronal 

activity. Nowadays, hdEEG analyses have been conducted in an offline manner. Important technical 

issues need to be addressed for real-time hdEEG analyses. 

The purpose of this PhD thesis is to develop a complete analysis workflow for real-time analysis of 

source-level hdEEG data, to be used in the context of neurofeedback and closed-loop neuromodulation 

experiments. The effectiveness of neurofeedback applications based on EEG data strongly depends on 

the effective attenuation of artifacts that are mixed in the recordings. To address this problem, we 

develop a novel online EEG artifact removal method. This was done by adapting offline processing tools 

that we developed for hdEEG and re-implementing them as spatial filters. Importantly, our approach 

necessitates the use of a calibration recording for the initialization of the spatial filter. Our approach 

outperformed alternative methods in terms of artifact removal accuracy and computational efficiency. 

Specifically, it attenuated various types of artifacts with precision comparable to that of an offline 

method while maintaining true neural activity. 
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The strong artifacts induced by simultaneous tACS are very large, and this has so far been a strong 

hurdle for the study of neural dynamics during stimulation. Indeed, most EEG-tACS studies have been 

so far conducted analyzing the EEG data collected in the off-stimulation period. To enable closed-loop 

neuromodulation applications, we introduced a novel online tACS artifact removal technique with low 

computational complexity. This was necessary to enable attenuation of the stimulation artifact in real-

time. Our technological solution was found to outperform other methods in terms of artifact removal 

accuracy and computational time, while preserving true neural activity. 

Finally, high-density montages are required to perform source localizations using EEG data. 

Dedicated tools to perform real-time reconstruction of neural activity are currently lacking. We fill this 

gap by developing a real-time noninvasive electrophysiology toolbox, which -through a dedicated 

graphical user interface- enables online artifact removal and source localization of hdEEG data. We 

evaluate its effectiveness and validity on real hdEEG data. Notably, we compared the neural activity 

reconstructed in an online modality to that obtained using an offline analysis workflow. Overall, our 

software permitted to estimate real-time neural activity with accuracy comparable to offline methods. 

We developed a user interface that allows for real-time 2D and 3D visualization of sensor and source 

data. Our software may facilitate the work of researchers who are unfamiliar with complex analysis 

workflows and software, thanks to its graphical user interface. 

Overall, the results of the PhD thesis work suggest that it is possible to use hdEEG as a non-invasive 

technique for real-time estimation of neuronal activity. We believe that the analysis tools we developed 

for real-time hdEEG data analysis can find several new applications, specifically for brain enhancement 

and for the treatment of neurological diseases. In the context of performance enhancement, source-

based neurofeedback can be very important for high-level sportsmen, and in particular for professional 

football players and other top-level athletes. In this case, neurofeedback offers the possibility of a 

targeted training of motor, perceptual and cognitive functions that are crucial for sport performance, 

which can be very hardly achieved by physical training only. Closed-loop neuromodulation, on the other 

hand, attempts to treat disease by electrically stimulating the peripheral nervous system in response to 

physiological changes. There is considerable experimental and computational evidence that closed-loop 

systems based on tACS can effectively entrain brain oscillations, leading to changes in vision, movement 

and audition. Notably, closed-loop neuromodulation is used for a variety of clinical purposes, including 

the treatment of pharmacoresistant epilepsy, movement disorders, and possibly psychiatric disorders 

including depression and drug addiction.  
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1 General introduction 

1.1 Neural plasticity 

The brain is the most complex organ of the human body, with approximately 86 billion neuronal cells 

or neurons being largely interconnected with each other (Azevedo et al. 2009). Notably, connections 

between neurons can change through experience (Andrade-Talavera et al. 2016). The nervous system's 

ability to change its function and structure in response to both intrinsic and extrinsic stimuli is called 

neuroplasticity (Mateos-Aparicio and Rodríguez-Moreno 2019; von Bernhardi et al. 2017). In healthy 

individuals, neuroplasticity represents the basis of brain development, learning, and memory (Kolb and 

Whishaw 1998), whereas in patients this term relates to molecular, synaptic, cellular events in the brain 

after degeneration or injury (Prosperini et al. 2015). Different forms of neural plasticity have been 

identified. A primary distinction needs to be made between transmission efficacy plasticity and 

structural plasticity (Fauth and Tetzlaff 2016). The former is linked to structural changes of neuronal 

connections. By contrast, synaptic plasticity is referred to as changes in the circuit connectivity involving 

modification of synapses (Fauth and Tetzlaff 2016). 

 

1.1.1 The neuron and its functioning 

As already mentioned, neurons are the fundamental elements of the nervous system. They carry 

electrical signals produced by the movement of ions through its membrane. Each neuron is connected 

with 5.000-200.000 other neurons and the network complexity escalates with brain maturation. 

 The neurons can be classified into three classes depending on their function: sensory, motor, and 

interneurons (figure 1.1). Sensory neurons transform stimuli from the environment into internal 

electrical impulses. Then, motor neurons transfer information and commands to muscle and organs, 

after getting signals from other neurons. Lastly, the interneurons, the central nodes of the neural 

circuits, connect one neuron to another. A neuron is made up of axon, dendrites and the so-called, soma, 

which is the cell body. Dendrites, meant as the projections of a neuron, can be connected to both axons 

or other dendrites, and can receive electric signals from other nervous cells. The synapses are contact 

sites which transmit the signal between neurons, therefore they are elements of connection between 

the nerve cells. The information flow is mostly unidirectional along the fibers and synapses.  
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Figure 1.1. Different types of neurons and their structure. A) Interneurons empower sensory or motor neurons to 

communicate with the central nervous system; B) motor neurons convey signals to muscle cells to control their functional 

output; C) sensory neurons receive information via their receptors and convert this information into electrical impulses. This 

figure is adapted from Lodish et al. (2000), with permission. 

 

At the functional level, the neuron is a cell that can be excited or activated. The activation process 

corresponds to the modification of the electrochemical activity of the nervous cell (figure 1.1). This 

activity produces a change in the difference of potential across the cell membrane. Therefore, when the 

cell is at rest, the membrane has a natural polarization, with a transmembrane potential typically 

between -50mV and -100mV. As a result of an excitation, a depolarization is determined, the duration 

of which varies greatly depending on the type of excitable cell involved. For a neuron this duration is of 

the order of ms. Under the cell membrane, a negative potential (60-70 mV), which varies with the 

synaptic activity, may be recorded. 

 Cortical pyramidal neurons become electrical dipoles due to their peculiar anatomical configuration 

with a long apical dendrite perpendicular to the cortical surface and equal capacitive currents caused 

by electrotonic spread of postsynaptic potentials along the apical dendrites (Kirschstein and Köhling 

2009). An excitatory postsynaptic potential (EPSP) is a shift in membrane voltage of a postsynaptic cell 

caused by the influx of positively charged ions into the cell (typically Na+) as a result of the activation of 

ligand-sensitive channels (Harvey and Dickenson 2010). With more action potentials (APs) in the same 

fiber, the EPSP will be summed, and a new AP will be generated in the postsynaptic neuron (Shepherd 

2004). Inhibitory postsynaptic potentials (IPSPs) are caused by the influx of negative ions (e.g., Cl) into 

the postsynaptic cell or the efflux of positive ions (e.g., K+) out of the cell. As a consequence, cell 

hyperpolarization occurs, reducing the probability of AP propagation, and inhibitory synapses are 

formed. Both forms of postsynaptic potentials are graded, resulting in an excitatory or inhibitory effect 

when added together (Harvey and Dickenson 2010). As soon as the summation of excitatory events 
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exceeds the threshold, an AP is generated and transits along the nerve (figure 1.2). In both cases, a dipole 

is created with separation of charge oriented vertically in the cortex, with extracellular negativity in 

more superficial laminae surface, and extracellular positivity in deeper laminae (Holmes and Khazipov 

2007). 

 

 

Figure 1.2. Measurements of excitatory and inhibitory post synaptic potentials in various parts of the neuron. On the 

left topside of the picture, excitatory APs are shown. In the middle graph, there is an example of inhibitory AP. All the incoming 

potentials are processed by the neuron. Finally, in the left-bottom graph of the figure, it is shown that the neuron fires when, in 

a short amount of time, two excitatory post synaptic potentials occur. In case there is no second excitatory AP, there is an EPSP 

(dotted line). If at the end of the fiber an inhibitory synapse occurs, then there will be a hyperpolarization (marked as IPSP). 

This figure is adapted from Niedermeyer and da Silva (2005), with permission. 

 

The definite spikes timing influences plasticity amplitude and polarity (Shouval et al. 2010). Spike-

timing-dependent plasticity (STDP) governs the strength of connections between neurons (Bi and Poo 

1998; Markram et al. 1997; Shouval et al. 2010), which is crucial for synaptic plasticity in adults 

(Andrade-Talavera et al. 2016). STPDs can change the strength of neural connections by timing the 

output and input APs of neurons. Timing-dependent long-term potentiation (t-LTP) is a synaptic 

reinforcement caused by repeated stimulation of a presynaptic cell until spikes in a postsynaptic cell 

over tens of milliseconds. On the other hand, timing-dependent long-term depression is the opposite 

mechanism (t-LTD). The STDP mechanism, with special attention to t-LTP and t-LTD, elucidates the 

activity-dependent evolution of the nervous system in part. 

 

1.1.2 Brain stimulation methods 

In parallel with synaptic plasticity, neuromodulation can be also considered to facilitate adaptation 

to environmental demands. Neuromodulation is the active stimulation of the brain, spinal cord or 

peripheral nerves electrically (neurostimulation) or by administering drugs. Through the release of 

neurotransmitters, neuromodulation achieves transitional changes in the functional properties of 

neurons and synapses, as well as adapting neural circuits for immediate behavioral requirements.  
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Several neurostimulation methods are currently available. Invasive neurostimulation techniques 

need surgical interventions to implant electrodes and an implantable pulse generator (IPG). One 

suggestive and impressive example of modern invasive neurostimulation modality is the deep brain 

stimulation (DBS). DBS is usually placed subdermally below the clavicle. A battery and electronic 

components compose this unit, which provides electrical stimulation. Moreover, both patients or 

clinicians may externally monitor the DBS. To achieve optimum effectiveness, stimulation parameters 

such as frequency, pulse duration, and voltage must be modified (Pycroft et al. 2018). Several application 

exemplars of the use of DBS can be mentioned. For example, movement problems such as Parkinson's 

disease, critical tremor, and dystonia may all be treated with DBS (Perlmutter and Mink 2006) or 

refractory pain (Keifer Jr et al. 2014). In addition, DBS techniques is influenced by several factors, such 

as the location of the stimulating electrode and the stimulation frequency. The first has an impact on the 

pain-relieving process, while the latter indicates that DBS controls certain disease-related rhythmic or 

oscillatory processes within definite neural circuits (Nandi et al. 2003). 

Non-invasive neuromodulation techniques, such as transcranial Electrical Stimulation (tES), have 

been increasingly used in recent years (Woods et al. 2016). Using rubber electrodes in saline-soaked 

sponges, small quantities of current are propagated through the scalp during tES (Morales-Quezada et 

al. 2014). Transcranial Direct Current Stimulation (tDCS), which uses a constant current, transcranial 

Alternating Current Stimulation (tACS), which uses sinusoidal oscillating currents, and transcranial 

Random Noise Stimulation (tRNS), which uses randomly generated currents, are all examples of 

stimulation (figure 1.3). Furthermore, tES techniques are characterized by electrode size, shape, 

amount, montage, duration, number, and interval of stimulation sessions, stimulating current modality, 

amplitude, polarity (for tDCS), and phase (for tACS) (Yavari et al. 2017). 

 

 

Figure 1.3. Different examples of applied currents in tES. tDCS applies a direct current, tACS an alternating current and 

tRNS a random current. In relation to neuronal activity, the current form, length, frequency, and phase may be adjusted. This 

figure is adapted from Yavari et al. (2017), with permission. 

 

With tACS, sinusoidal currents are typically injected using two electrodes over the scalp, to directly 

interfere with brain native oscillatory patterns (figure 1.4) (Antal et al. 2008). During one half cycle of a 

tACS oscillation, one electrode will serve as anode and the other one as cathode and current strength 

will increase and decrease following a half sine wave (Antal and Herrmann 2016; James Dowsett and 

Herrmann 2016). 
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Figure 1.4. Illustration of a typical tACS electrode montage together with EEG electrodes. The current, which is applied 

sinusoidally, changes direction by 180° every half-wave. The anode is represented by the red stimulation electrode during the 

positive half-wave. The current direction is 180° inverted during the negative half-wave. The current direction remains 

constant throughout each half-wave, but the intensity varies. The tACS sponge electrodes were located bilaterally over the 

parietal–occipital cortex at electrode locations P7-PO7 (red left hemisphere) and P8-PO8 (blue right hemisphere). This figure 

is adapted from Strüber et al. (2014), with permission. 

 

Stimulating electrodes with size of 5 cm x 7 cm are commonly used. However, smaller electrodes and 

more than two stimulation electrodes have proven to substantially increase spatial specificity in tACS 

(Fröhlich et al. 2015). Precise electrode positioning is extremely difficult and demanding. This 

uncertainty may result in an unbalanced electrical current distribution across the scalp (Heise et al. 

2016). A circular ring electrode covering the central electrode overlaying the target area (figure 1.5) has 

been introduced to address this problem and provide more focal stimulation (Heise et al. 2016). 

Furthermore, using frequency-based interference techniques (Grossman et al. 2017) and multi-channel 

montages (Alekseichuk et al. 2019) of various electrode sizes (Nitsche et al. 2007), shapes (Datta et al. 

2008), and number of electrodes (Faria et al. 2009), the spatial specificity problem may be effectively 

addressed. 

 

 

Figure 1.5. Montage with a circular return electrode surrounding the target electrode. This figure is adapted from Heise 

et al. (2016), with permission. 

 

The magnitude of tACS-induced physiological effects varies with the intensity of the induced area, 

and the effectiveness of the stimulation, and its implications on neuronal function are dependent on a 

number of experimental variables. The most suitable modality to study the tACS effects and efficacy is 

to study it during the stimulation. However, the presence of the massive electrical artifact limits the 
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possibility of analyzing the tACS efficacy in an online manner (Vosskuhl et al. 2018). Therefore, in many 

experimental researches, only the difference between pre- and post-stimulation neural measurements 

is taken into account (Pikovsky et al. 2003; Thut et al. 2011). 

tACS has been shown in both experimental (Herrmann et al. 2013; Marshall et al. 2011) and 

computational (Ali et al. 2013; Merlet et al. 2013) studies to entrain brain oscillations. Moreover, alpha 

and gamma tACS can be used for investigating endogenous and exogenous attention (Hopfinger et al. 

2017). In addition, tACS has been successfully applied to modulate audition (Riecke 2016; Riecke et al. 

2015), motion perception (Helfrich, Knepper, et al. 2014), mental rotation (Kasten and Herrmann 2017), 

visuo-motor coordination (Santarnecchi et al. 2017) and movement (Feurra et al. 2011). Finally, 

functional magnetic resonance imaging (fMRI) showed that tACS can induce short-term neuroplastic 

effects over relatively specific cortical regions (Bächinger et al. 2017; Cabral-Calderin et al. 2016) 

 

1.2 Techniques for non-invasive recording of neural activity 

1.2.1 Electroencephalography 

Electroencephalography (EEG), which is one of the oldest techniques to non-invasively measure 

underlying human brain activity, measures the large-scale synchronization of neural network (Cacioppo 

et al. 2016; Michel and Brunet 2019). The first human EEG measurement was recorded in 1924 by the 

psychologist psychiatrist Hans Berger (1873–1941) using two platinum needle electrodes at the frontal 

and occipital poles of the head. Nowadays, EEG is widely used for clinical diagnosis, neuroscience, 

psychology and medical research. Due to the technological development, much progress has been made 

in the last years, both on the acquisition and the processing of the recorded signal. 

In other words, EEG measures the difference in voltage between two electrodes placed at distinct 

scalp locations (Olejniczak 2006). When a large number of brain cells (neurons) are activated, the 

postsynaptic potentials (0.1-10 mV and last 10-20ms) are produced and summed across the 

neighboring neurons. This synaptic current generates an electrical field over the scalp, which can be 

measured using EEG electrodes attached on the scalp. 

Neural oscillations are described by their frequency, amplitude and phase. The amplitude is 

modulated by the intensity of neuronal firing and neural synchrony (Musall et al. 2012). The EEG 

frequency depends on the level of activation of the cerebral cortex. The different levels of cortical 

activation are linked to several psychological and behavioral states (figure 1.6) (Bennett et al. 2009). 

Notably, the frequency of EEG recordings ranges from ~0.05 to 600 Hz and the intensity goes from -50 

to 50 V. Delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and gamma (30-100Hz) are the 

four basic EEG frequency patterns. Behavioral (e.g., sleep, and wakefulness) and pathological (e.g., coma, 

stroke) states are connected by oscillations or EEG rhythms. Low frequency and large amplitude 

rhythms are associated with states of rest or sleep; high frequency and low amplitude rhythms are 

associated with states of alertness and cognitive engagement (Brown et al. 2012). 
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Figure 1.6. Brain waves with dominant frequencies. As mentioned, specific brain waves correspond to different mental 

states. High frequency and low amplitude rhythms are associated with states of alertness and cognitive engagement, whereas 

brain rhythms with low frequency and large amplitude are associated with rest or sleep. 

 

Notably, the EEG is measured between an active and a reference electrode (Kondraske 1986). Thus, 

EEG signal collected from a given electrode will be in fact the difference between the potential at 

electrode itself and the potential of the reference channel. Ideally, a channel with neutral signal should 

be chosen. Nonetheless, it does not exist. Notably, the most widely used physical reference is the channel 

at vertex (Mulert et al. 2008). Moreover, in some cases, also the mastoid or the earlobe references are 

used (Flanigan et al. 1995). The choice of the reference channel is very important, as it affects all the 

EEG data set (Liu et al. 2015). Therefore, the effect of residual neuronal activity in the physical reference 

should be attenuated by re-referencing the data. This can be done by estimating the signal at a virtual 

neutral location, and subtracting it from each EEG signal (Kayser and Tenke 2010). 

Essentially, it is possible to acquire simultaneously multiple EEG signals if a multi-channel system, 

with electrodes placed inside an EEG cap, is used. To ensure consistent reproducibility within and 

between subjects, the position of electrodes in EEG caps have been standardized (Klem et al. 1999). 

Precision landmarks such as the nasion, preauricular points, and inion are used to segment the head 
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into proportional distances. These landmarks cover all regions of the brain effectively. Therefore, the 

low-density ‘10-20’ (figure 1.7A) and ‘10-10’ montages have been widely used.  

In recent years, technical progress has leaded to the development of high-density EEG (hdEEG) 

systems, with more than hundred electrodes (figure 1.7B). They allowed the reconstructed neural 

activity to have a higher spatial resolution (B. He et al. 2011; Michel and Murray 2012). 

 

 

Figure 1.7. Conventional electrode positions for: A) a 32-channel EEG system; B) a 128-channel system. 

 

By exploiting source localization algorithms and head anatomy information, hdEEG systems can be used 

as a neuroimaging technique (Michel and Brunet 2019). The high spatial sampling for the scalp potential 

distribution offers new opportunities for achieving substantially higher spatial accuracy in the 

estimation of neural sources (B. He et al. 2011; Michel and Murray 2012). Notably, the current flow from 

sources to sensors is attenuated by the skull and other head tissues. To uncover the correct potential 

underlying each scalp electrode generated by a source in the brain, the attenuation needs to be 

accurately mapped. 

However, hdEEG systems present also some disadvantages, especially for use in clinical practice. 

First of all, the time that needs to be dedicated to the preparation of the participant before starting an 

experimental session is a limiting factor. Specifically, an electro-conductive gel is typically applied under 

the electrodes to reduce contact impedance. This can be very time consuming for high-density EEG 

montages. Moreover, there is the risk of bridging between EEG sensors over the scalp. If the electrodes 

are enclosed in saline soaked sponges, there is no need of applying an electro-conductive gel, but the 

evaporation of the solution over time may lead to conductivity issues.  

 

1.3 Estimating neural activity from noninvasive electrophysiological recordings 

1.3.1 EEG pre-processing 

Any EEG dataset is affected by the problem of the reference electrode and may be contaminated by 

biological artifacts, hardware noise, power line interference (i.e. 50/60 Hz) and channels with higher 



  9 

impedance and lower signal-to-noise ratio (SNR), referred to as ‘bad channels’. In the following sections, 

we will introduce all the pre-processing steps: bad channel correction, filtering, artifact removal, re-

referencing.  

 

Bad channel correction 

In EEG acquisitions, there is the possibility that some sensors may register more environmental or 

biological noise than brain activity. For those channels, there is the need to attenuate the noise using 

specific signal processing techniques or even eliminate those electrodes from the analysis. The related 

channels need to be defined as ‘bad’. It is critical to detect low-signal-quality sensors early in the pre-

processing phase because the efficiency of subsequent artifact removal is dependent on it. They can be 

manually detected, although this procedure may be subject to errors made by the operator. 

Alternatively, there are different criteria to automatically detect bad channels. The most widely used 

technique is to define the bad channels with zero variance, or very high variance as compared to others. 

Another approach is based on cross-channel correlation or covariance and the assumption that signals 

recorded from the bad channels have rare similarity with all the other scalp channels. 

After the bad channels are detected, there are two strategies to attenuate their effects: 1) excluding 

the bad channels; 2) repairing the bad channels using neighboring channels. In the latter case, linear or 

non-linear interpolation based on the surrounding good channels is typically used in EEG analysis 

(Oostenveld et al. 2011). 

 

Filtering 

Digital filtering is a common pre-processing step when analyzing EEG data for removing noise mixed 

in the recordings (Correa 2011). Usually, in EEG signal processing, a high-pass filter, with 0.1 Hz or even 

often 1 Hz cutoff frequency, is applied to remove the slow voltage drift due to sweating or heating up 

device. Moreover, a low-pass filter is usually applied to filter out frequencies above the highest 

frequency of interest (Bronzino 1999). Notably, they prevent the signal distortion due to the aliasing. 

Lastly, power line noise (usually at 50Hz or 60Hz, depending on the country) can be largely suppressed 

by digital notch filtering. 

There are two categories of digital filters: Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR). The length of an impulse response is used to classify each type of filter. The output of a 

FIR filter has an impulse response for a finite time before going to zero and producing equivalent delays 

at all frequencies. IIR filters, on the other hand, have an infinite impulse response and use a portion of 

the filter's output as feedback. This results in unequal delays at various frequencies. This suggests that 

the output signal is delayed in comparison to the input signal, with certain frequency components being 

delayed rather than others. Butterworth, Chebyshev (I or II type), and Elliptic filters are the most 

popular IIR filters (Bhogeshwar et al. 2014). Another aspect to take into consideration is the direction 

of the input signal. Causal filters rely only on past and present information, whereas noncausal filters 
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depend on the past and future input. The main difference between causal and non-causal filters depends 

on whether the response is after (causal filters) or before the onset (non-causal filters) (Rousselet 

2012). 

There are few parameters to choose while using a digital filter, such as cutoff frequency, filter order, 

roll-off, phase delay (zero-phase, linear-phase, non-linear phase). Roll-off is the rate at which 

attenuation increases beyond the cut-off frequency. It is important to consider that phase distortions 

and delays may be added to the signal, depending on the response of the filter. 

Finally, it is crucial the parameters choice to have an optimal filtering of EEG data. 

 

Artifact removal 

When working with EEG data, one of the most important aspect is that we need to maintain 

uncorrupted clean signals with a high SNR. Generally, artifacts are undesired components of the EEG 

signal not directly generated by brain activity (figure 1.8) (Urigüen and Garcia-Zapirain 2015). The 

artifacts need to be filtered from the EEG to keep the neural information and we need to ensure that true 

neural activity is not distorted (Guarnieri et al. 2018). 

Importantly, EEG artifacts that are physiological (ocular, muscle, or cardiac activity, perspiration, and 

respiration) can be distinguished from those that are non-physiological (electrode pop, cable 

movement, incorrect reference placement, electromagnetic interferences, and body movements) 

(Sörnmo and Laguna 2005; Urigüen and Garcia-Zapirain 2015). 

 

 

Figure 1.8. Example of four types of non-neuronal and neuronal signals recorded during an EEG acquisition: pure EEG, 

eye movement, eyeblink, muscular and cardiac artifacts. Their frequencies overlap with the frequency of EEG signals. This 

figure is adapted from Kanoga (2017), with permission. 

 

It is worth noting that artifacts have a frequency spectrum overlapping with that of EEG signals. 

Indeed, they cannot be removed with digital filtering. Furthermore, in relation to the neural activity of 

interest, artifacts have conflicting frequencies. As a result, temporal filtering is unlikely to be a viable 

EEG artifact removal method (Muthukumaraswamy 2013). 
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Regression techniques (REG) (P. He et al. 2004; Schlogl et al. 2007) and blind source separation (BSS) 

techniques are the two key solutions currently in use for artifact removal (Choi et al. 2005). 

The weighted subtraction of electrical signals reflecting artefactual origins, such as 

electrooculography (EOG) and electromyography (EMG) signals, is the basis for REG. The regression 

approach for removing artefactual behaviors is based on the premise that there is no association 

between true neuronal activity and EOG/EMG signals (Jervis et al. 1988; Sadasivan and Dutt 1996). 

Furthermore, regression estimation of proper weights is accurate when EOG/EMG signals have very 

close waveforms to the individual artifacts in the EEG data. This expectation is not always met, since the 

artefactual source's relative location to the EEG and EOG/EMG signals does not always fit (Guarnieri et 

al. 2018). 

BSS is used in a further category of artifact removal techniques. Signals originating from various 

elements, which are mixed in recordings, can be separated using BSS methods (A Delorme et al. 2012; 

Zeng et al. 2013). The most well-known approach in this category is independent component analysis 

(ICA) (Turnip 2014). ICA has been proven to be an effective technique for removing EEG artifacts in the 

last decade, capable of separating non-neural and neural signals mixed in EEG data (Jung, Makeig, 

Humphries, et al. 2000; Makeig et al. 1996). The classification of neural independent components (ICs) 

and artefactual ICs is a crucial step in ICA-based artifact removal. The EEG dataset is first decomposed 

into many ICs. The remaining (neural) ICs are then projected back to the sensors after artefactual ICs 

are detected. Therefore, EEG signals that are free of artifacts are reconstructed in this way. The 

classification of ICs can be done in two ways: manually or automatically. The former needs a visual 

inspection of each signal's time course, as well as a scalp map and power spectrum. Several automated 

approaches for IC classification, on the other hand, have been suggested (Li et al. 2006; Vorobyov and 

Cichocki 2002). BSS solutions have the possible drawback of assuming source stationarity, which means 

that the weights associated with the components are set over the entire EEG recording (Marino, Liu, Del 

Castello, et al. 2018; Winkler et al. 2011). 

 

Re-referencing 

It is important to consider that the EEG signals are recorded measuring the electrical activity at one 

electrode relative to another (reference) location. The reference has two effects on the amplitude of each 

EEG channel and time point: it determines the degree of zero voltage, and it is used to measure the 

amplitude of all other channels. Several physiological complex processes are involved in all physical 

electrode locations. Because a non-constant temporal dimension is introduced, they would undoubtedly 

change the temporal dynamic and spectral EEG analysis (Liu et al. 2015). The voltage at the EEG scalp 

channels can be expressed in terms of another, new reference using a signal processing technique called 

re-referencing. During re-referencing, the signal of the new reference is subtracted from each EEG 

channel. There are different re-referencing methods, such as average re-referencing (Offner 1950) 

which assumes that the average signal measured across channels is always null, infinity re-referencing 
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technique (also called reference standardization technique) which is very sensitive to the head model 

used (Yao 2001) and the method of linked-mastoid re-referencing, which is based on a linear 

combination of potentials calculated at mastoid sites (Nunez et al. 1997). 

 

1.3.2 EEG source reconstruction 

Notably, since EEG is characterized by a poor spatial resolution, it is challenging to recover the 

electrical activity at the level of the sources by using the neuronal activity measured on the scalp. In 

recent years, hdEEG systems have become available, permitting to increase the spatial resolution of the 

reconstructed neural activity (B. He et al. 2011). These developments, combined with advanced source 

localization techniques and precise information of the head anatomy, have opened up the doors to the 

use of hdEEG as an offline brain imaging tool (Michel and Murray 2012). Furthermore, due to the high 

computational cost, EEG source analysis combining pre-processing and source localization is usually 

solved offline (Pion-Tonachini et al. 2015). Notably, additional steps are needed, such as the solution of 

the forward and the inverse problems. The first one is referred to the assessment of EEG recordings 

from brain sources whereas the latter is referred to estimation of brain sources from EEG recordings 

(Ganzetti and Mantini 2013; Pfurtscheller and Lopes Da Silva 1999). 

 

Forward problem 

EEG forward modeling predicts the electromagnetic fields and potentials produced by any arbitrary 

source model for any possible position, orientation, and amplitude parameter value (Baillet 2013). The 

estimation of the forward solution requires a realistic head-volume conductor model to be generated 

from an individual’s MRI (which needs to be segmented), and the correct electrode locations to be 

defined with respect to the conductor model. Currently, realistic and individualized head models are 

generated based on the structural MRI of the subject’s head. The workflow for the creation of a realistic 

head model is illustrated in figure 1.9. 

 

 

Figure 1.9. Pipeline for the solution of the forward problem. Specifically, the structural image of the head needs to be 

segmented into different brain tissues, each one characterized by a specific conductivity value. Then, the recorded electrode 

positions have to be spatially co-registered to the head image. Finally, the forward solution is calculated, leading to the creation 

of the leadfield matrix. This figure is adapted from Q. Liu et al. (2017), with permission. 
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In EEG analysis, solving the forward problem means being able to predict the electrical potentials 

measurable on the scalp for each given source distribution in the brain. At a given time, one dipole 

source at location can be considered a vector representing the current flowing in the three Cartesian 

directions. Sources are modeled as single current dipoles. The leadfield matrix, which relates a specific 

source to the scalp map, is the forward problem solution. In addition, the leadfield matrix defines the 

current flow through each dipole location for a given electrode (Pascual-Marqui 1999). Calculating the 

leadfield matrix necessitates the construction of a head model. The surface potentials given by current 

sources in a piecewise homogeneous volume conductor are measured using boundary element methods 

(BEMs) (figure 1.10) (Hallez et al. 2007). 

 

 

Figure 1.10. Example of triangulated mesh of the human head used in BEM. The various interfaces of the human head are 

depicted in this diagram: air-scalp, scalp-skull, and skull-brain are all terms used to describe the relationship between the air 

and the scalp. This figure is adapted from Zaytsev et al. (2015), with permission. 

 

Due to their low computational requirements, BEMs are commonly used to solve volume problems by 

extracting potential values at the volume's interfaces and boundaries caused by a given dipole. The 

interfaces separate the conducting volume from non-conducting air, while the boundary is the outer 

surface that separates the conducting volume from non-conducting air. A tissue-based BEM head model 

is composed of various surfaces (for example three surfaces, such as brain-skull, skull-scalp and exterior 

surfaces). Importantly, each tissue must be encapsulated by each surface. The conductivity of the 

regions between the interfaces is considered to be homogeneous and isotropic. For the purpose of 

calculating a solution, each interface is tessellated with small boundary elements. When the distance 

between the source and one of the surfaces is equal to the size of the triangles in the mesh, BEM has the 

drawback of decreasing precision (Hallez et al. 2007). Other methods for estimating the leadfield matrix, 

which includes neuronal current propagation in the head, include finite element methods (FEMs) and 

finite difference methods (FDMs). By indicating the scalp distribution of voltage produced by each dipole 

in gray matter, these methods are used to solve the forward problem and numerically generate the 

leadfield matrix. 
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Inverse problem 

The estimation of brain sources from EEG recordings is typically referred to as the inverse problem 

(Pfurtscheller and Lopes Da Silva 1999). The solution of the EEG inverse problem is not unique because 

of all the admissible output voltages. 

Several solutions for solving the EEG inverse problem have been proposed. For instance, the linearly 

constrained minimum variance beamformer (LCMV) estimates the behavior of a source at a specific 

position while removing all other sources and noise captured in the data covariance matrix (Van Veen 

et al. 1997). Multiple-signal Classification (MUSIC) is a signal processing-based algorithm for finding 

multiple asynchronous dipolar sources in EEG and magnetoencephalography (MEG) data (Mosher et al. 

1992). Minimum norm estimates (MNE), its weighted variant wMNE, low resolution electromagnetic 

tomography (LORETA), uniform LORETA (sLORETA), and exact LORETA (eLORETA) are other 

commonly used approaches. LORETA incorporates lead-field normalization with the Laplacian operator 

based on the solution's maximal smoothness and is based on neuroanatomical and electrophysiological 

constraints (Pascual-Marqui et al. 2002). sLORETA (Pascual-Marqui 2002) and eLORETA (Pascual-

Marqui et al. 2011) are modified versions of LORETA, showing superior performance under specific 

conditions. Under ideal (no-noise) conditions, eLORETA performs source localization with zero error 

(Pascual-Marqui et al. 2011). 

 

1.3.3 Analysis of task-related neural responses 

Depending on the experimental paradigm, EEG may be used to evaluate event-related potentials 

(ERP) and event-related desynchronization/synchronization (ERD/ERS) as well as measure neuronal 

activity (Pfurtscheller and Lopes Da Silva 1999). In the first case, the ERP is phase-locked to the event, 

whereas ERD/ERS is not. 

ERPs are voltage fluctuations reported on the scalp that represent a time-locked brain response to 

repeated stimulus presentation. ERP refers to a brain mechanism that involves thousands of 

simultaneous visual processing, attentional selection, awareness, and sensory-motor coupling (Al-Ezzi 

et al. 2020). For detecting ERPs, averaging techniques, with the goal of enhancing the SNR, are commonly 

used. Continuous EEG activity is referred to as additive noise because it has a fixed time delay in relation 

to the stimulus. This basic and commonly used model, on the other hand, is just a rough approximation 

of the actual situation. Therefore, evoked potentials (EPs) are assumed to be the product of reorganizing 

the phases of ongoing EEG signals. The ERP is notable for being a wave with both positive and negative 

peaks. Their polarity determines how they are labeled (P for positive and N for negative). In addition, 

the wave's latency in milliseconds is noted, as well as its polarity (with P100, is the positive peak around 

100 ms after the onset of the stimulus is intended). Particularly, negative waves are associated with 

activation, while positive waves are associated with inhibition (figure 1.11). The P100, N100, and P200 

components, for example, are all connected to simple, low-level perception and are completely 
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automatic. As a result, they appear following each perceptual stimulus. Finally, later components (after 

250 ms) reflect conscious cognitive processing and can be elicited under some conditions (Beres 2017). 

 

 

Figure 1.11. Example of the most common ERP components. The ERP is distinguished by the presence of both positive (P) 

and negative (N) peaks. The wave's latency in milliseconds is also noted. P100, for example, is the positive peak that appears 

about 100 milliseconds after the stimulus begins. Positive waves are linked to activation, while negative waves are linked to 

inhibition. This figure is adapted from Beres (2017), with permission. 

 

ERD/ERS, on the other hand, which must be detected by investigating the frequency bands, consist 

decreases or increases in power, respectively. Therefore, they address frequency direct changes in the 

ongoing EEG activity. The underlying neuronal populations' synchrony decreases or increases as a result 

of these processes. Since ERD/ERS has a high temporal resolution, it can be used to research complex, 

time-related cognitive processes (Krause et al. 2008). The frequency of brain oscillations is generally 

inversely proportional to their amplitude, as mentioned in the previous chapter. Moreover, ERD/ERS 

are defined as the percentage of power decrease or increase, respectively. Notably, due to the slowness 

of event-related adjustments in ongoing EEG, the time between two consecutive events should last at 

least a few seconds (Pfurtscheller and Lopes Da Silva 1999). While ERD/ERS are activated by changes 

in one or more parameters that regulate oscillations in neuronal networks, ERPs are a series of transient 

post-synaptic responses of pyramidal neurons in response to a specific stimulus. Furthermore, 

ERD/ERS reflect changes in the behavior of local interactions between main neurons and interneurons, 

whereas ERPs influence the behavior of cortical neurons' responses (Pfurtscheller and Lopes Da Silva 

1999). The most significant distinction between the two phenomena is that ERD/ERS occurs in different 

frequency bands, with ERD and ERS occurring at the same or different locations on the scalp. 
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1.4 Decoding and modulating neural activity in real-time 

EEG has often been used as a diagnostic and investigational technique. EEG analysis has progressed 

from a simplistic visual inspection of amplitude and frequency patterns over time to a detailed review 

of the observed signals' temporal and spatial characteristics, thanks to technological advancements 

(Michel and Brunet 2019). EEG is now widely used for studying brain function and behavior in the sub-

second range, as well as measuring neuronal processes (Michel et al. 2004; Michel and Brunet 2019). 

Real-time EEG applications are also becoming more popular, thanks to faster processors and algorithmic 

advances. For instance, the use of EEG permits the development of neurofeedback and closed-loop 

neuromodulation applications (Müller-Putz et al. 2005). 

To date, several software solutions have been made available to the neuroscientific community for 

offline analysis of EEG recordings, including EEGLab (Arnaud Delorme and Makeig 2004), Fieldtrip 

(Oostenveld et al. 2011), Brainstorm (Tadel et al. 2011), SPM (Litvak et al. 2011) and MNE (Gramfort et 

al. 2014). Moreover, our research group proposed an offline analysis workflow specifically suited for 

hdEEG data, which integrates several tools from existing software with original solutions for data 

preprocessing, realistic head model generation and source localization. So far, our analysis workflow for 

hdEEG has been used to reconstruct large-scale brain networks (Liu et al. 2017, 2018) and to examine 

functional connectivity between network nodes (Samogin et al. 2019). Such an application does not 

require online data processing, which is instead needed for neurofeedback and closed-loop 

neuromodulation studies. 

On the other hand, MNE Scan (https://www.mne-cpp.org/index.php/category/development/mne-

scan) and NeuroPype (https://www.neuropype.io) have been recently introduced as new software 

packages for online analysis of EEG data. They offer several tools for real-time EEG data processing and 

feature extraction, and also incorporate source localization tools. They are not optimized for hdEEG 

systems as they rely on a template head model that does not consider electrode positions collected 

during the same experimental session (Van Hoey et al. 2000). 

 

1.4.1 Neurofeedback 

Neurofeedback is a self-regulation technique which is used to train brain activity (Thibault et al. 

2016). This strategy is viably used for rehabilitation and enhancement. Thoughts, sensations, actions, 

and emotions are produced by contact between groups of cells in the brain, and these are decoded as 

thoughts, sensations, actions, and emotions. Brain activity is measured in real time during a 

neurofeedback session (figure 1.12), and the subject receives auditory or visual feedback when the brain 

increases or decreases its activity to achieve a pre-set goal level (Hsueh et al. 2016; Thibault et al. 2016).  

 

https://www.mne-cpp.org/index.php/category/development/mne-scan
https://www.mne-cpp.org/index.php/category/development/mne-scan
https://www.neuropype.io/
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Figure 1.12. Neurofeedback experimental loop. A) The acquisition device receives scalp signals. B) which are recorded and 

stored on a local computer; C) another computer reads the data and performs online analysis.; D) processed data is presented 

to the participant in form of a visual object or a sound, moving or changing frequency, respectively, according to the recorded 

activity; E) via subjective experience, the participant influences his brain activity and thus controls the graphical object. 

 

Neurofeedback allows a person to learn how to control their brain activity (Huster et al. 2014). For 

example, neurofeedback provides real-time input to a user about their own brain activity (e.g., in the 

visual domain, as a varying bar graph) (Pereira et al. 2019). During this process, the individual becomes 

aware of the improvements that have occurred during training and is able to evaluate their progress in 

order to reach optimum results (Marzbani et al. 2016). Moreover, the neurofeedback training is 

positively correlated with the numbers of the sessions and the precision of feedback (Thibault et al. 

2016). 

Different acquisition methods may be used to deliver neurofeedback and it can be divided into 

various groups based on the study's aim or acquisition technique (Huster et al. 2014). One of the most 

popular neurofeedback strategies for treating attention deficit hyperactivity disorder (ADHD), anxiety, 

and insomnia is frequency/power neurofeedback, which uses EEG as a recording method (Blaskovits et 

al. 2017; Enriquez-Geppert et al. 2019; Schabus et al. 2017). Then, epilepsy and migraine are treated 

with slow cortical potential neurofeedback (SCP-NF), which is again based on EEG (Gevensleben et al. 

2014). Furthermore, a low-energy neurofeedback device (LENS) alters patients' brain waves by 

delivering a weak electromagnetic stimulus when they are motionless with their eyes closed (Ochs 

2013), while Z-score neurofeedback could treat insomnia (Hammer et al. 2011). 

Source-based neurofeedback is a relatively new approach (Boe et al. 2014; van Lutterveld et al. 

2017). It may have a number of significant advantages over conventional sensor-based neurofeedback, 

including the ability to target the desired physiological signal in a more functionally and spatially 

specific manner. Neurofeedback derived from real-time source level analysis of MEG data has previously 

been shown to effectively modulate behavior in particular brain regions (Boe et al. 2014; Florin et al. 

2014) and to provide a scalable approach to assist individuals in identifying and encouraging specific 
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cognitive states associated with meditation practice (van Lutterveld et al. 2017). Furthermore, the 

connectivity between cortical regions has been enhanced using fMRI (Pereira et al. 2019), suggesting 

that it may be used as a therapeutic tool in diseases like stroke that include impaired interhemispheric 

connectivity (Boe et al. 2014; Liew et al. 2016; Pereira et al. 2019). Notably, source-based EEG 

neurofeedback is an effective tool for modifying connectivity between various brain regions. Since fMRI 

has temporal resolution of the order of seconds and its signal is delayed by about 5 seconds with respect 

to neural events, fMRI neurofeedback cannot be used to measure connectivity on short time scales. To 

date, no research group has been able to implement connectivity-based EEG neurofeedback, as 

estimating connectivity changes over time requires real-time reconstruction of neural activity, which is 

methodologically very challenging. 

In this regard, there are several technological limitations that have prevented the development of 

source-based neurofeedback applications. An important impediment for a reliable use of this technique 

is the presence of artifacts, which may be observed in the EEG data but are not related to neural activity 

(Guarnieri et al. 2018). It is essential that EEG data are cleaned before their use in the neurofeedback 

paradigm while preserving true neural activity, with high accuracy and algorithmic efficiency, necessary 

for real-time applications. As stated before, there are two main solutions that are currently in use: linear 

regression (REG) and blind source separation (BSS). In particular, the latter is in general 

computationally very expensive, and therefore less suited for real-time applications. Moreover, there 

are a limited number of studies have attempted to combine REG and BSS techniques, tackling their major 

drawbacks and combining their positive features (Gao, Yang, et al. 2010; Klados et al. 2011; Kong et al. 

2013; Mannan et al. 2016; Siew Cheok and Raveendran 2008; Zhang et al. 2015). In short, these studies 

proposed: (1) to decompose the EEG data by BSS; (2) select artefactual components; (3) apply 

regression analysis to remove true artifacts from them while preserving residual neural activity; and 

finally, (4) back-reconstruct the clean EEG data by recombining the non-artefactual components as well 

as the residuals of the artefactual components. The combination of regression and BSS techniques may 

hold strong potential; we identify however three potential issues with the approach described above. 

First, as in classical regression procedures, the method assumes the similarity between the time courses 

of non-cerebral electrical signals and those of the components produced by BSS. Second, the regression 

analysis is applied to selected components only, so it is still possible that residual artefactual 

contribution is present in the components that are recombined to generate the ‘clean’ EEG data. Third, 

the artifact removal is not implemented in the form of a spatial filter, which makes computations 

particularly intensive in the case of hdEEG data. 

 

1.4.2 Closed-loop neuromodulation 

Several neuromodulation systems provide stimulation in an open-loop modality. Specifically, The 

experimenter predetermines defined stimulus parameters such as phase, frequency, pulse form, and 

intensity based on prior empirical evidence (Sun and Morrell 2014). Remarkably, these parameters, 
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while remaining fixed during open-loop neuromodulation, do not automatically relate to changes in the 

patient’s symptoms (Iturrate et al. 2018; Sun and Morrell 2014).  

Closed-loop systems can increase the efficacy of stimulation by modulating or adapting therapy in 

response to physiological changes (Sun and Morrell 2014). The adaptive design of closed-loop 

neuromodulation naturally decreases intra- and inter-subject variability (Iturrate et al. 2018). In a 

closed-loop neuromodulation scenario, neural activity is continuously monitored, the huge stimulating 

artifact on the electrophysiological signal must be attenuated, a biomarker must be extracted in real-

time, and magnetic/electrical stimulation must be dynamically modified based on this biomarker (figure 

1.13) (Guggenmos et al. 2013; Iturrate et al. 2018; Rebesco et al. 2010). Preliminary results obtained 

with invasive stimulation protocols have demonstrated that using such closed-loop technology can be 

beneficial (Little et al. 2013, 2016). 

 

 

Figure 1.13. Closed-loop neuromodulation scenario. The stimulation parameters are adapted based on the biomarkers. In 

a closed-loop neuromodulation experiment, there are three main stages to take in consideration: biomarker extraction, 

stimulation controller, and the stimulation artifact removal. 

 

In general, there are different closed-loop neuromodulation control strategies that can be employed 

(figure 1.14). These variations depend on the biomarker type and the stimulation parameter to be 

regulated (Iturrate et al. 2018). 
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Figure 1.14. Various biomarkers and control approaches. (1) The amplitude of stimulation is determined by an amplitude 

threshold. (2 and 3) The phase of the oscillatory biomarker is detected (black triangles) and used to either trigger stimulation 

bursts (2) or lock the stimulation phase (3). (4) When evoked activity is decoded in time or frequency domains, the stimulus 

amplitude is altered accordingly. This figure is adapted from Iturrate et al. (2018), with permission. 

 

In the biomarker amplitude–stimulation amplitude strategy, the amplitude or strength of the biomarker 

controls the stimulation intensity (figure 1.14.1) (Little et al. 2013). In the biomarker phase–stimulation 

amplitude (figure 1.14.2), the stimulation intensity is triggered on the phases of the biomarker (Zrenner 

et al. 2018). The biomarker phase–stimulation phase (figure 1.14.3) then adjusts the stimulation phase 

to target the phase of a biomarker (Brittain et al. 2013). Finally, other biomarkers have been investigated 

and may be superior in some situations. For example, an event-related potential (figure 1.14.4) can be 

decoded for each single trial (Iturrate et al. 2015) or in the frequency domain (Ezzyat et al. 2018). 

Although the closed-loop neuromodulation is an encouraging technique, there are still a few 

challenges, such as the presence of the stimulation artifact on EEG data (Guarnieri, Brancucci, et al. 

2020). Finally, the artifacts can have a number of characteristics depending on the stimulated tissue, the 

stimulus type, and the recording modality (Iturrate et al. 2015). In particular, the combination of EEG 

and tACS is technically challenging, because of the massive artifact that is mixed in the EEG data, in the 

form of a quasi-sinusoidal signal with main harmonic at the stimulation frequency. For this reason, most 

EEG-tACS studies have been so far conducted using an interleaved stimulation protocol, and in 

particular analyzing the EEG data collected in the off-stimulation period (Mansouri et al. 2017; Pahor 

and Jaušovec 2018; Vossen et al. 2015). Currently, few solutions exist to attenuate the tACS artifact from 

EEG recordings. A first approach that has been proposed is the subtraction of a constant sine wave fitted 

to the EEG signal. Due to variations in the EEG signal primarily induced by slow changes in electrode 

conductance and by movements of the participant’s head, this solution often yields unsatisfactory 

results (Helfrich, Schneider, et al. 2014). Other tACS methods require the whole EEG recording to be 

available, and are therefore unsuitable for closed-loop neuromodulation studies (Helfrich, Schneider, et 

al. 2014; Kohli and Casson 2020). For instance, the one proposed by Helfrich and colleagues follows a 

two-step procedure: an artifact template is first subtracted from the data, and the remaining artifacts 

are then attenuated using principal component analysis (PCA) (Helfrich, Schneider, et al. 2014). Only 
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one method, the superimposition of moving averages (SupMA) (Kohli and Casson2015), has been used 

for real-time removal of tACS artifacts. However, in its current implementation, SupMA can 

simultaneously process only few EEG signals. Furthermore, it tends to strongly suppress the harmonics 

associated with the tACS artifact, possibly inducing large distortions in the frequency characteristics of 

neural signals (Kohli and Casson 2019). 

 

1.5 Thesis aims and outline 

The main goal of this thesis is to develop a real-time hdEEG workflow for source-based 

neurofeedback and neuromodulation. Such a workflow should incorporate reliable real-time EEG 

source activity reconstruction and EEG source localization using accurate bio-physical models. 

In Chapter 2, we tackle a specific issue in real-time EEG processing: biological artifact removal 

(Guarnieri et al. 2018). The successful attenuation of artifacts that are mixed in the recordings is critical 

to the success of neurofeedback applications based on EEG data. To address this problem, we introduce 

a novel online EEG artifact removal method for neurofeedback applications. Notably, we have used both 

simulated data and real experiment data to assess the performance of our method.  

In Chapter 3, we present an approach for stimulation artifact removal in real-time (Guarnieri, 

Brancucci, et al. 2020). The massive artifact that is mixed in the EEG data is one of the main reasons why 

there are so few studies examining effects on neural activity during tACS. To enable closed-loop 

neuromodulation applications, we have developed a novel online tACS artifact removal technique. 

In Chapter 4, we present an optimized pipeline for source-based EEG localization in real-time. High-

density montages are required to perform source localizations using EEG data. To take advantage of the 

hdEEG for novel brain computer interface (BCI) applications, dedicated tools are currently lacking. With 

the goal of enabling neural activity reconstruction, we have developed a real-time noninvasive 

electrophysiology toolbox (RT-NET) for the online processing of hdEEG data (Guarnieri, Zhao, et al. 

2020). 

Finally, in Chapter 5, we discuss the novel contributions and limitations in the PhD thesis work, and 

we suggest future research directions as well. 
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2 Online EEG artifact removal for BCI applications by adaptive spatial 

filtering 

 

Guarnieri R, Marino M, Barban F, Ganzetti M, Mantini D. Online EEG artifact removal for BCI applications 

by adaptive spatial filtering. J Neural Eng. 2018 Oct;15(5):056009. doi: 10.1088/1741-2552/aacfdf. 

Epub 2018 Jun 28. 

 

Abstract 

Objective. The performance of brain–computer interfaces (BCIs) based on electroencephalography 

(EEG) data strongly depends on the effective attenuation of artifacts that are mixed in the recordings. 

To address this problem, we have developed a novel online EEG artifact removal method for BCI 

applications, which combines blind source separation (BSS) and regression (REG) analysis. 

Approach. The BSS-REG method relies on the availability of a calibration dataset of limited duration for 

the initialization of a spatial filter using BSS. Online artifact removal is implemented by dynamically 

adjusting the spatial filter in the actual experiment, based on a linear regression technique. 

Main results. Our results showed that the BSS-REG method is capable of attenuating different kinds of 

artifacts, including ocular and muscular, while preserving true neural activity. Thanks to its low 

computational requirements, BSS-REG can be applied to low-density as well as high-density EEG data. 

Significance. We argue that BSS-REG may enable the development of novel BCI applications requiring 

high-density recordings, such as source-based neurofeedback and closed-loop neuromodulation. 

 

Keywords: electroencephalography, brain–computer interface, blind source separation, independent 

component analysis, linear regression, online processing 

 

2.1 Introduction 

A brain–computer interface (BCI) is a computer-based system that acquires brain signals, analyses 

them, and eventually translates them into commands for an electronic device to carry out a desired 

action (Shih et al. 2012). BCIs are often used to assist, restore or augment human sensory-motor or 

cognitive functions (Krucoff et al. 2016). BCI technology is the focus of big research endeavors involving 

neuroscientists, engineers and clinicians. The most widely used technique for acquiring brain signals to 

be used in BCIs is electroencephalography (EEG) (Müller-Putz et al. 2005). EEG measures changes in 

electrical potentials at different locations on the scalp, which are produced by the synchronized firing 

of thousands of neurons. It has the advantage of being relatively cheap and portable, and providing 

millisecond temporal resolution. All these features are particularly important for BCI applications. In 

recent years, high-density EEG (hdEEG) systems have become available, permitting to increase the 

spatial resolution of the reconstructed neural activity (B. He et al. 2011). These developments have 
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opened up the doors to the use of hdEEG as a brain imaging tool (Michel and Murray 2012). Such 

advances may be particularly relevant also in the context of BCI, as it may be possible to rely on real-

time information about brain activity in one brain region, or about connectivity between two brain 

regions, instead of using sensor-space EEG signals. 

An important impediment for a reliable use of EEG for BCI applications is the presence of artifacts, 

which may be observed in the EEG data but are not related to neural activity. Such artifacts may be 

produced by power lines, electrical equipment, or be of biological origin. Sources of biological artifacts 

include eye blinks, cardiac activity, muscle contractions, and head movements (Kong et al. 2013; Winkler 

et al. 2011). It is essential that EEG data are cleaned before their use in BCI system, to ensure that any 

control achieved is related to the participant’s brain activity. By the same token, it is also important that 

true neural activity is not distorted. Moreover, online EEG processing is strictly required in the case of 

BCI applications. As such, an artifact removal solution that combines high accuracy and algorithmic 

efficiency needs to be sought. 

Generally speaking, artifacts have overlapping frequencies with respect to the neural activity of 

interest. As such, temporal filtering is unlikely to be an effective solution for EEG artifact removal 

(Muthukumaraswamy 2013). On the other hand, spatial filtering is a computationally efficient approach, 

which permits to remove artifacts by exploiting information about their spatial distribution over the 

EEG sensors (Lagerlund et al. 1997). Spatial filters are widely used in the field of BCI (Wu et al. 2017), 

as they can be applied to each input data sample as it becomes available. To carry out spatial filtering of 

artefactual signals, EEG data are multiplied by a [𝑔 𝑥 𝑔] image operator, where 𝑔 is the number of 

recordings. Such image operator can be created following different methodological approaches. There 

are two main solutions that are currently in use: (i) regression techniques (REG) (P. He et al. 2004; 

Schlogl et al. 2007) and (ii) blind source separation (BSS) techniques (Choi et al. 2005). 

REG are based on the weighted subtraction of electrical signals representing artefactual sources, as 

for example electrooculography (EOG) and electromyography (EMG) signals. Removal of artefactual 

activities using regression method is indeed based on an assumption that there is no correlation 

between the true neuronal activity and EOG/EMG signals (Jervis et al. 1988; Sadasivan and Dutt 1996). 

As a matter of fact, any activity common to EEG and EOG/EMG signals is attenuated, if not suppressed, 

by regression. Furthermore, the estimate of proper weights by regression is accurate when EOG/EMG 

signals have very similar waveforms as compared to the actual artifacts in the EEG data. This assumption 

is not always met, as the relative position of the artefactual source with respect to EEG and EOG/EMG 

signals is not matching. 

Another group of artifact removal techniques relies on BSS. The most famous method belonging to 

this group is independent component analysis (ICA) (Nolan et al. 2010; Turnip 2014; Xiaopei and 

Zhongfu 2005), but there are also other BSS approaches such as principal component analysis (PCA) 

(Turnip and Junaidi 2014) and canonical correlation analysis (CCA) (Gao, Zheng, et al. 2010). BSS 

methods are capable of separating signals originating from different sources (i.e. components), which 
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are mixed in the recordings (A Delorme et al. 2012; Zeng et al. 2013). By means of BSS, it is possible to 

isolate artefactual components and remove them from the EEG data with proper weights. The main 

disadvantage of this methodology is that the automated classification of artefactual components is not 

straightforward (Mahajan and Morshed 2015), and the latter may also contain residual neural activity 

(Winkler et al. 2014). Another potential limitation of BSS solutions is that they typically assume the 

stationarity of the sources, i.e. the weights associated with the components are fixed over the whole EEG 

recording (Marino, Liu, Del Castello, et al. 2018; Winkler et al. 2011). Some BSS approaches do not suffer 

from this limitation, as they can estimate components on short time windows (Daly et al. 2015). 

However, they are computationally very expensive, and therefore less suited for BCI applications. 

A limited number of studies have attempted to combine regression and BSS techniques, tackling their 

major drawbacks and combining their positive features (Gao, Yang, et al. 2010; Klados et al. 2011; Kong 

et al. 2013; Mannan et al. 2016; Siew Cheok and Raveendran 2008; Zhang et al. 2015). In short, these 

studies proposed: (1) to decompose the EEG data by BSS; (2) select artefactual components; (3) apply 

regression analysis to remove true artifacts from them while preserving residual neural activity; and 

finally, (4) back-reconstruct the clean EEG data by recombining the non-artefactual components as well 

as the residuals of the artefactual components. The combination of regression and BSS techniques may 

hold strong potential; we identify however three potential issues with the approach described above. 

First, as in classical regression procedures, the method assumes the similarity between the time courses 

of non-cerebral electrical signals and those of the components produced by BSS. Second, the regression 

analysis is applied to selected components only, so it is still possible that residual artefactual 

contribution is present in the components that are recombined to generate the ‘clean’ EEG data. Third, 

the artifact removal is not implemented in the form of a spatial filter, which makes computations 

particularly heavy for hdEEG data. In this study, we present a novel online EEG artifact removal method 

for BCI applications, which, by combining BSS and REG in an original way, addresses each of the three 

problems mentioned above. Our BSS-REG method is primarily intended as an adaptive spatial filter 

approach. This is meant to be particularly suitable for hdEEG due to its low computational requirements, 

but can be also applied to low-density EEG. In the first instance, BSS is run on a calibration dataset for 

the creation of a spatial filter capable of extracting artefactual signals from EEG data. This filter, while 

being applied to actual EEG data, is fine-tuned in a dynamic manner using regression analysis. This 

adaptive spatial filtering approach can be applied for the removal of a wide range of biological and non-

biological artifacts. 

In this study, its performance is assessed by focusing on ocular artifacts, which strongly contaminate 

almost any EEG recording (Schlogl et al. 2007; Zeng et al. 2013) and have been shown to substantially 

affect BCI performance (Fatourechi et al. 2007). In this case, simulated data are used to accurately 

quantify performance in controlled settings. A comparison with alternative methods for the online 

correction of ocular artifacts is conducted, both in terms of accuracy and computational efficiency. 

Finally, the validation is extended to real EEG data, which are corrupted by different kinds of artifacts, 
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such as ocular and muscular artifacts. A comparison is carried out between the results obtained using 

our online correction method and a previously validated offline artifact removal approach based on BSS. 

 

2.2 Methods 

2.2.1 Description of the method 

The BSS-REG method relies on the availability of a calibration dataset of limited duration for the 

initialization of a spatial filter, which is then dynamically adjusted in the actual experiment for online 

artifact removal. 

 

2.2.1.1 Spatial filter initialization on a calibration dataset 

First of all, BSS is applied to an EEG calibration dataset for the decomposition of cerebral and 

artefactual signals that are present in the recordings. The number of time samples 𝑛 in this EEG dataset 

does not need to be fixed a priori. However, this will inherently have an impact on the performance of 

data decomposition by BSS. The BSS model can be mathematically described as:  

 

𝑋(𝑡) = 𝐴 ∙ 𝑆(𝑡)                                   (2.1) 

 

where 𝑋(𝑡) = [𝑥1(𝑡), … , 𝑥𝑔(𝑡)] is the matrix of 𝑔 observed signals, 𝑆(𝑡) = [𝑠1(𝑡), … , 𝑠𝑚(𝑡)] the matrix of 

𝑚 underlying signals and 𝐴 [𝑔 𝑥 𝑚] denotes the mixing matrix (Stone 2004). It is a generative model, 

which means that it describes how the observed data are generated by a process of mixing the 

underlying signals 𝑠𝑖  (with 𝑖 = 1, … , 𝑚), also referred to as sources or components. A solution for the 

BSS problem is possible if the number of components is at most equal to the number of observed signals 

(𝑚 ≤ 𝑔). In this case, the components can be retrieved by determining a [𝑚 ∙  𝑔] matrix 𝑊, named 

unmixing matrix, such as: 

 

𝑆(𝑡) = 𝑊 ∙ 𝑋(𝑡)                                 (2.2) 

 

Notably, ICA can be used for BSS, when the components can be assumed to be statistically 

independent (Hyvärinen et al. 2004). On the other hand, PCA and CCA rely on the assumption that these 

are statistically uncorrelated (less stringent criterion) (Gao, Yang, et al. 2010; Turnip and Junaidi 2014). 

In the current implementation of BSS-REG, BSS is performed using FastICA 

(http://research.ics.aalto.fi/ica/fastica), an ICA algorithm which has shown to have fast convergence 

and yield accurate data decomposition (Hyvärinen et al. 2004; Nolan et al. 2010). However, other BSS 

algorithms, such as Infomax (Bell and Sejnowski 1995) and JADE (Rutledge and Jouan-Rimbaud 

Bouveresse 2013), PCA (Shlens 2014; Turnip and Junaidi 2014; Wold et al. 1987) and CCA (Hotelling 

1936), could also be alternatively used. Though, it is worth noting that the specific BSS approach to be 

http://research.ics.aalto.fi/ica/fastica
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used should be chosen depending on the specific characteristics of the artifacts to be removed (Halder 

et al. 2007). 

After BSS has been applied to the EEG calibration dataset, the underlying signals that are associated 

with the artifacts need to be identified. To this end, different selection criteria can be used, depending 

on the specific artifact. In BSS-REG, for the identification of artifactual independent components (ICs), 

we use the same parameters as in (Liu et al. 2017): (1) correlation between the power of the IC with the 

vertical EOG (vEOG), horizontal EOG (hEOG) and EMG; (2) the coefficient of determination obtained by 

fitting the IC power spectrum with a 1/f function; (3) the kurtosis of the IC. The components with at 

least one of the three parameters outside the normal range, as defined in(Liu et al. 2017), are classified 

as artefactual. The unmixing matrix 𝑊𝐴 for the artefactual components 𝑆𝐴(𝑡) is obtained by selecting the 

corresponding rows of the matrix 𝑊. This matrix 𝑊𝐴 is essentially a spatial filter, which permits to 

obtain an estimate of (uncorrelated or independent) artefactual components 𝑆𝐴(𝑡), according to: 

 

𝑆𝐴(𝑡) = 𝑊𝐴 ∙ 𝑋(𝑡)                     (2.3) 

 

2.2.1.2 Adaptive spatial filtering for online artifact removal 

During the real experiment requiring online artifact removal, EEG signals are read and stored in a 

buffer of 𝑘 samples. The spatial filter 𝑊𝐴 calculated on a calibration dataset is applied, for each given 

instant, to the EEG data 𝑋(𝜏) in the buffer, such that an estimate of the artefactual signals 𝑆𝐴(𝜏) can be 

obtained: 

 

𝑆𝐴(𝜏) = 𝑊𝐴 ∙ 𝑋(𝜏)                                  (2.4) 

 

At this stage, regression analysis is used to dynamically estimate the weights 𝐵𝐴 to be used for artifact 

removal. This permits to account for the non-stationarity of the artefactual contribution in the EEG 

signals. Different approaches can be used for estimating the weights 𝐵𝐴 to be associated with the 

artefactual components (Croft and Barry 2000; Gomez-Herrero et al. 2006; Jung, Makeig, Westerfield, et 

al. 2000), to satisfy the following equation: 

 

𝑋(𝜏) = 𝐵𝐴 ∙ 𝑆𝐴(𝜏) + 𝜀(𝜏)                               (2.5) 

 

where 𝜀(𝜏) is the residual of 𝑋(𝜏) that cannot be explained by a linear combination of 𝑆𝐴(𝜏). In BSS-REG, 

we employ the ordinary least squares (OLS) regression method (Moretti et al. 2003) due to its low 

computational complexity and numerical efficiency. Accordingly, the weights 𝐵𝐴 are obtained as: 

 

𝐵𝐴 = 𝑋𝐴(𝜏) ∙ 𝑆𝐴
𝑇(𝜏) ∙ (𝑆𝐴(𝜏) ∙ 𝑆𝐴

𝑇(𝜏))
−1

≈ 𝑋(𝜏) ∙ 𝑆𝐴
𝑇(𝜏) ∙ (𝑆𝐴(𝜏) ∙ 𝑆𝐴

𝑇(𝜏))
−1

              (2.6) 
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This permits us to build an adaptive spatial filter 𝐹(𝜏) to dynamically obtain artifact-free signals 

𝑋𝑐(𝜏), such as: 

 

𝑋𝑐(𝜏) = 𝐹(𝜏) ∙ 𝑋(𝜏)                                   (2.7) 

 

Specifically, 𝐹(𝜏) is defined as follows: 

 

𝐹(𝜏) = 𝐼 − 𝑋(𝜏) ∙ 𝑆𝐴
𝑇(𝜏) ∙ (𝑆𝐴(𝜏) ∙ 𝑆𝐴

𝑇(𝜏))
−1

∙ 𝑊𝐴                               (2.8) 

 

where 𝐼 is an identity matrix with dimension [𝑔 ∙  𝑔]. 

 

2.2.2 Validation of the method 

The performance of the BSS-REG method was assessed on both simulated and real EEG data, with 

special focus on ocular artifact removal. In this case, it is indeed possible to use a wide range of 

alternative methods as benchmark. Since BSS-REG can be used also for other kinds of artifacts in EEG 

recordings, we extended the validation to real datasets. The accuracy in terms of artifact removal 

achieved by BSS-REG was compared against that of an offline artifact removal method based on ICA (Liu 

et al. 2017). 

 

2.2.2.1 Real and simulated EEG data 

Data used in this study were obtained from hdEEG recordings collected in 17 healthy right-handed 

participants (4 males and 13 females, with age ranging from 21 to 43 years). These recordings were 

used in our previous studies (Liu et al. 2015, 2017). All participants reported normal or corrected-to-

normal vision, had no psychiatric or neurological history, were free of psychotropic or vasoactive 

medication. Before undergoing the examination, they gave written informed consent to the 

experimental procedures, which were approved by the Institutional Ethics Committee of ETH Zurich. 

hdEEG signals were recorded at 1000 Hz using a 256-channel system from Electrical Geodesics (Eugene, 

US). The electrode at vertex (labeled as Cz in the 10/20 international system) was used as physical 

reference. In addition to hdEEG, we also recorded horizontal and vertical EOG (hEOG/vEOG), as well as 

EMG for masseter and platysma muscles, to detect head movement and swallowing, respectively. 

For each participant, we recorded hdEEG signals during resting state (for 4 min) and during visual 

oddball tasks (for 3 min). In the resting state condition, each participant fixated a cross in the center of 

a screen. The visual oddball task consisted of a presentation of 80% of frequent stimuli and 20% of rare 

stimuli respectively (Mantini et al. 2009). The stimuli included purple circles of 3.2° and 1.6° of visual 

angle for frequent and rare events respectively. They were presented on a black background for 7 ms. 

The task consisted of pressing a button as soon as possible after the rare event (target) appeared. The 
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interval between stimuli was 2 s, for a total number of 90 trials (Murphy et al. 2014; O’Connell et al. 

2012). 

The collected hdEEG data were preprocessed using EEGLAB 

(https://sccn.ucsd.edu/eeglab/index.php) and built-in MATLAB functions. The preprocessing steps 

included: bad-channel detection and interpolation, digital filtering in the band 1–80 Hz, resampling to 

200 Hz and average re-referencing. In addition, off-line artifact removal was performed by means of ICA, 

using the same criteria used in BSS-REG, and previously described in (Liu et al. 2017). The artifact-

cleaned dataset obtained with ICA was used as a reference to evaluate the performance of the online 

artifact removal by BSS-REG. In addition, the same dataset was used for the generation of a new dataset, 

in which simulated ocular artifacts were added (figure 2.1). 

 

 

Figure 2.1. Illustrative example of 20 s of (A) cleaned EEG signals in five representative channels; (B) simulated ocular artifact; 

and (C) simulated EEG signals, obtained adding the ocular artifact to the cleaned EEG signals. (A) and (B) are extracted from 

different subjects. 

 

These ocular artifacts were obtained from signals reconstructed by superimposing the contribution of 

IC associated with EOG collected in another participant to the hdEEG recordings of the initial dataset 

(Romero et al. 2008). For the definition of BSS-REG standard settings we selected seven datasets, and 

we then validated them using the remaining ten datasets. Both in the case of simulated and real hdEEG 

data, a pseudo-online test was performed by using a moving window approach, to generate a ‘virtual’ 

buffer of data to be given as input to BSS-REG and other online artifact removal algorithms. 

 

https://sccn.ucsd.edu/eeglab/index.php
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2.2.2.2 Analysis of BSS-REG performance 

We first performed an optimization of the BSS-REG parameters and settings using the first seven 

datasets. Since BSS-REG relies on the creation of an initial spatial filter by performing BSS on a 

calibration dataset, we first compared different BSS solutions on the simulated resting-state EEG data. 

Specifically, we assessed the ability of the BSS-derived spatial filter to reconstruct the ocular signal that 

was superimposed over the EEG signals. By using resting-state EEG data, we compared the results 

obtained using the FastICA algorithm (our default solution) against other ICA algorithms, such as 

Infomax, JADE, PCA and CCA. Reconstruction performance, which was quantified in terms of temporal 

correlation between simulated and reconstructed ocular signals, was examined for different durations 

of the calibration recording (ranging between 30 s and 4 min). By using a pseudo-online test, we also 

assessed what size of the data buffer can lead to the best combination of artifact attenuation accuracy 

and computation speed required for online processing. Accuracy was quantified by means of the cosine 

similarity measure (CSM) (Eldeen et al. 2017; Niknazar et al. 2018), defined as follows: 

 

𝐶𝑆𝑀 =
〈𝑋𝑏(𝑡),𝑋𝑐(𝑡)〉

‖𝑋𝑏(𝑡)‖∙‖𝑋𝑐(𝑡)‖
                     (2.9) 

 

where 𝑋𝑏(𝑡) is the simulated EEG dataset before artefactual contamination and 𝑋𝑐(𝑡 is the reconstructed 

EEG dataset after artifact removal. CSM ranges between 0 and 1, and values close to 1 are associated 

with good reconstruction performance. Computational time was quantified using MATLAB (release 

2016b) running under MacOS (with 2.5 GHz Intel Core i7 processor and 16 GB RAM). Both accuracy and 

computation time were evaluated using the visual oddball paradigm data for different length of the 

buffer size (ranging between 100 and 2000 ms). 

After defining the BSS method to be used and the method settings, we compared the performance of 

BSS-REG with respect to other methods using 10 additional datasets. The utility of the two-step 

approach implemented in BSS-REG was assessed by comparing its performance with that of BSS spatial 

filtering (Jung, Makeig, Humphries, et al. 2000) and OLS regression (Moretti et al. 2003), separately. 

Furthermore, we employed a number of commonly used approaches for online ocular artifact removal 

as benchmark for our method. Specifically, we used adaptive filtering (AF) (P. He et al. 2004), least mean 

squares (LMS) (Haykin 1996), conventional recursive least squares (CRLS) (P. He et al. 2004) and an 

adaptive algorithm based on time varying 𝐻∞ (HINFTV) (Puthusserypady and Ratnarajah 2005). The 

first of those methods is implemented in BCILAB (https://sccn.ucsd.edu/wiki/BCILAB), whereas the 

other ones are part of the Automatic Artifact Removal toolbox 

(http://germangh.github.io/eeglab_plugin_aar) (Gomez-Herrero et al. 2006). A repeated-measures one-

way ANOVA and post-hoc paired t-tests were carried out to assess significant differences across and 

between methods with regard to accuracy and computational efficiency. 

Finally, after conducting an assessment of the performance on ocular artifact removal, we extended 

our investigation to other kinds of artifacts, such as muscular and movement artifacts, that are present 

https://sccn.ucsd.edu/wiki/BCILAB
http://germangh.github.io/eeglab_plugin_aar
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in the EEG data. Accordingly, we used the resting state dataset for the initialization of the BSS-REG 

spatial filter, and applied the adaptive spatial filtering of BSS-REG to the visual oddball dataset. The 

reconstruction performance was assessed against that obtained on the same dataset using offline ICA 

processing. Both in the case of online BSS-REG and offline ICA processing, we evaluated event-related 

potentials (ERPs) for rare events (100 ms pre-stimulus and 600 ms post-stimulus time) only, as these 

are the ones supposedly showing the P300 response (Liu et al. 2015; Mantini et al. 2009; Picton 1992). 

We specifically quantified pre-stimulus noise level as the root mean square (RMS) in the pre-stimulus 

interval (Mantini et al. 2009) and inter-trial variability defined the mean of across-trial standard 

deviation (Marino, Liu, Koudelka, et al. 2018; Vanderperren et al. 2010). Improvement following artifact 

removal was assessed by calculating the ratio between each index before and after artifact removal 

respectively. A paired t-test was used to evaluate whether there are significant differences between 

online BSS-REG and offline ICA processing in terms of pre-stimulus noise level and inter-trial variability, 

respectively. 

 

2.3 Results 

2.3.1 Definition of BSS-REG standard settings 

The performance of the BSS-REG approach relies in the first instance on the BSS algorithm used and 

on the amount of data available for the initialization of the spatial filter. Accordingly, we analyzed the 

accuracy and stability of different BSS approaches for the reconstruction of the ocular artifact. As 

expected, the correlation between the simulated ocular signal and the reconstructed one generally 

increased for any BSS method under investigation (figure 2.2). 

 

 

Figure 2.2. Quantitative comparison of different BSS method under investigation. Comparison is performed by 

correlating ocular signal and reconstructed one for any BSS method across all the subjects. For each subject, the FastICA 

(deflation approach) method outperforms all the other methods in terms of ocular signal reconstruction as shown by the 

consistently higher correlation, regardless of the calibration length. Moreover, the performances of any method generally 

improve depending on the amount of data. 
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Overall, the FastICA and Infomax algorithms showed superior performance than JADE, PCA and CCA. 

FastICA required more input data than Infomax to achieve a good data decomposition, and hence ocular 

signal reconstruction. However, when using a calibration dataset of 4 min, FastICA yielded the best 

reconstruction of the ocular artifact, which is likely to be acceptable in a wide range of applications. We 

therefore relied on this solution for adaptive spatial filtering by BSS-REG. 

We then moved to the analysis of the BSS-REG performance in a pseudo-online test. As such, we 

examined to what extent and how the size of the data buffer influences the reconstruction of the ocular 

artifact. We observed that both accuracy (figure 2.3A) and computational time (figure 2.3B) increased 

with a longer data buffer. However, we found that a buffer of 1000 ms or more yielded a computation 

time above 5 ms. Since the EEG signal was sampled at 200 Hz, 5 ms is the maximum delay that could be 

accepted in online EEG processing. Based on these considerations, we selected 500 ms as the standard 

buffer size for BSS-REG. This choice yielded a CSM equal to 0.957, and a computation time equal to 2.1 

ms (see figure 2.3). 

 

 

Figure 2.3. BSS-REG performance in a pseudo-online test. The size of the data buffer influences the reconstruction of the 

ocular artifact. With a longer data buffer, (A) CSM and (B) computational time both increase. 
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2.3.2 Analysis of BSS-REG performance on simulated EEG data 

By using simulated EEG data, we could also quantify the performance of BSS-REG with respect to 

alternative approaches. First, we examined whether our method, in its standard settings, performs 

better that when using BSS and linear regression separately. As for BSS, we calculated a spatial filter on 

resting state EEG data by using ICA and applied it directly to the oddball paradigm EEG data. Linear 

regression was implemented through OLS, using the recorded EOG signals as reference signals for online 

artifact removal. A repeated measures one-way ANOVA revealed significant differences 

among BSS-REG, ICA and OLS methods (p < 0.0001) (figure 2.4). 

 

 

Figure 2.4. Quantitative assessment of EOG artifact attenuation across methods. Comparison is performed by examining 

the CSM and box plots are provided. BSS-REG, ICA and OLS methods were applied for removing the EOG artifact from the EEG 

recordings. For each subject, the BSS-REG method outperforms the other methods in term of EOG artifact attenuation. 

 

Significant differences were found between BSS-REG and ICA (p < 0.0001) and between BSS-REG and 

OLS (p = 0.0004). This finding confirmed that the use of an adaptive spatial filter obtained by combining 

BSS and linear regression is beneficial to achieve a more accurate online artifact removal. Furthermore, 

the use of BSS-REG can lead to a more effective removal of ocular artifacts in comparison to AF, LMS, 

CRLS and HINFTV both in terms of accuracy (figure 2.5A) and computational time (figure 2.5B). A 

repeated measures one-way ANOVA confirmed that there were significant differences among BSS-REG, 

AF, LMS, CRLS and HINFTV methods, both for accuracy and computational time (p < 0.0001). In terms 

of accuracy, paired t-tests denoted significant differences between BSS-REG and AF, CRLS and 

HINFTV (p = 0.0042, p < 0.0001 and p < 0.0001, respectively), and no significant difference between 

BSS-REG and LMS (p = 0.415). With regard to computational efficiency, paired t-tests revealed 

significant differences between BSS-REG and all other methods (p < 0.0001). 
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Figure 2.5. Quantitative assessment of EOG artifact attenuation across methods: (A) BSS-REG, AF, LMS, CRLS and HINFTV 

methods were applied for removing the EOG artifact from the EEG recordings. A comparison is performed by examining the 

CSM and box plots are provided. For each subject, the BSS-REG method outperforms the other methods in term of EOG artifact 

attenuation; (B) boxplots showing the computational time for each method for a single data buffer of 500 ms. The runtimes are 

measured over a total of 360 ‘virtual’ data buffers for each subject. The use of BSS-REG can lead to a more effective removal of 

ocular artifacts in comparison to the other methods, both in terms of accuracy and computational time. 

 

2.3.3 Analysis of BSS-REG performance on real EEG data 

We finally evaluated whether BSS-REG can be used for the removal not only of ocular artifacts, but 

also muscular artifacts. To this end, we used real EEG data collected during a visual oddball paradigm 

(figure 2.6). 
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Figure 2.6. Single-subject ERP analysis of EEG signals at the electrode Pz for rare and frequent events: (A) uncorrected; 

(B) corrected with offline ICA; and (C) corrected with BSS-REG. Scalp topography of ERPs associated with P300 response at 

340 ms: (D) uncorrected; (E) corrected with offline ICA; and (F) corrected with BSS-REG. 

 

These data were also processed by using a standard artifact removal approach based on ICA, which 

served as benchmark. Our ERP results showed that BSS-REG yielded a reduction of 21.04% and 26.5% 

in noise and inter-trial variability, respectively, with respect to unprocessed EEG data. Conversely, 

although there was 7.73% more noise and 10.06% more inter-trial variability with BSS-REG than offline 

ICA, differences between online and offline methods were on the border of significance for inter-trial 

variability (p = 0.0526) and pre-stimulus noise (p = 0.0689), respectively (figure 2.7). 
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Figure 2.7. Quantitative assessment of ERP analysis across ICA offline and BSS-REG. A comparison is performed by 

examining (A) pre-stimulus noise and (B) inter-trial variability. Inter-trial variability and pre-stimulus noise are relatively 

larger for BSSREG, but there are no significant differences between methods (p > 0.05). 

 

The topology of the scalp map at the latency of the maximum peak (between 320 and 470 ms across 

subjects) was largely similar (spatial and temporal correlation equal to 0.744 ± 0.1475 and 0.7978 ± 

0.1447, respectively). 

 

2.4 Discussion 

The BSS-REG method has been developed for online artifact removal from EEG signals, which is a 

very important requirement for BCI application. Our method has shown to perform better than several 

alternative methods for the removal of ocular artifacts. No extensive validation has been conducted on 

simulated data for other types of artifacts, as no specific gold-standard exists. However, we have 

successfully applied BSS-REG on real EEG data containing multiple artefactual sources, and have shown 

that the performance is comparable to those of a standard offline artifact removal approach based on 
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ICA. What is particularly remarkable is the low computation time, which makes the BSS-REG method 

suitable for use not only with low-density but also high-density EEG recordings. Importantly, this 

feature may enable the development of more advanced BCI applications in the future. 

 

2.4.1 Primary features of the BSS-REG method 

The method has been specifically developed to operate in an online mode during EEG acquisitions. 

Like other methods (Croft and Barry 1998; Schlogl et al. 2007; Zhang et al. 2015), it relies on a calibration 

dataset for feature extraction. In BSS-REG, this is particularly important, as it ensures that a low 

computation time is required during the actual EEG experiment. Since BSS is used for the initialization 

of the spatial filter, the spatial stationarity of the artefactual sources between the calibration and the 

experimental phase is assumed. In other words, the demixing matrix obtained in the calibration phase 

is assumed to approximate the one that would be obtained by using BSS on the EEG data collected during 

the experiment. Our results show that this may be the case, at least for EEG data collected in the same 

experimental session. Furthermore, we observed that the demixing matrix that specifically relates to 

artefactual sources is not strongly affected by the specific task performed by the participant. A possible 

caveat of our approach is that the calibration dataset should contain a sufficient number of artifactual 

occurrences (for instance, explaining at least 1% of the total variance) for an effective initialization of 

the spatial filter. In this regard, it may be helpful to ask the participant to intentionally generate such 

artifacts (Zhang et al. 2015). 

Importantly, other studies proposed the use of ICA for online artifact removal (Halder et al. 2007; 

Radüntz et al. 2015), and some of them in combination with REG (Klados et al. 2011; Mannan et al. 2016; 

Siew Cheok and Raveendran 2008). Since we conducted our testing on hdEEG data, all the techniques 

using ICA based on a moving window approach could not be used due to very high computation times. 

Indeed, the computational complexity of ICA scales at least quadratically with the number of input 

channels (Hyvärinen et al. 2004). Furthermore, the number of samples required for an effective ICA 

decomposition is also related to the number of recordings, and this constrains its application in an online 

modality. One study specifically proposed the combination of ICA and REG for online removal of the 

ocular artifact (Mannan et al. 2016). That approach may appear very similar to BSS-REG, but this is really 

not the case. Indeed, ICA is performed in an online modality, linear regression is applied to each 

component using EOG signals, and the cleaned components are then back-projected over the recordings. 

Besides the considerations on computational complexity already made, we argue that this specific 

implementation may have low performance when the waveforms of EOG signals do not well match that 

of the ocular artifact in the EEG data. 

 

2.4.2 Analysis of the method performance 

To assess the performance of the BSS-REG, we first relied on a simulated dataset consisting of neural 

signals contaminated only by ocular artifacts. With known ground truth, we could effectively compare 
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the mean CSM and computation time of BBS-REG with those of alternative approaches, such as AF, LMS, 

CRLS and HINFTV (figure 2.5). We also examined the performance of ICA and OLS, which allowed us to 

appreciate the potential advantages of using the combined (twostep) approach implemented in BSS-

REG (figure 2.4). With the exclusion of LMS, BSS-REG outperformed all other methods in terms of artifact 

removal accuracy. Also, it was by large the fastest method, with a delay below 5 ms even with high-

density (256-channel) EEG data (figure 2.3B). 

The BSS-REG method was also assessed using actual EEG signals collected in participants during 

visual oddball paradigm. Through the analysis of ERP data, we could quantitatively evaluate the 

effectiveness in the removal of different artifacts (figure 2.7). The noise level and the inter-trial 

variability can be used to evaluate the effectiveness of artifact attenuation. On the other hand, signal 

preservation could be assessed by examining the main peak intensity in the ERP (figure 2.6). In addition 

to these measures, we have also presented qualitative results for actual EEG datasets. Overall, results 

on actual EEG datasets confirm that the BSS-REG method is suitable for online removal of different kinds 

of artifacts (including ocular and muscular artifacts). As expected, its accuracy was on average lower 

than that of widely used offline ICA method (Jung, Makeig, Humphries, et al. 2000). However, the 

differences between the two methods were just on the border of significance. 

 

2.4.3 Potential application in the field of BCI 

Our validation was conducted on hdEEG recordings, which are not commonly used for BCI 

applications. Our recent work was focused on the use of hdEEG for accurate source reconstructions and 

connectivity analyses (Liu et al. 2017). We developed a comprehensive pipeline for offline analysis of 

hdEEG data, which can contribute to a more widespread utilization of EEG as a brain-mapping tool 

(Michel and Murray 2012). In future work, our efforts will be devoted to the implementation of 

computationally-efficient techniques for real-time analysis of hdEEG data, aiming to estimate neural 

activity in the brain in an online modality. This work will be relevant to all applications that may require 

estimates of source-based activity rather than EEG recordings. For instance, source-based EEG 

neurofeedback has been recently introduced (Boe et al. 2014; van Lutterveld et al. 2017). This holds 

great promise for studies aiming at more specific, and possibly more effective, brain training than with 

classical EEG neurofeedback. Also, closed-loop neuromodulation techniques combining EEG with 

transcranial magnetic stimulation or transcranial current stimulation can be developed by controlling 

the phase of neural signals estimated in specific brain areas (Bergmann et al. 2016; Zrenner et al. 2016). 

Furthermore, novel BCIs can be optimized for use on activity estimated from different brain regions. 

This may ultimately lead to increased classification accuracy as compared to classical EEG-based BCIs, 

and may contribute to bridging the gap between human studies that use scalp EEG and animal studies, 

for which intracranial recordings are possible (Capogrosso et al. 2016). 
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2.4.4 Limitations and future work 

As many existing online artifact removal approaches, BSS-REG relies on electrical signals recorded 

simultaneously with EEG, such as EOG and EMG. In our method, the latter are primarily used to identify 

the components extracted from the calibration dataset, which need to be used for the initialization of 

the spatial filter. It should be noted that it may be possible to use different criteria for the identification 

of the artefactual components. For instance, the ocular components are characterized by high kurtosis 

values (Klados et al. 2010), whereas the muscular components have very low autocorrelation values (De 

Vos et al. 2010). Future studies are warranted to test the effectiveness of these approaches, and their 

impact on artifact removal accuracy. The impact of the specific BSS approach used should be also 

considered. In the present study, we showed that the FastICA algorithm has comparable performance 

as compared to Infomax, and that ICA-BSS generally outperforms PCA- and CCA-BSS on ocular artifacts. 

This assessment could be extended to other kinds of artifacts. Furthermore, recent studies are proposing 

the use of tensor decomposition techniques for artifact removal as a valid alternative to ICA and BSS 

(Triantafyllopoulos and Megalooikonomou 2014). It may be interesting to verify whether these 

approaches can effectively yield improved reconstruction of artifactual sources within the BSS-REG 

framework. Concerning online artifact removal, we opted for the use of a standard linear regression 

approach based on OLS. This ensures that the removal of artifacts can be implemented using a spatial 

filter, and therefore that computation time is kept low even for hdEEG recordings. However, alternative 

regression methods could be implemented and compared to OLS. Finally, it may be worth extending the 

validation of our approach to other EEG datasets, collected with different systems and different 

experimental protocols. In particular, it would be important to further validate the efficacy of the BSS-

REG method during BCI operation, as for example during ERP-based BCI control. Considering the 

growing interest of the neuroscientific community on closed-loop neuromodulation approaches 

(Semprini et al. 2018), it would be interesting to extend BSS-REG, such that it can be applied also for the 

attenuation of electrical noise from transcranial alternating current stimulation. 

 

2.5 Conclusions 

We have introduced BSS-REG, a method for the online artifact removal of EEG signals, which is 

suitable not only for low-density but also high-density systems. The method requires the use of a 

calibration recording for the initialization of the spatial filter. This ensures a low computation time 

during the actual EEG experiment. BSS-REG outperforms other methods in terms of artifact removal 

accuracy and computational time. Furthermore, it can remove different kinds of artifacts with accuracy 

comparable to achieved by an offline ICA approach (Jung, Makeig, Humphries, et al. 2000). We argue 

that BSS-REG may enable the development of novel BCI applications requiring high-density recordings, 

such as source-based neurofeedback and closed-loop neuromodulation. 
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3 A computationally efficient method for the attenuation of 

alternating current stimulation artifacts in electroencephalographic 

recordings 

 
Guarnieri R, Brancucci A, D'Anselmo A, Manippa V, Swinnen SP, Tecchio F, Mantini D. A computationally 

efficient method for the attenuation of alternating current stimulation artifacts in 

electroencephalographic recordings. J Neural Eng. 2020 Aug 17;17(4):046038. doi: 10.1088/1741-

2552/aba99d. 

 

Abstract 

Objective. Recent studies suggest that the use of noninvasive closed-loop neuromodulation combining 

electroencephalography (EEG) and transcranial alternating current stimulation (tACS) may be a 

promising avenue for the treatment of neurological disorders. However, the attenuation of tACS artifacts 

in EEG data is particularly challenging, and computationally efficient methods are needed to enable 

closed-loop neuromodulation experiments. Here we introduce an original method to address this 

methodological issue. 

Approach. Our alternating current regression (AC-REG) method is an adaptive (time-varying) spatial 

filtering method. It relies on a data buffer of preset size, on which principal component analysis (PCA) 

is applied. The resulting components are used to build a spatial filter capable of regressing periodic 

signals in phase with the stimulation. PCA is performed each time that a new sample enters the buffer, 

such that the spatial filter can be continuously updated and applied to the EEG data. 

Main results. The AC-REG accuracy in terms of tACS artifact attenuation was assessed using simulated 

and real EEG data. Alternative offline processing techniques, such as the superimposition of moving 

averages (SupMA) and the Helfrich method (HeM), were used as benchmark. Using simulations, we 

found that AC-REG can yield a more reliable reconstruction of the stimulation signal for any frequency 

between 1 and 80 Hz. Analysis of real EEG data of 18 healthy volunteers showed that AC-REG was able 

to better recover hidden neural activity as compared to SupMA and HeM. Also, significantly higher 

correlations between power spectrum densities in tACS on and off conditions, respectively, were 

obtained using AC-REG (r = 0.90) than using SupMA (r = 0.80) and HeM (r = 0.86). 

Significance. Thanks to its low computational complexity, the AC-REG method can be employed in 

noninvasive closed-loop neuromodulation experiments, with potential applications both in healthy 

individuals and in neurological patients. 

 

Keywords: transcranial alternating current stimulation (tACS), closed-loop, low-computational 

processing, artifact removal, electroencephalography (EEG), principal component analysis (PCA) 
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3.1 Introduction 

During closed-loop neuromodulation experiments, neural activity is continuously recorded, relevant 

signal signatures are extracted, and the applied magnetic/electrical stimulation is dynamically adapted 

based on those features (Guggenmos et al. 2013; Rebesco et al. 2010). Notably, closed-loop 

neuromodulation has been shown to facilitate and/or enhance neural plasticity processes as compared 

to open-loop neuromodulation, for which a fixed set of stimulation parameters is chosen a-priori by the 

experimenter (Sun and Morrell 2014). The adaptive nature of closed-loop neuromodulation intrinsically 

leads to a lower intra- and inter-subject variability (Iturrate et al. 2018), opening the way to its use for 

the treatment of neurological and psychiatric disorders (Sun and Morrell 2014). Probably, one of the 

most promising applications of closed-loop neuromodulation is based on deep brain stimulation (DBS) 

of the basal ganglia for the treatment of movement disorders, including Parkinson’s disease, essential 

tremor and dystonia (Perlmutter and Mink 2006). DBS is however invasive, and not suitable for a wide 

range of other conditions involving malfunctioning of large-scale brain networks rather than very 

specific brain regions. 

Transcranial alternating current stimulation(tACS) is a non-invasive neuromodulation approach that 

can be suitable for use in a wider number of neurological and psychiatric conditions (Woods et al. 2016). 

With tACS, small amounts of current are injected into the scalp via rubber electrodes enclosed in saline 

soaked sponges (Morales-Quezada et al. 2014). The spatial specificity of the stimulated area is limited, 

but the use of multi-channel montages (Alekseichuk et al. 2019) and frequency-based interference 

techniques (Grossman et al. 2017) can mitigate this potential problem. The number of studies employing 

tACS for addressing basic and clinical neuroscience questions is nowadays very large (Alexander et al. 

2019; J Dowsett et al. 2019). There is considerable experimental (Herrmann et al. 2013; Marshall et al. 

2011) and computational (Ali et al. 2013; Merlet et al. 2013) evidence that tACS can effectively entrain 

brain oscillations. It has been successfully used to modulate vision (Vossen et al. 2015), movement 

(Feurra et al. 2011) and audition (Riecke et al. 2015). Moreover, functional magnetic resonance imaging 

showed that tACS can induce short-term neuroplastic effects over relatively specific cortical regions 

(Bächinger et al. 2017; Cabral-Calderin et al. 2016). 

When using tACS for closed-loop neuromodulation, neural signals usually need to be acquired in a 

noninvasive manner, for instance using electroencephalography (EEG). EEG electrodes, which are 

placed over the scalp of the participant, measure the potentials induced by electrical activity of 

pyramidal neurons in the cortex (Beres 2017). EEG systems are typically portable and not particularly 

expensive, especially when the number of recording channels is low. It should be noted, however, that 

the direct estimate of neural activity in the cortex requires the use of high-density EEG montages, with 

more than 100 electrodes (Tucker 1993). The combination of EEG and tACS is technically challenging, 

because of the massive artifact that is mixed in the EEG data, in the form of a quasi-sinusoidal signal with 

main harmonic at the stimulation frequency. For this reason, most EEG-tACS studies have been so far 
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conducted using an interleaved stimulation protocol, and in particular analyzing the EEG data collected 

in the off-stimulation period (Mansouri et al. 2017; Pahor and Jaušovec 2018; Vossen et al. 2015). 

To the best of our knowledge, few solutions exist to attenuate the tACS artifact from EEG recordings. A 

first approach that has been proposed is the subtraction of a constant sine wave fitted to the EEG signal. 

Due to variations in the EEG signal primarily induced by slow changes in electrode conductance and by 

movements of the participant’s head, this solution often yields unsatisfactory results (Helfrich, 

Schneider, et al. 2014). Other tACS methods require the whole EEG recording to be available, and are 

therefore unsuitable for closed-loop neuromodulation studies (Helfrich, Schneider, et al. 2014; Kohli 

and Casson 2020). For instance, the one proposed by Helfrich and colleagues follows a two-step 

procedure: an artifact template is first subtracted from the data, and the remaining artifacts are then 

attenuated using principal component analysis (PCA) (Helfrich, Schneider, et al. 2014). Only one 

method, the superimposition of moving averages (SupMA) (Kohli and Casson2015), has been used for 

real-time removal of tACS artifacts. However, in its current implementation, SupMA can simultaneously 

process only few EEG signals. Furthermore, it tends to strongly suppress the harmonics associated with 

the tACS artifact, possibly inducing large distortions in the frequency characteristics of neural signals 

(Kohli and Casson 2019). 

Recent studies suggest that the use of closed-loop neuromodulation based on tACS and EEG maybe a 

promising avenue for the treatment of neurological disorders (Semprini et al. 2018). Therefore, there is 

a compelling need of a technological solution with low computational complexity for tACS artifact 

removal, which could be effectively used with low-density as well as high-density EEG recordings. In 

this paper we introduce a novel solution to this problem. Our alternating current regression (AC-REG) 

method can be conceptualized as an adaptive (time-varying) spatial filter method. Specifically, we use a 

data buffer of preset size, on which we apply PCA; the resulting principal components (PCs) are used to 

build a spatial filter for the regression of periodic signals in phase with the stimulation. PCA is performed 

each time that a new sample enters the buffer, such that the spatial filter can be continuously updated 

and applied to the EEG data. In this study we assess the performance of AC-REG using both simulated 

and real EEG signals. Simulated data are used to define the main parameters of the method and to assess 

its performance under controlled conditions. A comparison in terms of accuracy with alternative 

methods is conducted, using both real and simulated data. 

 

3.2 Methods 

3.2.1 Description of the method 

The AC-REG method relies on the use of EEG signals that are continuously read and stored in a buffer 

of 𝑛 samples. A spatial filter is dynamically updated and applied to the most recent data samples to 

attenuate the contribution of the tACS artifact mixed in the EEG data. For each given time epoch, PCA is 

calculated on the data buffer to retrieve the PCs, i.e. underlying signals that are statistically uncorrelated 

with each other and linearly mixed in the data (Turnip and Junaidi 2014). Notably, the number of 
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samples 𝑛 in the data buffer will inherently have an impact on PCA performance, in terms of accuracy 

and computation time (Guarnieri et al. 2018). The PCA model can be mathematically described as 

 

𝑋(𝜏) = 𝐴 ∙ 𝑌(𝜏)                                   (3.1) 

 

where 𝑋(𝜏) is a [𝑘 ∙ 𝑛]-dimensional matrix of 𝑘 recordings and 𝑌(𝜏) is a [𝑘 ∙ 𝑛]-dimensional matrix of PC 

time-courses. Furthermore, 𝐴 is a [𝑘 ∙ 𝑘]-dimensional matrix that contains the PC weights over the 

recordings. The matrices 𝐴 and 𝑌(𝜏) can be estimated using a singular value decomposition (SVD), 

which imposes a constraint of orthogonality among the PCs (Golub and Kahan 1965; Turnip and Junaidi 

2014). After PCA decomposition, the PCs with quasi-sinusoidal time-courses in phase with the 

stimulation signal are selected, by imposing a stringent criterion in terms of temporal correlation (𝑟 >

0.5). This classification of PCs is used to build the spatial filter capable of attenuating tACS artifacts. To 

this end, a [𝑛 ∙ 𝑛] diagonal matrix 𝑍 is created, setting each element 𝑧𝑖𝑖 equal to 0 if the i-th PC is classified 

as related to tACS artifact, or equal to 1 otherwise. The spatial filter 𝑊(𝑡) at any given time 𝜏 of the EEG 

recording, is then obtained as follows: 

 

𝑊(𝑡) = 𝐴 ∙ 𝑍 ∙ 𝐴−1                                   (3.2) 

 

The vector of EEG data corresponding to the last sample in the buffer, indicated as 𝑋(𝑡), is combined 

with the spatial filter 𝑊(𝑡) calculated using the buffer data to obtain the vector of artifact-free EEG data 

𝑋𝑐(𝑡): 

 

𝑋𝑐(𝑡) = 𝑊(𝑡) ∙ 𝑋(𝑡)                                   (3.3) 

 

In this manner, the artifacts are subtracted from the EEG recordings with appropriate weights for each 

channel, and the reconstruction of artifact-free EEG signals is accomplished in a continuous manner. 

 

3.2.2 Validation of the method 

3.2.2.1 Performance analysis using simulated EEG data 

Simulated data used in this study were derived from resting-state EEG recordings collected for 5 min 

in 12 right-handed healthy participants (four males and eight females, with ages ranging from 21 to 

43years). These recordings were already used in some of our previous studies (Guarnieri et al. 2018; 

Liu et al. 2017; Samogin et al. 2019). Before undergoing the examination, the participants gave written 

informed consent to the experimental procedures, which were approved by the Institutional Ethics 

Committee of ETH Zurich. EEG data were recorded at 1000 Hz using a 256-channel system from 

Electrical Geodesics (Eugene, US). The electrode at vertex (labeled as Cz in the 10/20 international 

system) was used as physical reference. EEG data preprocessing was carried out using EEGLAB 
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(https://sccn.ucsd.edu/eeglab/index.php) and built-in MATLAB functions. The preprocessing steps 

included: bad-channel detection and interpolation, digital filtering in the band 1–80 Hz, resampling to 

200 Hz and average re-referencing. In addition, removal of biological artifacts was performed by means 

of independent component analysis (ICA), as described in Liu et al. (2017). The resulting artifact-cleaned 

EEG data were then mixed with simulated tACS artifact, generated using the open source toolbox 

ARtACS (https://github.com/agricolab/ARtACS). Temporal changes in artifact amplitude over time 

were modelled using an Ornstein–Uhlenbeck process. The intensity of the tACS was set as being 100 

times larger than background EEG activity, as observed in real data. Simulated tACS artifacts were 

generated at varying frequencies ranging between 1 and 70 Hz. More detailed analyses were conducted 

with simulated tACS artifacts at 10, 20 and 70 Hz, as these are frequencies commonly used in tACS 

studies (Cappon et al. 2016; Clayton et al. 2018; Sugata et al. 2018). 

Using the simulated EEG data (see figure 3.1), we first performed an optimization of AC-REG settings. 

Pseudo-online tests were conducted using a moving window approach, to generate a ‘virtual’ buffer of 

data to be given as input to AC-REG. Specifically, we analyzed how accuracy and computational time 

vary with different channel numbers, sampling frequencies and data buffer sizes. The number of EEG 

channels was equal to 16, 32, 64, 128 and 256, respectively, and the sampling frequency was set to 200, 

500 and 1000 Hz, respectively; different lengths of the buffer size were tested, in the range between 100 

and 2000 ms. Accuracy was quantified by using the correlation between the reconstructed EEG data and 

those without tACS artifact. Computation time was measured using MATLAB (release 2016b) running 

under MacOS (with 2.5 GHz Intel Core i7 processor and 16 GB RAM). 

 

https://sccn.ucsd.edu/eeglab/index.php
https://github.com/agricolab/ARtACS
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Figure 3.1. Example of simulated EEG data with tACS artifact. (A) 2-second segment of reconstructed artifact-free EEG 

signals for four representative channels; (B) power spectral density of the reconstructed artifact-free EEG signals (C) 2-second 

segment of simulated EEG signals, obtained adding the tACS artifact to the artifact-free EEG signals. (D) power spectral density 

of the simulated EEG signals with tACS artifact. 

 

Subsequently, we focused on EEG simulations with 64 channels and with sampling frequency at 500 

Hz. The size of the data buffer for AC-REG was set to 500 ms. Hence, we compared the accuracy of AC-

REG in tACS artifact attenuation with respect to two alternative approaches: SupMA (Kohli and Casson 

2015) and the Helfrich method (HeM) (Helfrich, Schneider, et al. 2014). As for SupMA, we used the 

implementation included in the ARtACS toolbox. Accordingly, the parameter 𝑀 was set equal to 10, and 

the parameter 𝑁 was equal to the number of stimulation cycles. HeM was implemented in MATLAB, 

based on the information included in the original study. First, we assessed the sensitivity of AC-REG, 

SupMA and HeM with respect to the noise level, which was varied between 0% and 20% of the average 

standard deviation of the clean EEG signal. Furthermore, after selecting a noise level of 5% (Bai and He 

2006), we compared the accuracy of the three methods as a function of the stimulation frequency. 

 



  45 

3.2.2.2 Performance analysis using real EEG data 

We used recordings collected in 18 healthy right-handed volunteers (nine males and nine females, 

age ranging between 20 and 36). Participants gave their written consent before taking part in the 

experiment. The whole procedure was carried out in accordance with the principles of the Declaration 

of Helsinki, and the protocol was approved by the Local Ethical Committee of Chieti University. tACS was 

delivered by a battery-driven, current stimulator (DC-Stimulator, NeuroConn GmbH, Germany) through 

a pair of conductive rubber electrodes (3 cm × 3 cm, 9 cm2). An electro-conductive gel was applied under 

the rubber electrodes to reduce contact impedance. We used a stimulation of 90 s duration and fade-

in/fade-out times of 5 s. A bilateral montage was used, with patch electrodes placed at the C3 and C4 

sites of the10–20 EEG system. During the tACS stimulation, an alternating current was transmitted with 

a sinusoidal waveform, the frequency was set at 20 Hz and the relative phase at 0°. Alternating current 

was applied at 1000 𝜇𝐴 resulting in a mean current density 0.011 mA/cm2. 

EEG activity was recorded with a Be-plus system manufactured by Eb-Neuro (Florence, Italy) before, 

during and after tACS, using 57 scalp electrodes positioned according to a standard 10–10 montage. The 

electrode labeled as AFz was used as physical reference. Impedance of all electrodes was kept lower 

than 5 kΩ. Signals were sampled at 512 Hz and stored on a computer for offline analysis. The EEG 

recording started 3 min before the stimulation and ended 3 min after it. The stimulation period lasted 

90 s. During the experiment, the participant was seated in a comfortable position and was asked to stay 

at rest, maintaining a relaxed position, with open eyes and without moving or engaging in any cognitive 

task. The EEG data were preprocessed offline, using the same analysis workflow used for the generation 

of the simulated data (see previous section). Specifically, bad-channel detection and interpolation, 

digital filtering in the band 1–80 Hz and average re-referencing were applied (see figure 3.2 for an 

illustration of real EEG data). 
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Figure 3.2. Example of real EEG signals in tACS-on and tACS-off conditions. (A-B) topoplots (spatial maps) showing the 

intensity of EEG data collected with tACS on and off, respectively; (C) 5-second segment of EEG data collected with tACS on (one 

representative channel); (D) 5-second segment of EEG data collected with tACS off (four representative channels); (E-F) PSDs 

of EEG data collected with tACS on and off, respectively. The thick black line indicates the grand average of the PSD across 

channels. 

 

To assess the effectiveness of AC-REG in attenuation the tACS artifact on real EEG data, we conducted 

three analyses. First, we quantified the correlation between the tACS signal and the artifact-corrected 
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EEG data, filtered around the stimulation frequency (19–21Hz). This analysis provided an indication 

concerning the presence of residual artifacts in the EEG data. SupMA and HeM were used as benchmark 

to evaluate the performance of AC-REG. Second, we performed ICA of the EEG signals using the FastICA 

algorithm (Hyvärinen 1999), to extract specific components related to eye blinks and the occipital alpha 

rhythm. The topology of the components extracted from the artifact-free EEG data in the tACS-on period 

were compared to those from the EEG data in the tACS-off period, by means of their spatial correlation. 

Third, we investigated the correspondence in the power spectral density (PSD) of the artifact-free EEG 

data in tACS-on period as compared to the EEG data in the tACS-off period. This correspondence was 

quantified using the Pearson’s correlation, focusing on all frequencies in the band 1–80 Hz except the 

stimulation frequency and its harmonics (i.e. 20, 40, 60 Hz). A Wilcoxon signed rank test was used to 

test whether there were significant differences among the correlation values obtained with the three 

methods. The Bonferroni method was used to correct statistical significance, accounting for multiple 

comparisons (AC-REG vs. SupMA, AC-REG vs. HeM, SupMA vs. HeM). For all the analyses on real EEG 

data, AC-REG was used with a buffer size of 500 ms. 

 

3.3 Results 

The performance of AC-REG depends on the amount of data that can be used for the definition of the 

spatial filter. To examine how the number of data channels, sampling frequencies and data buffer sizes 

impact on accuracy and computational time, we performed pseudo-online tests using the simulated EEG 

data. Overall, the accuracy in the reconstruction of tACS artifact did not strongly depend on the number 

of EEG channels and on the sampling frequency, but better performance was nonetheless obtained with 

higher channel counts and higher sampling frequencies respectively (figure 3.3A). In contrast, the buffer 

size used for AC-REG processing was an important factor in determining the quality in tACS artifact 

reconstruction. Specifically, the use of a buffer size of at least 500 ms for AC-REG seemed to be important 

to ensure an effective artifact attenuation (figure 3.3B).  
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Figure 3.3. Dependence of AC-REG reconstruction accuracy on channel count, sampling frequency and buffer size. We 

examined how the accuracy in the reconstruction of the tACS artifact, quantified by the correlation index, is influenced by (A) 

the number of EEG channels given as input to AC-REG and (B) the number of samples in the data buffer used. The accuracy for 

different sampling frequencies is shown using lines with different colors. 

 

We also found that the computation time had a super-linear relationship with channel count (figure 

3.4A), whereas it increased with both sampling frequency and buffer size in a sub-linear manner (figure 

3.4B). 
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Figure 3.4. Dependence of AC-REG computation time on channel count, sampling frequency and buffer size. We 

examined how the computation time is influenced by (A) the number of EEG channels given as input to AC-REG and (B) the 

number of samples in the data buffer used. The computation time for different sampling frequencies is shown using lines with 

different colors. 

 

By using simulated EEG data, we could also assess the performance of AC-REG with respect to 

alternative approaches, such as SupMA and HeM. As expected, the correlation between simulated and 

reconstructed EEG data was only slightly dependent on the noise level for any method under 

investigation, possibly due to the high intensity of the tACS artifact. Notably, correlations were higher 

for AC-REG than SupMA and HeM (figure 3.5A). Interestingly, we found that the performance of AC-REG, 

SupMA and HeM depended on the tACS frequency in a substantial manner (figure 3.5B). All methods 

had a performance drop below 4 Hz and at around 10 Hz, which are the frequencies with relatively lower 

ratio between artifact and neural signal amplitudes, respectively. Overall, we observed that SupMA had 

a clear decrease in reconstruction accuracy with an increase of the stimulation frequency, whereas the 

performance of AC-REG and HeM was largely stable across frequencies. 
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Figure 3.5. Performance of AC-REG, SupMA and HeM for different noise levels and stimulation frequencies. Accuracy in 

the reconstruction of artifact-free EEG signals, as quantified by the correlation index, was examined (A) for noise levels varying 

between 0% and 20% of the signal intensity and (B) for stimulation frequency ranging between 1 and 70 Hz. 

 

We finally moved to the assessment of AC-REG using real EEG data. First, we examined whether the 

EEG data processed by AC-REG, SupMA and HeM possibly included residuals of the tACS signal. We 

found that the EEG signal at the stimulation frequency was in phase with the tACS artifact for HeM, 

whereas this was not the case for AC-REG and SupMA (figure 3.6). The correlations between the tACS 

signal and the EEG signals at the stimulation frequency were significantly lower for AC-REG than SupMA 

and HeM (both p<0.001, with Bonferroni correction).  
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Figure 3.6. Example of a real EEG signal processed using AC-REG, SupMA and HeM. (A) Raw EEG signal from the channel 

Cz; (B-C-D) The same EEG signal after processing with AC-REG, SupMA and HeM, respectively, and digital filtering in the band 

19-21 Hz (i.e., around the stimulation frequency of 20 Hz). The same EEG dataset shown in figure 3.2 has been used for the 

analysis. 

 

Conversely, the correlation values obtained for SupMA and HeM were not significantly different across 

participants (p=0.557, before Bonferroni correction) (figure 3.7). 

Next, we extracted and analyzed the EEG components associated with eye movements and the 

occipital alpha rhythm, respectively (figure 3.8). AC-REG, SupMA and HeM permitted to reconstruct the 

ocular component and occipital alpha components. 
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Figure 3.8. Topographies of ocular artifact and occipital alpha components in real EEG data with tACS off and on, 

respectively. Spatial distribution of (A) the ocular component, and (B) the occipital alpha component in a representative 

subject, for the tACS-off condition and the tACS-on condition after tACS artifact removal using AC-REG, SupMA and HeM, 

respectively. The same EEG dataset shown in figure 3.2 has been used for the analysis. 

 

The EEG data processed with SupMA had the highest correlations between the ocular component 

estimated in the tACS-on and tACS-off periods, respectively (figure 3.9A). These correlations were 

significantly higher than those obtained ed with AC-REG and HeM (p=0.002 and p=0.0013, respectively, 

with Bonferroni correction). Also, the values of AC-REG were significantly higher than those of 

HeM(p=0.018, with Bonferroni correction). For the occipital alpha component, no significant differences 

were found between the correlations obtained with AC-REG and SupMA processing, respectively 

(p=0.5614, before Bonferroni correction). In turn, the values of AC-REG and SupMA were significantly 

higher than those obtained with HeM (p=0.003 and p=0.006, respectively, with Bonferroni correction). 

 

 

Figure 3.9. Quantification of ocular artifact and occipital alpha reconstruction in real EEG data. We estimated the impact 

of AC-REG, SupMA and HeM processing, respectively, on the reconstruction of (A) the ocular artifact component and (B) the 

occipital alpha component. The components obtained from EEG data in the tACS-on condition, were compared with those 

obtained from EEG data in the tACS-off condition. Correlations were averaged across channels to obtain a single value for each 

participant, and for each method. These values were displayed in the form of interquartile box plots. Statistical comparisons at 

the group level were performed using a Wilcoxon signed-rank test. Significance is indicated as follows: * = p<0.05, ** = p<0.01, 

*** = p<0.001. 
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The PSD of the EEG signals reconstructed using AC-REG clearly showed a single prominent peak at 

around 10 Hz and revealed two additional narrow peaks at the main stimulation frequency (20 Hz) and 

its first harmonic (40 Hz), respectively (figure 3.10). The same two peaks are easily detectable also in 

the PSD of the EEG signals reconstructed using HeM. With this method, however, the peak at around 10 

Hz was much less prominent. In turn, the PSD obtained using SupMA showed a clear peak at around 10 

Hz, whereas frequencies around 20 and 40 Hz were completely suppressed.  

 

 

Figure 3.10. Effect of tACS artifact removal methods on spectral properties of EEG data. (A-C) PSDs from EEG data in the 

tACS-on period, processed using AC-REG, SupMA and HeM, respectively. The same EEG dataset shown in figure 3.2 has been 

used for the analysis. The thick black line indicates the grand average of the PSD across channels. 

 

In order to perform a more quantitative analysis, we used the PSD of the EEG data in the tACS-off 

condition as reference, and we quantified its correlation with the PSDs produced by AC-REG, SupMA and 

HeM, respectively (figure 3.11). A Wilcoxon signed rank test showed that AC-REG had significantly 

higher values than SupMA and HeM (p<0.001 and p=0.0222, respectively, with Bonferroni correction). 

Also, the values of SupMA and HeM were not significantly different (p=0.075, with Bonferroni 

correction). 

 

 

Figure 3.11. Performance of tACS artifact removal methods on real EEG data. We estimated the effectiveness of AC-REG, 

SupMA and HeM in reconstructing artifact-free EEG signals. To this end, we used as reference the EEG data collected without 

stimulation. We quantified, channel by channel, the correlation between PSDs, and then we averaged the values across channels 

to obtain a single correlation value for each of the 18 participants, and for each method. The resulting correlation values were 

displayed in the form of interquartile box plots. Statistical comparisons at the group level were performed using a Wilcoxon 

signed-rank test. Significance is indicated as follows: * = p<0.05, ** = p<0.01, *** = p<0.001. 
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3.4 Discussion 

The AC-REG method has been developed for attenuation of tACS artifacts in EEG signals. Due to its 

low-computational complexity, it may be effectively used in noninvasive closed-loop neuromodulation 

experiments. AC-REG uses an adaptive spatial filter based on PCA to dynamically estimate and sub-tract 

the tACS signal from EEG recordings. It out-performs alternative methods, both on simulated and real 

data. The low computation time may permit its use in online modality not only with low-density but also 

high-density EEG recordings. Importantly, the compatibility with high-density EEG may enable the use 

of AC-REG for source-level closed-loop neuromodulation (Guarnieri, Zhao, et al. 2020). 

 

3.4.1 Primary features of AC-REG 

The AC-REG method relies on the use of PCA, a data decomposition technique ensuring low 

computation times required for noninvasive closed-loop experiments. Specifically, the identification of 

principal components temporally coherent with tACS signals permits to obtain a spatial filter to be used 

for artifact removal. By using a data buffer, the spatial filter is dynamically updated such that artifact-

free EEG data can be obtained in an online manner. A possible caveat of our approach is that the data 

buffer should contain enough samples for an effective PCA decomposition, hence for an accurate 

definition of the spatial filter. On the other hand, it should be considered that computation times need 

to be kept as low as possible to enable the use of AC-REG in closed-loop neuromodulation experiments. 

Our results suggest that AC-REG can be used for the simultaneous processing of up to 256 EEG 

recordings, with low computation time. This is essential for the development of source-level closed-loop 

neuromodulation systems, in which neural activity in the brain is estimated and used for tuning brain 

stimulation parameters (Guarnieri, Zhao, et al. 2020). 

 

3.4.2 Analysis of method performance 

To assess the performance of the AC-REG, we first relied on a simulated dataset containing a mix of 

neural signals and tACS artifacts. In this manner, we could define the buffer size of AC-REG yielding a 

reasonable compromise between accuracy and computation time (figures 3.3–3.4). With known ground 

truth, we could also examine the effectiveness of AC-REG in tACS artifact removal with alternative 

approaches, such as SupMA and HeM, under controlled conditions. We found that AC-REG outperformed 

the other methods for all the noise levels and the stimulation frequencies that were tested (figure 3.5). 

Notably, AC-REG permitted the simultaneous processing of up to 256 channels (figure 3.4) with 

relatively low processing time, theoretically compatible with its use in quasi real-time applications. It 

should be considered that the processing of all EEG channels simultaneously can enable source 

localization in real-time (Guarnieri, Zhao, et al. 2020). 

The analysis conducted using AC-REG, SupMA and HeM on real EEG data largely confirmed the 

findings from simulated data, and provided further insights in the capability of the methods for 

preserving true neural oscillations. The analysis of the artifact-corrected EEG data suggested that AC-
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REG successfully removes the sinusoidal signal that completely synchronized with the stimulation, 

possibly preserving neural signals entrained by the stimulation itself (figures 3.6–3.7). Notably, other 

sources of EEG activity were also preserved by AC-REG. For instance, we were able to reconstruct 

components associated with eye blinks and the occipital alpha rhythm (figure 3.8). In this regard, SupMA 

seemed to be more accurate than AC-REG in preserving eyeblinks, whereas no significant differences in 

reconstruction performance were found between AC-REG and SupMA for the occipital alpha rhythm 

(figure 3.9). To evaluate the performance of AC-REG, SupMA and HeM on real data, we also compared 

the spectral properties of EEG signals in tACS-on and tACS-off conditions. It should be noted that 

modulations of neural activity and connectivity during and following tACS have been reported 

(Bächinger et al. 2017; Neuling et al. 2013; Vosskuhl et al. 2016). Considering the relatively short 

duration of the stimulation and the strength of the injected current, any assessment of stimulation-

induced neural changes needs to be conducted with caution (Vöröslakos et al. 2018). On the other hand 

in this study, we focused on gross alterations in power spectrum density introduced by artifact removal 

methods. Our results suggested that AC-REG could largely preserve EEG signals for frequencies below 

the one of the stimulation itself (figures 3.10–3.11). We also found that, unlike AC-REG and HeM, SupMA 

strongly suppressed all the harmonics associated with the tACS artifact, inducing distortions in the 

frequency content of neural signals. The differences between AC-REG and HeM were less marked, 

although still significant. Notably, the use of HeM yielded an overall reduction of power at all frequencies 

compared to AC-REG and SupMA, in particular at around 10 Hz. 

 

3.4.3 Limitations and future work 

In this study, we introduced AC-REG and validated it using both simulated and real EEG data. 

Simulated EEG data were created by adding sinusoidal signals generated using the ARtACS toolbox to 

artifact-cleaned EEG signals. Temporal distortions introduced by changes in electrode impedance 

occurring during data acquisition were modelled using an Ornstein–Uhlenbeck process. However, the 

possible impact of time-sample jitters (Barban et al. 2019) and biological artifacts (Noury and Siegel 

2017) was not taken into account. The validation on real data was conducted by testing the 

correspondence between the PSDs with tACS on and off, respectively, in resting state condition. This 

approach can be justified by the fact that the stimulation induces entrainment primarily of brain 

oscillations at the frequency of the tACS and its harmonics (Adaikkan and Tsai 2020; Antal and 

Herrmann 2016). To ensure the generalizability of our results, it would be important to extend the 

validation of AC-REG on real EEG data collected with other experimental protocols. In particular, event-

related protocols may be used to test whether the reconstruction of neural activity at the single-trial 

level is unaffected by residual noise (Giroldini et al. 2016; Helfrich, Schneider, et al. 2014; Mantini et al. 

2007). Another important aspect to consider is that real EEG data were collected during tACS at 20 Hz. 

It is therefore worth investigating how our findings might generalize to other stimulation frequencies, 
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also considering that non-linear distortions can be more easily observed at higher stimulation 

frequencies (Noury et al. 2016). 

AC-REG was introduced and validated using methods typically used for offline analyses, such as 

SupMA and HeM. The comparison may be extended in future studies to other methods that have been 

proposed to attenuate high-voltage simulation artifacts mixed in EEG recordings, as for instance 

quadrature-regression independent vector analysis (q-IVA) (S. Lee et al. 2019). This method has been 

so far validated only on EEG data collected during galvanic vestibular stimulation, but it could be readily 

used to attenuate artifacts generated by tACS. AC-REG may be particularly valuable for applications in 

which EEG recordings need to be processed simultaneously and in real-time, as for instance in source-

based closed-loop experiments (Bergmann et al. 2016). It should be noted, however, that the specific 

multi-channel implementation of AC-REG make the method potentially sensitive to the presence of bad 

channels. In this regard, specific solutions for enabling the effective use of AC-REG in online modality 

will need to be addressed in future studies. It would be important to test the effectiveness and validity 

of AC-REG in a noninvasive closed-loop neuromodulation experiment. As such, EEG data will have to be 

processed in real-time for the attenuation of the tACS artifact (Kohli et al. 2017; Schlegelmilch et al. 

2013), as well as biological signals (Guarnieri et al. 2018). The readout of EEG activity will then be used 

to adjust phase and intensity of the stimulation (Bergmann et al. 2016). 

 

3.5 Conclusions 

We have introduced AC-REG, a method for the attenuation of tACS artifacts removal that is suitable 

not only for low-density but also high-density EEG recordings. The method requires the use of PCA on 

short time windows for the dynamic update of a spatial filter. This ensures low computation times, 

potentially enabling its use in real-time during EEG experiments. Just as importantly, AC-REG 

outperforms other methods for tACS artifact removal, which normally operate in an offline modality. 

We argue that AC-REG may enable further development of closed-loop neuromodulation techniques, 

with potential applications both in healthy individuals and in neurological patients. 
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4 RT-NET: real-time source reconstruction of neural activity using 

high-density EEG 

 

Guarnieri R, Zhao M, Taberna GA, Ganzetti M, Swinnen SP, Mantini D. RT-NET: real-time reconstruction 

of neural activity using high-density electroencephalography. Neuroinformatics. 2020 Jul 28. doi: 

10.1007/s12021-020-09479-3. Epub ahead of print. 

 

Abstract 

High-density electroencephalography (hdEEG) has been successfully used for large-scale investigations 

of neural activity in the healthy and diseased human brain. Because of their high computational demand, 

analyses of source-projected hdEEG data are typically performed offline. Here, we present a real-time 

noninvasive electrophysiology toolbox, RT-NET, which has been specifically developed for online 

reconstruction of neural activity using hdEEG. RT-NET relies on the Lab Streaming Layer for acquiring 

raw data from a large number of EEG amplifiers and for streaming the processed data to external 

applications. RT-NET estimates a spatial filter for artifact removal and source activity reconstruction 

using a calibration dataset. This spatial filter is then applied to the hdEEG data as they are acquired, 

thereby ensuring low latencies and computation times. Overall, our analyses show that RT-NET can 

estimate real-time neural activity with performance comparable to offline analysis methods. It may 

therefore enable the development of novel brain–computer interface applications such as source-based 

neurofeedback. 

 

4.1 Introduction 

Functional magnetic resonance imaging (fMRI) is currently the primary research tool for 

investigating human brain function (Fox and Raichle 2007; Ganzetti and Mantini 2013). However, fMRI 

only provides an indirect measure of neural activity mediated by a slow hemodynamic response. 

Electroencephalography (EEG) is a brain imaging technique alternative to fMRI. EEG measures changes 

in electric potentials over the scalp, which are generated by neuronal currents flowing through the head 

(Speckmann et al. 2012). Notably, source activity reconstruction using EEG requires realistic bio-

physical models that incorporate the exact positions of EEG electrodes as well as the anatomical 

properties of an individual’s head (Brett et al. 2002). Estimation of brain sources from EEG recordings 

(Ganzetti and Mantini 2013; Pfurtscheller and Lopes Da Silva 1999) is typically referred to as the inverse 

problem. On the other hand, the assessment of EEG recordings from brain sources is referred to as the 

forward problem (Hallez et al. 2007). 

To date, several software solutions have been made available to the neuroscientific community for 

offline analysis of EEG recordings, including EEGLab (Arnaud Delorme and Makeig 2004), Fieldtrip 

(Oostenveld et al. 2011), Brainstorm (Tadel et al. 2011), SPM (Litvak et al. 2011) and MNE (Gramfort et 
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al. 2014). Recently, our research group proposed an offline analysis workflow specifically suited for 

high-density (hdEEG) data, which integrates several tools from existing software with original solutions 

for data preprocessing, realistic head model generation and source localization. So far, our analysis 

workflow for hdEEG has been used to reconstruct large-scale brain networks (Liu et al. 2017, 2018) and 

to examine functional connectivity between network nodes (Samogin et al. 2019). Such an application 

does not require online data processing, which is instead needed for brain–computer interface (BCI) 

studies. Real-time reconstructions of source-space EEG activity could enhance the effectiveness of BCI 

applications, such as neurofeedback (Boe et al. 2014; van Lutterveld et al. 2017). MNE Scan 

(https://www.mne-cpp.org/index.php/category/development/mne-scan) and NeuroPype 

(https://www.neuropype.io) have been recently introduced as new software packages for online 

analysis of EEG data. They offer several tools for real-time EEG data processing and feature extraction, 

and also incorporate source localization tools. They are not optimized for hdEEG systems as they rely 

on a template head model that does not consider electrode positions collected during the same 

experimental session (Van Hoey et al. 2000). 

To address the limitation described above, we introduce a novel software package for Real-Time 

Noninvasive Electrophysiology (RT-NET), which is distributed under a GNU General Public License 

(GPL). RT-NET permits online neural activity reconstruction from hdEEG recordings. The user can 

access the different analysis steps through a graphical user interface (GUI). Unlike MNE Scan and 

NeuroPype, RT-NET permits the generation and use of a realistic head model based on electrode 

positions collected just before EEG recordings, leading to an enhanced precision in neural activity re-

construction. To ensure very short processing times, it relies on an adaptive spatial filter for artifact 

attenuation as well as for source localization. In the present study, we assessed the effectiveness and 

validity of RT-NET on hdEEG data collected during hand movements. Specifically, we compared the 

neural activity reconstructed online with that estimated by an offline analysis workflow. 

 

4.2 Methods 

RT-NET was written using the MATLAB (The Mathworks, Natick, MA, US) programming 

environment. Therefore, existing libraries and functions for EEG data analysis such as EEGLab, Fieldtrip, 

Brainstorm, SPM and Lab Streaming Layer (LSL) can be easily integrated. The source code and the 

software manual can be downloaded using the following links: https://www.nitrc.org/projects/rtnet or 

https://github.com/robertoguarnieri/rtnet. Being the source code available, software customization or 

extension is possible. The documentation specifies the software requirements and guides the user 

through the whole processing pipeline. RT-NET has been specifically developed for optimal integration 

with the stages of a classical hdEEG experiment (Liu et al. 2017; Michel and Brunet 2019), such as the 

collection of a magnetic resonance (MR) image, of electrode positions, as well as of hdEEG data (figure 

4.1). 

 

https://www.mne-cpp.org/index.php/category/development/mne-scan
https://www.neuropype.io/
https://www.nitrc.org/projects/rtnet
https://github.com/robertoguarnieri/rtnet
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Figure 4.1. RT-NET modules and their execution during a typical hdEEG experimental session. Prior to the hdEEG 

session, the anatomical MR image is segmented into three tissue classes. During hdEEG, the participant wears the hdEEG cap 

and the electrode positions over the scalp are recorded. After the co-registration of the complete set of electrode positions over 

the MR image, the leadfield matrix is generated. A calibration recording is acquired in the participant. This recording is used to 

estimate an artifact attenuation filter, 𝐹0, which reduces noise and non-neuronal signals, and a source localization filter, 𝐾, for 

reconstructing neural activity in the source-space. Finally, during the real-time EEG experiment, the spatial filter is applied to 

the hdEEG data, generating the reconstruction of active brain sources in an online modality. 

 

4.2.1 Toolbox description 

As already mentioned, the GUI of RT-NET gives access to all the functions required for online brain 

activity reconstruction. Therefore, there is no need for the user to have programming experience. The 

GUI offers indeed a simplified, structured and user-friendly tool (figure 4.2). 

 

 

Figure 4.2. RT-NET graphical user interface. Study Overview is the first panel of the toolbox, in which it is possible to load 

the output folder of the study and visualize the information. After that, the user can load the structural image of the subject’s 

head, previously acquired, and start the Head Segmentation. The Leadfield creation step starts when the file containing the 

electrode positions over the subject’s scalp are loaded. For the Spatial Filter Creation step, the user needs to acquire a hdEEG 

calibration recording. A filter for real-time neural reconstruction is initialized using this recording. Finally, the user can enable 

and customize the online reconstruction of neural activity by using the Real-Time panel. 
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The GUI is organized in five different modules: Study overview, Head segmentation, Leadfield matrix 

creation, Spatial filter creation and Real-time activity estimation. Each time an analysis step is completed 

through a module of RT-NET, a new panel is activated. First, in the Study Overview window, the user, 

after the initialization of a new project, can choose the output folder and the type of EEG system that 

will be used. Before the EEG session, an anatomical image of the participant’s head needs to be acquired 

using MR imaging, or alternatively, a template included in the software’s directory can be used. Through 

the Head segmentation module, the structural MR image is segmented into different tissue classes. Next, 

the EEG cap is positioned over the participant’s scalp and the electrode positions are recorded. After the 

co-registration of the complete set of electrode positions over the MR image and the generation of a 

realistic volume conductor model, the Leadfield matrix creation tool calculates the linear relationships 

between neural currents in the brain (sources) and electric potentials measured at the electrode level. 

The Spatial filter creation module can be initialized through the acquisition of an EEG calibration 

recording. By using this recording, a spatial filter is produced, which is capable of attenuating artifactual 

signals in the hdEEG data and estimating neural activity in the brain. With the Real-time activity 

estimation module, the spatial filter is applied to the EEG data, supporting the online reconstruction of 

brain sources. A detailed description of RT-NET modules is provided here below. 

 

4.2.1.1 Initialization and Study Overview 

When the GUI is launched, the user is required to initialize anew project through the Study Overview 

module. This permits the user to choose the output folder for saving the data and the EEG system that 

will be used for the experiment. The EEG systems that are recognized by RT-NET are those compatible 

with LSL (https://github.com/sccn/labstreaminglayer), an open-source software solution for 

communicating with external devices in real-time and with millisecond accuracy. It should be noted that, 

although LSL is platform-independent, it is more easily accessible in its Windows implementation. This 

may also result in an easier use of RT-NET with the Windows operating system. After defining the input 

required by the Study Overview module, it is possible to start the Head Segmentation module. 

 

4.2.1.2 Head segmentation 

The second module of RT-NET, Head Segmentation, is designed to automatically perform the 

segmentation of the MR image of the subject’s head. The estimation of EEG signals from the brain 

sources (also known as the forward solution) requires a realistic head-volume conductor model to be 

generated from an individual’s MR image, and the correct electrode locations to be defined with respect 

to the conductor model. Therefore, the first processing stage of our workflow involves the segmentation 

of the MR image into three different tissue classes: brain, skull and skin (Gramfort et al. 2010). This is 

done using the unified segmentation algorithm implemented in SPM12 (Ashburner and Friston 2005) 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The choice of segmenting the brain in three 

https://github.com/sccn/labstreaminglayer
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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tissue classes is due to the need of balancing realistic modelling and computational efficiency (Fuchs et 

al. 2002). 

The tissue probability maps produced by SPM12 are then binarized using a winner-takes-all 

approach (Ashburner and Friston 2005). Finally, the three tissue compartments in the volume space are 

processed with Fieldtrip (http://www.fieldtriptoolbox.org) to build hexahedral meshes. 

 

4.2.1.3 Leadfield matrix creation 

Once the head segmentation is performed, the Leadfield matrix creation window is activated. First, 

the electrode positions file, previously acquired, needs to be loaded and then the computations can start. 

This preprocessing module allows the generation of the leadfield matrix, 𝐿, containing the scalp 

potentials putatively measured for each possible configuration of neural source position and 

orientation. Specifically, the scalp potential 𝜃, can be expressed as follows (Pascual-Marqui et al. 2011): 

 

𝜃(𝑡) = 𝐿 ∙ 𝐽(𝑡)                     (4.1) 

 

where, if 𝑛𝐸  is the number of electrodes and 𝑛𝑉  the number of voxels, then the leadfield matrix, 𝐿, has 

dimension [𝑛𝐸 ∙ 𝑛𝑉]; the current density 𝐽(𝑡) has dimension [3𝑛𝑉 ∙ 1]; and 𝜃(𝑡) has dimension [𝑛𝐸 ∙ 1]. 

The first step for leadfield matrix creation is the co-registration of the electrode positions in the same 

space, defined by the MR image. To this end, a rigid-body transformation matching the landmarks in the 

electrode space to the corresponding ones in the MR space is computed and applied to the electrode 

positions. These are then aligned to the head surface extracted from the individual MR image using the 

iterative closest point algorithm (Besl and McKay 1992) implemented in SPM12. Finally, each electrode 

is orthogonally projected onto the head surface. 

The second step is the creation of the volume conductor model. The meshes derived from MR images 

for the brain, skull and skin compartments are used, along with the conductivity values defined for each 

of them. These are set by default to 0.33, 0.01 and 0.43, respectively, in line with the relevant literature 

(Haueisen et al. 1997; Holdefer et al. 2006), but can also be modified by the user if needed. 

The electrode positions and the volume conduction model are combined to create the leadfield 

matrix by numerical simulations, which are conducted using the symmetric boundary element method 

(sBEM) implemented in OpenMEEG (Gramfort et al. 2010, 2011). The leadfield matrix, initially 

computed for each mesh element spanning the gray matter, is then resampled in the volume space, 

defined as a regular volumetric grid with 6-mm resolution. 

 

4.2.1.4 Spatial filter creation 

The Spatial filter creation module permits the generation, from a hdEEG calibration recording, of a 

spatial filter that will subsequently be used for online artifact reduction and source localization. First, 

the user needs to choose the length of the calibration recording (in minutes), the sampling frequency 

http://www.fieldtriptoolbox.org/
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(in Hz), the frequency band of interest (in Hz), the EEG channels, the data decomposition technique, the 

auxiliary electrical channels (i.e. electrooculogram or electromyogram) to be used for artifact detection, 

the source localization method and its parameters. Next, the calibration recording can be acquired by 

pressing the corresponding button. 

First of all, we detect channels with low signal quality and label them as ‘bad channels’. To this end, 

we use an automated procedure that combines information from two different parameters. The first 

parameter is the minimum Pearson correlation of the signal in the frequency band of interest selected 

by the user, against all the signals from the other channels. The second parameter is the noise variance 

in the band 200-250 Hz, where the contribution of the EEG signal can be considered negligible. We 

define the list of bad channels 𝑏, including those channels for which at least one of the two channel-

specific parameters are outliers as compared to the total distribution of values. To ensure robustness of 

the detection, the threshold to define an outlier is set to 𝑚 + 4𝑠, where 𝑚 is the average value and 𝑠 is 

the standard deviation. Subsequently, the list of neighboring channels is defined using the FieldTrip 

toolbox (http://www.fieldtriptoolbox.org). A channel adjacency matrix 𝐷 with dimension [𝑛𝐸 · 𝑛𝐸], is 

created, with each element 𝑑𝑖𝑗 equal to 1 if channels 𝑖 and 𝑗 are adjacent (and not labelled as ‘bad 

channels’), and equal to 0 otherwise. A bad-channel correction matrix 𝐶, with dimension [𝑛𝐸 · 𝑛𝐸], is then 

created: 

 

𝑐𝑖𝑗 = {

𝑑𝑖𝑗/ ∑ 𝑑𝑖𝑗𝑗    𝑖𝑓 𝑖 ∈ 𝑏

1   𝑖𝑓 𝑖 ∉ 𝑏  𝑎𝑛𝑑 𝑖 = 𝑗
0   𝑖𝑓 𝑖 ∉ 𝑏  𝑎𝑛𝑑 𝑖 ≠ 𝑗

.                   (4.2) 

 

Next, we generate a data re-referencing matrix 𝑅 to perform average re-referencing (Liu et al. 2015). 

The matrix 𝑅, with dimension [𝑛𝐸 · 𝑛𝐸], is defined as follows: 

 

𝑟𝑖𝑗 = {
(𝑛𝐸 − 1)/𝑛𝐸   𝑖𝑓 𝑖 =  𝑗

−
1

𝑛𝐸
  𝑖𝑓 𝑖 ≠ 𝑗

.                   (4.3) 

 

We apply the spatial filters described by matrices 𝐶 and 𝑅 to the raw EEG data 𝑋(𝑡), so to obtain a 

new EEG dataset 𝑋𝑞(𝑡), in which all signals are in average reference and those from bad channels are 

repaired: 

 

𝑋𝑞(𝑡) = 𝐶 ∙ 𝑅 ∙ 𝑋(𝑡).                     (4.4) 

 

Using EEGLab (https://sccn.ucsd.edu/eeglab), we band-pass filter the resulting EEG data in the 

frequency range selected by the user, so to obtain the new EEG dataset 𝑋̃𝑞(𝑡). Then, we apply 

independent component analysis (ICA) (Mantini et al. 2008) using a fast fixed-point ICA (FastICA) 

algorithm (http://research.ics.aalto.fi/ica/fastica) in deflation approach and with hyperbolic tangent as 

http://www.fieldtriptoolbox.org/
https://sccn.ucsd.edu/eeglab
http://research.ics.aalto.fi/ica/fastica
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contrast function (Hyvärinen 1999). Other ICA algorithms are implemented in RT-NET, and can be 

alternatively used: FastICA in symmetric approach, Infomax (T.-W. Lee et al. 1999) and JADE (Cardoso 

1999). The ICA model can be described as: 

 

𝑋̃𝑞(𝑡) = 𝐴 ∙ 𝑆(𝑡)                                    (4.5) 

 

where 𝑋̃𝑞 = [𝑋1(𝑡), … , 𝑋𝑛𝐸
(𝑡)] is the matrix of 𝑛𝐸  observed signals; 𝑆(𝑡) = [𝑆1(𝑡), … , 𝑆𝑛𝑆

(𝑡)] is the 

matrix of 𝑛𝑆 underlying signals, or independent components (ICs); 𝐴, with dimension [𝑛𝐸 ∙ 𝑛𝑆], denotes 

the mixing matrix (Stone 2004). The ICs can be retrieved by determining the unmixing matrix 𝑊, with 

dimension [𝑛𝑆 ∙ 𝑛𝐸], such that:  

 

𝑆(𝑡) = 𝑊 ∙ 𝑋̃𝑞(𝑡).                                   (4.6) 

 

After that FastICA has been run on the EEG calibration dataset 𝑋̃𝑞(𝑡), the ICs associated with the 

artifacts (or artifactual ICs) are automatically identified. This can be done either using ICLabel 

(https://sccn.ucsd.edu/wiki/ICLabel) (Pion-Tonachini et al. 2019), or the IC artifact detection solution 

implemented in Liu et al. (2017). The latter, which is the default solution in RT-NET, relies on the 

following parameters: 1) correlation between the power of the IC with vertical electrooculogram 

(vEOG), horizontal electrooculogram (hEOG) and electromyogram (EMG); 2) the coefficient of 

determination obtained by fitting the IC power spectrum with a 1/𝑓 function; 3) the kurtosis of the IC. 

An IC is classified as artifactual if at least one of the above parameters is above its specific threshold, set 

in accordance with previous studies (De Pasquale et al. 2010; Liu et al. 2017; Mantini et al. 2009). The 

unmixing matrix 𝑊𝐴 for the artifactual components 𝑆𝐴(𝑡) is obtained by selecting the corresponding 

rows of the matrix 𝑊, such that: 

 

𝑆𝐴(𝑡) = 𝑊𝐴 ∙ 𝑋(𝑡).                       (4.7) 

 

An artifact attenuation filter 𝐹0, with dimension [𝑛𝐸 ∙ 𝑛𝐸], is initialized as: 

 

𝐹0 = 𝐼 − 𝑋 ∙ 𝑆𝐴
𝑇 ∙ (𝑆𝐴 ∙ 𝑆𝐴

𝑇)−1 ∙ 𝑊𝐴                      (4.8) 

 

where 𝐼 is an identity matrix with dimension [𝑛𝐸 ∙ 𝑛𝐸]. 

The artifact-free calibration dataset 𝑋̃𝑝(𝑡) is generated by applying the initial artifact attenuation 

filter 𝐹0 to 𝑋̃𝑞(𝑡), as follows: 

 

𝑋̃𝑝(𝑡) = 𝐹0 ∙ 𝑋̃𝑞(𝑡).                     (4.9) 

  

https://sccn.ucsd.edu/wiki/ICLabel
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It should be noted that the artifact attenuation filter 𝐹(𝑡) is dynamically defined during the 

acquisition of real hdEEG data, following the approach described in Guarnieri et al. (2018). This 

approach is explained in detail in the next section, dedicated to online data analysis. 

Using the artifact-free calibration dataset 𝑋̃𝑝(𝑡), a source localization filter 𝐾, with dimension 

[3𝑛𝑉 ∙ 𝑛𝐸], is also created. This specific filter depends on the selected source localization algorithm. RT-

NET integrates the exact low-resolution brain electromagnetic tomography (eLORETA) algorithm 

(Pascual-Marqui et al. 2011) as default solution. In this case, the source localization filter 𝐾 is calculated 

using the following formula: 

 

𝐾 = 𝐺−1 ∙ 𝐿𝑇 ∙ (𝐿 ∙ 𝐺−1 ∙ 𝐿𝑇 + 𝛼𝐻)+                (4.10) 

 

where 𝐿 is the leadfield matrix, 𝐺 is a symmetric positive definite weight matrix with dimension 

[3𝑛𝑉 ∙ 3𝑛𝑉], 𝐻 is the noise covariance matrix estimated from 𝑋̃𝑝(𝑡), 𝛼 > 0 is the Tikhonov regularization 

parameter and + denotes the Moore–Penrose pseudoinverse. The regularization parameter 𝛼 is set by 

default to 0.05 and can be changed by the user if needed. Other source localization algorithms 

implemented in RT-NET are the standardized low resolution brain electromagnetic tomography 

(sLORETA) algorithm (Pascual-Marqui 2002), the minimum norm estimates (MNE) (Hämäläinen and 

Ilmoniemi 1994), its weighted version wMNE (Lin et al. 2006) and the linearly constrained minimum 

variance beamformer (LCMV) (Van Veen et al. 1997). All the source localization methods above are 

implemented in volumetric space. In particular, eLORETA, LORETA, MNE and LCMV are those integrated 

in FieldTrip (http://www.fieldtriptoolbox.org), whereas sLORETA and wMNE are those in Brainstorm 

(https://neuroimage.usc.edu/brainstorm). 

 

4.2.1.5 Real-time activity estimation 

The Real-time activity estimation module allows the reconstruction of ongoing neural activity for all 

the voxels in the gray matter or, alternatively for selected regions of interest (ROIs), by using the spatial 

filters created using the calibration recording. The parameters that need to be defined before real-time 

activity estimation are: buffer length (in ms), total duration of the experiment (in minutes), sampling 

frequency and the frequency band of interest for neural activity estimation (both in Hz). Furthermore, 

it is necessary either to select the ROIs for which neural activity needs to be extracted, or to enable 

reconstruction in each voxel of the gray matter for real-time mapping of neural activity. 

Within the real-time activity estimation module, EEG data are stored in a buffer with 𝑛𝑇 samples, 

determined based on the sampling frequency and the buffer length set by the user. The EEG data in the 

buffer 𝑋(𝜏) is filtered in the frequency band of interest, thereby obtaining 𝑋̃(𝜏). Next, the bad-channel 

correction matrix 𝐶 and the re-referencing matrix 𝑅 are applied 

 

𝑋̃𝑞(𝜏) = 𝐶 ∙ 𝑅 ∙ 𝑋̃(𝜏).                 (4.11) 

http://www.fieldtriptoolbox.org/
https://neuroimage.usc.edu/brainstorm)
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Starting from the resulting dataset 𝑋̃𝑞(𝜏), we estimate artifactual signals that are present in the 

buffer, using the matrix 𝑊𝐴 obtained from the calibration dataset: 

 

𝑆𝐴(𝜏) = 𝑊𝐴 ∙ 𝑋̃𝑞(𝜏).                  (4.12) 

 

At this point, linear regression analysis is used to estimate the weight matrix 𝐵𝐴 associated with the 

artifactual signals in the buffer. In particular, the following equation is considered to account for the 

non-stationarity of the artifactual contribution in the EEG signals: 

 

𝑋̃𝑞(𝜏) = 𝐵𝐴 ∙ 𝑆𝐴(𝜏) + 𝜀(𝜏)                 (4.13)

                   

where 𝜀(𝜏) is the residual of 𝑋(𝜏) that cannot be explained by a linear combination of 𝑆𝐴(𝜏). Using the 

method proposed in Guarnieri et al. (2018), an adaptive spatial filter 𝐹(𝜏) is built to dynamically obtain 

artifact-free signals 𝑋̃𝑝(𝜏), such that: 

 

𝑋̃𝑝(𝜏) = 𝐹(𝜏) ∙ 𝑋̃𝑞(𝜏)                 (4.14) 

 

where 𝐹(𝜏) is defined as follows: 

 

𝐹(𝜏) = 𝐼 − 𝑋(𝜏) ∙ 𝑆𝐴
𝑇(𝜏) ∙ (𝑆𝐴(𝜏) ∙ 𝑆𝐴

𝑇(𝜏))
−1

∙ 𝑊𝐴.              (4.15) 

 

Considering that the buffer is dynamically updated at the same frequency as the sampling rate, the 

latest sample in the artifact-cleaned EEG dataset 𝑋̃𝑝(𝜏) is continuously extracted to estimate real-time 

neural activity in the sensor space 𝑌(𝑡). 

When the reconstruction of neural activity from ROIs is selected, the primary voxel indices 

corresponding to the ROIs are identified and the source localization matrix 𝐾 is downsampled 

accordingly. In this case, the dimension of matrix 𝐾 becomes [3𝑛𝑅 ∙ 𝑛𝐸], where 𝑛𝑅  is the number of ROIs, 

and the neural signals are separately reconstructed for the three directions. The source localization filter 

𝐾 is then applied to 𝑌(𝑡), such that real-time neural activity in the sourcespace 𝐵(𝑡) is also obtained: 

 

𝐵(𝑡) = 𝐾 ∙ 𝑌(𝑡)                  (4.16) 

 

By default, the artifact-free signals in the sensor space 𝑌(𝑡), and in the source space 𝐵(𝑡), are 

forwarded to LSL for real-time visualization or control of other devices, such as a brain stimulation 

system for closed-loop applications (Boe et al. 2014; Semprini et al. 2018). These reconstructed neural 

signals are also saved in the output folder, to be analyzed offline. 



  66 

4.2.2 Validation of RT-NET 

We assessed the performance of the RT-NET toolbox using real hdEEG data. We compared the signals 

processed with RT-NET against those obtained with our offline analysis workflow (Liu et al. 2017). 

Specifically, we focused on the modulations of neural activity induced by movements of the right hand 

(Weiss et al. 2013). 

 

4.2.2.1 Data collection 

Data used in this study were obtained from hdEEG recordings collected in 10 healthy right-handed 

participants (five men and five women, age range 23–39 years). All participants reported normal or 

corrected-to-normal vision and had no psychiatric or neurological history. They gave written informed 

consent to the experimental procedures, which were approved by the Institutional Ethics Committee of 

KU Leuven. 

In a first experimental session, a structural T1-weighted MR image of the participant’s head was 

collected with a 3 T Philips Achieva MR scanner (Philips Medical Systems, Best, Netherlands) using a 

magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE) sequence (Mugler and Brookeman 

1991). The scanning parameters were TR = 9.6 ms, TE = 4.6 ms, 160 coronal slices, 250 × 250 matrix, 

and voxel size 0.98 × 0.98 × 1.2 mm3. The MR image was used during the EEG experimental session to 

generate the volume conduction model for source localization. 

In a second experimental session, electrode positions were first acquired using the Xensor system 

(ANT Neuro, Enschede, Netherlands). Subsequently, two hdEEG datasets were collected: the first one, 

which was used for spatial filter creation using RT-NET, with the participant being at rest for 4 min; the 

second one with them performing right-hand movements for 6 min. hdEEG signals were sampled at 1 

kHz using the 128-channel actiCHamp system (Brain Products GmbH, Gilching, Germany). The electrode 

at vertex (Cz in the 10/20 international system) was used as the physical reference. In addition, we also 

recorded horizontal and vertical EOG (hEOG and vEOG) as well as three electromyography (EMG) 

signals associated with the masseter (right), trapezius (right), splenius capitis (right) and carpi radialis 

longus (right) muscles. The first three EMG signals were used for artifact removal, whereas the fourth 

EMG signal was used to detect hand movement onsets. For the resting-state part of the EEG session, 

participants were asked to fixate on a black cross in the center of a white screen (eyes-open fixation). In 

the motor-related part of the EEG session, participants were asked to perform right wrist 

flections/extensions, alternating 6 s of self-paced uninterrupted movements with 6 s of eyes-open 

fixation. 

 

4.2.2.2 Analysis of RT-NET performance 

A crucial metric to assess the performance of the toolbox is the computational time. This was 

quantified using a computer with a 2.5-GHz Intel Core i7 processor and 16 GB RAM, running Windows 

10. We quantified the time required for the Head segmentation, Leadfield matrix creation and Spatial 
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filter creation modules of RT-NET. We also evaluated the computational delay during online hdEEG 

acquisition and processing. This analysis was conducted using a buffer length of 500 ms, as in Guarnieri 

et al. (2018), band-pass frequency between 1 and 50 Hz, and sampling frequency equal to 100 Hz. 

The neural signals reconstructed in real-time using the Real-time reconstruction module were used 

to produce spatial maps reflecting event-related synchronization/desynchronization (ERS/ERD) maps 

across trials. ERD/ERS can be expressed using the following formula: 

 

𝐸𝑅𝐷(𝑓, 𝑡) =
𝑃(𝑓,𝑡)−𝑃𝑏(𝑓)

𝑃𝑏(𝑓)
∙ 100%                 (4.17) 

 

where 𝑃(𝑓, 𝑡) is the power in a given frequency band and time interval, and 𝑃𝑏(𝑓) is the average power 

over time in a baseline period (Pfurtscheller and Lopes Da Silva 1999). ERD maps were calculated for 

the beta band (13–30 Hz) in the period [0 s, +2 s] with respect to movement onset. The beta band was 

chosen, as it is typically implicated in motor execution (Pfurtscheller and Lopes Da Silva 1999). The 

baseline period [−1 s, 0 s] was defined with respect to the same onset. The ERD maps were visualized in 

real-time using a 3D cortical model with 3500 vertices, which was generated using FieldTrip 

(Oostenveld et al. 2011). The correlation between ERD maps was calculated offline after the experiment, 

to quantify the reliability of the results across trials. 

After verifying the feasibility of using RT-NET in a real-time hdEEG experiment, we also quantified 

the accuracy of source localization. To this end, we used an offline analysis as a benchmark. The offline 

analysis workflow was the same applied to the calibration EEG dataset, and included bad-channel 

correction, re-referencing, band-pass filtering, ICA-based artifact removal, head modelling using sBEM 

and source localization using eLORETA (Liu et al. 2017, 2018). The reliability of task-related 

modulations in neural activity was assessed using the average ERD map across trials, again for the beta 

band. We also conducted an ERD analysis for selected ROIs, whose MNI coordinates were chosen on the 

basis of relevant fMRI studies (Debaere et al. 2003, 2004; Gorgolewski et al. 2013; Lv et al. 2013; Rémy 

et al. 2008; Weiss et al. 2013). The ROIs were the left primary motor cortex (M1; MNI coordinates 

[−38,−20, 58]), the supplementary motor area (SMA; [0,−4, 56]), the left ventral premotor cortex (VPMC; 

[−30,−10, 58]), and the left superior temporal gyrus (STG; [−58,−32, 6]). The latter, whose activity is 

expected to be minimally modulated by motor task performance, was used as the control ROI. For each 

ROI, the MNI coordinates were converted to individual space. Spherical ROIs with a radius of 6 mm were 

then created (Marrelec and Fransson 2011). Neural signals from the ROIs were extracted, and first used 

to assess the presence of residual artifacts in the source-localized data. This was quantified using the 

absolute temporal correlation between reconstructed neural signals and simultaneously collected EOG 

and EMG signals. By using temporal correlations, we also compared ERD time-courses obtained using 

RT-NET and the offline analysis workflow, either in the beta band (13–30 Hz) and in the full band (1–50 

Hz). This permitted us to estimate the presence of motor-related activity in the reconstructed neural 

signals. A Wilcoxon signed rank test was carried out to assess significant differences. 
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4.3 Results 

4.3.1 Computation time for RT-NET analysis 

Computational efficiency is a key feature of RT-NET, which was specifically designed to support real-

time processing of hdEEG recordings, so we quantified processing times for the different analysis stages. 

Average processing times for Head segmentation, Leadfield matrix creation and Spatial filter creation 

were 1938 s, 302 s and 735 s, respectively (figure 4.3). The first of these three modules should be used 

before the real-time EEG acquisition can start. The time required for the second and third modules 

should be kept as short as possible. Notably, the processing times we obtained for each of these two 

modules permit their execution during the EEG experimental session, and before the actual experiment.  

 

 

Figure 4.3. Computational time of RT-NET for the Head segmentation, Leadfield matrix creation and Spatial filter 

creation modules. The boxplots show the processing time calculated for each module, across all participants. 

 

Besides the time required for preparatory steps, it is also important to consider the computational 

efficiency for real-time acquisition and processing. During our data collection, we measured acquisition 

time and delay. We divided our 6-minutes recordings, collected at a sampling rate of 1 kHz, into windows 

of 500 ms. Across all of them, the maximum delay introduced by real-time processing for artifact 

attenuation and source localization was 4 ms for each data buffer. 

 

4.3.2 Accuracy of RT-NET analysis 

First, we examined the ERD maps produced online during the experiment for consecutive trials 

(figure 4.4). Each of them showed beta-band ERD peak within the primary motor cortex. The average 

spatial correlation of the ERD maps across trials was equal to 0.78. 
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Figure 4.4. ERD maps in the beta band (13–30 Hz) for a single participant, obtained using RT-NET for 12 consecutive 

trials during right-hand movements. The maps are represented over a 3D cortical model in dorsal view. 

 

 The correlation values obtained using EEG data processed with the online analysis workflow were 

not significantly different (Wilcoxon signed rank test, p= 0.06) from those obtained using ERD maps 

from an offline analysis (figure 4.5).  

 

 

Figure 4.5. Spatial correlation of ERD maps in the beta band (13–30 Hz) calculated without artifact removal, offline 

and online processing, respectively. The boxplots show the average across-trial correlations across all participants. 
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Also, the beta-band ERD maps obtained using RT-NET were similar to those obtained using offline 

processing (figure 4.6). Quantitively, the correlation of group-level beta ERD maps obtained with RT-

NET with the offline processing with and without artifact removal were equal to 0.76 and 0.56, 

respectively. 

 

 

Figure 4.6. Motor-related power modulations in the beta band (13–30 Hz). (A) ERD map obtained without artifact removal 

(raw); (B) ERD map obtained with a complete offline processing workflow; (C) ERD map obtained by RT-NET. The maps are 

represented over a cortical surface in lateral, medial and dorsal views. 

 

Similarities between online and offline processing were observed not only in the ERD maps, but also 

for time-courses reconstructed in three ROIs that are supposedly modulated by right-hand movements 

(left M1, SMA, left VPMC), and one that is likely not to be involved in task execution (left STG). Notably, 

there were no evident artifacts in the EEG data, after these were processed using the spatial filter of RT-

NET (figure 4.7). 
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Figure 4.7. Representative examples of sensor-space (A–C) and source-space(D–F) signals from the same participant. 

Raw (A), offline cleaned (B) and online cleaned (C) EEG recordings in four representative channels; raw(D), offline cleaned (E) 

and online cleaned (F) voxel time-courses in left M1, SMA, left VPMC and left STG. M1: primary motor cortex; SMA: 

supplementary motor area; VPMC: ventral premotor cortex; STG: superior temporal gyrus. 

 

The effectiveness of the online artifact removal procedure implemented in RT-NET was 

quantitatively assessed also by calculating the absolute correlation between reconstructed neural 

signals and EOG/EMG signals (figure 4.8). 
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Figure 4.8. Absolute temporal correlation between EMG/EOG signals and neural time-courses. The analysis was 

conducted for neural signals reconstructed in left M1, SMA, left VPMC and left STG, without artifact removal, with online 

processing and offline processing, respectively. M1: primary motor cortex; SMA: supplementary motor area; VPMC: ventral 

premotor cortex; STG: superior temporal gyrus. 

 

Values very close to zero were obtained for both online and offline processing, with no significant 

difference between them (Wilcoxon signed rank test, p=0.5542 and p=0.1923 for EOG and EMG, 

respectively). We then moved to the assessment of ERD after movement onset. Notably, a clear ERD 

could be detected in left M1, SMA and left VPMC, but not in the control region, left STG (figure 4.9). 
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Figure 4.9. Single-subject ERD analysis for online (left column) and offline (right column) neural activity 

reconstructions. Power modulations are shown for left M1 (A and B), SMA (C and D), left VPMC (E and F) and left STG (G and 

H). In the left M1, SMA and left VPMC, there is considerable similarity between the online and offline methods in terms of 

desynchronization in the alpha and beta bands. As expected, the response in the left STG is hardly detectable. M1: primary 

motor cortex; SMA: supplementary motor area; VPMC: ventral premotor cortex; STG: superior temporal gyrus. 
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At the quantitative level, we observed that the correlation of power-modulations for the beta band 

(13–30 Hz), which primarily reflect motor-related neural activity, was significantly higher (Wilcoxon 

signed rank test, p< 0.05) than for the full band (1–50 Hz) in left M1, SMA and left VPMC (figure 4.10). 

 

 

Figure 4.10. Correspondence of band-limited power time-courses between online and offline activity reconstructions 

in left M1, SMA, left VPMC and left STG. Comparisons were performed by examining the temporal correlation of band-limited 

power time-courses for the full band (1–50 Hz) and the beta band (13–30 Hz). A Wilcoxon signed rank test revealed higher 

temporal correlation for the beta compared to the full band for left M1 (p= 0.0078), SMA (p= 0.0156), left VPMC (p =0.0078), 

but not for left STG (p= 0.061). M1: primary motor cortex; SMA: supplementary motor area; VPMC: ventral premotor cortex; 

STG: superior temporal gyrus. 

 

4.4 Discussion 

We have introduced RT-NET, a novel software package for real-time reconstruction of neural activity, 

which was specifically developed for the processing of hdEEG recordings. It includes a GUI that guides 

the user through the analysis steps and streams the processed data externally for real-time visualization 

or closed-loop applications. Below, we review the strengths and weaknesses of the software in 

comparison with alternative solutions and discuss the reliability of the results produced in our 

validation study. 

 

4.4.1 Primary features of RT-NET and comparison with alternative solutions 

RT-NET relies on a single-window GUI (figure 4.2) that gives access to four different processing 

modules. They need to be run sequentially and are compatible with the different stages of a hdEEG 

experiment (figure 4.1). In previous studies, we have focused on methodological developments 

supporting the use of hdEEG as a brain imaging tool (Michel et al. 2004). In particular, we showed that 

combining high-density electrode montages with accurate head models enables more precise source 

localizations and thereby the reconstruction of brain network activity in the human brain (Liu et al. 

2017, 2018). In the present study, we concentrated our efforts on developing novel solutions for the 

real-time reconstruction of brain activity using hdEEG. RT-NET relies on the online artifact removal 
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method described in Guarnieri et al. (2018), which is initialized using a calibration dataset collected 

before the real experiment. This allows the creation of a spatial filter to be applied to the hdEEG data as 

they are acquired. This solution ensures a low computation time (figure 4.3), which makes RT-NET 

compatible with neural activity reconstruction. 

RT-NET is not the only solution for acquisition and real-time source analysis from 

electrophysiological data. Indeed, MNE Scan and NeuroPype also provide comprehensive real-time 

analysis tools for EEG data, including preprocessing and source estimation. Notably, RT-NET has specific 

features that are not present in MNE Scan and Neuropype: it permits the creation of a realistic, 

individualized head model during the EEG experimental session, using the electrode positions and the 

T1-weighted MR image of the participant’s head. In particular, the MR image needs to be segmented to 

define individual head tissues. This processing step is accomplished in RT-NET using SPM12, which is 

also written in MATLAB. Another valid tool for MR segmentation is Freesurfer 

(https://surfer.nmr.mgh.harvard.edu) (Fischl 2012). Both FreeSurfer and SPM12 can provide 

volumetric measures from T1-weighted images, and a comparison between them has been performed 

in several studies (Fellhauer et al. 2015; Palumbo et al. 2019; Perdue and Diamond 2014). It has been 

reported that SPM12 is computationally more efficient than FreeSurfer (Henson et al. 2019; Schwarz et 

al. 2016), and provides more robust segmentations, except for the white matter (Guo et al. 2019). 

Previous studies have already demonstrated that the use individualized head models leads to better 

source localization results than templated head models (Akalin Acar and Makeig 2013; Brodbeck et al. 

2011; Liu et al. 2018). Both MNE Scan and RT-NET calculate the forward model by means of boundary 

element method (BEM), which provides a realistically shaped volume conductor model without a 

significant increase in computational demand (Fuchs et al. 2002). Different BEM implementations are 

available, and in particular, RT-NET and NeuroPype rely on the symmetric BEM (sBEM) implemented 

in OpenMEEG (Gramfort et al. 2010, 2011). This solution outperforms other BEMs in terms of precision, 

but has relatively longer computation times (Adde et al. 2003; Clerc et al. 2010; Gramfort et al. 2011). 

MNE Scan, NeuroPype and RT-NET implement different solutions for artifact attenuation, i.e. signal-

space projection (SSP) (Uusitalo and Ilmoniemi 1997), Artifact Subspace Reconstruction (ASR) (Mullen 

et al. 2013) and a spatial filter based on ICA (Guarnieri et al. 2018), respectively. It has been shown that, 

in general, ICA-based artifact correction performs better than SSP (Haumann et al. 2016) and ASR (Kim 

and Kim 2018). Despite their low computational requirements, both ASR and our ICA-based approach 

require a calibration recording for reliable filter initialization. Notably, the combination of ASR and our 

ICA approach could certainly yield superior artifact removal performance than each method separately. 

However, since ASR and ICA would be to be applied sequentially, their computation times would sum 

up, and most likely become incompatible with real-time processing requirements. 

The estimation of source activity by RT-NET is performed by eLORETA (Pascual-Marqui et al. 2011). 

However, RT-NET additionally includes MNE (Hämäläinen and Ilmoniemi 1994), sLORETA (Pascual-

Marqui 2002), wMNE (Lin et al. 2006) and LCMV (Van Veen et al. 1997). In contrast, eLORETA, sLORETA 

https://surfer.nmr.mgh.harvard.edu/
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and LCMV algorithms are implemented in NeuroPype, whereas MNE Scan can perform source 

localization with Real-Time Clustered Minimum-Norm Estimates (RTC-MNE) (Dinh et al. 2015) and 

Real-Time Clustered Multiple Signal Classification (RTC-MUSIC) (Dinh et al. 2017). There is no 

consensus about which EEG source localization algorithm is best to use, as this may largely depend on 

the signal-to-noise ratio of the EEG data, the EEG montage density and coverage, and the accuracy of the 

head model used (Michel et al. 2004). eLORETA has lower localization errors compared to LORETA and 

sLORETA (Jatoi et al. 2014), but has relatively low spatial resolution (Jatoi and Kamel 2017). Conversely, 

array signal processing-based algorithms such as MUSIC (Mosher and Leahy 1998) offer high resolution 

but at the cost of high computational complexity (Jatoi and Kamel 2017), with risk of data loss (Gaho et 

al. 2018). MNE (Hämäläinen and Ilmoniemi 1994) is less accurate than eLORETA(Im 2018), which is 

minimally affected by the volume conduction problem under real conditions (Pascual-Marqui et al. 

2011). It may also fail in the localization of deep sources (Gaho et al. 2018). 

RT-NET can stream data to other applications, as done in the current study (figure 4.4), such that the 

reconstructed neural activity can also be visualized in real-time. Generally speaking, RT-NET may be 

beneficial for novel BCI applications, such as source-based neurofeedback (Boe et al. 2014; van 

Lutterveld et al. 2017) and closed-loop neuromodulation techniques (Semprini et al. 2018). 

 

4.4.2 Validation of real-time neural activity reconstruction by RT-NET 

To validate the real-time reconstruction of neural activity using RT-NET, we employed hdEEG 

recordings collected during right-hand movements. Usually, simple motor tasks are expected to induce 

prominent contralateral modulation of brain activity. However, depending on task complexity, there 

may also be ipsilateral modulation. The specific motor task involved in our study is expected to elicit 

prominent contralateral modulation of brain activity, and in particular an event-related 

desynchronization in the beta band (Pfurtscheller and Lopes Da Silva 1999), in the hand representation 

of the left M1, in the SMA and in the left VPMC (Gorgolewski et al. 2013; Grodd et al. 2001; Lotze et al. 

2000). The left STG, which was used as a control region, did not show substantial neural activity 

modulations. We performed an offline analysis of the hdEEG data using the approach we defined in 

previous studies (Liu et al. 2017). This served as a reference to assess the effectiveness of real-time 

neural activity reconstruction by RT-NET (figures 4.9 and 4.10). 

The ERD map generated for the beta band showed the strongest values in the region covering the left 

M1, SMA and left VPMC for both online and offline processing (figure 4.6). The peak locations in the map 

were consistent with those previously reported in transcranial magnetic stimulation and fMRI studies 

(Gorgolewski et al. 2013; Hlustik 2001; Weiss et al. 2013). Furthermore, the neural signals 

reconstructed in the selected ROIs not only showed consistent task-related modulations, but also had 

very small artifactual contamination, as indicated by the absolute temporal correlation with EOG and 

EMG signals (figures 4.7 and 4.8). 
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Overall, the results of the present study suggest that the real-time processing of hdEEG data is 

sufficiently reliable, both in terms of spatial maps and in terms of the reconstructed time-course for 

specific brain regions. It should be noted, however, that we used hdEEG signals collected during a hand 

movement task, which is expected to produce robust neural responses. Further methodological work 

may be necessary to increase the sensitivity and accuracy of hdEEG-based studies in which brain 

sources produce less intense and more distributed signals. Our results support the idea that hdEEG can 

be used for solving brain dynamics with high spatial resolution. As such, hdEEG could be used as an 

alternative to fMRI for functional brain imaging, with the additional benefit of directly measuring brain 

activity. In addition, hdEEG can provide faster neurofeedback as compared to fMRI (Thibault et al. 2016). 

 

4.4.3 Limitations and possible caveats 

A possible caveat of RT-NET may be the use of a relatively simple head modelling strategy, to keep 

the processing time compatible with that of a typical EEG experiment. Notably, whereas the MR image 

segmentation can be performed before the experiment, electrode positions need to be obtained from 

the participant before the leadfield matrix can be created. In this study we used a standard digitizing 

technique for extracting electrode positions, but it is worth noting that 3D scanning has been recently 

proposed to yield rapid and reliable electrode positioning (Taberna, Guarnieri, et al. 2019; Taberna, 

Marino, et al. 2019). 3D scanning technology may be particularly useful for hdEEG systems, 

approximately halving the acquisition time. For the head modelling step, a three-layer sBEM model is 

currently used in RT-NET because of its relatively low computational demand. Whereas most BEM 

implementations rely on 3 layers (brain, skull, skin), the use of 4-layer BEMs that includes the 

cerebrospinal fluid (CSF) around the brain has been proposed to improve source localization (Akalin 

Acar and Makeig 2013). BEM solutions using 4 layers (Stenroos and Nummenmaa 2016) may be 

integrated in future versions of RT-NET, if their computation time will become as low as few minutes, 

such that they can be used in real-time EEG experiments. It should also be noted that head modelling 

approaches other than BEMs are also used by the neuroimaging community: finite element methods 

(FEMs) and finite difference methods (FDMs) (Hallez et al. 2007). FEMs and FDMs can take advantage 

of a more refined head segmentation than BEMs, and typically yield more precise estimates of the 

leadfield matrix. However, due to their computational requirements, they are not compatible with the 

creation of a head model in the course of an EEG experiment. Future methodological developments for 

parallelized FEM and/or FDM computations (Cuartas Morales et al. 2019) are warranted to reduce 

processing times and make them compatible with the requirements of real-time EEG experiments using 

RT-NET. Furthermore, RT-NET performs online artifact attenuation as well as source localization. To 

optimize artifact attenuation, we recently proposed a method relying on a calibration dataset (Guarnieri 

et al. 2018). This calibration dataset should contain a sufficient number of artifactual occurrences for an 

effective setup of the spatial filter. Although it remains difficult to determine how long the calibration 

dataset should be, it may be helpful to ask the participant to intentionally generate such artifacts (Zhang 
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et al. 2015). Finally, we would like to point out that a more extensive validation of RT-NET using 

different tasks and experimental conditions, would be very important. In this study, we have tested RT-

NET using hdEEG data obtained during motor task performance. Further work should extend the 

validation to hdEEG data during auditory stimulation, such that it would be possible to examine the 

performance of RT-NET when bilateral sources are active. 

 

4.5 Conclusions 

RT-NET is a toolbox for the online reconstruction of neural activity from hdEEG signals. It has been 

specifically conceived and designed to support real-time analyses in the source space. This makes it 

unlike most software that, given the high computational demand of hdEEG processing, can only support 

offline source-space analyses. Notably, the accuracy of online neural activity reconstruction by RT-NET 

is comparable to that achieved with offline processing. We hope that our software package will 

contribute to the development of novel BCI applications based on hdEEG, such as source-based 

neurofeedback (Boe et al. 2014; van Lutterveld et al. 2017). Our future research endeavor will be 

directed towards an extensive validation of RT-NET in a wide range of real-time hdEEG experiments. 
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5 General discussion 

In the field of human neuroscience, an increasing attention is given to the study of neural dynamics 

at high temporal resolution. In this thesis, we focused on the development of a complete analysis 

workflow for real-time estimation of source-level hdEEG data. Importantly, we addressed some 

important technical issues related to real-time hdEEG analysis, such as the estimation of a realistic head 

model and source localization filter in the course of an hdEEG experiment. In addition, we also focused 

on the use of spatial filtering for online biological artifact attenuation, an important EEG analysis step. 

Then, we developed an online stimulating artifact removal to be used also during closed-loop 

neuromodulation experiments. Finally, we created a software with graphical user interface, which 

estimates brain activity in real-time. 

We believe that the analysis tools we developed can find several applications in the field of human 

neuroscience. For instance, they can help participants to learn how to actively increase or decrease 

neural activity in selected cortical regions, thereby having potential impact in the context of 

neurorehabilitation and neuroenhancement. 

 

5.1 Summary of main findings 

In this thesis, the general goal is to develop the necessary technological solutions to obtain a real-

time hdEEG system to be used in the context of neurofeedback and closed-loop neuromodulation 

experiments. To reach this goal, three more specific findings have been attained. 

First, the performance of neurofeedback application based on EEG data strongly depends on the 

effective attenuation of artifacts that are mixed in the recordings. To address this problem, we have 

developed a novel online EEG artifact removal method, that can be used in neurofeedback and closed-

loop neuromodulation experiments 

It should also be mentioned that artifacts induced by simultaneous tACS are very large, and this has 

so far been a strong limitation for the study of neural dynamics during stimulation. Indeed, most EEG-

tACS studies have been so far conducted analyzing the EEG data collected in the off-stimulation period. 

To enable closed-loop neuromodulation applications, we developed a novel online tACS artifact removal 

technique with low computational complexity. This was necessary to enable attenuation of the 

stimulation artifact in real-time. 

Finally, high-density montages are required to perform source localizations using EEG data. 

Dedicated tools to perform real-time reconstruction of neural activity are currently lacking. We filled 

this gap by developing a real-time noninvasive electrophysiology toolbox, which -through a dedicated 

graphical user interface- enables online artifact removal and source localization of hdEEG data. 
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5.1.1 Real-time biological artifact removal 

We have introduced BSS-REG, a novel method for the online artifact removal for hdEEG systems. We 

adapted the offline processing tools for hdEEG (bad channel correction, artifact removal, data re-

referencing) (Liu et al. 2017) and re-implemented them for real-time applications, in form of spatial 

filters (Guarnieri et al. 2018). Importantly, our method requires the use of a calibration recording for 

the initialization of the spatial filter. The latter has been exploited in order to have minimum 

computational cost and be appropriate for real-time processing. Thanks to its low computational 

requirements, BSS-REG can be effectively applied to low-density as well as hdEEG data in real-time 

applications. As a general approach, we used simulated data to test the method under controlled 

condition (with known ground truth), and hdEEG datasets collected during oddball tasks in healthy 

volunteers to confirm the findings from the simulation. We generated simulated data by defining brain 

sources, back projecting them to the sensors and adding different types of artifact and noise. The 

performance of the real-time artifact removal method has been assessed against alternative online 

(Haykin 1996; P. He et al. 2004; Puthusserypady and Ratnarajah 2005) and offline methods (Jung, 

Makeig, Humphries, et al. 2000). Our technique outperformed alternative methods in terms of artifact 

removal accuracy and computational efficiency. Furthermore, it could remove different kinds of artifacts 

with accuracy comparable to the one achieved by an offline ICA approach while preserving true neural 

activity. We therefore argue that BSS-REG may enable the development of novel BCI applications 

requiring high-density recordings, such as source-based neurofeedback and closed-loop 

neuromodulation. 

 

5.1.2 Real-time stimulation artifact removal 

When combined with tACS, the novel system AC-REG can be used in noninvasive closed-loop 

neuromodulation experiments. Importantly, the attenuation of tACS artifacts in an online manner is 

ideal not only for low-density but also for high-density EEG recordings, thanks to AC-REG's quick 

computation times. We validated our method using both simulated and real EEG signals. We generated 

simulated data containing a mix of neural signals and tACS artifact. Simulated data were used to define 

the main parameters and to assess the method efficacy under controlled conditions. Notably, we 

analyzed the variation of the performance and the computational time with different channel counts, 

sampling frequencies and data buffer sizes. In addition, the latter is a meaningful component in 

determining the quality of tACS artifact reconstruction. Importantly, the computation time showed a 

super-linear relationship with channels number. On the other hand, it increased with both sampling 

frequency and buffer size in a sub-linear manner. Then, simulated data have been employed also for 

comparison with alternative online (Kohli and Casson 2019) and offline methods (Helfrich, Schneider, 

et al. 2014), together with real signals acquired during resting-state in healthy participants. 

Interestingly, we found that the performance of all the techniques substantially depended on the tACS 
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frequency. Moreover, AC-REG outperforms other methods in terms of artifact removal accuracy and 

computational time, while preserving true neural activity. Finally, we argue that AC-REG may enable 

further development of closed-loop neuromodulation techniques, with potential applications both in 

healthy individuals and in neurological patients. 

 

5.1.3 Real-time source localization 

Given the need of performing real-time analysis of hdEEG data for estimating neural activity in the 

brain, we developed a real-time noninvasive electrophysiology toolbox, RT-NET. We assessed the 

effectiveness and validity of RT-NET on real hdEEG data collected during hand movements in healthy 

volunteers (Weiss et al. 2013). Specifically, we compared the neural activity reconstructed online with 

that estimated by our offline analysis workflow (Liu et al. 2017). Importantly, there were no evident 

artifacts in the EEG data, after these were processed using the spatial filter of RT-NET. Overall, our 

analysis showed that RT-NET can estimate real-time neural activity with performance comparable to 

offline methods (Liu et al. 2017). Importantly, we created a GUI for allowing real-time visualization of 

sensor and source data in 2D and 3D. EEG systems likewise play an important role in BCI applications, 

allowing data collection in a vast range of environments. The GUI will make RT-NET accessible to a wide 

community of researchers who are not familiar with complex analysis workflows and software. 

 

5.2 Clinical impact 

Just a few decades ago, it was widely assumed that the brain remained relatively unchanged after 

childhood. And it was presumed that if parts of the brain were destroyed, the functions governed by 

those areas would be lost forever (Pickersgill et al. 2015). The fact that people with stroke or brain 

damage recover spontaneously from injury, for example, contradicts this theory. Every part of the brain 

is continually evolving and adapting in reaction to what we think, see, and do. If the brain is asked to do 

so, it may form new neuronal connections at any time during its existence (Kolb and Gibb 2011). Since 

the brain controls emotional health, psychological health, and all of the body's systems, teaching it to 

work better can have substantial effects at the behavioral level. There are several potential uses of these 

technologies, both in the context of rehabilitation and of performance enhancement. We may use source-

based neurofeedback to teach individuals with ADHD and autism how to relax and focus by modulating 

prefrontal cortex activity, and in stroke patients to enhance attention output by rebalancing activity in 

the left and right parietal cortex as an illustration of rehabilitation application. In the context of 

performance enhancement, source-based neurofeedback can be very important for high-level 

sportsmen, and in particular for professional football players and Olympic athletes. In this case, 

neurofeedback offers the possibility of a targeted training of motor, perceptual and cognitive functions 

that are crucial for sport performance, which can be very hardly achieved by physical training only. 

Closed-loop neuromodulation, on the other hand, attempts to treat disease by electrically stimulating 

the peripheral nervous system in response to physiological changes. There is considerable experimental 
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(Herrmann et al. 2013; Marshall et al. 2011) and computational (Ali et al. 2013; Merlet et al. 2013) 

evidence that tACS can effectively entrain brain oscillations. It has been successfully used to modulate 

vision (Vossen et al. 2015), movement, (Feurra et al. 2011) and audition (Riecke et al. 2015). Moreover, 

fMRI showed that tACS can induce short-term neuroplastic effects over relatively specific cortical 

regions. Notably, closed-loop neuromodulation is used for a variety of clinical purposes, including 

pharmacoresistant epilepsy, movement disorders, and possibly psychiatric disorders including 

depression and drug addiction. The enhancement of sleep quality and performance is one of the most 

significant applications of tACS combined in a closed-loop experiment. 

 

5.3 Future directions 

The novel techniques presented in this PhD thesis may allow the use of source-based neurofeedback 

and closed-loop neuromodulation using hdEEG. In this section, we will suggest potential research 

avenues. 

 

5.3.1 Source-based neurofeedback 

In future studies, it will be important to show that source-based neurofeedback based on brain 

activity reconstructed in real-time from hdEEG data can ensure a superior effectiveness as compared to 

the classical sensor-based neurofeedback. Extensive testing should be first performed in healthy 

volunteers who will be asked to perform neuromodulation training sessions. Indeed, a first goal would 

be to demonstrate that healthy individuals can learn to increase specific components of brain 

oscillations, and that such increased activity may facilitate sensory, motor and/or cognitive 

performance. This proof-of-concept study is expected to open the way to further source-based 

neurofeedback experiments aimed at restoring a normal functioning in the brain of neurological and 

psychiatric patients, or at optimizing functioning of the healthy brain. In the future, it will also be 

interesting to develop and incorporate connectivity measures that can work on short time windows, as 

to enable connectivity-based neurofeedback. Importantly, a real-time estimator based on high-density 

EEG can be used to train subjects to actively increase or decrease connectivity activity between selected 

cortical regions. We believe that connectivity-based neurofeedback based on high-density EEG may 

strongly contribute to the advancement of the current brain rehabilitation technology, as it will be easily 

applicable for the training of patients showing deficits in brain connectivity.  

 

5.3.2 Closed-loop neuromodulation 

In Chapter 3 we introduced a novel approach for tACS artifact removal in real-time. We validated our 

technique by using both simulated and real EEG data. To ensure the generalizability of our results, it 

would be important to extend the validation of our novel approach on real EEG data collected with 

several experimental protocols and by using different stimulation frequencies. 
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Furthermore, it would be interesting to test the effectiveness and validity of our tACS artifact removal 

approach not only in open-loop brain stimulation experiments, but also closed-loop ones. In this case, 

EEG data will have to be necessarily processed in real-time for the attenuation of the tACS artifact, such 

that the readout of EEG activity can be effectively used to adjust phase and/or intensity of the 

stimulation (Bergmann et al. 2016). Notably, closed-loop systems are expected to increase the precision 

and effectiveness of non-invasive brain stimulation for neuroscientific research and to boost its 

potential for the treatment of brain disorders. 
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Appositions 

1. Nowadays, healthcare systems are required to deliver more and better care with lesser 

resources, possibly through the development of digital services. 

2. Depression is a major contributor to the global disease burden and affects people all over the 

world. 

3. Sport is essential for all people, of all ages, but especially for young people as it engages the body 

and mind and creates relationships with others. 
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