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Abstract

Amongst the various characteristics of a speech signal, the expression of emotion is one of the characteristics that
exhibits the slowest temporal dynamics. Hence, a performant speech emotion recognition (SER) system requires a
predictive model that is capable of learning sufficiently long temporal dependencies in the analysed speech signal.
Therefore, in this work, we propose a novel end-to-end neural network architecture based on the concept of dilated
causal convolution with context stacking. Firstly, the proposed model consists only of parallelisable layers and is
hence suitable for parallel processing, while avoiding the inherent lack of parallelisability occurring with recurrent
neural network (RNN) layers. Secondly, the design of a dedicated dilated causal convolution block allows the model to
have a receptive field as large as the input sequence length, while maintaining a reasonably low computational cost.
Thirdly, by introducing a context stacking structure, the proposed model is capable of exploiting long-term temporal
dependencies hence providing an alternative to the use of RNN layers. We evaluate the proposed model in SER
regression and classification tasks and provide a comparison with a state-of-the-art end-to-end SER model.
Experimental results indicate that the proposed model requires only 1/3 of the number of model parameters used in
the state-of-the-art model, while also significantly improving SER performance. Further experiments are reported to
understand the impact of using various types of input representations (i.e. raw audio samples vs logmel-spectrograms)
and to illustrate the benefits of an end-to-end approach over the use of hand-crafted audio features. Moreover, we
show that the proposedmodel can efficiently learn intermediate embeddings preserving speech emotion information.

Keywords: End-to-end learning, Speech emotion recognition, Dilated causal convolution, Context stacking

1 Introduction
Emotion recognition is a crucial component in present-
day human-computer interaction systems. A speech emo-
tion recognition (SER) system utilises vocal expression to
recognise emotions and has inherent benefits compared
to other modalities. Vocal expression is a fairly direct way
to express emotions and is often easier to capture than
facial expressions, for which a careful camera positioning
is needed. Therefore, an SER system is complimentary to
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an image/video-based emotion recognition system. Exam-
ple applications include an SER system intended to analyse
the users’ emotions in a call centre to improve their ser-
vices and an intelligent robot that understands the users’
emotions. Emotion researchmakes use of both categorical
and dimensional approaches to qualify emotional experi-
ence. In the categorical approach, discrete emotion labels
are used to represent qualitatively different emotional
states (e.g. happy, angry). In the dimensional approach,
emotional experience is described in terms of a number
of basic dimensions, such as valence (ranging from pos-
itive to negative) and arousal (ranging from low to high
arousal), see [1].
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Early SER systems use pre-defined acoustic features
to represent the audio recordings. The definition of
emotion-related features in this case is a key aspect
towards an accurate and robust SER system. Many hand-
crafted features have been proposed for this purpose; the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS)
includes various acoustic features such as frequency-
related (e.g. pitch, formant), energy-related (e.g. loudness)
and spectral (e.g. spectral slope) features, of which their
effectiveness in SER has been evaluated in [2]. Also, the
well-known mel-frequency cepstral coefficient (MFCC)
features, which have been used in various other speech
analysis tasks, including automatic speech recognition,
have been applied to SER [3, 4]. However, the design
of hand-crafted features requires specialised knowledge,
exhaustive selection and massive experiments. Also, the
feature extraction process suffers from a potentially huge
information loss [5], which could be harmful to the SER
performance.
With the rapid developments in deep neural networks

(DNNs), the feature extraction for an SER system has
shifted to data-driven feature learning. In the area of
image processing, convolutional neural networks (CNNs)
have been proven to be able to learn abstract features
that have intuitively desirable properties while ascend-
ing the network layers [6]. Similar work in the area of
audio processing has shown that the CNN layers can learn
meaningful features by acting as onset extractors, melody
extractors, low-pass filters and so on [7]. As a result, the
end-to-end learning approach, in which raw microphone
recording samples or shallow features are fed into a DNN,
becomes feasible and attractive. In the case of SER, this
DNN normally consists of both CNN layers and different
types of recurrent neural network (RNN) layers [8–15].
The CNN layers are generally applied to the raw recording
samples to produce higher-level features. A large recep-
tive field is desired so that the DNN model can receive
and learn the long-term temporal information that might
be beneficial for SER; as a consequence, the number of
parameters in the CNN layers will largely increase when
aiming for a larger receptive field.
From the perspective of modelling sequential data, a

good model should be able to learn the temporal depen-
dencies or relations within the input sequences. SER in
this case has inherent difficulties because the time con-
stants of emotion dynamics can range from just a few
seconds to over an hour [16], and these dynamics are reg-
ulated by both internal and external excitations [17]. If we
assume that the human voice characteristics are a good
indication of a person’s internal emotional status, a good
SER model should then be able to model sufficiently long
temporal dependencies in recorded speech sequences.
Many state-of-the-art end-to-end SER systems use long
short-termmemory (LSTM) layers or gated recurrent unit

(GRU) layers as a default network architecture for this
purpose [8–15]. However, the RNN type of layers used
in the state-of-the-art SER systems suffers from several
disadvantages. For example, due to the existence of the
recurrent connections, the RNN layer has a sequential
type of processing which results in a polynomial growth of
computation time with increasing input sequence length.
This type of processing is not capable to be parallelised.
Also, RNN suffers from the gradient vanishing/exploding
problem in processing long sequences, although this prob-
lem has been alleviated by the developments in LSTM and
GRU [18, 19].
We are aiming to solve these problems that are inherited

by the state-of-the-art SER systems from their RNN-type
layers, and we will propose a different approach to enlarge
the model receptive field without largely increasing its
computational complexity. This paper provides details
of an improved version of the end-to-end SER model
which has been proposed earlier by the authors [20]. The
main contributions of this paper can be summarised as
follows:

1. We provide more details and propose an updated
dedicated dilated convolution block for our neural
network model for end-to-end SER. This updated
model remains to have a significantly large receptive
field while largely reducing the number of model
parameters compared to the model proposed in [20].

2. We further explore the context stacking idea,
originally proposed in the WaveNet paper [21] and
applied to SER in [20], with more thorough
comparisons between several model variations.

3. We provide a more in-depth analysis of this new
model architecture and evaluate it on both an
emotion classification task and an emotion
regression task. Abundant simulations have been
conducted with two well-known datasets, the
REmote COLlaborative and Affective (RECOLA)
[22] and the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) [23] datasets. Simulation
results show that the proposed model surpasses the
state-of-the-art CNN-RNN-based models.

4. We also evaluate the effectiveness of end-to-end
learning in SER by comparing SER performance
using raw audio samples or log mel-spectrogram
features with more traditional audio features
proposed in earlier work.

The rest of the paper is organised as follows. Section 2
provides a brief overview about the most recent studies
related to our work. In Section 3, we introduce the pro-
posed model structure, the parameters of which will
be optimised on the concordance correlation coefficient
(CCC) objective function [24] for emotion regression.
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In Section 4, we describe the datasets used and the
experimental settings. And then, we will present the sim-
ulation results and discuss these in Section 5. Finally,
Section 6 presents the conclusions and suggestions for
future work.

2 Related work
Our proposed SER model has very large receptive field,
which makes it suitable for long sequence modelling and
is based on the concepts of dilated convolutions, context-
stacking, and end-to-end SER.

2.1 Dilated convolution
The dilated convolution is intended to increase the recep-
tive field, which has shown successful outcomes in various
audio processing tasks [21, 25]. By stacking many dilated
convolution blocks in a DNN, the network will largely
increase its receptive field while the model complexity
and thus its computational cost will remain reasonably
low. Empirical research also shows that this dilated type
of convolution outperforms the canonical RNN in various
sequence modelling problems [26]. Our work is inspired
by theWaveNet model proposed in [21]; however, we pro-
pose several modifications to suit the specific application
of SER. First, we redesign the dilated causal convolution
block inspired by theWaveNet model. Second, we expand
the context stacking idea of [21]. Third, we add pooling
layers in between the dilated convolution blocks to reduce
the sequence length, so that the proposed model is able to
deal with very long sequences while posing only moderate
memory requirements.
There is hardly any work investigating dilated convolu-

tion in an SER framework. In [14], a dilated residual con-
volution is used to further process the extracted acoustic
features. However, the use of the dilated residual convo-
lution in [14] served a different purpose than ours, which
in [14], it is to facilitate the reduction of the receptive
field and hence yield a strong ability to learn local context.
Temporal modelling in [14] was achieved by using LSTM
and a self-attention mechanism.

2.2 Context stacking
The context stacking idea was originally proposed in the
WaveNet paper [21]. In this idea, multiple trainable DNNs
are connected/stacked by local conditioning. More gener-
ally, local conditioning has in fact been widely used in var-
ious audio-related tasks. In [27], the text-to-speech (TTS)
model is conditioned on predicted mel-spectrograms. In
another TTS system [28], the model is conditioned on
pre-trained speaker embeddings to synthesise speech for
a particular person. A similar idea to local condition-
ing was applied in an SER system [15] by concatenat-
ing both the handcrafted acoustic features for SER and
the lexical text features to obtain an emotion classifier.

Throughout this paper, however, we refer to context stack-
ing only when both the conditioned context and themodel
itself are trained jointly.

2.3 End-to-end SER
End-to-end learning has attracted vast attention from the
deep learning community. The modelling follows a data-
driven approach, and little or no specialised knowledge is
exploited in this learning process. In audio processing, the
traditional learning pipeline (e.g. pre-processing, feature
extraction, modelling, inferencing) is taken over by a sin-
gle DNN, where at the input end raw audio samples or
shallow frequency features such as mel-spectrograms are
provided, and at the output inference results are obtained
(e.g. class labels, parameter estimates).
In SER, Trigeorgis et al. proposed to use a CNN to

extract features from the raw audio samples and then
use two bidirectional LSTM layers to model the tempo-
ral information [8, 9, 11]. Satt et al. afterwards proposed
to apply the CNN and the LSTM layers on a modified
log-spectrogram, which is harmful for clean SER perfor-
mance, but it is more robust to noise [10]. In [29], Sarma
et al. replaced the CNN layers with time-delay neural net-
work (TDNN) layers. The TDNN tends to increase the
receptive field of the network, somewhat resembling the
dilated convolution, and was originally used in the speaker
recognition problem to extract the x-vector [30].
Some other end-to-end SER systems make use of an

attention mechanism which has its origins in natural lan-
guage processing (NLP) [31]. Chen et al. proposed an SER
model consisting of 3-D CNN layers, LSTM layers and
the attention layer. This model can learn time-frequency
relations from a time stack of log mel-spectrograms [12].
In [15], Li et al. applied a self-attention mechanism along
with CNN layers, which can import emotion-salient infor-
mation from the audio feature inputs. Similarly, in [13, 32],
an end-to-end CNN-RNN-based model was combined
with the attention mechanism.

2.4 Difference with speaker recognition
To some extent, the emotion classification task resem-
bles the automatic speaker recognition (ASR) problem
where the target classes are speaker identities. Similar to
SER, theMFCC and frequency-related features (e.g. pitch)
are widely used in early ASR research [33, 34]. In [33],
Reynolds and Rose propose to use the Gaussian mixture
model (GMM) to model the speakers’ MFCC distribu-
tion. The concatenation of the mean vectors of the GMM
(referred to as the supervector in [33]) can be used to
represent the speakers’ identities. This high-dimensional
representation is then used to extract the i-vctor, which
is a low-dimensional representation of the total variabil-
ity (i.e. speaker variability and channel variability) [35].
A similar work in SER proposes to extract the emotion
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representations from the speaker i-vectors [36]. However,
in SER, we aim to model very long temporal dependen-
cies of the input features, especially in speech emotion
regression, because it is expected that the variation of the
features over time is distinguishing for different emotions.
This is different from the ASR problem, in which themod-
elling of the temporal information is less important since
the speaker identity is not expected to change within a
given speech frame.

3 Method
Our proposed end-to-end SER model is shown in Fig. 1,
denoted as the dilated-causal-convolution-only speech
emotion recognition with context stacking (DiCCOSER-
CS). The network consists of dilated causal convolution
blocks that are used for increasing the receptive field [21,
37] (Section 3.1), then two sub-networks are stacked and
trained jointly (Section 3.2). Finally, the model outputs the
arousal and valence estimates for a SER regression task
and the class posterior probability for a SER classification
task. For regression, the model is trained to minimise the
CCC objective function (Section 3.3).

3.1 Dilated causal convolution blocks with local
conditioning

The dilated causal convolution block, shown in Fig. 2a, is
one of the basic building blocks in the proposed model.
This block is inspired by [21], but from our experiments,
we found that using the original dilated causal convolution
block in [21] lead to a slow training convergence. Thus,
we have redesigned the block in the following aspects.
Every dilated causal convolution block consists of two
paths, one being the residual connection path and the
other being the convolution path. Firstly, the residual path
connects the input directly to the output, which has been
shown to allow to learn an identity mapping; thus, it can
speed up the training and avoid over-fitting [38]. Secondly,
in the convolution path, a dilated causal convolution is
applied to the input, and it is immediately followed by a
dropout layer to prevent the model from over-fitting [39]
and a batch-normalisation layer [40] to further speed up
the training. Thirdly, we applied the rectified linear unit
(ReLU) non-linear activation function [41] to the convolu-
tion output. This non-linear activation function has been
widely used in modern DNNs for its easy gradient calcu-

Fig. 1 The proposed end-to-end SER model denoted as the dilated-causal-convolution-only speech emotion recognition with context stacking
(DiCCOSER-CS). The convolution filter width, stride and filter depth are listed in round brackets, and the pooling width and stride are listed in square
brackets
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Fig. 2 a The dilated causal convolution block. b The local conditioning

lation and its effect of giving the model a faster and better
convergence. Finally, after going through a 1 × 1 con-
volution, the dilated causal convolution path is summed
together with the residual path to generate the final output
of the block.
We implement the local conditioning similarly to [21].

Consider an input consisting of a sequence of examples,
and another sequence y having the same length as x con-
taining the conditioning information. If the filter output is
z, a local conditioning is defined as follows, adopting the
notation from [21]:

z = ReLU(Wf ,k ∗ x + Vf ,k ∗ y) (1)

where Wf ,k ,Vf ,k are the learnable “filter” parameters in
the kth layer, ∗ is the convolution operation and ReLU(·)
is the ReLU activation function. Dropout and batch nor-
malisation layers are added after the convolution as well,
as shown in Fig. 2b.
The dilated causal convolution blocks are then stacked

many times with different dilation number in the network.
The dilation number defines the time lag, i.e. the number
of samples that are skipped in between two input sam-
ples used in the convolution with the filterWf ,k . Figure 3
shows a stack of dilated causal convolution blocks with
filter width 2 and dilation numbers 1, 2 and 4.

3.2 Context stacking using local conditioning
Referring to the context stacking idea in [21], we propose
a stacked structure using local conditioning for end-to-
end SER, see Fig. 1. This proposed structure consists of
three learnable sub-networks. First, one sub-network has

Fig. 3 A stack of dilated causal convolution blocks

a relatively small receptive field, denoted as the “local
network”, that receives raw input samples and produces
the local context. The local network is capable to be
locally conditioned on extra information relating to the
input frame (e.g. the speaker gender information, the lex-
ical text information); however, we do not investigate the
impact of adding such extra information in this paper.
Second, the other sub-network, denoted as “global net-
work”, has a relatively wide receptive field that receives
downsampled input audio samples and is aiming to learn
global (i.e. long-term) temporal dependencies. The two
networks connect by letting the “local network” define
the local conditioning on all the layers in the “global net-
work”. We also add pooling layers in the “local network”
to downsample the sequence with the aim of reducing
computational costs and memory requirements. Finally,
the output from the “global network” can be processed
by successive convolution-type layers to generate the
desired, task-dependent outputs. The reason why we pro-
pose to use convolution layers for processing in the final
stage is because we are aiming to design a parallelisable
network.

3.3 CCC objective function
For a regression task, e.g. an SER model inferencing
arousal/valence values, when the training labels are given
for very short time intervals (e.g. 40ms), the levels of affect
then can be predicted on the same time scale, i.e. for
every 40ms of a speech recording. In this case, an affec-
tive evolution curve can be obtained, e.g. for visualisation
purposes. Thus, not only the prediction values should be
close to the corresponding ground truth labels, but also
the correlation between the entire prediction sequence
and label sequence is important. The mean squared error
(MSE) or mean absolute error (MAE) loss on the sam-
ple level as used in [3] does not consider this correlation.
A loss function that has a direct link to the evaluation
metric based on the CCC (ρc) [24] has been proposed
in [8, 9, 11].
Given the predicted sequence (denoted by index m) of

arousal/valence values and its corresponding ground truth
sequence (denoted by index n), the CCC loss is defined as:
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Lc = 1 − ρc = 1 − 2ρσmσn
σ 2
m + σ 2

n + (μm − μn)2

= 1 − 2σ 2
mn

σ 2
m + σ 2

n + (μm − μn)2
(2)

where ρ is the Pearson correlation coefficient (PCC), μm
and μn are the sample means, σ 2

m and σ 2
n are the sam-

ple variances and σ 2
mn denotes the covariance between the

two sequences. Therefore, prediction sequences exhibit-
ing a weak correlation with the ground truth sequences as
well as shifted amplitude of the prediction values are both
penalised in one loss function.

4 Experimental set-up
4.1 Implementation details
In this section, we describe how to implement the DiC-
COSER model. The raw audio samples are firstly fed into
a causal convolution layer which has a filter width equal to
8. The filter width of this convolution layer on one hand
should be wider than the successive pooling size so that
it has a sufficiently large receptive field and is capable of
extracting salient features which will be selected by the
following pooling operation, and on the other hand, the
filter width should be kept small to maintain a low model
complexity. This causal convolution layer maps the single-
channel audio sample sequences to 64-dimensional vector
sequences. Next, these sequences are downsampled in a
max-pooling layer with size 5, and are then ready for the
processing by the “local network”. The configuration of the
pooling size is task-dependent, such that after the pooling
operations, the output sequence has the desired sampling
rate.
Stride one and zero-padding is used across all convo-

lution layers in the entire network to retain the same
sequence length after each operation.

4.1.1 Local network
Firstly, we construct the local network, which contains a
stack of dilated causal convolution blocks. These blocks
have a filter depth equal to 64, and their dilation num-
bers are chosen to correspond to a subset of a geometric
series and are repeated a few times. Max-pooling layers
are included after every stack of dilated causal convo-
lution blocks, and the number of max-pooling layers is
task-dependent. Specifically, we design each stack in our
local network to have a set of dilation numbers Dlocal =
{2k , k = 0, 1, 2}, and a total of 7 such stacks are used. There
is one pooling-size-2 max-pooling layer after each stack
of dilated causal convolution blocks, which results in 7
pooling layers in total. The pooling layers in the local net-
work progressively downsample the processed data from
16 kHz at the input to 25Hz at the output of the local net-
work, which is the same as the label sampling rate for the
regression task.

In parallel to the local network, the raw audio input
sequence is directly downsampled from 16 kHz to 25Hz.
We propose two aggregation operations that extract use-
ful features from the signal frames in this parallel feedfor-
ward branch: (a) a max-pooling aggregation that extracts
the maximum value from the frames and (b) an RMS
aggregation that calculates the RMS value per frame.
We believe that these features can be representative of
the original audio frames at the reduced sampling rate
of 25Hz, and they are also related to the expression of
emotions [42]. The downsampled sequences are finally
mapped to 64-dimensional vector sequences by a causal
convolution layer with filter size 8.

4.1.2 Global network
Secondly, in the global network, the dilated causal con-
volution blocks have filter depth equal to 64 as well. The
aim of the global network is to learn the long-term tem-
poral dependencies from a more global perspective. It
can ensure this aim by processing the downsampled input
sequences because this not only reduces the computa-
tional cost of the global network, but also prevents the
global network from attempting to model subtle changes
in the original raw input samples. In addition, thanks to
the context-stacking structure, some information lost in
the downsampling operation is selectively passed to the
global network. In order to be able to effectively perform
the dilated convolutions, we propose to have the largest
dilation number equal to the length of the processed input
frames. We set the global network dilation numbers as
Dglobal = {1, 2, 22, . . . , 2�log2(L)�, L}, where L is the input
frame length and �·� denotes the flooring operation. For
example, for a 20-s audio input frame, the global network
operates on the downsampled 25-Hz sequence of length
500, such thatDglobal = {1, 2, 4, 8, 16, 32, 64, 128, 256, 500}.
Finally, all the dilated causal convolution blocks are

conditioned on the local contexts. We implement these
context stacking filters (filter “Vf ,k” in (1)) by normal CNN
layers with filter width 2 and filter depth 64.

4.1.3 Output network
Finally, the output network converts the global network
output to the desired output formats. In our regression
task, there are two 1 × 1 convolution layers with filter
depth 1 in the output network that yield the arousal and
valence predictions.
In our classification task, there are four 1 × 1 convolu-

tion layers with filter depth 1 corresponding to 4 different
class outputs. These are then processed by a last-pooling
layer to only keep the last convolution output for every
layer. This is because our model has a receptive field as
large as the input sequence length, so that the last convo-
lution output can be trained to contain global information.
Finally, a softmax layer is applied, and the output of the
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softmax layer can be interpreted as the class posterior
probability.

4.2 Datasets
To evaluate the regression and classification performance
of the proposed model and to compare it with the state-
of-the-art end-to-end CNN-LSTM-based SER model, we
used two widely used affectively labelled datasets: the
RECOLA dataset [22] for the regression task and the
IEMOCAP dataset [23] for the classification task.

4.2.1 RECOLA
The RECOLA dataset [22] contains abundant affective
data with both arousal and valence annotations per 0.04 s.
The arousal and valence annotations are continuous val-
ues in the range [−1, 1]. The speech data consist of
interviews in which people talk about real-life stories.
However, since the database is not fully publicly available,
we can only acquire a sub-partition that is used in the 2015
and 2016 Audio/Visual Emotion Challenge and Work-
shop (AVEC) [43, 44] competitions. We only use the raw
audio out of four modalities (audio, video, electrocardio-
gram (ECG) and electro-dermal activity (EDA)) provided
by the competition and their corresponding labels. This
sub-partition contains eighteen 5-min-long audio clips,
equally divided into a training set and a development set.
In both sets, there are 5 clips with female speakers and 4
clips with male speakers, as indicated in Table 1. The lan-
guage of all audio clips is French. The sampling frequency
is 44.1 kHz, and we downsampled all data to 16 kHz for
our simulations. We further divide this sub-partition into
5-folds. The partitions are summarised in Table 2.

4.2.2 IEMOCAP
The IEMOCAP dataset [23] contains English acted speech
dialogues by 10 professional actors. There are in total 5
sessions, each featuring one actor and one actress per-
forming the dialogues with a script or in an improvised
manner. There is no speaker overlap across the 5 sessions.
We have used improvised utterances from four emotional
categories {neutral, anger, sadness and happiness}, which
in total are 2280 utterances (neutral 1099, anger 289, sad-
ness 608, happiness 284). We trim or pad zeros in front of
the recordings tomake them into 3-s-long clips.We divide

Table 1 RECOLA database sub-partition naming and speaker
gender in brackets

Train
train_1 (M) train_2 (F) train_3 (M) train_4 (F) train_5 (F)

train_6 (M) train_7 (F) train_8 (F) train_9 (M)

Dev
dev_1 (F) dev_2 (M) dev_3 (M) dev_4 (M) dev_5 (F)

dev_6 (M) dev_7 (F) dev_8 (F) dev_9 (F)

the cross-validation folds by the session numbers (i.e. ses-
sion 1 to 5). The audio files have also been downsampled
to 16 kHz.

4.2.3 Data augmentation
To overcome over-fitting, we propose to apply two simple
yet distinct data augmentation methods to the regres-
sion task and the classification task respectively. For the
regression task, we propose to use a sliding window data
augmentation, that is, we use a 20-s-long sliding window
to generate the training frames from the original 5-min
recordings. Successive sliding windows are shifted by 4 s.
For the classification task, instead of using speed per-

turbation as in [45], which we believe may change the
affective expression of the recording, we propose to use
a random flipping data augmentation. That is, with a
given probability (e.g. equal to 50%), the input sequence
is flipped (i.e. time reversed) before being fed into the
model. This data augmentation method will largely retain
the affective meaning of the original speech recording and
will prevent the model to become biassed by some dis-
turbing context factors having a specific temporal pattern
or dependence (e.g. room reverberation).

4.2.4 Training and evaluation settings
For the regression task, we optimise the model by min-
imising the CCC loss as described in Section 3.3, and for
the classification task, weminimise the cross-entropy loss.
The RMSProp optimiser [46] is used to train the models,
with a fixed learning rate of 10−4. The batch size is 5 for
the regression task and 10 for the classification task, due
to memory constraints. l2 regularisation with a regulari-
sation parameter of 10−4 is applied, and the dropout rate
equals 0.5. No post-processing is performed on the output
predictions.
We conduct all the experiments using 5-fold cross-

validation. More specifically, for the RECOLA dataset, in
every run, we use 4-folds of data to train the model, then
we split the last fold into a validation set and a testing
set as listed in Table 2. In this way, there is no speaker
overlapping across the three subsets. For the IEMOCAP
dataset, since we aim to evaluate the model’s generalis-
ability across speakers and sessions, for each run, we use
3-folds for training, and the remaining 2-folds for vali-
dation and testing respectively. In each experiment, we
employ early stopping, i.e. we stop the training on the
highest validation performance, and then use that model
to compute the testing performance.
The CCC [24] is used to evaluate the regression task,

whereas the weighted accuracy (WA) and the unweighted
accuracy (UA) are used to evaluate the classification task.
WA is the overall accuracy of the entire testing data,
which indicates the overall model performance across
all classes, whereas UA is the average accuracy for each
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Table 2 RECOLA database 5-fold cross-validation partitions

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Valid train_1, dev_1 train_3, dev_3 train_5, dev_5 train_7, dev_7 train_9

Test train_2 dev_2 train_4, dev_4 train_6, dev_6 train_8, dev_8 dev_9

emotion class, which marginalises out the effect of the
existence of class imbalance. All the experiments are
repeated 5 times using data from different folds as stated
above. The results are averaged across the 5-folds before
being reported.

5 Results and discussions
5.1 Evaluation of the context-stacking idea and the

model architectures
First, we evaluate the context stacking which is considered
as one of the contributions of this paper to SER, and a few
model architecture variations. More specifically, we aim
to answer the following questions:

1. Can the context-stacking architecture increase the
model performance?

2. What is the optimal choice between the max-pooling
aggregation and the RMS aggregation?

We propose and evaluate four model variations, and their
topologies are shown in Fig. 4:

a. A model that contains only one sequential network
(denoted as DiCCOSER), in which the context
stacking is not used, is shown in Fig. 4a.

b. A model that deploys context stacking, but the local
contexts are directly fed to the global network, and
the global network is locally conditioned on the
downsampled input sequences (denoted as
DiCCOSER-CS-V2 max), is shown in Fig. 4b. In
addition, the max-pooling aggregation is used.

c. The proposed model that deploys context stacking as
described in Sections 4.1.1 and 4.1.2 (i.e. the global
network receives the aggregated downsampled input
sequences and context stacking is performed using
the local contexts), and uses the max-pooling
aggregation method in the downsampled stream
(denoted as DiCCOSER-CS max), is shown in Fig. 4c.

d. The proposed model having similar architecture as
the model variation c), but using the RMS
aggregation method (denoted as DiCCOSER-CS
rms), is shown in Fig. 4d.

All the model variations have dilation numbers in the
local network and the global network as described in
Sections 4.1.1 and 4.1.2.
We evaluate the proposed model variations on both the

regression task (on the RECOLA dataset) and the clas-
sification task (on the IEMOCAP dataset). The average

testing results for both tasks are illustrated in Fig. 5. First,
we can see that the model variations with context stack-
ing (i.e. the DiCCOSER-CS-V2 max, the DiCCOSER-
CS max and the DiCCOSER-CS rms variations) per-
form better than the DiCCOSER model that does not
use context stacking in both tasks. Compared to the
DiCCOSER model, the DiCCOSER-CS max variation
improves arousal CCC, valence CCC, WA and UA with
about 8.5%, 12.3%, 10.7% and 8.2%, respectively, and
the DiCCOSER-CS rms variation improves arousal CCC,
valence CCC, WA and UA with about 12%, 15.5%, 11.5%,
and 10.3%, respectively. On the other hand, the improve-
ments for the DiCCOSER-CS-V2 model on the RECOLA
dataset are not significant (it improves arousal CCC and
valence CCC with about 2.7% and 0.5%, respectively), and
the DiCCOSER-CS-V2model improves UA on the IEMO-
CAP dataset with about 7.2%, but shows a small degrada-
tion in WA (about 0.3%). Second, in the case with context
stacking, the model with the RMS aggregation method
performs better than the model with the max-pooling
method, and both DiCCOSER-CS variations perform bet-
ter than the DiCCOSER-CS-V2 variation. However, the
UA difference between the variations DiCCOSER-CS-V2
max (UA equal to 52.1%) and DiCCOSER-CS max (UA
equal to 52.7%) is not large. Overall, the best perfor-
mance is obtained with the DiCCOSER-CS rms model. In
the regression task, its arousal CCC equals 0.746, and its
valence CCC equals 0.506. In the classification task, the
DiCCOSER-CS rms model achieves a WA equal to 64.1%
and an UA equal to 53.6%.
We can conclude that the context-stacking architecture

does improve the SER performance. Also, the classifi-
cation performance of the DiCCOSER-CS max and the
DiCCOSER-CS rms variations shows a similar trend in
WA and UA, which indicates that the improved accu-
racy is not due to the bias towards an individual class.
Furthermore, the RMS aggregation method works bet-
ter than the max-pooling method, so we keep using the
DiCCOSER-CS rms model for the further experiments.

5.2 Comparisons with the state-of-the-art model in the
speaker-independent setting

In the second experiment, we compare our proposed
model with the state-of-the-art CNN-LSTM model. In
our dataset partitions, in each fold, the speakers in the
training, validation and testing sets are not overlapping,
so that the model performance is speaker-independent.
The baseline model proposed by Tzirakis et al. [11] was
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Fig. 4 The proposed model variations. a DiCCOSER. b DiCCOSER-CS-V2. c DiCCOSER-CS max. d DiCCOSER-CS rms. “RMS Aggr.” indicates using the
RMS aggregation

Fig. 5 Performances of four proposed model variations on a the RECOLA dataset and b the IEMOCAP dataset. Suffix “-CS” indicates using the
context stacking; “max” and “rms” indicate using the max-pooling aggregation and the RMS aggregation, respectively
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Fig. 6 Performance comparisons to the baseline CNN-LSTM model. “Aug.” indicates using the sliding window augmentation in a or the random
flipping augmentation in b

originally proposed for the emotion regression task on
the RECOLA dataset and consists of three CNN layers
with max-pooling and dropout layers in between and sub-
sequently two LSTM layers. The model has been imple-
mented here with settings as stated in [11], and in the
classification task, we have added a global average pooling
layer and a softmax layer on the outputs of the last LSTM
layer of the baselinemodel. Thismodel is optimised on the
CCC loss for the regression task, and on the cross-entropy
loss for the classification task, identically to our pro-
posed model. Lastly, we also evaluate the baseline model
trained with the proposed data augmentation methods
(the sliding window augmentation and the random flip-
ping augmentation method, denoted as “Aug.”), which was
not proposed in their original paper [11]. To have fair
comparisons, we also conduct experiments using our pro-
posed model without data augmentation. The results are
shown in Fig. 6.
The results firstly illustrate that the proposed model,

with the proposed data augmentation methods, outper-
forms the CNN-LSTM model with or without data aug-
mentation in all the testing cases. More specifically, in
the regression task, the DiCCOSER-CS rms model with
sliding window augmentation achieves arousal CCC equal
to 0.746 and valence CCC equal to 0.506, compared
to the CNN-LSTM model with sliding window where
arousal CCC is 0.681 and valence CCC is 0.449. Hence,
the DiCCOSER-CS rms model with sliding window has
improved the arousal CCC and valence CCC with 9.5%
and 12.7%, respectively. In the classification task, the
DiCCOSER-CS rmsmodel with random flipping augmen-
tation achieves a WA equal to 64.1% and a UA equal
to 53.6%, whereas the CNN-LSTM model with random
flipping augmentation yields WA and UA equal to 58.6%
and 52.6%, respectively. Secondly, the proposed data

augmentationmethods can improve the SER performance
for both the baseline CNN-LSTM model and the pro-
posed DiCCOSER-CS rms model. More specifically, with
regard to the regression task, the sliding window aug-
mentation improves the CNN-LSTM model performance
from 0.613 to 0.681 on arousal CCC and from 0.412 to
0.45 on valence CCC. Also, it improves the DiCCOSER-
CS rms model performance on arousal CCC from 0.734 to
0.746 and valence CCC from 0.484 to 0.506. However, in
the classification task, the random flipping augmentation
only gently improves the WA performance (the CNN-
LSTM model with augmentation improves WA from 57.8
to 58.6%, and the DiCCOSER-CS rms model with aug-
mentation improves WA from 63.5 to 64.1%), and also the
UA of the DiCCOSER-CS model (from 52.3 to 53.6%), but
there is a small decrement in the WA of the CNN-LSTM
(about 0.5%). Nevertheless, these results may indicate that
these data augmentation methods are helpful to improve
the SER testing performance.
Finally, an interesting comparison on the number of

parameters is given in Table 3. It is shown that even if the
proposed DiCCOSER-CS model has the best overall per-
formance on both the regression and classification tasks, it
only has about 1/3 of the number of parameters compared
to the baseline CNN-LSTM model. The low number of
parameters implies that the proposed model can be pro-
cessed much faster in both training and inferencing even
with a single thread.

Table 3 Summary of the number of model parameters

CNN-LSTM [11] DiCCOSER-CS
RECOLA

DiCCOSER-CS
IEMOCAP

Number of
parameters

≈ 1300 · 103 ≈ 475 · 103 ≈ 430 · 103
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5.3 Comparisons with different input features
In this experiment, we aim to evaluate the impact of
using different input features on the SER performance.
More specifically, we conduct experiments using log mel-
spectrogram features in both the baseline CNN-LSTM
model and the proposed DiCCOSER model, since log
mel-spectrogram features are widely used in end-to-end
SER[10, 12, 32]. The results are then compared with the
aforementioned models which use raw time domain audio
samples as an input. Because the log mel-spectrogram
features have a much lower sampling rate than the raw
audio samples, wemodify the baseline CNN-LSTMmodel
and our proposed DiCCOSER model with/without con-
text stacking to have less pooling layers and a smaller
pooling width to work with these features. It is worth
to mention that, in the case of using the DiCCOSER-CS
model, we only change the local network to receive the
logmel-spectrogram features, in which the local context is
generated to be used by the global network via local con-
ditioning. The global network still uses the aggregated raw
samples as an input. To extract the log mel-spectrogram
features, we use a short-time Fourier transform (STFT)
with a window size equal to 0.04 s, 50% overlap and 40
mel-frequency bands in the range of [0, 7600]Hz. Finally,
we use the logarithmic values for numerical stability.
The results are illustrated in Fig. 7. We can see that

using the log mel-spectrogram features can improve the
SER performance of the CNN-LSTMmodel; however, the
improvements for the DiCCOSER models are less pro-
nounced. Firstly, with regard to the regression task on the
RECOLA dataset in Fig. 7a, using log mel-spectrogram
features significantly improves the CNN-LSTM model
performance (arousal CCC and valence CCC increase
with about 3.5% and 5.1%, respectively). Similarly,
the CNN-LSTM model with log mel-spectrogram fea-
tures also largely improves the WA and UA on the

IEMOCAP dataset (WA and UA increase with 10.4%
and 7.6%, respectively). This makes the performance of
the CNN-LSTM model with log mel-spectrogram fea-
tures comparable to the performance of some of the pro-
posed DiCCOSER models. Its UA achieves 56.6% which
is higher than the DiCCOSER-CS rms model with raw
sample inputs (UA equal to 53.6%) and is higher than
the DiCCOSER model with log mel-spectrogram features
(UA equal to 55.5%). The best WA (equals to 65.8%)
and UA (equal to 56.7%) are however still obtained with
the DiCCOSER-CS rms model with log mel-spectrogram
input.
Secondly, for the DiCCOSER models, there is no obvi-

ous difference among using the raw audio samples or
the log mel-spectrogram features as an input. Regarding
the performance for the regression task on the RECOLA
dataset, the best arousal CCC (equal to 0.751) is obtained
with the DiCCOSER-CS rms model with the log mel-
spectrogram input, which is slightly higher than the
DiCCOSER-CS rms model with the raw sample input
(arousal CCC equal to 0.746), and is slightly higher than
the DiCCOSER model with log mel-spectrogram input
(arousal CCC equal to 0.749). Analogously, with respect to
valence CCC, the three model variations perform equally
well (valence CCC from high to low: DiCCOSER-CS rms
model with raw audio sample input gives a valence CCC
equal to 0.506, the DiCCOSER-CS rms model with log
mel-spectrogram input gives a valence CCC equal to 0.498
and the DiCCOSER model with log mel-spectrogram
input gives a valence CCC equal to 0.492). Similar con-
clusions can be drawn from the classification results on
the IEMOCAP dataset, although the log mel-spectrogram
features slightly improve the DiCCOSER model and the
DiCCOSER-CS model performance, especially in UA,
which may indicate that using log mel-spectrogram input
features provides higher robustness to class imbalance

Fig. 7 Comparisons between using raw time domain samples and using log mel-spectrograms as the SER model input
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than the raw audio input, but there is no apparent winner
among the DiCCOSER variations. The best results for the
classification task are obtained with the DiCCOSER-CS
rms model using the log mel-spectrogram features (WA
equal to 65.8% and UA equal to 56.7%).
Thirdly, the conclusions from the previous experiments

are still valid, i.e. the DiCCOSER model with context
stacking performs slightly better than the DiCCOSER
model without context-stacking, and the DiCCOSER-CS
rms model outperforms the CNN-LSTM baseline model
when the same input features are used.
Finally, we also compare our end-to-end SER perfor-

mance with some existing SER models that use traditional
audio features. The comparisons are listed in Table 4. Sahu
et al. [47] and Jiang et al. [48] have evaluated the GeMAPS
features on the IEMOCAP dataset, and Jiang et al. [48]
have evaluated MFCCs as well. The results indicate that
the end-to-end learning models (including the baseline
CNN-LSTM model [11] and the proposed DiCCOSER
models), using time-domain raw audio samples or shallow
features such as the log mel-spectrogram features, outper-
fom the models using traditional audio features. Similarly
with the RECOLA dataset, the CNN-LSTM model and
the proposed DiCCOSER model with raw or shallow fea-
tures (i.e. log mel-spectrogram features) outperform the
traditional audio features (such as the GeMAPS or low-
level descriptor features evaluated in Valstar et al. [44] and
Ringeval et al. [3], respectively) in terms of the mean CCC
performance.

5.4 Visualisations of the local contexts
In this experiment, we aim to investigate the local contexts
produced by the proposed SER model. Ideally, the local

contexts should learn the information that has been lost
during the aggregation step applied to the input sequence
in the parallel feedforward branch. To this end, we visu-
alise the local contexts computed from the IEMOCAP
test sets in different cross-validation folds. These local
contexts are originally 64-dimensional, but for visualisa-
tion purposes, here, we first average them across time per
input audio frame, then we compute their first 2 principal
components using principal component analysis (PCA).
In Fig. 8, the horizontal axis corresponds to the first prin-
cipal component, and the vertical axis corresponds to the
second principal component. Finally, we assign colours
to the local contexts corresponding to their class labels.
Columns (a) and (b) in Fig. 8 are corresponding to the
DiCCOSER-CS model with the max-pooling aggregation
and with the RMS aggregation, respectively.
We can make the following observations from the visu-

alisations of the local contexts. First, we can see that the
local contexts tend to form clusters that correspond to the
class labels. The most discriminative cluster is the cluster
corresponding to “Sad” (in light blue), and another dis-
criminative cluster is the “Angry” cluster (in yellow). The
“Neutral” and “Happy” clusters are overlapping in most
of the cases. This can be explained by the fact that the
angry emotion has a very high energy (high arousal), and
the sad emotion has a very low energy (low arousal) which
are both more distinguishable than the happy (medium
to high energy/arousal) and neutral emotion. Second, we
found that the first principal component represents the
arousal properties of the emotions. That is, since arousal
indicates the activation/energy of an emotion [1], if we
look at the emotion clusters along the first principal com-
ponent axis (from left to right along the horizontal axis),

Table 4 Performance comparisons to SER models trained using traditional audio features; best performances are in bold

RECOLA IEMOCAP

CCC_A CCC_V CCCMean WA UA

Sahu et al. [47] (GeMAPS) - - - 56.85% -

Jiang et al. [48] (GeMAPS) - - - - 41%

Jiang et al. [48] (MFCCs) - - - - 35%

Valstar et al. [44] (GeMAPS) 0.683 0.375 0.529 - -

Ringeval et al.[3]

(low-level descriptors) 0.757 0.26 0.509 - -

CNN-LSTM Tairakis et al. [11]

(raw samples) 0.681 0.5 0.591 58.6% 52.6%

CNN-LSTM Tairakis et al. [11]

(log mel-spectrogram) 0.705 0.473 0.589 64.7% 56.6%

Proposed DiCCOSER-CS

(raw samples) 0.746 0.506 0.626 64.1% 53.6%

Proposed DiCCOSER-CS

(log mel-spectrogram) 0.751 0.498 0.6245 65.8% 56.7%
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Fig. 8 Visualisations of the local contexts of the testing sets from the IEMOCAP folds
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these emotion clusters are arranged from low activated
emotion clusters to high activated emotion clusters or the
other way around. Thus, the first principal component
of the local context is actually highly positively or nega-
tively correlated with the arousal, even if we only supervise
the training with class labels (i.e. categorical labels such
as sad, happy, angry and neutral). However, the second
principal component of the local contexts does not show
a significant correlation to the valence, which indicates
the pleasurableness of an emotion. Finally, we observe
that the local contexts learned from the DiCCOSER-CS
model with the max pooling aggregation and with the
RMS aggregation show similar geometrical properties in
this low-dimensional PCA space. In other words, the
points from the same test set are spread similarly even
when using different aggregation methods, and in par-
ticular, they form similar shapes in this low-dimensional
space but mirrored along the first or second principal
component axis.

6 Conclusions and future work
In this work, we have proposed a novel end-to-end DNN
model for SER that does not consist of any recurrent or
fully connected layers. A dedicated dilated causal con-
volution block is designed to increase the model recep-
tive field while keeping the number of model parameters
low. Simulation results firstly indicate that the proposed
model with context stacking and the RMS aggregation
method achieves the best SER performance among sev-
eral model variations, which confirms the effectiveness
of the novel context stacking structure for SER. Sec-
ondly, the simulation results also indicate that the pro-
posed model variations, which only contained about 1/3
of the number of model parameters, outperformed the
baseline state-of-the-art CNN-LSTM model. Thirdly, we
have shown that the proposed sliding window augmenta-
tion and random flipping augmentation methods improve
the SER performance for both the baseline model and
the proposed model. Fourthly, using log mel-spectrogram
features instead of raw audio samples as an input can
significantly improve the CNN-LSTM model SER perfor-
mance and slightly improves the proposedmodel SER per-
formance, which indicates that the log mel-spectrogram
features can be alternative input features for end-to-
end SER. Furthermore, by using either the raw audio
samples or the shallow log mel-spectrogram features as
an input, the baseline model and the proposed model
both achieve better SER performance compared to the
SER systems using traditional audio features. Finally, we
reported the results that allow to interpret the local con-
texts. We found that (1) the local contexts form clus-
ters that corresponded to their emotion class labels,
which indicated that the local contexts tend to learn the
affective information not included in the downsampled

input sequence; (2) the first principal component of the
local context is highly positively or negatively correlated
with the arousal of the target emotion, even if we only
supervised the model training with the emotion class
label.
Future work could investigate using several parallel local

networks operating on different input hop lengths, simi-
larly to the idea in [49], which is aiming to learn the local
contexts from the input at different levels of compression.
In addition, it appears highly attractive to apply the dilated
causal convolution to similar tasks where a large recep-
tive field is required, for example, by using the proposed
architecture in an autoencoder structure to learn emo-
tion representations from raw speech signals or apply-
ing the proposed architecture to other speech-related
problems.
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