
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335733614

Axiomatic Kernels on Graphs for Support Vector Machines

Conference Paper · September 2019

DOI: 10.1007/978-3-030-30493-5_62

CITATIONS

0
READS

88

2 authors:

Some of the authors of this publication are also working on these related projects:

see http://www.esat.kuleuven.be/stadius/ADB/ View project

LS-SVM Applications View project

Marcin Orchel

AGH University of Science and Technology in Kraków

31 PUBLICATIONS 51 CITATIONS

SEE PROFILE

Johan A.K. Suykens

www.esat.kuleuven.be/stadius

743 PUBLICATIONS 34,100 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marcin Orchel on 08 November 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335733614_Axiomatic_Kernels_on_Graphs_for_Support_Vector_Machines?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335733614_Axiomatic_Kernels_on_Graphs_for_Support_Vector_Machines?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/see-http-wwwesatkuleuvenbe-stadius-ADB?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/LS-SVM-Applications?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Orchel?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Orchel?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AGH-University-of-Science-and-Technology-in-Krakow?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Orchel?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin-Orchel?enrichId=rgreq-244697e93cae5a7d11e6e5a4d86be4e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTczMzYxNDtBUzo4MjI5MzYxMjY2MTk2NDlAMTU3MzIxNDY3MDA1Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Axiomatic Kernels on Graphs for Support
Vector Machines

Marcin Orchel1,2[0000−0002−1081−7626]* and Johan A.K.
Suykens1[0000−0002−8846−6352]

1 ESAT-STADIUS, KU Leuven, Leuven (Heverlee) 3001, Belgium
{marcin.orchel,johan.suykens}@esat.kuleuven.be

2 Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland

Abstract. We solve the problem of classification on graphs by gener-
ating a similarity matrix from a graph with virtual edges created using
predefined rules. The rules are defined based on axioms for similarity
spaces. Virtual edges are generated by solving the problem of computing
paths with maximal fixed length. We perform experiments by using the
similarity matrix as a kernel matrix in support vector machines (SVM).
We consider two versions of SVM: for inductive and transductive learn-
ing. The experiments show that virtual edges reduce the number of sup-
port vectors. When comparing to kernels on graphs, the SVM method
with virtual edges is faster while preserving similar generalization per-
formance.

Keywords: Support vector machines, Graph kernels

We solve a problem of collective classification [11] also known as iterative
classification or link-based classification where the goal is to determine correct
label assignments of all objects in the network. One of the approaches is to use at-
tributes of neighbors’ examples, which is called relational classification. Another
approach is to use class labels assigned to neighbor instances. This approach
is called iterative collective classification. The iterative classification algorithm
uses a local classifier that takes class labels of neighbors and return a label value
and repeat the process. The collective classification has been applied to a num-
ber of real-world problems [11], for example document classification. Specifically,
we solve a problem of classification without features. It is called similarity-based
classification [4]. The example for such problem is fraud detection for anonymized
cell phone network [6]. It is also known as graph-based semi-supervised learning
when a graph has unlabeled nodes and weighted edges [9]. The problem of col-
lective classification for partially labeled data is also known as within-network
classification [6].

We focus on using SVM for solving the collective classification problem. The
requirements for using SVM is to define a kernel matrix, which is a similarity
matrix with an additional property of positive semi-definiteness. For networks,
we usually have similarities only between connected objects, which leads to a

problem of generating a kernel matrix for a graph. The technique of generat-
ing kernels for networks is called “kernels on graphs”. This technique has been
already applied for recommendation tasks [20, 5] and for semi-supervised clas-
sification [5]. The general issue of kernels on graphs is high computational cost
(usually O(n3)). The alternative approach is to map the data to the Euclidean
space using spectral embedding. The disadvantage is high computational cost
and forcing data to be in a specific space. So discrete kernels may be preferable
[7]. We focus on another workaround using a similarity matrix with SVM which
may not be positive semi-definite. Recently, an efficient solver for SVM has been
proposed [10], which does not use a regularization term. It solves a convex opti-
mization problem, regardless of the positive semi-definiteness of a kernel matrix.
The straightforward approach to define a similarity matrix is to use value 0 for
disconnected vertices meaning no similarity at all. However, this assumption may
not be met in collective classification when relations are supposed to exist also
for disconnected vertices. Another problem with the straightforward approach
specific to SVM is the unknown classification when the example is not connected
with a support vector. One of the approaches to solve these problems is to gen-
erate additional edges in a graph with provided similarities. This idea has been
proposed in [6]. The authors use “ghost edges” with proximities generated by
a Random Walk method using specific measure based on a Laplacian matrix.
The potential problems with this measure are related to nonstability of the ran-
domness process. The measure is used in a supervised manner by adding ghost
edges only between labeled and unlabeled pair of nodes. The supervised setting
is prone to cascading errors for iterative methods [13]. Moreover, the measure
for ghost edges is defined for a classification on graphs, while it is unclear how
to define the measure on weighted graphs which is a more general problem con-
sidered in this paper. The weighted graphs has been mentioned in [9] with the
example of a weight being the number of hyperlinks between websites.

One of the approaches to define a kernel on graphs is to compute the short-
est path distance between nodes [14]. The potential problems have been men-
tioned like constructing positive definite function and sensitiveness to the in-
sertion/deletion of individual edges. Computing the shortest path between all
examples is also expensive, the Floyd-Warshall algorithm has complexity O(n3).
The potential problem with the idea of using the shortest path is that it op-
erates on distances instead of similarities between examples. So the similarities
need to be converted to distances and vice versa. The idea in this paper is to
generate “virtual edges” by finding paths with maximal similarity and a fixed
size. Another idea is to compute similarities for “virtual edges” by using axioms
defined for similarity spaces. Such an approach has the advantage of simple in-
terpretation of particular added weights and can be regarded as prior knowledge
for similarities. It uses local information instead of global, so it can be used for
streaming graphs.

Related work There are two approaches for using a Non-Positive Semidefinite
Similarity Matrix for kernel machines [19]: algorithmic and spectrum-transformation.

In the algorithmic approach, one uses the NPSD similarity matrix as a kernel.
We need a special formulation of SVM, or a heuristic to find a local solution.
In the spectrum-transformation methods the kernel matrix is generated. The
representative of the second approach is a diffusion kernel [7] based on a dif-
fusion equation, that considers the data distribution when computing pairwise
similarity. We use a novel type of solver for SVM without regularization term
which solves a convex optimization problem with any similarity matrix [10].

The approach of using generated PSD kernels for graph data has been inves-
tigated in [5]. The authors investigated nine kernels on graphs: the exponential
diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann
diffusion kernel, the regularized Laplacian kernel, the commute-time kernel, the
random-walk-with-restart similarity matrix, the regularized commute-time ker-
nel, the Markov diffusion kernel and the relative-entropy diffusion matrix. The
graph kernels based on normalized Laplacian, mainly Regularized Laplacian,
Diffusion Process, p-step Random Walk and Inverse Cosine have been investi-
gated in [7, 16]. In [14], the authors mentioned a random walk kernel, where
multiple paths are created with the size T . Potential problems include choosing
suitable T and inability to reach a vertex due to cycles. Recently, a random
walk method has been used for learning representations in the deep learning
framework for classification of graph data [13]. In [1], authors proposed shortest
path kernels in a different problem of comparing two graphs with each other.
Some kernels have been proposed to improve the computational performance for
comparing graphs like Weisfeiler-Lehman Graph Kernels [15]. However, it is not
clear whether they can be used to classification on graphs. The diffusion kernel
requires diagonalizing the Laplacian which is of order n3. Moreover, it may have
problems with accuracy [3].

The outline of the paper is as follows. First, we define a problem, then the
methods and rules, then we derive rules from axioms. After that, we show ex-
periments on real world data sets.

1 Problem definition

We consider the following problem.

Definition 1 (Classification space C). For a universe X of objects, we have a
set C of classes and a set of mappings MT : XT ⊂ X → C called a training set
T , XTe ⊆ X, where XTe is a set called a test set.

For example in the Fig. 1, {x1, x2, x6} is a training set, {x3, x4, x5, x7, x8} is
a test set.

Definition 2 (Classification space on a graph G). We define a classification
space on a graph, as a classification space with a graph G = (XT ∪XTe, E) with
weights for each e ∈ E.

We need to know XTe for a graph. We interpret the weights as similarities
between examples. The graph without weights can be represented by a weighted
graph with binary weights. The example graph is depicted in the Fig. 1.

Problem 1 (Semi-supervised classification problem). A semi-supervised classifi-
cation problem is to find a class for each element of XTe given MT and XTe on
C.

Problem 2 (Semi-supervised classification problem on a graph). A semi-supervised
classification problem on a graph is to find a class for each element of x ∈ XTe

given MT and XTe on (C,G).

For example in the Fig. 1, we need to find a class for all test examples
x3, x4, x5, x7, x8.

x1

x2

x7x8

x3

x4 x5 x6

e12

e15

e23

e14

e56

e37e28

e78

e16

e13

e25

e27

e24

e18

Fig. 1: Problem definition. Filled circles – training data examples, unfilled circles – test
data examples, solid lines – edges in a given graph, dashed lines – virtual edges added
to a graph.

2 Main contribution

The idea of a method is to generate “virtual edges” between some disconnected
examples. In the Fig. 1, the virtual edges are depicted with a dashed line, and
these are e16, e13, e45, e25, e24, e18, e27.

Another idea in the proposed approach is to generate virtual edges for all
examples for which there exists a path of a length 2. For example in the Fig. 1,
there is a path from x1 to x3 of length 2 through the example x2, so we generate
the edge e13. There is no path of a length 2 between x5 and x3, so there is no
virtual edge between them. We generate paths in a semi-supervised way based
on both training and test examples when both are available as in Prob. 2. For

example in order to generate a path between x1 and x6, we use connections with
a test example x5. We do not need to generate edges between test examples, like
e45 or e38. The generation of virtual edges can be regarded as an unsupervised
setting in the sense, that we do not use labels. We do not consider as a path, a
sequence of vertices with possible duplicates, which is called a walk, for example
x1 to x1.

The next idea is to compute the maximal similarity for the virtual edge.
Sometimes, there are two paths of a length 2 between examples. In the Fig. 1,
there are two paths between x2 and x7, that are x2 → x3 → x7 and x2 → x8 →
x7. We compute the similarity for the virtual edge e27 based on each path and
we choose the maximal similarity.

We propose three rules for generating weights for virtual edges being simi-
larities between examples. These are

s̃ (x1, x3)← s (x1, x2) s (x2, x3)

s (x1, x2) + s (x2, x3)
, (1)

where s is a similarity measure between two examples. For example, in the Fig. 1,
when s(x1, x5) = 0.6, s(x5, x6) = 0.9, we induce similarity s̃(x1, x6) = 0.36. The
next rule is

s̃ (x1, x3)← exp

(
−
(√
− log s (x2, x3) +

√
− log s (x1, x2)

)2)
. (2)

For example, in the Fig. 1, when s(x1, x5) = 0.6, s(x5, x6) = 0.9, we induce
similarity s̃(x1, x6) ≈ 0.34. The third rule is

s̃ (x1, x3)← smax −
1

2

(√
2smax − 2s (x2, x3) +

√
2smax − 2s (x1, x2)

)2
, (3)

where smax is a maximal possible value of a similarity. For example, in the Fig. 1,
assuming smax = 1.0, when s(x1, x5) = 0.6, s(x5, x6) = 0.9, we induce similarity
s̃(x1, x6) ≈ 0.1.

We propose three methods for solving a semi-supervised classification on
graphs by using SVM.

Method 1 (Reference Graph Support Vector Machines (RGSVM)). Train a
model with SVM with all training examples with a similarity matrix defined as
s (xi, xj) = w (xi, xj) for (xi, xj) ∈ E, otherwise s (xi, xj) = 0.

For the example in the Fig. 1 the training set for SVM is x1, x2, x6. The
similarity matrix is s (x1, x1) s (x1, x2) 0

s (x2, x1) s (x2, x2) 0
0 0 s (x6, x6)

 . (4)

The decision boundary is

y1α1s (x1, x) + y2α2s (x2, x) + y6α6s (x6, x) + b = 0 , (5)

where yi is a label of the ith example, αi and b are parameters computed by
SVM. The next method uses virtual edges.

Method 2 (Axiomatic Kernel Graph Support Vector Machines (AKGSVM)).
Train a model with SVM with all training examples with a similarity matrix
defined as s (xi, xj) = w (xi, xj) for (xi, xj) ∈ E, otherwise for each two not
connected vertices x1, x2 find a path of length 2 between them with maximal
induced similarity. So when (x1, x3) /∈ E, find all xi, such as (x1, xi) ∈ E and
(xi, x3) ∈ E, and

max
xi

s̃ (x1, x3) (6)

and then set s (x1, x3) = s̃ (x1, x3) for a path through the optimal x∗i , where the
induced similarity is computed based on (1) or (2) or (3), otherwise s (xi, xj) =
0. For the (1) the method is called AKGSVM1, for (2) AKGSVM2, for (3)
AKGSVM3.

For the AKGSVM3, we may have a negative bound (3), so we compute the
maximum of the bound (3) and (2). For the example in the Fig. 1, the training
set for SVM is x1, x2, x6. The similarity matrix is s (x1, x1) s (x1, x2) max (s̃b (x1, x6) , s̃ (x1, x6))

s (x2, x1) s (x2, x2) 0
max (s̃b (x6, x1) , s̃ (x6, x1)) 0 s (x6, x6)

 , (7)

where s̃b is the similarity induced by (2). The decision boundary is

y1α1s (x1, x) + y2α2s (x2, x) + y6α6s (x6, x) + b = 0 , (8)

where s is the original similarity when exist or the induced similarity otherwise.
The third method is based on creating a local model for each test example.

Method 3 (Reduced Transductive Graph Support Vector Machines (RTGSVM)).
Perform AKGSVM for each test example xp separately given a subset of train-
ing data with the r most similar examples connected with xp, where r is some
parameter.

The property of creating local models to particular test examples which are
not designed to generalize to other test examples is called transductive learning.
When there is no enough connected examples to match the r value, the subset
is smaller than r. For the example in the Fig. 1, for r = 2, the training set for
xp = x5 is a subset of training data with two nearest training examples to x5
computed based on similarities. It may be {x1, x6} or {x2, x1} or {x2, x6}. For
the first case the similarity matrix is[

s (x1, x1) s̃ (x1, x6)
s̃ (x6, x1) s (x2, x2)

]
. (9)

The decision boundary is

y1α1s̃ (x1, x) + y6α6s̃ (x6, x) + b = 0 , (10)

where s̃ is the original similarity when exist, otherwise it is the induced similarity.
Overall, we have 5 separate models one per each test example. In the last two
methods, virtual edges are used also when classifying test data. The RTGSVM
method can be used with any type of virtual edges either based on (1) or (2) or
(3).

3 Analysis of rules

The rules are generated based on defined similarity spaces. First, we define a
similarity space corresponding to (1)

Definition 3 (Similarity space S). For a binary relation R on X, we define a
similarity measure sR : X × X → R where sR is a restriction of the function
s to a binary relation R, which is a subset of the Cartesian product that is
R ⊆ X × X, shortly we note sR as s. Similarity measure fulfills the similarity
axioms: 0 < s (x1, x2) ≤ smax, where smax ≥ 0, s (x1, x2) = smax ⇐⇒ x1 = x2,
s (x1, x2) = s (x2, x1) and

Axiom 1.

s (x1, x3) ≥ s (x1, x2) s (x2, x3)

s (x1, x2) + s (x2, x3)
. (11)

We call the assumptions axioms following [2]. The Ax. 1 gives a lower bound
for similarity. We define additionally a pseudosimilarity, when the second axiom
is replaced with s(x1, x1) = smax. The similarity concept is related to the dis-
tance. The distance is also called a metric and is part of a definition of a metric
space. That is the metric or distance is defined as a function d : X×X → R+ sat-
isfying the following properties: d(x1, x2) ≥ 0 and d (x1, x2) = 0 ⇐⇒ x1 = x2
(non-negativity), d(x1, x2) = d(x2, x1) (symmetry) and

Axiom 2.
d (x1, x3) ≤ d (x2, x3) + d (x1, x2) . (12)

One difference between the definition of similarity and the distance is that
the distance is defined for all x ∈ X, while the similarity we define only on some
subset of X ×X, that is the binary relation R. We derive axioms for similarity
from axioms for the distance. In particular, when we replace similarity by the
inverse of a distance assuming d(x, y) > 0 in (11), so we substitute

s (x1, x2) = 1/d(x1, x2) , (13)

we get the distance axiom Ax. 2. The kernel matrix for some kernel functions can
be interpreted as similarities between all examples. One notable example is the
radial basis function (RBF) kernel, for which the kernel value is defined in terms
of distance. By using this property, we can get alternative triangle inequality
for the similarity (1). We can convert it to similarity by using log s(x1, x2) =
−d(x1, x2)2, so d(x1, x2) = ±

√
− log s(x1, x2), d is nonnegative so

d(x1, x2) =
√
− log s(x1, x2) . (14)

We additionally assume that smax = 1. Then after substituting (14) to (12), we
get

Axiom 3.

s (x1, x3) ≥ exp

(
−
(√
− log s (x2, x3) +

√
− log s (x1, x2)

)2)
. (15)

Based on this axiom, we created a rule (2). It gives another possible lower
bound on the similarity. It holds that

s (x1, x2) >
s (x1, x2) s (x2, x3)

s (x1, x2) + s (x2, x3)
. (16)

The same holds for the left side being s(x2, x3). So the lower bound is smaller
than any similarity involved. The maximal possible induced similarity for smax =
1 is 0.5, and it is achieved for s1 = 1 and s2 = 1. For any smax the maximal
possible similarity is smax/2 and is achieved for s1 = smax and s2 = smax.

When generating similarities using the RBF kernel for some given particular
distances, the question is about satisfying the triangle inequality for similarity
Ax. 1. So after substitution s(x1, x2) = exp

(
−d(x1, x2)2

)
to Ax. 1, we get

d2 (x1, x3) ≤
log
(
exp

(
−d2 (x1, x2)

)
+ exp

(
−d2 (x2, x3)

))
+ d2 (x1, x2) + d2 (x2, x3) .

(17)

This is alternative triangle inequality for a distance which can be used for defin-
ing alternative metric space. We can also substitute (12) to Ax. 3 and we
get

d (x1, x3) ≤ 1

exp

(
−
(√

log d (x2, x3) +
√

log d (x1, x2)
)2) . (18)

This is another way of defining triangle inequality for a metric space. For vec-
tor spaces, the feature map for kernel machines exists only when the kernel is
positive-definite. The similarity is a broader concept and this condition may not
be met. The relation between metric and the positive-definite kernels extended
to the concept of similarity is as follows

d̃ (x1, x2) =
√

2smax − 2s (x1, x2) , (19)

where
2smax − 2s (x1, x2) ≥ 0 , (20)

d̃ is a pseudometric. The disadvantage of such definition is that a distance is
bounded by a value

√
2smax. For a pseudometric the second axiom is replaced

by d (x, x) = 0, so the distance between different examples can be 0. The pseu-
dometric is related to pseudosimilarity. The condition (20) is the existence of
smax. The relation can be reformulated as

s (x1, x2) = smax −
1

2
d̃ (x1, x2)

2
. (21)

So positive definiteness is related to a specific assumption about connection
between similarity and metric. For such definition, we can see how the triangle
inequality axiom for similarities Ax. 1 relates to distances by substituting (21)
to Ax. 1 and we get

d̃ (x1, x3)
2 ≤ 1

smax

1

4
d̃ (x1, x2)

2
d̃ (x2, x3)

2 − 1

smax

1

4
d̃ (x1, x2)

2
d̃ (x1, x3)

2

−1

4
d̃ (x2, x3)

2
d (x1, x3)

2 − smax .

(22)

We derive the axiom for similarity by substituting distance from (19) to Ax. 2
and we get

Axiom 4.

s (x1, x3) ≥ smax −
1

2

(√
2smax − 2s (x2, x3) +

√
2smax − 2s (x1, x2)

)2
. (23)

The problem is that sometimes we get loose negative bound for similarity,
which is useless for substitution. Based on this axiom, we created a rule (3).

4 Analysis of methods

In addition to the proposed methods, we analyze the following methods: k-
nearest neighbors (KNN), SVM with a diffusion kernel based on a normalized
Laplacian and SVM with a shortest path kernel. The shortest path kernel min-
imizes distances, so given a graph with similarities, we convert each similarity
on a path to a distance and vice versa by using (13).

Complexity analysis. For the SVM methods trained on the whole kernel
matrix, that are SVM with a diffusion kernel and SVM with a shortest path
kernel the computational complexity for the stochastic gradient solver with the
worst violators [10] is O(sn), where s is the number of support vectors, n is the
number of examples. The maximal number of iterations is s. In each iteration,
we need to update a functional margin value for each remaining parameter and
find the worst violator. Computing a kernel matrix for a diffusion kernel re-
quires eigendecomposition of a normalized Laplacian matrix which has complex-
ity O(n3). Computing a kernel matrix for a shortest path kernel leads to all-pairs
shortest paths problem. We need to compute paths between all vertices, except
those already connected. The Floyd-Warshall algorithm has complexity O(n3),
where n is the number of vertices. For sparse graphs with nonnegative weights
which is the case here, Dijkstra’s algorithm can be used which has complexity
O(|E|n + n2 log n), where |E| is the number of edges. Both kernels are imprac-
tical in solving large-scale machine learning problems. Regarding the method
AKGSVM1, AKGSVM2, AKGSVM3 the complexity of adding virtual edges is
O(|E||Ec|), where |Ec| is the number of edges connected with each vertex for
the algorithms which iterates over all edges and all connected edges to both
vertices of the edge. The connected edges can be found in a constant time us-
ing hash structures. This algorithm is suitable for sparse graphs. The question

about solving the longest path problem for a fixed size which has linear com-
plexity O(l!2ln), where l is the length of the path for AKGSVM1, AKGSVM2,
AKGSVM3, when we do not sum weights remains open. This algorithm per-
forms deep-first search, path decomposition and apply dynamic programming.
For the KNN, there is no training phase. During testing, the nearest neighbors
must be found for each test example which can done in O(tn), where t is the
number of test examples. For the RGSVM, the complexity is as for SVM. For
the RTGSVM, the complexity is the same as for AKGSVM however computed
only for nearest neighbors.

Memory complexity. For graphs, especially sparse graphs, we can store
information about edges in a sparse matrix structure. The problem with the
methods with global kernels that are SVM with a diffusion kernel and SVM
with a shortest path kernel is that they create a dense matrix with n2 elements
(including the existing edges). So we lose sparsity of a representation for a prob-
lem. For AKGSVM1, AKGSVM2, AKGSVM3, we add only a limited number of
edges. For RTGSVM, it is enough to add a virtual edge only for a pair of edges,
when one of them is connected with a test example.

Generalization performance. The SVM has roots in statistical learning
theory. They have been developed using generalization bounds based on Vapnik-
-Chervonenkis (VC) dimension. Vapnik derived generalization bounds for the
transductive learning in [17], which are better than for inductive learning. The
proposed method RTGSVM uses transductive learning approach. We use clas-
sification on graphs, where the assumption about independent and identically
distributed (i.i.d.) data may not be met. Moreover, we deal with discrete spaces,
for which we need to use combinatorial bounds. Such bounds competitive to the
VC dimension bounds have been derived [18].

For the RGSVM, the kernel with 0s can be indefinite (the quadratic form
is neither convex nor concave). The consequence is that the objective function
of the dual problem of SVM can be non-convex. The problem that is related to
indefinite kernels is that the feature map may not exist for such kernel. However,
for graphs, we do not have feature representation for data examples. We have
similarities that are defined a priori. Recently, in [10] the stochastic gradient
method has been proposed with extreme early stopping. The method does not
use a regularization term, thus the kernel values are only related to the linear
term.

When we compute similarities according to (11) as in AKGSVM1, then the
maximal similarity path will be equivalent to the minimal distance path (the
shortest path) for a path length of 2.

For the decision boundary of SVM

n∑
i=1

yiαiK (xi,x) + b = 0 , (24)

where yi is a class of the ith example, K is a kernel function for RGSVM, when
the testing example is not connected with any support vector, then its classifica-
tion depends on the sign of b. We expect that during tuning of hyperparameters

of SVM, the solutions with support vectors close to validation examples will be
promoted. Because AKGSVM increases the number of connections, we expect
that the requirement for the number of support vectors will be lower. In partic-
ular, AKGSVM increases the number of test examples connected with at least
one training example. In Fig. 1, x7 after generating a virtual edge e27 becomes
connected to a training example x2. In the case, when the number of test exam-
ples is much bigger than the number of training examples additional procedure
might be needed for AKGSVM and KNN in order to improve classification of
test examples not connected with any training examples, for example iterative
labeling.

Table 1: Generalization performance. The numbers in descriptions of the columns mean
the methods: 1 - KNN, 2 - RGSVM, 3 - AKGSVM1, 4 - AKGSVM2, 5 - AKGSVM3,
6 - RTGSVM, 7 - diffusion kernel SVM, 8 - the shortest path kernel SVM. Column
descriptions: no – experiment name, data – data set, kg – the number of the near-
est neighbors for generating a structure, k/r – the k value for KNN and r value for
RTGSVM, train – maximal training set size, test – maximal testing set size, ra – the
average rank for the mean misclassification error; the best method is in bold.

no data kg k/r train test ra1 ra2 ra3 ra4 ra5 ra6 ra7 ra8

Ex1 All 5 5 100 20 4.55 4.6 4.31 4.35 4.62 4.48 4.88 4.2

DBLPEx1 dblp 5 500 50 6.05 6.4 3.65 3.65 3.65 3.1 6.4 3.1

Table 3: The number of support vectors. The numbers in descriptions of the columns
mean the methods: 1 - KNN, 2 - RGSVM, 3 - AKGSVM1, 4 - AKGSVM2, 5 -
AKGSVM3, 6 - RTGSVM, 7 - diffusion kernel SVM, 8 - the shortest path kernel
SVM. Column descriptions: no – experiment name, sv – the number of support vec-
tors reported for inductive methods, the best method is in bold, svB – Bayesian signed
rank probability for the number of support vectors.

no sv2 sv3 sv4 sv5 sv7 sv8 svB23 svB38

Ex1 81 71 73 76 68 57 0.86 0.95

DBLPEx1 497 430 500 500 385 293 0.63 0.75

Table 5: Computational performance. The numbers in descriptions of the columns mean
the methods: 1 - KNN, 2 - RGSVM, 3 - AKGSVM1, 4 - AKGSVM2, 5 - AKGSVM3,
6 - RTGSVM, 7 - diffusion kernel SVM, 8 - the shortest path kernel SVM. Column
descriptions: no – experiment name, trT – cumulative training time in seconds, teT –
cumulative testing time in seconds.

no trT2 trT3 trT4 trT5 trT7 trT8 teT1 teT6

Ex1 0.78 1.9 1.93 1.86 4.66 4.61 13.0 65.0

DBLPEx1 0.11 0.18 0.2 0.2 5.97 3.31 2.0 0.0

5 Experiments

We perform two types of experiments. The first type is on generated weighted
graphs with distances from standard classification data sets. We generated graphs
by connecting each example with kg nearest neighbors from a training data set
found using the Euclidean distance. The weights in graphs are distances, which
are later converted to similarities based on the RBF kernel as a function of a
distance by each of the method. Local methods that are KNN and RTGSVM
use the similarity to find nearest neighbors. The second type of experiment is
on real world graph with similarities for a citation network DBLP. The nodes
are articles indexed in the DBLP data set. We use specifically the DBLP data
set v1 [12]. The edges are citations between articles. The weights for this graph
are binary similarities. When there is a citation the weight is 1, otherwise it is
0. It is a special case of a weighted graph. The graph is undirected.

We use our implementation of the stochastic gradient descent (SGD) solver
from [10] for all variants of SVM. For the first type of experiment, we compare
all methods on data sets listed in Table 7 for binary classification. More details
about data sets are on the LibSVM site [8]. We selected all data sets from this
site for binary classification, except those that was too large to store and process
them using dense structures due to memory limitation. We plan to implement
sparse representation of data in our framework in the future. For all data sets,
every feature is scaled linearly to [0, 1]. For SVM based methods the number of
hyperparameters to tune is 2, σ and C, for KNN only σ for the experiment 1. In
the second experiment, we do not tune σ, because we have already similarities.
For all hyperparameters, we use a double grid search method for finding the
best values – first a coarse grid search is performed, then a finer grid search.
The range for σ values is from 2−9 to 29, for C it is from 2−9 to 214 on the first
level. The β parameter for a diffusion kernel is set to 0.3. We use the procedure
similar to repeated double (nested) cross validation for performance comparison.
For the outer loop, we run a modified k-fold cross validation for k = 10, with the
training set size set to 80% of all examples. When it is not possible to create the
next fold, we shuffle data and start from the beginning. For the DBLP data set,

we shuffle data with balancing classes only during preprocessing graph data to
the internal format. There is no need to shuffle data for our experiments due to
limited size of a training data set. We use additional automated standardization
of a training matrix after dividing data to folds. We use the 5-fold cross validation
for the inner loop for finding optimal values of the hyperparameters. In the first
experiment, we generate a graph for each iteration of the inner loop. After that,
we run the method on a training set, and we report results on a test set. Here, we
also generate a graph in the first experiment. We additionally limit the size of a
training set to speed up the experiments. The limitation for a training set is listed
in Table 1 for each experiment. We also limit the number of test examples in
experiments with the RTGSVM method to speed up the experiments, because
for this method, a new model must be trained for each test example. In the
future, we plan to implement aggregation of test examples to limit the number
of models. We also use Bayesian statistical tests which are preferred over null
hypothesis significance testing (NHST). In particular, we use Bayesian signed
rank test implemented in R. For the RTGSVM method, we generate virtual
edges as in AKGSVM1.

The overall results for generalization performance are in Table 1. The results
for the number of support vectors are in Table 3. The results for computational
performance are in Table 5. The example of results for particular data sets are
in Table 7. The observations are as follows.

– The generalization performance of local models like KNN and RTGSVM are
competitive to inductive SVM. For standard classification SVM has small
advantage in terms of accuracy over KNN [10]. For graph data, this difference
is even less noticeable. However, the requirement for local models is to get
enough connections to the nearest neighbors to match the expected number
of neighbors k for KNN, and r for RTGSVM. For the increased number
of connections to other test examples, local models may start to degrade.
Moreover, in the Ex1, the number of the nearest neighbors matches the
number of neighbors used during graph generation. In real world graphs the
number of neighbors in a graph varies, thus choosing the optimal value of k/r
may require some tuning, and even then the optimal value can be different
for different test examples. The generalization performance of RGSVM is
slightly worse than AKGSVM which is noticeable for the DBLP data set,
but without statistical significance. Thus, reducing sparsity of a similarity
matrix is beneficial for SVM. However, generating the full kernel matrix
does little noticeable improvement in the generalization performance over
AKGSVM, for the shortest path kernel. Specifically, for the DBLP data set,
AKGSVM is little better than KNN and RGSVM. The most competitive for
the shortest path kernel is RTGSVM with almost the same performance.

– The number of support vectors is much better for the AKGSVM than for
RGSVM which is almost statistically significant for combined results (column
svB23 in Table 3). It is almost statistically significant for particular data sets
(column svB23 in Table 7). The global kernels have still advantage in terms
of the number of support vectors compared to other methods (column svB39

in Table 3). The potential reason for this is that introducing sparsity in the
kernel matrix by putting 0s leads to non-smoothness, which requires more
complex functions. For the DBLP data sets, the number of support vectors
is rather high due to the limited number of edges, which is affected by the
size of a training data set and connections with other test examples.

– Training time for SVM with global kernels that are SVM with a diffusion
kernel, and with the shortest path kernel are considerably higher than for
other methods due to computational complexity. We also lose advantage of
sparsity of a kernel matrix, so memory consumption may be an issue. Testing
time for local models can be greater than training time for inductive models,
which depends on the number of test examples.

Overall, from the practical point of view, the local models like KNN can be
used for data sets when there are enough neighbor connections and we have a
graph with connections between similar examples and relatively small number
of test examples. If the weighted connections are between nonsimilar examples,
the local classifiers may not work properly. For bigger number of connections,
SVM methods may have advantage of taking into account structure of the data.
Due to the computational performance and memory requirements, the proposed
axiomatic kernels are a better choice than global kernels, especially for big data
sets.

6 Summary

We proposed a novel idea of generating rules based on axioms for generating
virtual edges, which are used in SVM for classification on graphs. Potentially,
virtual edges can be used with any other method for classifying graphs. The
results are promising in terms of computational performance when compared to
kernels on graphs. The proposed methods may be preferable in some scenarios
over simple local models like KNN. The framework of axiomatic rules can be ex-
tended by introducing combination of rules and tuning of rules by incorporating
uncertainty in the form of hyperparameters.

Acknowledgments

The theoretical analysis and the method design are financed by the National
Science Centre in Poland, project id 289884, UMO-2015/17/D/ST6/04010, titled
“Development of Models and Methods for Incorporating Knowledge to Support
Vector Machines” and the data driven method is supported by the European
Research Council under the European Unions Seventh Framework Programme.
Johan Suykens acknowledges support by ERC Advanced Grant E-DUALITY
(787960), KU Leuven C1, FWO G0A4917N. This paper reflects only the authors
views, the Union is not liable for any use that may be made of the contained
information.

Table 7: Results per data set. The numbers in descriptions of the columns mean the
methods: 1 - KNN, 2 - RGSVM, 3 - AKGSVM1, 4 - AKGSVM2, 5 - AKGSVM3.
Column descriptions: no – experiment name, dn – the name of a data set, s – the
number of all examples, d – the dimension of a problem, ce – the mean misclassification
error; the best method is in bold, sv – the number of support vectors reported for
inductive methods, svB – Bayesian signed rank probability for the number of support
vectors.

no dn s d err1 err2 err3 err4 err5 sv2 sv3 svB23

Ex1 a1a 24947 123 0.34 0.39 0.385 0.39 0.36 81 53 0.79

Ex1 australian 690 14 0.205 0.205 0.21 0.195 0.17 92 89 0.41

Ex1 breast-cancer 675 10 0.065 0.06 0.07 0.07 0.05 98 58 0.83

Ex1 cod-rna 100000 8 0.24 0.195 0.17 0.18 0.21 79 55 0.75

Ex1 colon-cancer 62 2000 0.25 0.26 0.22 0.245 0.255 31 27 0.53

Ex1 covtype 100000 54 0.305 0.33 0.355 0.34 0.355 69 76 0.24

Ex1 diabetes 768 8 0.215 0.235 0.27 0.245 0.26 82 78 0.54

Ex1 fourclass 862 2 0.05 0.03 0.035 0.03 0.035 74 53 0.63

Ex1 german numer 1000 24 0.3 0.365 0.35 0.335 0.33 79 74 0.53

Ex1 heart 270 13 0.19 0.2 0.16 0.155 0.18 99 92 0.53

Ex1 HIGGS 100000 28 0.345 0.355 0.43 0.395 0.4 91 87 0.36

Ex1 ijcnn1 100000 22 0.015 0.0 0.0 0.01 0.01 94 100 0.0

Ex1 ionosphere sc 350 33 0.26 0.195 0.1 0.075 0.145 57 55 0.5

Ex1 liver-disorders 341 5 0.5 0.48 0.485 0.485 0.49 88 96 0.13

Ex1 madelon 2600 500 0.415 0.43 0.44 0.47 0.455 86 77 0.6

Ex1 mushrooms 8124 111 0.05 0.025 0.05 0.045 0.035 79 44 0.85

Ex1 phishing 5785 68 0.185 0.225 0.2 0.21 0.205 98 87 0.61

Ex1 skin nonskin 51432 3 0.07 0.035 0.04 0.04 0.035 85 82 0.36

Ex1 splice 2990 60 0.345 0.355 0.375 0.34 0.365 85 70 0.73

Ex1 sonar scale 208 60 0.29 0.23 0.215 0.205 0.25 69 66 0.52

Ex1 SUSY 100000 18 0.365 0.355 0.38 0.355 0.41 90 85 0.61

Ex1 svmguide1 6910 4 0.08 0.1 0.09 0.09 0.085 80 63 0.57

Ex1 svmguide3 1243 21 0.25 0.285 0.26 0.295 0.275 83 70 0.66

Ex1 w1a 34703 300 0.0 0.0 0.0 0.0 0.0 91 75 0.42

Ex1 websam unigr 100000 134 0.155 0.175 0.1 0.135 0.185 71 56 0.72

DBLPEx1 dblp 7967 0.162 0.164 0.144 0.144 0.144 497 430 0.63

References

[1] Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: Pro-
ceedings of the 5th IEEE International Conference on Data Mining (ICDM
2005), 27-30 November 2005, Houston, Texas, USA. pp. 74–81 (2005).
https://doi.org/10.1109/ICDM.2005.132

[2] Bronshtein, I.N., Semendyayev, K., Musiol, G., Muehlig, H.: Handbook
of Mathematics, chap. Functional Analysis, pp. 596–641. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72122-2 12

[3] Can, T., Çamoglu, O., Singh, A.K.: Analysis of protein-protein interaction
networks using random walks. In: Proceedings of the 5th international work-
shop on Bioinformatics, BIOKDD 2005, Chicago, Illinois, USA, August 21,
2005. pp. 61–68 (2005). https://doi.org/10.1145/1134030.1134042

[4] Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-
based classification: Concepts and algorithms. J. Mach. Learn. Res. 10,
747–776 (2009),

[5] Fouss, F., Françoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experi-
mental investigation of kernels on graphs for collaborative recommenda-
tion and semisupervised classification. Neural Networks 31, 53–72 (2012).
https://doi.org/10.1016/j.neunet.2012.03.001

[6] Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges
for classification in sparsely labeled networks. In: Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008. pp. 256–264 (2008).
https://doi.org/10.1145/1401890.1401925

[7] Kondor, R., Lafferty, J.D.: Diffusion kernels on graphs and other discrete
input spaces. In: Machine Learning, Proceedings of the Nineteenth Inter-
national Conference (ICML 2002), University of New South Wales, Sydney,
Australia, July 8-12, 2002. pp. 315–322 (2002)

[8] Libsvm data sets. (06 2011)
[9] Lin, F., Cohen, W.W.: Semi-supervised classification of network data using

very few labels. In: International Conference on Advances in Social Net-
works Analysis and Mining, ASONAM 2010, Odense, Denmark, August
9-11, 2010. pp. 192–199 (2010). https://doi.org/10.1109/ASONAM.2010.19

[10] Melki, G., Kecman, V., Ventura, S., Cano, A.: OLLAWV: online learning
algorithm using worst-violators. Appl. Soft Comput. 66, 384–393 (2018)

[11] Namata, G., Sen, P., Bilgic, M., Getoor, L.: Collective classification. In:
Encyclopedia of Machine Learning and Data Mining, pp. 238–242. Springer
US (2017). https://doi.org/10.1007/978-1-4899-7687-1 44

[12] Pan, S., Zhu, X., Zhang, C., Yu, P.S.: Graph stream classification using
labeled and unlabeled graphs. In: 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. pp.
398–409 (2013). https://doi.org/10.1109/ICDE.2013.6544842

[13] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of so-
cial representations. In: The 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’14, New

https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1007/978-3-540-72122-2_12
https://doi.org/10.1007/978-3-540-72122-2_12
https://doi.org/10.1145/1134030.1134042
https://doi.org/10.1016/j.neunet.2012.03.001
https://doi.org/10.1145/1401890.1401925
https://doi.org/10.1109/ASONAM.2010.19
https://doi.org/10.1007/978-1-4899-7687-1_44
https://doi.org/10.1109/ICDE.2013.6544842

York, NY, USA - August 24 - 27, 2014. pp. 701–710 (2014).
https://doi.org/10.1145/2623330.2623732

[14] Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational
Biology, chap. Diffusion Kernels, pp. 171–192. The MIT Press (July 16,
2004) (01 2003)

[15] Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borg-
wardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research 12, 2539–2561 (2011)

[16] Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Compu-
tational Learning Theory and Kernel Machines, 16th Annual Conference on
Computational Learning Theory and 7th Kernel Workshop, COLT/Kernel
2003, Washington, DC, USA, August 24-27, 2003, Proceedings. pp. 144–158
(2003)

[17] Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (September
1998)

[18] Vorontsov, K., Ivahnenko, A.: Tight combinatorial generalization bounds for
threshold conjunction rules. In: Pattern Recognition and Machine Intelli-
gence - 4th International Conference, PReMI 2011, Moscow, Russia, June 27
- July 1, 2011. Proceedings. pp. 66–73 (2011). https://doi.org/10.1007/978-
3-642-21786-9 13

[19] Wu, G., Chang, E.Y., Zhang, Z.: An analysis of transformation on non-
positive semidefinite similarity matrix for kernel machines. In: Proceedings
of the 22nd International Conference on Machine Learning (2005)

[20] Yajima, Y., Kuo, T.: Efficient formulations for 1-svm and their
application to recommendation tasks. JCP 1(3), 27–34 (2006).
https://doi.org/10.4304/jcp.1.3.27-34

View publication statsView publication stats

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/978-3-642-21786-9_13
https://doi.org/10.1007/978-3-642-21786-9_13
https://doi.org/10.4304/jcp.1.3.27-34
https://www.researchgate.net/publication/335733614

	Axiomatic Kernels on Graphs for Support Vector Machines

