
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335789280

Deep convolutional learning for general early design stage prediction models

Article in Advanced Engineering Informatics · September 2019

DOI: 10.1016/j.aei.2019.100982

CITATIONS

5
READS

253

3 authors:

Some of the authors of this publication are also working on these related projects:

KULeuven - ESAT - Ph.D. Bert Pluymers View project

Phd Luc hoegaerts View project

Sundaravelpandian Singaravel

Bricsys

14 PUBLICATIONS 213 CITATIONS

SEE PROFILE

Johan A.K. Suykens

www.esat.kuleuven.be/stadius

743 PUBLICATIONS 34,100 CITATIONS

SEE PROFILE

Philipp Geyer

Technische Universität Berlin

47 PUBLICATIONS 578 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sundaravelpandian Singaravel on 13 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335789280_Deep_convolutional_learning_for_general_early_design_stage_prediction_models?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335789280_Deep_convolutional_learning_for_general_early_design_stage_prediction_models?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/KULeuven-ESAT-PhD-Bert-Pluymers?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Phd-Luc-hoegaerts?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sundaravelpandian-Singaravel?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sundaravelpandian-Singaravel?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sundaravelpandian-Singaravel?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Johan-Suykens?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp-Geyer?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp-Geyer?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Berlin?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philipp-Geyer?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sundaravelpandian-Singaravel?enrichId=rgreq-73e90740f5aa05a7807a4fda031f22e9-XXX&enrichSource=Y292ZXJQYWdlOzMzNTc4OTI4MDtBUzo4MDI1OTA0OTc0NTYxNDFAMTU2ODM2Mzg5NDk0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Deep Convolutional Learning for General 1

Early Design Stage Prediction Models 2

Sundaravelpandian Singaravela, Johan Suykensb, Philipp Geyera 3
a Architectural Engineering Division, KU Leuven, Belgium 4
b ESAT-STADIUS, KU Leuven, Belgium 5

 6

Keyword: Convolutional neural network, Energy predictions, Machine learning, Feature learning 7

Abstract 8

Designers rely on performance predictions to direct the design toward appropriate requirements. Machine 9

learning (ML) models exhibit the potential for rapid and accurate predictions. Developing conventional 10

ML models that can be generalized well in unseen design cases requires an effective feature engineering 11

and selection. Identifying generalizable features calls for good domain knowledge by the ML model 12

developer. Therefore, developing ML models for all design performance parameters with conventional 13

ML will be a time-consuming and expensive process. Automation in terms of feature engineering and 14

selection will accelerate the use of ML models in design. 15

Deep learning models extract features from data, which aid in model generalization. In this study, we (1) 16

evaluate the deep learning model’s capability to predict the heating and cooling demand on unseen design 17

cases and (2) obtain an understanding of extracted features. Results indicate that deep learning model 18

generalization is similar to or better than that of a simple neural network with appropriate features. The 19

reason for the satisfactory generalization using the deep learning model is its ability to identify similar 20

design options within the data distribution. The results also indicate that deep learning models can filter 21

out irrelevant features, reducing the need for feature selection. 22

1 Introduction 23

Conventionally, simulations are used to guide the design toward the required building performance. A 24

few building performance metrics are energy efficiency, daylighting, and thermal comfort. Designers 25

rely on rule-of-thumb knowledge when simulation models cannot provide instant design performance 26

feedback [1], [2]. However, rule-of-thumb knowledge could potentially lead the design toward a wrong 27

direction. Hence, having models that can provide rapid and accurate results is necessary. Furthermore, 28

20% of design decisions taken at the early design stage affect 80% of the subsequent design decisions 29

[3]. Therefore, it is important to take the right decisions at the early design stages. In this study, we utilize 30

an energy analysis as an exemplary performance criterion. The inferences from the energy analysis can 31

be relevant to other performance analyses as well. 32

Early design energy analysis simulation models in practice utilize simplified thermal representations 33

along with technical specifications, e.g., based on American Society of Heating, Refrigerating and Air-34

Conditioning Engineers standards [4]. As the design progresses, more detailed information is added to 35

the simulation model. Typical simulation tools used for energy analysis are EnergyPlus, TRNSYS, IES-36

VE, DesignBuilder, jEPlus, and Sefaira [3]–[5]. For two different building designs, Shiel et al. [4] 37

showed that the variations of early energy demand prediction compared to actual energy consumption 38

were −39% and −22%. Upon addition of actual design information, the variations were reduced to 5% 39

and −2%, respectively. Furthermore, the effort required to develop simulation models varies depending 40

Manuscript File

S. Singaravel, J. Suykens and P. Geyer, "Deep convolutional learning for general early design stage prediction models,"
Advanced Engineering Informatics (2019): 100982. https://doi.org/10.1016/j.aei.2019.100982

on the complexity of the information and design [4]. Therefore, the challenge for an efficient early design 41

energy analysis is to obtain a model that balances accuracy, development effort, and computation time 42

for analyzing design alternatives. 43

Simplified models developed from complex simulation data have high potential to act as a surrogate 44

model. Machine learning (ML) offers the possibility of developing surrogate models that provide rapid 45

and accurate building performance predictions [6]–[8]. Quick ML predictions make ML models ideal for 46

early design stage performance analysis because they allow for more design options to be evaluated at 47

the early design stages. Moreover, a high computation speed reduces the designer’s reliance on rule-of-48

thumb knowledge and enables quantitatively well-justified decisions. However, ML models generalize 49

within the data distribution, which is determined by the input parameter/features and training data. The 50

challenge to overcome is the development of ML models that work robustly on unseen design cases. An 51

unseen design case is defined as a design option, which is not present in the training data. It is critical to 52

overcome this challenge because the evaluated design need not be captured within the training design 53

cases. Therefore, identifying methods for overcoming this challenge will increase the utilization of ML 54

models in design, enabling rapid, accurate, and reliable early design stage predictions. 55

Deep learning, a sub-domain of ML, has successfully been shown in many other domains such as image 56

recognition to automatically extract good features resulting in model generalization [9]. The objectives 57

of this study are to propose a deep learning architecture that generalizes well in unseen design cases and 58

obtain an initial understanding of the features extracted by the deep learning model. The research 59

questions addressed in this study are as follows: (1) Which deep learning architecture results in a 60

satisfactory model generalization? (2) How important is feature engineering and selection for deep 61

learning methods? (3) What are the underlying characteristics of the features learned by deep learning 62

models? Future research will focus on the complexity of the data used for training. Nevertheless, the 63

utilized data are obtained from simulation models representative of early design stages. More information 64

on the utilized data is presented in Section 3.1. 65

The evaluation of deep learning architectures is performed by benchmarking two types of deep learning 66

model architectures with a simple neural network (NN) architecture. The deep learning model 67

architectures evaluated are multilayered NN and convolutional NN (CNN). To the authors' knowledge, 68

the CNN has not been applied for design stage energy prediction, making this contribution significant. 69

Upon benchmarking of deep learning models with a simple NN, hidden layer outputs are analyzed using 70

kernel-principal component analysis (PCA) to understand the features learned by the deep learning 71

model. Kernel-PCA analysis provides an interpretation of the characteristics of features extracted by a 72

deep learning model. This paper is organized as follows: (1) the theory on utilized deep learning model 73

architectures, (2) the methodology to evaluate deep learning, and (3) the results, discussion, and 74

conclusion. 75

1.1 Background and motivation for deep learning 76

The generalization of an ML model in design refers to the validity of the model beyond training design 77

cases, assuming the evaluated design case falls within the underlying data distribution. Artificial NNs1 78

(ANNs) [10]–[19] and support vector machines (SVMs) [20]–[23] are the most popular ML algorithms 79

1 In this paper, ANNs are also referred to as simple neural networks.

used to model building energy data. Generalizable ML models through ANNs and SVMs can be 80

developed through appropriate feature engineering and selection. 81

Good features provide selectivity invariance, which means that the features are selective/relevant to the 82

prediction problem but removes irrelevant features [9]. Feature selection is the process of selecting 83

relevant input parameters for model development [24], [25]. Feature engineering is an approach that 84

identifies input parameters, which account for the interaction between a building and its environment 85

[26]. Examples of feature engineered inputs found in the literature are building shape factor, window to 86

floor area ratio, and heat flow (HF) [27], [28]. The outcome of feature engineering and selection is that 87

ML models can identify similar design options within the data distribution resulting in model 88

generalization. However, the current research has typically focused on validating ML models with test 89

cases that resemble training design cases. Hence, it is not clear how to increase the applicability of ML 90

methods in unseen design cases. 91

Developing ML models through feature engineering and selection will be a time-consuming process as 92

it requires domain knowledge in both ML and simulation methods. ML knowledge allows the model 93

developer to identify suitable algorithms and training conditions, which results in a general model. On 94

the other hand, knowledge in simulations allows the modeler to identify and select appropriate input 95

features. Finding an engineer with such expertise is difficult. This challenge is amplified when ML 96

models have to be developed for many design performance metrics as well. Hence, automation in feature 97

engineering and selection will accelerate the use of ML methods for an early design stage performance 98

analysis. 99

Within deep learning, the input features are transformed hierarchically using non-linear layers before 100

making the final prediction. Training of the hierarchical non-linear layer enables automatic extraction of 101

good features from data by promoting selectivity invariance [9]. Furthermore, the hierarchical structure 102

of deep learning exploits the compositional hierarchies of signals/data [9]. Compositional hierarchies are 103

the observation of a high-level feature, which is the result of low-level features. In the case of building 104

design’s energy demand, the high-level feature is the energy demand and some low-level features are 105

HFs and heat gains. The data used in this study are obtained from simulation models, which generate 106

energy demand based on hierarchical interactions. Therefore, analyzing the features learned by the deep 107

learning model could provide an impression on the similarities between deep learning and simulation 108

models. Finally, utilizing features extracted to make the final prediction allows deep learning models to 109

generalize effectively. CNNs have been shown to be easier to train and generalize better compared to 110

multilayer NNs [9]. In Section 2, the technical details of the utilized model architectures are provided. 111

The similarities between deep learning and simulation models in terms of hierarchical representation 112

make deep learning an interesting ML method to explore further. However, the application of deep 113

learning in the domain of building energy prediction is limited [29] because it requires a huge amount of 114

data in the training process. Given the increasing computational power, it would be possible to generate 115

such data with multiple design options. However, before generating a lot of data, it will be beneficial to 116

obtain insights into the deep learning model for design. 117

Typical applications of deep learning for predicting building energy found in the literature are for load 118

prediction/forecasting [30]–[33] and design stage predictions [8]. In certain cases, deep learning models 119

have similar performances as conventional ML methods [30], [31]. In other cases, they outperform 120

conventional ML methods [8], [32], [33]. The deep learning model architectures for predicting energy 121

are stacked auto-encoders, recurrent NNs, and Boltzmann machines. CNNs have been used for building 122

quality classification [34], fault detection [35], mitigation of fall [36], and people detection [37]. The 123

data types used for current applications of CNNs are text and images. Utilization of CNNs with design 124

information has not been reported, making the current research significant. 125

Limited works on deep learning models for building design energy performance analysis call for more 126

research. Finally, an upcoming trend in ML is to understand the patterns learned by the black-box model 127

[38], which helps the community to move toward interpretable artificial intelligence (AI). Analyzing the 128

extracted features is a step toward interpretable AI. This study extends our understanding for model 129

generalization in unseen design and model interpretability. 130

2 Theory on Deep Learning Neural Network Architecture 131

Deep learning models are evaluated based on their ability to predict heating and cooling demands on test 132

design options. Each model, i.e., heating or cooling demand model, has two response variables, namely 133

the peak and annual energy demand (see Figure 1 and Figure 2). Training of models with more than one 134

response variable related to different tasks is called multitask learning (MTL). More information on MTL 135

for energy models can be found in [8]. 136

In this study, a simple NN, multilayer NN, and CNN are evaluated. Because the peak and annual energy 137

demand of a design is directly predicted (i.e., not considered as a sequence) and training is performed 138

end to end (i.e., in a single step), model architectures using recurrent and auto-encoder layers are not 139

applicable. If the nature of data and the training process change, these architectures can be evaluated as 140

well. This section introduces the utilized model architectures, the description of hidden layers, and the 141

activation functions. 142

2.1 Model architectures 143

2.1.1 Simple and multilayered neural networks 144

The simple NN (or ANN) has been successfully applied in predicting building energy demand. 145

Furthermore, current deep learning methods are extensions of simple NNs. Therefore, simple NNs are 146

selected as a reference ML algorithm. Observations made on simple NNs should be applicable for other 147

non-linear ML algorithms. Previous research indicated that through other conventional ML algorithms, 148

a similar performance can be achieved provided appropriate model tuning is performed [39]. Multilayer 149

NN is also evaluated as it is an easy extension of a simple NN to form a deep learning model. 150

Figure 1 shows the architecture of simple and multilayer NNs. A simple NN has one fully connected 151

(FC) layer (see Section 2.2.1) with a rectified linear unit (ReLU) activation (see Section 2.2.4). A 152

multilayer NN has more than one hidden layer. The number of hidden units in each hidden layer is 153

manually determined by cross-validation (CV) during the training process. In this study, the multilayer 154

NN has two, three, and four FC layers with a ReLU activation. 155

 156

Figure 1 Illustration of simple and multilayer neural network architectures 157

2.1.2 Convolutional neural network 158

Figure 2 shows the architecture of the CNN with 1 to n convolutional layers, max pooling, and an FC 159

layer. The number of convolutional operations and hidden units in each layer is manually determined 160

through CV during the training process. The convolutional layer utilizes parametric ReLU (PReLU) 161

activation instead of a ReLU activation. The use of PReLU activation provided better model performance 162

than ReLU activation. The CNN with one, two, and three convolutional layers are evaluated in this study. 163

A CNN expects inputs in a matrix format. In this study, the input matrix is referred to as a design matrix 164

(DM) as it contains all information pertaining to the design. The DM has a size of M × N, where M is the 165

number of parameter groups and N is the maximum number of features within all parameter groups. 166

Section 2.2.2 describes the basic principle used to construct the DM. In Section 3.2.2, the method used 167

to develop the DM is described. 168

 169

Figure 2 Illustration of convolutional neural network architecture 170

2.2 Description of hidden layers 171

2.2.1 Fully connected layer 172

An FC layer is the most commonly used hidden layer or output layer in any NN model. It comprises 173

several hidden units that have to be tuned during the training process. Figure 3 shows the working of a 174

hidden unit. The hidden unit obtains an input feature vector of length N. Each input feature in the vector 175

is assigned a trainable weight. In Figure 3, features 1, 2, and 3 have a weight of –0.4548, 0.4118, and 176

0.6452, respectively. The weighted sum is the output of the hidden unit, which is referred to as the hidden 177

feature. 178

 179

Figure 3 Illustration of a hidden unit 180

2.2.2 Convolutional layer 181

The use of a convolutional layer in NN models with images and time-series input data has provided state-182

of-the-art performance. However, a convolutional layer has not been used with design information. In 183

this section, the working principle of a convolutional layer for design information is presented. 184

A convolutional layer obtains design inputs in the form of a DM instead of a vector; DM ∈ building 185

design and performance related features/parameters. The DM is generated by grouping similar features 186

referred to as parameter groups, which range from 1 to M. An example of a parameter group with similar 187

features is wall thermal conductivity and wall HF. Each parameter group consists of 1 to N similar 188

features. In the above example, the parameter group consists of two similar features. The result of 189

grouping is a DM with M × N dimension. 190

The convolutional layer consists of convolutional operations. The number of convolutional operations in 191

a convolutional layer is determined during the training process. A convolutional operation is 192

characterized by an M × K matrix, where K is the length of trainable weight vector per parameter group 193

(K is also referred to as filter size). K is less than or equal to the number of features N in a parameter 194

group. The output of a convolutional layer is referred to as a “feature map” (note that the DM is the input 195

to the first convolutional layer only. Subsequent convolutional layers will receive feature maps as 196

inputs.). 197

Figure 4 shows how a convolutional operation is performed for a 2 × 2 DM, i.e., a design with a two-198

parameter group and two features per group. The convolutional operation has a filter size (K) of 1, 199

resulting in a convolutional operation with a matrix size of 2 × 1. In this example, parameter group 1 has 200

a weight of −0.4548 and parameter group 2 has a weight of 0.4118. Features in column 1 and 2 are 201

convoluted (through Equation 1) to obtain a feature map consisting of two features: −0.0597 and 3.7621. 202

The first feature, −0.0597, is the weighted sum of values in feature column 1 together with the parameter 203

group weight (PGW), followed by the addition of a bias term (i.e., (0.2 × −0.4548 + 0.5 × 0.4118) − 204

0.1746). Similarly, the second feature, 3.7621, is the weighted sum of values in feature column 2 (i.e., 205

(100 × −0.4548 + 120 × 0.4118) − 0.1746). 206

∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 × 𝑃𝐺𝑊 + 𝐵𝑖𝑎𝑠 (1)

𝑁

𝑖=1

 207

Figure 4 highlights the following characteristics [40] of a convolutional layer, which results in the 208

extraction of generalizable features [9]: 209

1. Parameter (or weight) sharing: Features within a parameter group have shared trainable weights. 210

Parameter sharing also reduces the trainable weights compared to an FC layer with no shared 211

weights. 212

2. Sparse interaction: Interactions captured by the convolutional operation are limited by shared 213

parameters defined by the filter size. Figure 4 shows that the interactions observed by the model 214

are limited to feature column 1 and 2 and not the entire matrix. 215

3. Equivalent representation: Parameter sharing results in a PGW that is equivalent to the entire 216

parameter group, rather than each feature defined with a weight. 217

In this study, only the number of convolutional operations is tuned during the training process. Other 218

hyperparameters such as the filter size are fixed. Evaluating the effect of other hyperparameters on model 219

generalization is out-of-scope of the current study, as this study only evaluates the feature extraction 220

capability of deep learning models for generalization. Future research will be performed to analyze the 221

effects of other hyperparameters on model generalization. 222

 223

Figure 4 Illustration of a convolutional operation 224

2.2.3 Max pooling layer 225

Pooling layers are typically present in a CNN. This study utilizes a max pooling layer. The effectiveness 226

of such layer compared with other types of pooling layers need to be evaluated in future research. A max 227

pooling layer (see Figure 5) reduces the feature map by retaining only dominant (or high value) features. 228

This layer promotes invariance (or insensitivity) through bottlenecks, as the dimension of the feature 229

vector after max pooling is less before max pooling [41]. 230

The hidden layer after max pooling learns to represent the prediction task with a smaller feature vector. 231

If the models utilizing a max pooling layer generalize well, it indicates that the max pooling layer 232

removes features that are not relevant for the particular task (in this case prediction of energy). Reducing 233

the size of the feature vector by max pooling makes the deep learning model invariant to irrelevant 234

features. However, understanding the induced invariance with respect to the building design input 235

features is limited. Examples of such understanding are spatial invariance in images [42] and phase 236

invariance for time-series data [43]. More research needs to be done to understand the type of invariance 237

created by the pooling layer. 238

In this study, the CNN utilized has only one max pooling layer. The reason for this limitation is due to 239

the small size of the feature maps generated by the utilized DM. The convolutional layer receives the DM 240

of size M × 2 and outputs a feature map of size C × 2, where C is the number of convolutional operations 241

in a layer and 2 is the number of similar features within a parameter group. The max pooling layer 242

receives this feature map and outputs a reduced feature map to a size of C × 1. Hence, adding more max 243

pooling layers will not have any effect on the model. If the size of the feature map increases, the number 244

of pooling layers could be increased. Identifying other DM configurations will be conducted in future 245

research. 246

 247

Figure 5 Illustration of max pooling 248

2.2.4 Description of activation functions 249

Suitable activation functions for an NN model varies for different data types. Some examples of 250

activation functions are sigmoid, hyperbolic tangent, and ReLU. In this study, the ReLU activation is 251

used together with an FC layer. The convolutional layer utilizes the PReLU activation as it offers a better 252

performance than the ReLU activation. Equation 2 shows the ReLU activation, where negative values 253

are made zero. Equation 3 shows the PReLU activation, where the negative values are multiplied by 254

alpha (ɑ), which is learned during the training process. 255

𝑅𝑒𝐿𝑈(𝑋) = 𝑚𝑎𝑥(0, 𝑋) (2) 256

𝑃𝑅𝑒𝐿𝑈(𝑋) = 𝑚𝑎𝑥(0, 𝑋) + 𝑎 × 𝑚𝑖𝑛(0, 𝑋) (3) 257

 258

3 Methodology for Evaluating Deep Learning for Design Stage Energy 259

Predictions 260

The following methodology is applied to evaluate the feature extraction capability of deep learning 261

methods for a satisfactory model generalization and to obtain an initial understanding of features learned 262

by the deep learning model: 263

1. Benchmarking the performance of deep learning models against a simple NN on test design cases. 264

2. Kernel-PCA is utilized to analyze the characteristics of the features that results in model 265

generalization. 266

3. Evaluating early design decisions using building performance simulation (BPS) and ML models. 267

This section starts by describing the generated data, which is followed by the methods for developing 268

and evaluating deep learning models. 269

 270

Figure 6 Training and test design cases 271

3.1 Description of training and test data 272

3.1.1 Design context 273

The early design stage decision support could be in the form of a what-if analysis [44], [45]. Some 274

potential questions are “What if we increase the window area?”, “What if we reduce the efficiency of the 275

HVAC system but increase the insulation level?”, and “What if we reduce the floor area per story and 276

add an additional floor?”. To perform such analysis effectively, the utilized ML model provides 277

predictions, which ensure that the decision taken on its predictions are valid as the design progresses. 278

Therefore, test cases are created to analyze the reliability of design decisions taken from ML models on 279

unseen designs. Furthermore, the training data provide the possibility of performing early what-if 280

analyses and capture enough non-linearity to evaluate the robustness of the model on unseen test cases. 281

Model generalization on more complex data will be performed in the future. 282

3.1.2 Parametric simulation model 283

The training data are design cases, which a model developer anticipate as potential design options 284

evaluated by the designer. In contrast, the test data can be considered as design options evaluated by the 285

designer. Training and test data are generated through parametric simulations in EnergyPlus version 8.7. 286

The training data (gray blocks in Figure 6) come from design options of a 3-, 5-, and 7-story buildings. 287

The test data (blue blocks in Figure 6) are obtained from the design options of 2-, 4-, 8-, 9-, 10-, 11-, 12-288

, and 13-story buildings, respectively. Building design options with 2 and 13 stories are later referred to 289

as extreme test cases as they are in the boundaries of the test cases. From the generated data, the peak 290

and annual energy demand data are extracted. 291

The models simulate an office building design located in Brussels. Assumptions in the models are (1) a 292

fixed HVAC system, which is a variable air volume system with chillers and a gas boiler; (2) 100% 293

occupancy and lighting and equipment gains between 9:00 and 17:00; (3) 50% occupancy at opening 294

(8:00) and closing (18:00) hours; (4) 50% lighting usage after opening hours (8:00–18:00); and (3) room 295

heating and cooling set points of 20/25 during opening hours and 16/28 after opening hours. Because the 296

main objective of this study is to evaluate the deep learning model’s ability to extract general features 297

for better generalization, the assumptions in the models should not have an impact on the conclusions. 298

Table 1 presents the design parameters and sampling ranges utilized in the parametric simulation. The 299

samples are generated using the Sobol sequence method, which is a quasi-random low-discrepancy 300

sequence method. For the 3-, 5-, and 7-story buildings, 1500 design options are generated, resulting in a 301

total training sample size of 4500. Similarly, for each test design case (see Figure 6), 1500 design options 302

are generated. It can be noted from Figure 6 that only the 4-story building falls in the interpolation region 303

of training design space. Other test design cases are outside the training design space. 304

Table 1 Design parameter ranges in the parametric simulation 305

 Units Minimum Maximum

Length (l) m 20 80

Width (w) m 20 80

Height (h) m 3 6

Overhang length (loh) 2 m 0 6

Window to wall ratio (WWR)2 0.01 0.95

Orientation (α) Degree −180 180

Wall U-value (Uwall) W/(m2∙K) 0.41 0.78

Window U-value (Uwin) W/(m2∙K) 0.5 2

Ground floor U-value (Ufloor) W/(m2∙K) 0.41 0.86

Roof U-value (Uroof) W/(m2∙K) 0.19 0.43

Window g-value (gwin) 0.1 0.9

Floor heat capacity (cfloor) J/(kg∙K) 900 1200

Infiltration air change rate (nair) h-1 0.2 1

Number of floors (nfloor) 3, 5, 7

Lighting heat gain (Q’light) W/m2 5 11

Equipment heat gain (Q’equip) W/m2 10 15

Chiller coefficient of performance (COP) 3 6

Boiler efficiency (ηBoiler) 0.7 1

Chiller type Electric reciprocating chiller Electric screw chiller

Boiler pump type Constant flow Variable flow

 306

3.2 Training and testing of deep learning architectures 307

Different ML model architectures with different input parameter configurations are trained and tested to 308

identify conditions for conventional ML and deep learning model generalization. This section describes 309

(1) the different input parameter configurations utilized in model development, (2) input parameter 310

2 Varies differently in all orientations

configurations assigned to each ML model architecture, and (3) ML model selection and evaluation 311

process. 312

3.2.1 Model input parameter configurations 313

Table 2 indicates three configurations of model input parameters utilized in the evaluation process. These 314

three input parameter configurations are designed to show the importance of feature engineering and 315

selection for conventional ML model generalization and to understand conditions under which deep 316

learning extracts generalizable features from data. 317

Table 2 Model input parameter configurations 318

Configuration number Description of group Reference in text as

1 Design inputs are listed in Table 1. Actual inputs (Act ip)

2 Certain design inputs from Table 1 are

transformed using formulas given in Table 3.

Non-transformed parameters are utilized as in

category 1.

Feature engineered inputs (FE

ip)

3 All design inputs together with feature

engineered inputs.

Act + FE ip

Table 3 summarizes the formulas used to transform design parameters (i.e., feature engineering). In the 319

feature engineering process, features/input parameters, which interact with other design parameter or 320

other environmental factors, are identified. The building area is a feature that captures the interaction 321

between building length (l) and width (w). On the other hand, transformations such as HFs capture the 322

interaction between the building and its environment. For example, HFs through the wall capture the 323

interaction between wall area, insulation level, and outdoor weather conditions (To) of the building’s 324

environment and indoor temperature (Ti). Weather conditions utilized to perform these transformations 325

are average summer and winter conditions for the cooling and heating models. The indoor temperature 326

is assumed to be 25 C for the cooling model and 20 C for the heating model. 327

Table 3 Formulas for feature engineering 328

Design parameters (Actual inputs) Transformed inputs (Feature engineered inputs) Units

Length (l) Building area (BA)

l × w × nfloors

m2

Width (w)

Height (h) Building volume (BV)

l × w × h × nfloors

m3

Number of floors (nfloors)
U-value

of wall, window, floor, roof

Heat flow (HF)

U-value × Area × (To – Ti)

W

Window g-value Solar gain (SG)

Area × gwin × average solar radiation

W

Infiltration air change rate Infiltration gain (IG)

Air specific heat capacity × density × air volume × (To – Ti)

W

 329

3.2.2 Model architectures and corresponding input configuration 330

The global model architecture is presented in this section, and hyperparameters in each layer are tuned 331

during the training process. Table 4 indicates the trained model architectures and their input 332

configuration. A simple NN is the reference ML model architecture for the deep learning model 333

architectures. Therefore, the simple NN is trained with all input configurations. Benchmarking of deep 334

learning models against simple NNs with actual inputs is performed to examine if the deep learning 335

model can extract good features. Additionally, benchmarking against a simple NN with feature 336

engineered inputs is performed to determine the quality of the extracted features. 337

The multilayer NN is evaluated to understand the feature extraction capability of the deep learning model. 338

Hence, input configuration 1, i.e., actual input, is provided. The CNN is evaluated to understand its ability 339

to extract good features from similar input parameters. Hence, input configuration 3 (Act + FE inputs) is 340

provided. 341

Table 4 Model architecture and input configuration 342

Model architecture Number of hidden layers Model input

configuration

Reference in text

Simple NN 1 FC layer Act ip Simple NN – Act ip

FE ip Simple NN – FE ip

Act + FE ip Simple NN – Act + FE ip

Multilayer NN 2 FC layers Act ip Multilayer NN – 2 layers

3 FC layers Multilayer NN – 3 layers

4 FC layers Multilayer NN – 4 layers

CNN 1 Convolution layer

1 FC layer

Act + FE ip CNN – 1+1 layers

2 Convolution layers

1 FC layer

CNN – 2+1 layers

3 Convolution layers

1 FC layer

CNN – 3+1 layers

 343

Simple and multilayer NNs require the inputs to be in a vector form. However, a CNN requires a matrix 344

input. Table 5 presents the DM structure used for the CNN. Each design parameter (also referred to as 345

actual inputs), wherever possible, is paired with its equivalent transformation or a design parameter. The 346

objective of the grouping is to bring similar parameters together, which allows the convolutional layer to 347

learn an equivalent parameter weight (see Figure 4). Equivalent transformations capture the effect of 348

changes in one over another parameter. Examples of equivalent transformation are building length (l) to 349

building area (BA) and U-values to HF. Similar design parameters are parameters that have similar effects 350

on the energy consumption. Examples are lighting gain (Q’light) and equipment gain (Q’equip). Within the 351

current feature space, if a parameter does not have an equivalent transformation or a similar design 352

parameter, it is not paired with any other parameter (i.e., Feature 2 is zero). Orientation (α) is an example 353

of a parameter that is not paired with any other parameter. Other potential arrangements of the data 354

structure need to be researched further. 355

Table 5 Input data structure (i.e., DM) of a design option for CNN 356

Parameter group Feature 1 Feature 2

1 Length (l) Building area (BA)

2 Width (w) Building area (BA)

3 Height (h) Building volume (BV)

4 Number of floors (nfloors) 0

5 Orientation (α) 0

6 Overhang length (loh) Window to wall ratio (WWR)

7 Window g-value Solar gain

8 U-value Heat flow (HF)

9 Floor heat capacity 0

10 Infiltration air change rate (nair) Infiltration gain

11 Lighting heat gain (Q’light) Equipment heat gain (Q’equip)

12 Chiller COP / Boiler efficiency Chiller type / Boiler pump type

 357

3.2.3 Computational environment 358

The simple NN and deep learning model are developed using the PyTorch library in Python [46]. Models 359

are trained on NVIDIA Quadro M1000M, which has 512 CUDA cores and 2 GB memory. The training 360

time3 in Intel Core i7 processors takes approximately 5.3 min. In contrast, the training time in a graphical 361

processing unit (GPU) is approximately 2 min. Training the deep learning model in this GPU is ~3 times 362

faster than in a central processing unit. 363

3.2.4 Model selection and evaluation 364

All model architectures are trained using the ADAM optimization algorithm. The learning rate to update 365

the model weights is 1e-4. Model overfitting is addressed through an L2 regularization penalty of 0.01. 366

The optimization algorithm needs 10000 epochs for obtaining satisfactory convergence. 367

During the training process, the model performance is evaluated through the coefficient of determination 368

(R2) and mean absolute percentage error (MAPE) on the CV data. The CV data are a subset of training 369

data, which has not been used in the training process. In this study, 20% of the training data are randomly 370

selected to form the CV data. Model hyperparameters such as the number of hidden units are tuned until 371

the CV error is low. The hyperparameter combination that resulted in a low CV error is used to train the 372

final model. 373

The model generalization is evaluated based on the prediction accuracy in test design cases (see Figure 374

6). A model architecture is considered to have generalized when the R2 is higher than 0.9 and MAPE is 375

lower than 15%. Models meeting the abovementioned evaluation criteria are considered to have a 376

satisfactory performance. Similarly, models that do not meet the above criteria are considered to have a 377

poor performance. 378

3.3 Kernel-PCA for analyzing the effect of features 379

Using kernel-PCA, the effects of actual inputs, feature engineered inputs, and features extracted by deep 380

learning models on model generalization are analyzed. To make the features extracted by deep learning 381

model comparable with features received by a simple NN, the features from the n−1 hidden layer are 382

analyzed. Kernel-PCA reduces the high-dimensional input/features to a two-dimensional input space. 383

Dimensionality reduction makes input features with different dimensions comparable. For instance, 384

models with actual inputs have 24 inputs, while models with feature engineered inputs only have 14 385

inputs. 386

The reduced two-dimensions from kernel-PCA are the 1st and 2nd principal components. The 1st 387

principal component represents the highest variance in the input/feature space. The 2nd principal 388

component is orthogonal to the 1st principal component and represents the second highest variance in 389

3 Training time estimated for CNN – 2+1 layers

the feature space. The following methodology is utilized to analyze the effect of features on model 390

generalization: 391

1. The kernel for kernel-PCA is selected based on its ability to reconstruct actual design inputs. To 392

obtain comparable low-dimensional reductions, both feature engineered inputs and features 393

extracted by deep learning models utilize the same kernel as actual design inputs. In this study, 394

the radial basis function kernel is selected, as it has the lowest reconstruction error. 395

2. A training design case represented by different input configurations, i.e., actual inputs, feature 396

engineered inputs, and features extracted by deep learning models, are reduced into two 397

dimensions. 398

3. Test design cases represented by different input configurations are reduced to two dimensions 399

using eigenvectors determined for training design case with different inputs. 400

4. Visualizing the principal components of training and test design cases along with information on 401

floor area and energy provides us with insights on the characteristics of features for 402

generalization. 403

3.4 Evaluating early design decisions using building performance simulation (BPS) and 404

ML models 405

The objective of this section is to illustrate the evaluation of an early design case using the ML model 406

and BPS. The evaluation is performed for an 8-story building design located in Brussels. The design 407

process (reflection of what-if analysis) illustrated in this study has three stages. In each stage, the 408

following are conducted: 409

Stage 1: Initial estimate of energy. 410

Stage 2: Decision on south and north window to wall ratio (WWR) is made. 411

Stage 3: Designers decide whether to change the window g-value or insulation level. 412

The methodology used to evaluate the ML models and BPS for the early design process takes the 413

following criteria into consideration: 414

1. Estimate energy demands from the BPS and ML models with best test data performance. 415

Comparing the energy demand estimates from the BPS and ML models shows the reliability of 416

decisions taken from both approaches. 417

2. Estimate the time required to make a prediction from each model. The time required to estimate 418

energy allows quantifying the suitability or effort required for steering early stage design through 419

BPS and ML. 420

3. Visualize the principal components of the evaluated design to understand the reason for a 421

prediction. The principal components are estimated using the same eigenvectors determined in 422

Section 3.3. 423

4 Results 424

4.1 Performance of model architectures 425

In this section, the performance of heating and cooling models with different architectures on CV and 426

test data is presented. The CV data are used to tune the number of hidden units/convolution operations 427

in each layer, while the test data show the generalization of model architecture. Generalization refers to 428

the validity of models beyond the training design cases, assuming that test design cases are within the 429

data distribution. 430

4.1.1 CV data performance 431

Table 6 lists the heating model’s hyperparameters obtained after manual tuning while Table 7 provides 432

the corresponding CV errors. For peak heating predictions, the R2 and MAPE range between 0.98 and 433

0.99 and 7.07% and 9.87%, respectively, indicating that all architectures have a satisfactory performance 434

on the CV data. For total heating predictions, the R2 and MAPE range between 0.94 and 0.97 and 15.65 435

and 26.48%, respectively. The deep learning architecture has a better CV data performance compared to 436

the simple NN. 437

The data indicated that the simulated design cases are cooling dominated, which is the result of the 438

utilized HVAC system configuration and internal gains. The cooling dominance, in turn, made a lot of 439

similar designs to have significantly different energy demands caused by complex interactions within the 440

building. Hence, the utilized features (in simple NNs) are not able to segregate similar design options 441

effectively, resulting in the poor prediction quality from simple NNs on total heating predictions. The 442

good performance of deep learning models indicates that the extracted features can segregate similar 443

design options effectively. 444

Table 6 Heating model hyperparameters 445

Model architecture Number of input

parameters

Hidden unit per layer Number of output

parameters

Simple NN with actual inputs 24 40

2

Simple NN with feature engineered inputs 14 40

Simple NN with actual and feature engineered

inputs

30 40

Multilayer NN - 2 layers 24 30, 25

Multilayer NN - 3 layers 24 30, 30, 20

Multilayer NN (4 layers) 24 30, 30, 25, 20

CNN - 1+1 layers 30 30, 25

CNN - 2+1 layers 30 30, 30, 20

CNN - 3+1 layers 30 30, 30, 25, 20

Table 7 Heating model hyperparameters and CV errors on heating demand predictions 446

Model architecture Coefficient of determination

(R2)

Cross-validation

MAPE (%)

Peak Total Peak Total

Simple NN with actual inputs 0.98 0.95 9.87 23.83

Simple NN with feature engineered inputs 0.98 0.94 7.94 25.54

Simple NN with actual and feature engineered inputs 0.99 0.95 7.47 23.31

Multilayer NN - 2 layers 0.99 0.97 7.56 17.98

Multilayer NN - 3 layers 0.98 0.96 9.16 18.95

Multilayer NN - 4 layers 0.99 0.97 7.37 15.65

CNN - 1+1 layers 0.98 0.94 7.89 26.48

CNN - 2+1 layers 0.99 0.97 7.07 17.31

CNN - 3+1 layers 0.98 0.97 7.61 19.13

 447

Table 8 presents the cooling model hyperparameters obtained after manual tuning while Table 9 indicates 448

the CV errors. The R2 and MAPE for peak cooling predictions range between 0.97 and 0.99 and 5.77 and 449

14.15%, respectively. For total cooling predictions, the R2 and MAPE range between 0.97 and 0.99 and 450

5.78 and 13.21%, respectively, indicating that all architectures have a satisfactory performance on the 451

CV data. 452

Table 8 Cooling model hyperparameters 453

Model architecture Number of input

parameters

Hidden unit per layer Number of output

parameters

Simple NN with actual inputs 24 25

2

Simple NN with feature engineered inputs 14 25

Simple NN with actual and feature engineered

inputs

30 25

Multilayer NN - 2 layers 24 30, 20

Multilayer NN - 3 layers 24 30, 25, 20

Multilayer NN - 4 layers 24 30, 25, 20, 20

CNN - 1+1 layers 30 30, 25

CNN - 2+1 layers 30 30, 30, 20

CNN - 3+1 layers 30 30, 25, 20, 20

Table 9 Cooling model hyperparameters and CV errors on cooling demand predictions 454

Model architecture Coefficient of

determination (R2)

Cross-validation

MAPE (%)

Peak Total Peak Total

Simple NN with actual inputs (Act ip) 0.97 0.98 14.15 13.21

Simple NN with feature engineered inputs (FE ip) 0.98 0.98 8.15 7.8

Simple NN with actual and feature engineered inputs

(Act + FE ip)

0.97 0.97 12.59 13.21

Multilayer NN (2 layers) 0.98 0.97 11.42 12.52

Multilayer NN (3 layers) 0.98 0.99 8.75 8.21

Multilayer NN (4 layers) 0.99 0.99 5.77 5.78

CNN (1+1 layers) 0.98 0.99 8.68 7.52

CNN (2+1 layers) 0.99 0.98 7.41 7.50

CNN (3+1 layers) 0.99 0.99 6.74 6.22

 455

4.1.2 Performance of ML models on test design cases 456

Figure 7 shows the performance of the heating models on the test design cases. As defined in Section 457

3.2.4, the performance of a model is satisfactory when R2 and MAPE are higher than 0.9 and lower than 458

15%, respectively. Models that do not meet these performance criteria are considered to have poor 459

performance. It can be noted from Figure 7 that the performance of the different architectures is not 460

consistent in the different test cases. 461

The 4-story building falls within the interpolation zone of the training design cases. It can be noted from 462

Figure 7 that in general, all model architectures perform well for the 4-story building. As the test cases 463

move far away from the training design cases, the performance starts to reduce. The amount of 464

performance reduction depends on the model architecture. The reason for performance reduction is due 465

to the difference is thermal behavior captured in the training design cases when compared to test design 466

cases. However, results show that utilization of appropriate ML model features and model architecture 467

reduces the prediction error (i.e. increase in ML model performance). Finally, the 2-story building cases 468

have a poorer performance than the 8-story building cases. However, both cases are close to the training 469

design case. The reason for the poorer performance on the 2-story building is the absence of an 470

intermediate floor, which influences both the top and bottom floor’s thermal behavior independently. 471

For peak heating energy prediction, the performance of all model architectures is satisfactory for the 4- 472

and 8-story buildings. In addition, the performance of specific model architectures is satisfactory in the 473

other design cases. For the other design cases, the following architectures have satisfactory performances: 474

 • Simple NN with FE inputs and Act + FE input, 475

 • Multilayer NN with 4 hidden layers, and 476

 • All CNN architectures. 477

It can also be noted that models with FE input parameters (both simple NNs and CNNs) consistently 478

have better performances than models with only actual design inputs, indicating the significance of 479

having features engineering with physical equations. Finally, the satisfactory performance of the selected 480

deep learning architectures indicates that they can automatically extract generalizable features from data. 481

For total heating energy prediction, most of the models have an R2 above 0.9. However, the overall error 482

in predictions is higher, which is reflected in high MAPE values. The multilayer NN with 4 hidden layers 483

and CNN with 2 convolutional layers have better performances compared to other architectures. The 484

reason for the poorer performance of the other architectures is due to the complexity of data. The 485

complexity is caused by similar design options having different total heating energy consumptions, which 486

is the result of interactions within the building. The satisfactory performance of deep learning models 487

indicates that the extracted features can segregate design options effectively. 488

Figure 8 shows the performance of cooling models on the test design cases. For peak cooling energy 489

prediction, all model architectures have satisfactory performances on the 4-, 8-, and 9-story buildings. 490

For other test design cases, the selected model architectures also performed well. The selected 491

architectures are the simple NN with FE inputs and all CNN architectures. The satisfactory performance 492

of the CNN on all design cases indicates that convolutional layers can extract good features from data. It 493

should also be noted that the simple NN with actual and FE inputs has a poor performance in extreme 494

test cases, highlighting the importance of feature selection. A similar trend is observed for the total 495

cooling energy predictions. 496

In general, the CNN generalizes better than the simple NN with actual inputs. Depending on the 497

architecture of the CNN, the reduction in MAPE varies. For peak heating demand predictions, the average 498

reduction in MAPE ranged between 7.1% and 8%. Similarly, the average reduction in MAPE for the 499

total heating predictions ranged between 1.4% and 9%. For cooling energy demand predictions, the 500

reduction in MAPE for peak predictions ranged between 10.9% and 13.7%, and for the total demand 501

predictions, the reduction in MAPE ranged between 10.8% and 15%. However, when comparing the 502

CNN with the simple NN with feature engineered inputs, the overall reduction in MAPE ranged between 503

0% and 8%. 504

For the simple NN, manual feature engineering and selection play a crucial role in model generalization. 505

Deep-learning model architectures can extract good features that extend the reusability of the model in 506

complex datasets. Within the evaluated deep learning architectures, the proposed CNN architecture 507

results in a better model generalization. 508

 509

Figure 7 Performance of heating models on test design cases 510

 511

Figure 8 Performance of cooling model in test design cases 512

4.2 Effect of features on model generalization 513

In supervised learning, the models learn to identify the relationship between input and output variables. 514

Input features determine the data distribution for a simple NN while for deep learning, the model 515

determines the data distribution by hierarchically extracting features from input features. In this section, 516

the effects of actual inputs, feature engineered inputs, and features extracted by the deep learning models 517

on model generalization are analyzed. The data distributions generated by training and test design cases 518

are referred to as training and test design spaces. 519

High input dimensional features are reduced to two dimensions using the kernel-PCA. The total heating 520

demand and total floor area information are overlaid on the principal components from the kernel-PCA. 521

The total heating demand is used to show the effect of features on model generalization, as simple NNs 522

with all input configurations have a higher test data error compared to deep learning models. The total 523

floor area captures information on increasing the number of floors. Only the 2- and 13-story buildings 524

are presented in this section as the effects of features on the other test cases lie between these design 525

cases. 526

4.2.1 Kernel-PCA on training design space 527

Figure 9 shows the 1st and 2nd principal components from the kernel-PCA of the training design space 528

obtained through actual inputs, feature engineered inputs, and features extracted by the deep learning 529

models. In Figure 9, information of the total heating demand is represented through purple to yellow 530

gradient, and the total floor area is represented through black to white gradient. Models with actual and 531

feature engineered inputs have equivalent features. Example of equivalent feature is the use of building 532

area instead of building length and width as model input. Figure 9a shows six clusters: they represent 533

buildings with 3, 5, and 7 stories with two types of boiler pumps. From Figure 9b, it can be noted that 534

feature engineering has transformed six clusters into two clusters. The two clusters represent the type of 535

boiler pump. For each cluster in Figure 9b, the building area and energy consumption increase as we 536

move from the bottom to the top of the graph. The deep learning models have also learned to group 537

similar designs together as the conventional feature engineering method. The multilayer NN features 538

have buildings with area and energy gradients that move from right to left. Similarly, the CNN features 539

have a gradient that moves from the right to the left. 540

Figure 7 shows that deep learning models generalize better in predicting total heating energy demand 541

than simple NNs with feature engineering. The reason for the poorer performance of the simple NN is 542

the poor segregation of the total heating energy clusters by feature engineered inputs (see Figure 9b) 543

compared with feature learning by deep learning models (see Figure 9c and d). For other response 544

variables such as cooling energy (not included in this study), feature engineered inputs resulted in 545

satisfactory segregation of energy clusters, resulting in a satisfactory performance. 546

 547

Figure 9 Principal component from kernel-PCA of training design space for actual inputs, multilayer NN feature, feature 548
engineered inputs, and CNN features: (top) overlay with information of total heating demand (W); (bottom) overlay with 549
information of total floor area (m2) 550

4.2.2 Kernel-PCA of training and test design space 551

In this section, two test design cases are analyzed. The analyzed test design spaces are from the 2- and 552

13-story buildings, which are at the extremes of the test cases. Figure 10 shows the kernel-PCA of the 2-553

story building compared to the training design space whereas Figure 11 shows the kernel-PCA of the 13-554

story building compared to the training design space. The top row graphs have the test cases in orange 555

and overlaid with the energy gradient of the training design space. The bottom row graphs have test cases 556

with the floor area gradient, and the training design space is in blue. 557

For simple NNs with actual inputs, it can be noted from Figure 10a and Figure 11a that the test design 558

cases fall outside the training design space. Feature engineering helps the simple NN (see Figure 10b and 559

Figure 11b) to identify similar design options within the training design space. The multilayer NN 560

extracts features that can identify similar designs within the training design space. Furthermore, in Figure 561

11c, it can also be noted that certain design cases from the 13-story building fall outside the training 562

design space. For CNNs, in Figure 11d, the 13-story building mostly falls outside the training design 563

space. However, the generalization of the CNN is similar to the multilayer NN (see Figure 7 bottom), 564

indicating that features that locate the design space in the appropriate region of the data distribution result 565

in a satisfactory model generalization. 566

From Figure 10 and Figure 11 it can also be noted that general ML models for design can be developed 567

when features provided or learned can identify similar design options within the data distribution. The 568

features can be either provided through manual feature engineering/selection or extracted through a deep 569

learning model. Hence, the characteristics of features extracted automatically or provided manually for 570

model generalization are as follows: 571

 can identify similar design options within the data distribution, and 572

 identified similar design is mapped to appropriate response variables. 573

More research should be conducted to identify the training process that can incorporate these conditions 574

during training, thereby resulting in general and reliable ML models. 575

 576

Figure 10 Principal component from kernel-PCA of training and 2-story test design space for actual inputs, multilayer NN 577
feature, feature engineered inputs, and CNN features. (top) Orange cluster is the 2-story design space and training design 578
space overlay with information of total heating demand (W). (bottom) Blue cluster is the training design space and 2-story 579
design space overlay with information of total floor area (m2) 580

 581

Figure 11 Principal component from kernel-PCA of training and 13-story test design space for actual inputs, multilayer NN 582
feature, feature engineered inputs, and CNN features. (top) Orange cluster is the 13-story design space and training design 583
space overlay with information of total heating demand (W). (bottom) Blue cluster is the training design space and 13-story 584
design space overlay with information of total floor area (m2) 585

4.3 Evaluation of design cases with BPS and ML models 586

In this section, energy estimates from BPS and ML models are evaluated for a design case to understand 587

the reliability of decisions taken based on each approach and the effort required to obtain the energy 588

estimates. Figure 12 shows the design process utilized in this study. The design decision process is for 589

an 8-story building located in Brussels. The length and width of the 8-story building are 50 m and 60 m, 590

respectively. The design decision process is covered in three stages. In each stage, the following action 591

or decision is taken: 592

 Stage 1: The initial estimate of energy is obtained for the 8-story building with a length and width 593

of 50 m and 60 m, respectively. All other technical specifications are assigned randomly (see 594

Table 10), as the main object of this section is to evaluate a design process with ML models. 595

 Stage 2: The decision on the south and north WWR is taken. The south WWR has been decided as 596

0.5 and that of the north as 0.9. 597

 Stage 3: Designers are thinking whether to change the window g-value or insulation level. As a 598

first option, designers evaluate a window with a g-value of 0.5 (U-value is 1.4 W/(m2∙K)). In the 599

second option, designers evaluate a window with U-value of 0.9 W/(m2∙K) (g-value is 0.78). 600

 601

Figure 12 Case for illustrating design decisions with ML model and BPS 602

Table 10 Design parameters used to make the initial estimation 603

 Units Stage 1: Initial estimation

Length (l) m 50

Width (w) m 60

Height (h) m 4

Overhang length (loh) 2 m 0

Window to wall ratio (WWR)4 S = 0.9, N = 0.3, E = 0.6, W = 0.9

Orientation (α) Degree 0

Wall U-value (Uwall) W/(m2∙K) 0.55

4 Varies differently in all orientations

Window U-value (Uwin) W/(m2∙K) 1.4

Ground floor U-value (Ufloor) W/(m2∙K) 0.44

Roof U-value (Uroof) W/(m2∙K) 0.32

Window g-value (gwin) 0.78

Floor heat capacity (cfloor) J/(kg∙K) 1107

Infiltration air change rate (nair) h-1 0.8

Number of floors (nfloor) 8

Lighting heat gain (Q’light) W/m2 6

Equipment heat gain (Q’equip) W/m2 12

Chiller COP 3.9

Boiler efficiency (ηBoiler) 0.95

Chiller type Electric reciprocating chiller

Boiler pump type Constant flow

 604

The ML models used are simple NN with FE inputs and CNN, as these methods have a better 605

generalization. With the CNN architecture, heating demand predictions are performed using CNN with 606

2 convolutional layers, and cooling demand predictions are performed using CNN with 3 convolutional 607

layers. Figure 13 and Figure 14 show the heating and cooling demands estimated through the BPS and 608

ML models. For heating demand predictions, the simple NN has an error range of −4% to 8% for peak 609

predictions and 3% to 10% for total demand predictions, while the CNN has an error range of −2% to 610

8% for peak predictions and −5% to −14% for total demand predictions. Similarly, for cooling demand 611

predictions, the simple NN has an error range of −4% to −12% for peak predictions and 1% to −8% for 612

total demand predictions. The CNN has an error range of −5% to −12% for peak predictions and −4% to 613

4% for total demand predictions. It can be noted from Figure 13 and Figure 14 that both simple NN and 614

CNN have similar performances. However, the advantage of CNN is the elimination of feature selection 615

during model development, which saves time. 616

It can be observed from the peak heating predictions in Figure 13 (left) that the relationship learned by 617

the ML model is not similar to that of the BPS. Therefore, taking decision on the size of heating system 618

may not be accurate. However, by observing the total heating demand predictions from Figure 13 (right), 619

the designer can choose Option 2 as it offers the lowest total heating demand compared with Option 1. 620

The decision to choose Option 2 taken through ML predictions is consistent with the decision taken with 621

BPS. Figure 14 shows the cooling demand predictions. It can be noted from Figure 14 that the changes 622

observed in the cooling energy demand from the ML models and BPS are similar. Looking at Figure 14, 623

the designer can select Option 1. By comparing the total heating and cooling demands, it can be observed 624

that the design is cooling dominated and Option 1 can be chosen as it offers greater energy savings. This 625

design decision is consistent with the use of BPS or ML models. 626

The advantage of ML models over BPS is the computation time required to obtain the heating and cooling 627

energy demand. Performing one simulation using BPS takes ~2 min. Similar results can be obtained from 628

ML models in less than 1 s. The high computation speed of the ML models together with their ability to 629

take similar design decisions make them suitable for early design stage predictions. 630

 631

Figure 13 Estimation of heating demand from BPS and ML models: (left) peak heating demand and (right) total heating 632
demand 633

 634

Figure 14 Estimation of cooling demand from BPS and ML models: (left) peak cooling demand and (right) total cooling 635
demand 636

IN
IT

IA
L

 E
S

T
IM

A
T

IO
N

D
E

C
IS

IO
N

 1

O
P

T
IO

N
 1

O
P

T
IO

N
 2

550

570

590

610

630

650

670

690

710

730

750

P
EA

K
 H

EA
TI

N
G

 D
EM

A
N

D
 (

kW
)

BPS Simple NN CNN

IN
IT

IA
L

 E
S

T
IM

A
T

IO
N

D
E

C
IS

IO
N

 1

O
P

T
IO

N
 1

O
P

T
IO

N
 2

300

320

340

360

380

400

420

440

460

480

500

TO
TA

L
H

EA
TI

N
G

 D
EM

A
N

D
 (

M
W

h
)

BPS Simple NN CNN

IN
IT

IA
L

 E
S

T
IM

A
T

IO
N

D
E

C
IS

IO
N

 1

O
P

T
IO

N
 1

O
P

T
IO

N
 2

600.00

650.00

700.00

750.00

800.00

850.00

900.00

950.00

P
EA

K
 C

O
O

LI
N

G
 (

kW
)

BPS Simple NN CNN

IN
IT

IA
L

 E
S

T
IM

A
T

IO
N

D
E

C
IS

IO
N

 1

O
P

T
IO

N
 1

O
P

T
IO

N
 2

1700.00

1800.00

1900.00

2000.00

2100.00

2200.00

2300.00

2400.00

TO
TA

L
C

O
O

LI
N

G
 D

EM
A

N
D

 (
M

W
h

)

BPS Simple NN CNN

Figure 15 shows the location of the evaluated design options in the heating data distribution. Figure 15 637

(top) is overlaid with information of total heating demand within the data distribution, whereas Figure 638

15 (bottom) is overlaid with information of peak heating demand within the data distribution. Figure 15a 639

shows the data distribution, which is the result of feature engineering and selection for a simple NN and 640

Figure 15b shows the data distribution determined by the features extracted by the CNN. The location of 641

design options within the cooling model is similar to observations present within the heating model; 642

hence, they are not shown in this study. The red point in Figure 15 (top, b) shows the initial design option 643

that falls in the data distribution region of 200 MWh to 400 MWh. The CNN predicts a total heating 644

demand of 395 MWh. Similarly, Decision 1, i.e., the green point (approximately on top of red point) in 645

Figure 15 (top, b) falls in the data range of 200 MWh to 400 MWh. The CNN predicts a total heating 646

demand of 398 MWh. The movement of design options with the simple NN with feature engineered 647

inputs (see Figure 15a) shows a similar pattern as observed in the CNN. Finally, such visualizations 648

enables justification of a prediction. 649

 650

Figure 15 Location of design options with respect to the heating data distribution: (top) overlaid with total heating demand 651
information and (bottom) overlaid with peak heating demand information 652

5 Discussion 653

Developing an ML model with a satisfactory generalization performance is crucial for the effective 654

utilization of ML models in the design stage performance analysis. Results indicate that manual feature 655

engineering and selection play a vital role in extending the model reusability of simple NNs. In addition, 656

deep learning model architectures could extract features from data, which extends their reusability in 657

design. Irrespective of the use of simple or more advanced ML methods, for an ML model to generalize 658

in unseen design, it should be able to identify similar design options within the data distribution. 659

Although most resulting ML models support decisions well as shown in Figure 13, there are some models 660

that represent relationships that are not in alignment with the BPS simulation and lead to deviations in 661

the decision process (see Figure 13 (left)). Nonetheless, the prediction error in specific design options 662

are within acceptable ranges. Hence, such deviations can be mitigated by introducing prediction intervals 663

within the ML prediction process. Prediction intervals provide information on uncertainties present 664

within an ML model prediction, allowing for predictions with high uncertainty to be viewed critically. 665

Except for some deviations in peak heating predictions, evaluations of specific design options show that 666

other parameters have learned appropriate relationships. Incorporating prediction intervals for these 667

parameters can improve the reliability of decisions made using the ML models. More research on 668

methods of incorporating design stage prediction intervals needs to be done. 669

The evaluated design cases are limited to typical design cases. The reason for this limitation is that the 670

primary objective of the paper is to propose and obtain an initial understanding of deep convolutional 671

learning methods for early building design performance evaluation. Furthermore, by limiting to typical 672

design cases, intuition on the working of deep learning methods for building design evaluation is obtained 673

(see Figure 15). Based on this intuition, appropriate DM to extract features from data for more complex 674

design cases can be derived. Further research on extending the current models to more complex early 675

design case will be performed. 676

Nevertheless, the proposed ML models are reliable for typical early design options. Hence, for evaluating 677

complex building designs, architects and engineers can use the (rough) predictions from the current 678

models along with their experience to make an appropriate design decision. Even though the prediction 679

for complex design is rough, the high computational speed of the deep learning model facilities the 680

discussion between engineers and architects; reducing the need for rule-of-thumb knowledge. 681

The current ML models are reliable for typical early design stage decisions. Further research will be 682

necessary to extend the current models to different design stage performance predictions. Research to 683

extend ML models to other design stages can incorporate two different strategies. The first strategy will 684

be to develop flexible components (based on component-based ML approaches presented in [7]) using a 685

deep learning architecture to emulate data from a more detailed BPS. The advantages would be that all 686

information required for training can be obtained from parametric simulation models and domain 687

knowledge allowing for the development of ML models for quick design stage feedback. The drawback 688

of using BPS data is the occurrence of model errors present within the collected data. Model error is the 689

result of model simplification made by simulation tool like EnergyPlus and assumptions of a model 690

developer. Such errors in data reduce the effectiveness of ML models. Therefore, methods to collect data 691

from BPS for ML needs to be researched further. The second strategy can be the development of deep 692

learning models from smart city data with real building energy consumption. Such models can potentially 693

lower the performance gap for the design stage energy evaluation. One challenge to overcome with real 694

building consumption data is missing information from key factors such as building occupancy. 695

In this study, feature engineering is performed using physical equations of HF. Simple NNs learning on 696

features with physical significance generalize better than simple NNs with only design information. 697

Within the deep learning model, CNNs generalize better than multilayered NNs, where CNN requires 698

both design and physical information, indicating that feature engineering is still a relevant step in the 699

model development process. However, the feature selection process can be eliminated, as the 700

convolutional layer filters out irrelevant features, improving the model development process for multiple 701

design performance indicators, because identifying and selecting such features for multiple response 702

variables could be a time-consuming and expensive process. 703

For total heating demand prediction, deep learning models generalized better than simple NNs. This 704

indicates that for complex data, deep learning methods can identify better features than manual feature 705

engineering and selection. Within the deep learning architecture, the CNN architecture performed 706

consistently better than multilayer NNs. Further research will be required to further understand CNNs 707

for design stage predictions. 708

The DM utilized in this study resulted in a satisfactory model generalization. However, it is possible to 709

derive other DMs with better generalization, for example, the use of hourly HF information instead of 710

static HF information. Further research will be performed to explore other potential DMs. 711

CNNs utilize max pooling to reduce the size of the feature map (i.e., output of a convolutional layer). 712

The current research results show that reducing the size of the feature map does not influence the model 713

generalization. This indicates that max pooling removes features that are not related to the response 714

variable (i.e., energy prediction). Furthermore, reducing the size of the feature map through max pooling 715

creates an information bottleneck that induces invariance (i.e., insensitivity to irrelevant features) within 716

a model. Based on the current results, it is not clear which aspect of input features is contributing to the 717

generation of unrelated features. Identification of such characteristics of max pooling will provide an 718

idea on non-relevant input features. 719

The kernel-PCA shows that the extracted features identify similar design options within the data 720

distribution and mapping the similar design option to the right response variable. These characteristics 721

of extracted features allow the deep learning model to generalize well in unseen design cases. 722

Furthermore, methods such as kernel-PCA can be utilized for (1) steering the feature engineering and 723

selection process even before the training process and (2) diagnosing features extracted by the deep 724

learning model, potentially increasing the efficiency of model development. Further research will be 725

necessary to understand the deep learning model process. 726

6 Conclusion 727

General ML models enable reliable and quick predictions, which aid in the effective design decision-728

making process. General ML models are ones that generalize in all possible unseen design cases. 729

Developing such models using conventional methods requires considerable knowledge in both building 730

performance analysis and ML. Knowledge on building performance analysis is required for manual 731

feature engineering and selection, while knowledge on ML enables an effective development of ML 732

models. The study shows that deep learning methods can indeed automatically learn features that results 733

in the general model, thereby reducing the need for feature selection. Feature extraction capability of 734

deep learning makes it easier to develop ML models for a wide range of design performance parameters. 735

The ML model generalization through conventional ML methods rely on manual feature engineering and 736

selection, while deep learning models extract features automatically from data resulting in a similar or 737

better generalization. In both cases, model generalization is dependent on the feature's ability to identify 738

similar design options within the data distribution. The need for ML to identify similarity within the data 739

distribution makes ML model predictions top-down. For example, energy demand predictions from ML 740

is based on energy demand of a similar design option. In contrast, BPS models make predictions based 741

on a bottom-up approach, in which energy demand prediction results from hierarchical interactions (such 742

as HFs) within the model. However, both approaches are prone to biases, which can mislead the designer. 743

The quality of BPS prediction depends on the quality of inputs and model complexity. The quality of 744

ML model prediction depends on the quality of the data utilized in the model development and quality 745

of input features engineered, indicating that making decision from both the BPS and ML models can 746

remove potential model-based biases. Hence, an ensemble of BPS and ML models can be a potential 747

direction for model development, making BPS and ML methods complimentary technologies rather than 748

competing ones. However, the computational efforts required to make predictions from ML and BPS are 749

different. Hence, intelligent ensemble methods that can exploit the strengths of ML are necessary. 750

Finally, based on the current research results, the designer can rely on the ML models for a quick 751

assessment of the design and design strategy and moves toward BPS for a more detailed analysis. This 752

will enable a model-driven design decision-making process, rather than reliance on rule-of-thumb 753

knowledge. 754

7 Acknowledgments 755

The research is funded by STG-14-00346 at KUL and by Deutsche Forschungsgemeinschaft (DFG) in 756

the Researcher Unit 2363 “Evaluation of building design variants in early phases using adaptive levels 757

of development” in Subproject 4 “System-based Simulation of Energy Flows.” The authors acknowledge 758

the support by ERC Advanced Grant E-DUALITY (787960), KU Leuven C1, FWO G.088114N. 759

8 References 760

[1] G. Zapata-Lancaster and C. Tweed, “Tools for low-energy building design: an exploratory study of the 761
design process in action,” Archit. Eng. Des. Manag., vol. 12, no. 4, pp. 279–295, 2016. 762

[2] C. Bleil de Souza, “Contrasting paradigms of design thinking: The building thermal simulation tool user 763
vs. the building designer,” Autom. Constr., vol. 22, pp. 112–122, Mar. 2012. 764

[3] S. Attia, E. Gratia, A. De Herde, and J. L. M. Hensen, “Simulation-based decision support tool for early 765
stages of zero-energy building design,” Energy Build., vol. 49, pp. 2–15, Jun. 2012. 766

[4] P. Shiel, S. Tarantino, and M. Fischer, “Parametric analysis of design stage building energy performance 767
simulation models,” Energy Build., vol. 172, pp. 78–93, Aug. 2018. 768

[5] M. N. Hamedani and R. E. Smith, “Evaluation of Performance Modelling: Optimizing Simulation Tools to 769
Stages of Architectural Design,” Procedia Eng., vol. 118, pp. 774–780, 2015. 770

[6] L. Van Gelder, P. Das, H. Janssen, and S. Roels, “Comparative study of metamodelling techniques in 771
building energy simulation: Guidelines for practitioners,” Simul. Model. Pract. Theory, vol. 49, pp. 245–772
257, 2014. 773

[7] P. Geyer and S. Singaravel, “Component-based machine learning for performance prediction in building 774
design,” Appl. Energy, vol. 228, pp. 1439–1453, Oct. 2018. 775

[8] S. Singaravel, J. Suykens, and P. Geyer, “Deep-learning neural-network architectures and methods: Using 776
component-based models in building-design energy prediction,” Adv. Eng. Informatics, vol. 38, pp. 81–90, 777

Oct. 2018. 778

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. 779

[10] S. M. C. Magalhães, V. M. S. Leal, and I. M. Horta, “Modelling the relationship between heating energy 780
use and indoor temperatures in residential buildings through Artificial Neural Networks considering 781
occupant behavior,” Energy Build., vol. 151, pp. 332–343, 2017. 782

[11] F. Ascione, N. Bianco, C. De Stasio, G. M. Mauro, and G. P. Vanoli, “CASA, cost-optimal analysis by 783
multi-objective optimisation and artificial neural networks: A new framework for the robust assessment of 784
cost-optimal energy retrofit, feasible for any building,” Energy Build., vol. 146, pp. 200–219, 2017. 785

[12] J. Yang, H. Rivard, and R. Zmeureanu, “On-line building energy prediction using adaptive artificial neural 786
networks,” Energy Build., vol. 37, no. 12, pp. 1250–1259, Dec. 2005. 787

[13] B. B. Ekici and U. T. Aksoy, “Prediction of building energy consumption by using artificial neural 788
networks,” Adv. Eng. Softw., vol. 40, no. 5, pp. 356–362, May 2009. 789

[14] A. Kusiak and G. Xu, “Modeling and optimization of HVAC systems using a dynamic neural network,” 790
Energy, vol. 42, no. 1, pp. 241–250, Jun. 2012. 791

[15] Z. Hou, Z. Lian, Y. Yao, and X. Yuan, “Cooling-load prediction by the combination of rough set theory 792
and an artificial neural-network based on data-fusion technique,” Appl. Energy, vol. 83, no. 9, pp. 1033–793
1046, 2006. 794

[16] A. Chari and S. Christodoulou, “Building energy performance prediction using neural networks,” Energy 795
Efficiency, pp. 1–13, 2017. 796

[17] J. Yao, “Prediction of Building Energy Consumption at Early Design Stage Based on Artificial Neural 797
Network,” Adv. Mater. Res., vol. 108, pp. 580–585, May 2010. 798

[18] A. Lazrak et al., “Development of a dynamic artificial neural network model of an absorption chiller and 799
its experimental validation,” Renew. Energy, vol. 86, pp. 1009–1022, 2016. 800

[19] A. H. Neto and F. A. S. Fiorelli, “Comparison between detailed model simulation and artificial neural 801
network for forecasting building energy consumption,” Energy Build., vol. 40, no. 12, pp. 2169–2176, Jan. 802
2008. 803

[20] S. Paudel et al., “A relevant data selection method for energy consumption prediction of low energy 804
building based on support vector machine,” Energy Build., vol. 138, pp. 240–256, 2017. 805

[21] F. Zhang, C. Deb, S. E. Lee, J. Yang, and K. W. Shah, “Time series forecasting for building energy 806
consumption using weighted Support Vector Regression with differential evolution optimization 807
technique,” Energy Build., vol. 126, pp. 94–103, 2016. 808

[22] B. Dong, C. Cao, and S. E. Lee, “Applying support vector machines to predict building energy consumption 809
in tropical region,” Energy Build., vol. 37, no. 5, pp. 545–553, 2005. 810

[23] Q. Li, Q. Meng, J. Cai, H. Yoshino, and A. Mochida, “Applying support vector machine to predict hourly 811
cooling load in the building,” Appl. Energy, vol. 86, no. 10, pp. 2249–2256, Oct. 2009. 812

[24] H.-X. Zhao and F. Magoulès, “Feature Selection for Predicting Building Energy Consumption Based on 813
Statistical Learning Method,” J. Algorithm. Comput. Technol., vol. 6, no. 1, pp. 59–77, 2012. 814

[25] G. K. F. Tso and K. K. W. Yau, “Predicting electricity energy consumption: A comparison of regression 815
analysis, decision tree and neural networks,” Energy, vol. 32, no. 9, pp. 1761–1768, Sep. 2007. 816

[26] C. Zhang, L. Cao, and A. Romagnoli, “On the feature engineering of building energy data mining,” Sustain. 817
Cities Soc., vol. 39, pp. 508–518, May 2018. 818

[27] T. Catalina, J. Virgone, and E. Blanco, “Development and validation of regression models to predict 819
monthly heating demand for residential buildings,” Energy Build., vol. 40, no. 10, pp. 1825–1832, Jan. 820
2008. 821

[28] I. Jaffal and C. Inard, “A metamodel for building energy performance,” Energy Build., vol. 151, pp. 501–822
510, Sep. 2017. 823

[29] K. Amasyali and N. Gohary, “A review of data-driven building energy consumption prediction studies,” 824
Renew. Sustain. Energy Rev., vol. 81, pp. 1192–1205, Jan. 2018. 825

[30] C. Fan, F. Xiao, and Y. Zhao, “A short-term building cooling load prediction method using deep learning 826
algorithms,” Appl. Energy, vol. 195, pp. 222–233, 2017. 827

[31] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load forecasting using Deep Neural 828
Networks,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, 829
pp. 7046–7051. 830

[32] C. Li et al., “Building Energy Consumption Prediction: An Extreme Deep Learning Approach,” Energies, 831
vol. 10, no. 10, p. 1525, Oct. 2017. 832

[33] E. Mocanu, P. H. Nguyen, M. Gibescu, and W. L. Kling, “Deep learning for estimating building energy 833
consumption,” Sustain. Energy, Grids Networks, vol. 6, pp. 91–99, Jun. 2016. 834

[34] B. Zhong, X. Xing, P. Love, X. Wang, and H. Luo, “Convolutional neural network: Deep learning-based 835
classification of building quality problems,” Adv. Eng. Informatics, vol. 40, pp. 46–57, Apr. 2019. 836

[35] C. Lu, Z. Wang, and B. Zhou, “Intelligent fault diagnosis of rolling bearing using hierarchical convolutional 837
network based health state classification,” Adv. Eng. Informatics, vol. 32, pp. 139–151, Apr. 2017. 838

[36] W. Fang et al., “A deep learning-based approach for mitigating falls from height with computer vision: 839
Convolutional neural network,” Adv. Eng. Informatics, vol. 39, pp. 170–177, Jan. 2019. 840

[37] W. Fang, L. Ding, B. Zhong, P. E. D. Love, and H. Luo, “Automated detection of workers and heavy 841
equipment on construction sites: A convolutional neural network approach,” Adv. Eng. Informatics, vol. 842
37, pp. 139–149, Aug. 2018. 843

[38] B. Doshi-Velez, Finale and Kim, “Towards a rigorous science of interpretable machine learning,” arXiv 844
Prepr., 2017. 845

[39] S. Singaravel, P. Geyer, and J. Suykens, “Component-Based Machine Learning Modelling Approach for 846
Design Stage Building Energy Prediction: Weather Conditions and Size,” in Proceedings of the 15th IBPSA 847
Conference, 2017, pp. 2617–2626. 848

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 2016. 849

[41] A. Achille and S. Soatto, “Emergence of invariance and disentanglement in deep representations,” in 2018 850
Information Theory and Applications Workshop, ITA 2018, 2018, vol. 18, pp. 1–34. 851

[42] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional architectures for 852
object recognition,” in 20th International Conference on Artificial Neural Networks (ICANN), 2010, vol. 853
6354 LNCS, no. PART 3, pp. 92–101. 854

[43] J. Oh, J. Wang, and J. Wiens, “Learning to Exploit Invariances in Clinical Time-Series Data using Sequence 855
Transformer Networks,” Proc. Mach. Learn. Res., vol. 85, pp. 1–15, 2018. 856

[44] C. J. Hopfe and J. L. M. Hensen, “Uncertainty analysis in building performance simulation for design 857
support,” Energy Build., vol. 43, no. 10, pp. 2798–2805, Oct. 2011. 858

[45] T. Østergård, R. L. Jensen, and S. E. Maagaard, “Building simulations supporting decision making in early 859
design - A review,” Renewable and Sustainable Energy Reviews, vol. 61. Pergamon, pp. 187–201, 01-Aug-860

2016. 861

[46] A. Paszke et al., “Automatic differentiation in pytorch,” 2017. 862

 863

 864

Conflict of Interest and Authorship Conformation Form

Please check the following as appropriate:

o All authors have participated in (a) conception and design, or analysis and

interpretation of the data; (b) drafting the article or revising it critically for

important intellectual content; and (c) approval of the final version.

o This manuscript has not been submitted to, nor is under review at, another

journal or other publishing venue.

o The following authors have affiliations with organizations with direct or

indirect financial interest in the subject matter discussed in the manuscript:

Author’s name Affiliation

Sundaravelpandian Singaravel KU Leuven

Johan Suykens KU Leuven

Philipp Geyer KU Leuven

Conflict of Interest

View publication statsView publication stats

https://www.researchgate.net/publication/335789280

