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Abstract 8 

Designers rely on performance predictions to direct the design toward appropriate requirements. Machine 9 

learning (ML) models exhibit the potential for rapid and accurate predictions. Developing conventional 10 

ML models that can be generalized well in unseen design cases requires an effective feature engineering 11 

and selection. Identifying generalizable features calls for good domain knowledge by the ML model 12 

developer. Therefore, developing ML models for all design performance parameters with conventional 13 

ML will be a time-consuming and expensive process. Automation in terms of feature engineering and 14 

selection will accelerate the use of ML models in design.  15 

Deep learning models extract features from data, which aid in model generalization. In this study, we (1) 16 

evaluate the deep learning model’s capability to predict the heating and cooling demand on unseen design 17 

cases and (2) obtain an understanding of extracted features. Results indicate that deep learning model 18 

generalization is similar to or better than that of a simple neural network with appropriate features. The 19 

reason for the satisfactory generalization using the deep learning model is its ability to identify similar 20 

design options within the data distribution. The results also indicate that deep learning models can filter 21 

out irrelevant features, reducing the need for feature selection.    22 

1 Introduction  23 

Conventionally, simulations are used to guide the design toward the required building performance. A 24 

few building performance metrics are energy efficiency, daylighting, and thermal comfort. Designers 25 

rely on rule-of-thumb knowledge when simulation models cannot provide instant design performance 26 

feedback [1], [2]. However, rule-of-thumb knowledge could potentially lead the design toward a wrong 27 

direction. Hence, having models that can provide rapid and accurate results is necessary. Furthermore, 28 

20% of design decisions taken at the early design stage affect 80% of the subsequent design decisions 29 

[3]. Therefore, it is important to take the right decisions at the early design stages. In this study, we utilize 30 

an energy analysis as an exemplary performance criterion. The inferences from the energy analysis can 31 

be relevant to other performance analyses as well.   32 

Early design energy analysis simulation models in practice utilize simplified thermal representations 33 

along with technical specifications, e.g., based on American Society of Heating, Refrigerating and Air-34 

Conditioning Engineers standards [4]. As the design progresses, more detailed information is added to 35 

the simulation model. Typical simulation tools used for energy analysis are EnergyPlus, TRNSYS, IES-36 

VE, DesignBuilder, jEPlus, and Sefaira [3]–[5]. For two different building designs, Shiel et al. [4] 37 

showed that the variations of early energy demand prediction compared to actual energy consumption 38 

were −39% and −22%. Upon addition of actual design information, the variations were reduced to 5% 39 

and −2%, respectively. Furthermore, the effort required to develop simulation models varies depending 40 
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on the complexity of the information and design [4]. Therefore, the challenge for an efficient early design 41 

energy analysis is to obtain a model that balances accuracy, development effort, and computation time 42 

for analyzing design alternatives. 43 

Simplified models developed from complex simulation data have high potential to act as a surrogate 44 

model. Machine learning (ML) offers the possibility of developing surrogate models that provide rapid 45 

and accurate building performance predictions [6]–[8]. Quick ML predictions make ML models ideal for 46 

early design stage performance analysis because they allow for more design options to be evaluated at 47 

the early design stages. Moreover, a high computation speed reduces the designer’s reliance on rule-of-48 

thumb knowledge and enables quantitatively well-justified decisions. However, ML models generalize 49 

within the data distribution, which is determined by the input parameter/features and training data. The 50 

challenge to overcome is the development of ML models that work robustly on unseen design cases. An 51 

unseen design case is defined as a design option, which is not present in the training data. It is critical to 52 

overcome this challenge because the evaluated design need not be captured within the training design 53 

cases. Therefore, identifying methods for overcoming this challenge will increase the utilization of ML 54 

models in design, enabling rapid, accurate, and reliable early design stage predictions.  55 

Deep learning, a sub-domain of ML, has successfully been shown in many other domains such as image 56 

recognition to automatically extract good features resulting in model generalization [9]. The objectives 57 

of this study are to propose a deep learning architecture that generalizes well in unseen design cases and 58 

obtain an initial understanding of the features extracted by the deep learning model. The research 59 

questions addressed in this study are as follows: (1) Which deep learning architecture results in a 60 

satisfactory model generalization? (2) How important is feature engineering and selection for deep 61 

learning methods? (3) What are the underlying characteristics of the features learned by deep learning 62 

models? Future research will focus on the complexity of the data used for training. Nevertheless, the 63 

utilized data are obtained from simulation models representative of early design stages. More information 64 

on the utilized data is presented in Section 3.1.   65 

The evaluation of deep learning architectures is performed by benchmarking two types of deep learning 66 

model architectures with a simple neural network (NN) architecture. The deep learning model 67 

architectures evaluated are multilayered NN and convolutional NN (CNN). To the authors' knowledge, 68 

the CNN has not been applied for design stage energy prediction, making this contribution significant. 69 

Upon benchmarking of deep learning models with a simple NN, hidden layer outputs are analyzed using 70 

kernel-principal component analysis (PCA) to understand the features learned by the deep learning 71 

model. Kernel-PCA analysis provides an interpretation of the characteristics of features extracted by a 72 

deep learning model. This paper is organized as follows: (1) the theory on utilized deep learning model 73 

architectures, (2) the methodology to evaluate deep learning, and (3) the results, discussion, and 74 

conclusion. 75 

1.1 Background and motivation for deep learning  76 

The generalization of an ML model in design refers to the validity of the model beyond training design 77 

cases, assuming the evaluated design case falls within the underlying data distribution. Artificial NNs1 78 

(ANNs) [10]–[19] and support vector machines (SVMs) [20]–[23] are the most popular ML algorithms 79 

                                                 
1 In this paper, ANNs are also referred to as simple neural networks. 



used to model building energy data. Generalizable ML models through ANNs and SVMs can be 80 

developed through appropriate feature engineering and selection.  81 

Good features provide selectivity invariance, which means that the features are selective/relevant to the 82 

prediction problem but removes irrelevant features [9]. Feature selection is the process of selecting 83 

relevant input parameters for model development [24], [25]. Feature engineering is an approach that 84 

identifies input parameters, which account for the interaction between a building and its environment 85 

[26]. Examples of feature engineered inputs found in the literature are building shape factor, window to 86 

floor area ratio, and heat flow (HF) [27], [28]. The outcome of feature engineering and selection is that 87 

ML models can identify similar design options within the data distribution resulting in model 88 

generalization. However, the current research has typically focused on validating ML models with test 89 

cases that resemble training design cases. Hence, it is not clear how to increase the applicability of ML 90 

methods in unseen design cases.   91 

Developing ML models through feature engineering and selection will be a time-consuming process as 92 

it requires domain knowledge in both ML and simulation methods. ML knowledge allows the model 93 

developer to identify suitable algorithms and training conditions, which results in a general model. On 94 

the other hand, knowledge in simulations allows the modeler to identify and select appropriate input 95 

features. Finding an engineer with such expertise is difficult. This challenge is amplified when ML 96 

models have to be developed for many design performance metrics as well. Hence, automation in feature 97 

engineering and selection will accelerate the use of ML methods for an early design stage performance 98 

analysis. 99 

Within deep learning, the input features are transformed hierarchically using non-linear layers before 100 

making the final prediction. Training of the hierarchical non-linear layer enables automatic extraction of 101 

good features from data by promoting selectivity invariance [9]. Furthermore, the hierarchical structure 102 

of deep learning exploits the compositional hierarchies of signals/data [9]. Compositional hierarchies are 103 

the observation of a high-level feature, which is the result of low-level features. In the case of building 104 

design’s energy demand, the high-level feature is the energy demand and some low-level features are 105 

HFs and heat gains. The data used in this study are obtained from simulation models, which generate 106 

energy demand based on hierarchical interactions. Therefore, analyzing the features learned by the deep 107 

learning model could provide an impression on the similarities between deep learning and simulation 108 

models. Finally, utilizing features extracted to make the final prediction allows deep learning models to 109 

generalize effectively. CNNs have been shown to be easier to train and generalize better compared to 110 

multilayer NNs [9]. In Section 2, the technical details of the utilized model architectures are provided.  111 

The similarities between deep learning and simulation models in terms of hierarchical representation 112 

make deep learning an interesting ML method to explore further. However, the application of deep 113 

learning in the domain of building energy prediction is limited [29] because it requires a huge amount of 114 

data in the training process. Given the increasing computational power, it would be possible to generate 115 

such data with multiple design options. However, before generating a lot of data, it will be beneficial to 116 

obtain insights into the deep learning model for design. 117 

Typical applications of deep learning for predicting building energy found in the literature are for load 118 

prediction/forecasting [30]–[33] and design stage predictions [8]. In certain cases, deep learning models 119 

have similar performances as conventional ML methods [30], [31]. In other cases, they outperform 120 

conventional ML methods [8], [32], [33]. The deep learning model architectures for predicting energy 121 



are stacked auto-encoders, recurrent NNs, and Boltzmann machines. CNNs have been used for building 122 

quality classification [34], fault detection [35], mitigation of fall [36], and people detection [37]. The 123 

data types used for current applications of CNNs are text and images. Utilization of CNNs with design 124 

information has not been reported, making the current research significant.   125 

Limited works on deep learning models for building design energy performance analysis call for more 126 

research. Finally, an upcoming trend in ML is to understand the patterns learned by the black-box model 127 

[38], which helps the community to move toward interpretable artificial intelligence (AI). Analyzing the 128 

extracted features is a step toward interpretable AI. This study extends our understanding for model 129 

generalization in unseen design and model interpretability.   130 

2 Theory on Deep Learning Neural Network Architecture 131 

Deep learning models are evaluated based on their ability to predict heating and cooling demands on test 132 

design options. Each model, i.e., heating or cooling demand model, has two response variables, namely 133 

the peak and annual energy demand (see Figure 1 and Figure 2). Training of models with more than one 134 

response variable related to different tasks is called multitask learning (MTL). More information on MTL 135 

for energy models can be found in [8].  136 

In this study, a simple NN, multilayer NN, and CNN are evaluated. Because the peak and annual energy 137 

demand of a design is directly predicted (i.e., not considered as a sequence) and training is performed 138 

end to end (i.e., in a single step), model architectures using recurrent and auto-encoder layers are not 139 

applicable. If the nature of data and the training process change, these architectures can be evaluated as 140 

well. This section introduces the utilized model architectures, the description of hidden layers, and the 141 

activation functions. 142 

2.1 Model architectures 143 

2.1.1 Simple and multilayered neural networks 144 

The simple NN (or ANN) has been successfully applied in predicting building energy demand. 145 

Furthermore, current deep learning methods are extensions of simple NNs. Therefore, simple NNs are 146 

selected as a reference ML algorithm. Observations made on simple NNs should be applicable for other 147 

non-linear ML algorithms. Previous research indicated that through other conventional ML algorithms, 148 

a similar performance can be achieved provided appropriate model tuning is performed [39]. Multilayer 149 

NN is also evaluated as it is an easy extension of a simple NN to form a deep learning model.   150 

Figure 1 shows the architecture of simple and multilayer NNs. A simple NN has one fully connected 151 

(FC) layer (see Section 2.2.1) with a rectified linear unit (ReLU) activation (see Section 2.2.4). A 152 

multilayer NN has more than one hidden layer. The number of hidden units in each hidden layer is 153 

manually determined by cross-validation (CV) during the training process. In this study, the multilayer 154 

NN has two, three, and four FC layers with a ReLU activation. 155 



  156 

Figure 1 Illustration of simple and multilayer neural network architectures 157 

2.1.2 Convolutional neural network 158 

Figure 2 shows the architecture of the CNN with 1 to n convolutional layers, max pooling, and an FC 159 

layer. The number of convolutional operations and hidden units in each layer is manually determined 160 

through CV during the training process. The convolutional layer utilizes parametric ReLU (PReLU) 161 

activation instead of a ReLU activation. The use of PReLU activation provided better model performance 162 

than ReLU activation. The CNN with one, two, and three convolutional layers are evaluated in this study.  163 

A CNN expects inputs in a matrix format. In this study, the input matrix is referred to as a design matrix 164 

(DM) as it contains all information pertaining to the design. The DM has a size of M × N, where M is the 165 

number of parameter groups and N is the maximum number of features within all parameter groups. 166 

Section 2.2.2 describes the basic principle used to construct the DM. In Section 3.2.2, the method used 167 

to develop the DM is described.   168 

  169 

Figure 2 Illustration of convolutional neural network architecture 170 

2.2 Description of hidden layers 171 

2.2.1 Fully connected layer 172 

An FC layer is the most commonly used hidden layer or output layer in any NN model. It comprises 173 

several hidden units that have to be tuned during the training process. Figure 3 shows the working of a 174 

hidden unit. The hidden unit obtains an input feature vector of length N. Each input feature in the vector 175 

is assigned a trainable weight. In Figure 3, features 1, 2, and 3 have a weight of –0.4548, 0.4118, and 176 



0.6452, respectively. The weighted sum is the output of the hidden unit, which is referred to as the hidden 177 

feature. 178 

  179 

Figure 3 Illustration of a hidden unit 180 

2.2.2 Convolutional layer 181 

The use of a convolutional layer in NN models with images and time-series input data has provided state-182 

of-the-art performance. However, a convolutional layer has not been used with design information. In 183 

this section, the working principle of a convolutional layer for design information is presented.  184 

A convolutional layer obtains design inputs in the form of a DM instead of a vector; DM ∈ building 185 

design and performance related features/parameters. The DM is generated by grouping similar features 186 

referred to as parameter groups, which range from 1 to M. An example of a parameter group with similar 187 

features is wall thermal conductivity and wall HF. Each parameter group consists of 1 to N similar 188 

features. In the above example, the parameter group consists of two similar features. The result of 189 

grouping is a DM with M × N dimension.  190 

The convolutional layer consists of convolutional operations. The number of convolutional operations in 191 

a convolutional layer is determined during the training process. A convolutional operation is 192 

characterized by an M × K matrix, where K is the length of trainable weight vector per parameter group 193 

(K is also referred to as filter size). K is less than or equal to the number of features N in a parameter 194 

group. The output of a convolutional layer is referred to as a “feature map” (note that the DM is the input 195 

to the first convolutional layer only. Subsequent convolutional layers will receive feature maps as 196 

inputs.). 197 

Figure 4 shows how a convolutional operation is performed for a 2 × 2 DM, i.e., a design with a two-198 

parameter group and two features per group. The convolutional operation has a filter size (K) of 1, 199 

resulting in a convolutional operation with a matrix size of 2 × 1. In this example, parameter group 1 has 200 

a weight of −0.4548 and parameter group 2 has a weight of 0.4118. Features in column 1 and 2 are 201 

convoluted (through Equation 1) to obtain a feature map consisting of two features: −0.0597 and 3.7621. 202 

The first feature, −0.0597, is the weighted sum of values in feature column 1 together with the parameter 203 

group weight (PGW), followed by the addition of a bias term (i.e., (0.2 × −0.4548 + 0.5 × 0.4118) − 204 

0.1746). Similarly, the second feature, 3.7621, is the weighted sum of values in feature column 2 (i.e., 205 

(100 × −0.4548 + 120 × 0.4118) − 0.1746).  206 



∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 ×  𝑃𝐺𝑊 + 𝐵𝑖𝑎𝑠 (1)

𝑁

𝑖=1

 207 

Figure 4 highlights the following characteristics [40] of a convolutional layer, which results in the 208 

extraction of generalizable features [9]: 209 

1. Parameter (or weight) sharing: Features within a parameter group have shared trainable weights. 210 

Parameter sharing also reduces the trainable weights compared to an FC layer with no shared 211 

weights. 212 

2. Sparse interaction: Interactions captured by the convolutional operation are limited by shared 213 

parameters defined by the filter size. Figure 4 shows that the interactions observed by the model 214 

are limited to feature column 1 and 2 and not the entire matrix. 215 

3. Equivalent representation: Parameter sharing results in a PGW that is equivalent to the entire 216 

parameter group, rather than each feature defined with a weight.        217 

In this study, only the number of convolutional operations is tuned during the training process. Other 218 

hyperparameters such as the filter size are fixed. Evaluating the effect of other hyperparameters on model 219 

generalization is out-of-scope of the current study, as this study only evaluates the feature extraction 220 

capability of deep learning models for generalization. Future research will be performed to analyze the 221 

effects of other hyperparameters on model generalization. 222 

 223 

Figure 4 Illustration of a convolutional operation 224 

2.2.3 Max pooling layer 225 

Pooling layers are typically present in a CNN. This study utilizes a max pooling layer. The effectiveness 226 

of such layer compared with other types of pooling layers need to be evaluated in future research. A max 227 

pooling layer (see Figure 5) reduces the feature map by retaining only dominant (or high value) features. 228 

This layer promotes invariance (or insensitivity) through bottlenecks, as the dimension of the feature 229 

vector after max pooling is less before max pooling [41].  230 

The hidden layer after max pooling learns to represent the prediction task with a smaller feature vector. 231 

If the models utilizing a max pooling layer generalize well, it indicates that the max pooling layer 232 

removes features that are not relevant for the particular task (in this case prediction of energy). Reducing 233 

the size of the feature vector by max pooling makes the deep learning model invariant to irrelevant 234 

features. However, understanding the induced invariance with respect to the building design input 235 



features is limited. Examples of such understanding are spatial invariance in images [42] and phase 236 

invariance for time-series data [43]. More research needs to be done to understand the type of invariance 237 

created by the pooling layer.  238 

In this study, the CNN utilized has only one max pooling layer. The reason for this limitation is due to 239 

the small size of the feature maps generated by the utilized DM. The convolutional layer receives the DM 240 

of size M × 2 and outputs a feature map of size C × 2, where C is the number of convolutional operations 241 

in a layer and 2 is the number of similar features within a parameter group. The max pooling layer 242 

receives this feature map and outputs a reduced feature map to a size of C × 1. Hence, adding more max 243 

pooling layers will not have any effect on the model. If the size of the feature map increases, the number 244 

of pooling layers could be increased. Identifying other DM configurations will be conducted in future 245 

research.   246 

  247 

Figure 5 Illustration of max pooling 248 

2.2.4 Description of activation functions 249 

Suitable activation functions for an NN model varies for different data types. Some examples of 250 

activation functions are sigmoid, hyperbolic tangent, and ReLU. In this study, the ReLU activation is 251 

used together with an FC layer. The convolutional layer utilizes the PReLU activation as it offers a better 252 

performance than the ReLU activation. Equation 2 shows the ReLU activation, where negative values 253 

are made zero. Equation 3 shows the PReLU activation, where the negative values are multiplied by 254 

alpha (ɑ), which is learned during the training process. 255 

𝑅𝑒𝐿𝑈(𝑋) = 𝑚𝑎𝑥(0, 𝑋)         (2) 256 

𝑃𝑅𝑒𝐿𝑈(𝑋) = 𝑚𝑎𝑥(0, 𝑋) + 𝑎 ×  𝑚𝑖𝑛(0, 𝑋)   (3) 257 

 258 

3 Methodology for Evaluating Deep Learning for Design Stage Energy 259 

Predictions 260 

The following methodology is applied to evaluate the feature extraction capability of deep learning 261 

methods for a satisfactory model generalization and to obtain an initial understanding of features learned 262 

by the deep learning model: 263 

1. Benchmarking the performance of deep learning models against a simple NN on test design cases.  264 

2. Kernel-PCA is utilized to analyze the characteristics of the features that results in model 265 

generalization.  266 



3. Evaluating early design decisions using building performance simulation (BPS) and ML models. 267 

This section starts by describing the generated data, which is followed by the methods for developing 268 

and evaluating deep learning models. 269 

  270 

Figure 6 Training and test design cases 271 

3.1 Description of training and test data 272 

3.1.1 Design context  273 

The early design stage decision support could be in the form of a what-if analysis [44], [45]. Some 274 

potential questions are “What if we increase the window area?”, “What if we reduce the efficiency of the 275 

HVAC system but increase the insulation level?”, and “What if we reduce the floor area per story and 276 

add an additional floor?”. To perform such analysis effectively, the utilized ML model provides 277 

predictions, which ensure that the decision taken on its predictions are valid as the design progresses. 278 

Therefore, test cases are created to analyze the reliability of design decisions taken from ML models on 279 

unseen designs. Furthermore, the training data provide the possibility of performing early what-if 280 

analyses and capture enough non-linearity to evaluate the robustness of the model on unseen test cases. 281 

Model generalization on more complex data will be performed in the future.      282 

3.1.2 Parametric simulation model 283 

The training data are design cases, which a model developer anticipate as potential design options 284 

evaluated by the designer. In contrast, the test data can be considered as design options evaluated by the 285 

designer. Training and test data are generated through parametric simulations in EnergyPlus version 8.7. 286 

The training data (gray blocks in Figure 6) come from design options of a 3-, 5-, and 7-story buildings. 287 

The test data (blue blocks in Figure 6) are obtained from the design options of 2-, 4-, 8-, 9-, 10-, 11-, 12-288 

, and 13-story buildings, respectively. Building design options with 2 and 13 stories are later referred to 289 



as extreme test cases as they are in the boundaries of the test cases. From the generated data, the peak 290 

and annual energy demand data are extracted.  291 

The models simulate an office building design located in Brussels. Assumptions in the models are (1) a 292 

fixed HVAC system, which is a variable air volume system with chillers and a gas boiler; (2) 100% 293 

occupancy and lighting and equipment gains between 9:00 and 17:00; (3) 50% occupancy at opening 294 

(8:00) and closing (18:00) hours; (4) 50% lighting usage after opening hours (8:00–18:00); and (3) room 295 

heating and cooling set points of 20/25 during opening hours and 16/28 after opening hours. Because the 296 

main objective of this study is to evaluate the deep learning model’s ability to extract general features 297 

for better generalization, the assumptions in the models should not have an impact on the conclusions.    298 

Table 1 presents the design parameters and sampling ranges utilized in the parametric simulation. The 299 

samples are generated using the Sobol sequence method, which is a quasi-random low-discrepancy 300 

sequence method. For the 3-, 5-, and 7-story buildings, 1500 design options are generated, resulting in a 301 

total training sample size of 4500. Similarly, for each test design case (see Figure 6), 1500 design options 302 

are generated. It can be noted from Figure 6 that only the 4-story building falls in the interpolation region 303 

of training design space. Other test design cases are outside the training design space. 304 

Table 1 Design parameter ranges in the parametric simulation 305 

 Units Minimum Maximum 

Length (l) m 20 80 

Width (w) m 20 80 

Height (h) m 3 6 

Overhang length (loh) 2 m 0 6 

Window to wall ratio (WWR)2  0.01 0.95 

Orientation (α) Degree −180 180 

Wall U-value (Uwall) W/(m2∙K) 0.41 0.78 

Window U-value (Uwin) W/(m2∙K) 0.5 2 

Ground floor U-value (Ufloor) W/(m2∙K) 0.41 0.86 

Roof U-value (Uroof) W/(m2∙K) 0.19 0.43 

Window g-value (gwin)  0.1 0.9 

Floor heat capacity (cfloor) J/(kg∙K) 900 1200 

Infiltration air change rate (nair) h-1                       0.2 1 

Number of floors (nfloor)  3, 5, 7  

Lighting heat gain (Q’light) W/m2 5 11 

Equipment heat gain (Q’equip) W/m2 10 15 

Chiller coefficient of performance (COP)  3 6 

Boiler efficiency (ηBoiler)  0.7 1 

Chiller type  Electric reciprocating chiller Electric screw chiller 

Boiler pump type  Constant flow Variable flow 

 306 

3.2 Training and testing of deep learning architectures 307 

Different ML model architectures with different input parameter configurations are trained and tested to 308 

identify conditions for conventional ML and deep learning model generalization. This section describes 309 

(1) the different input parameter configurations utilized in model development, (2) input parameter 310 
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configurations assigned to each ML model architecture, and (3) ML model selection and evaluation 311 

process.  312 

3.2.1 Model input parameter configurations   313 

Table 2 indicates three configurations of model input parameters utilized in the evaluation process. These 314 

three input parameter configurations are designed to show the importance of feature engineering and 315 

selection for conventional ML model generalization and to understand conditions under which deep 316 

learning extracts generalizable features from data.    317 

Table 2 Model input parameter configurations 318 

Configuration number Description of group Reference in text as 

1 Design inputs are listed in Table 1. Actual inputs (Act ip) 

2 Certain design inputs from Table 1 are 

transformed using formulas given in Table 3. 

Non-transformed parameters are utilized as in 

category 1.    

Feature engineered inputs (FE 

ip) 

3 All design inputs together with feature 

engineered inputs. 

Act + FE ip 

 

Table 3 summarizes the formulas used to transform design parameters (i.e., feature engineering). In the 319 

feature engineering process, features/input parameters, which interact with other design parameter or 320 

other environmental factors, are identified. The building area is a feature that captures the interaction 321 

between building length (l) and width (w). On the other hand, transformations such as HFs capture the 322 

interaction between the building and its environment. For example, HFs through the wall capture the 323 

interaction between wall area, insulation level, and outdoor weather conditions (To) of the building’s 324 

environment and indoor temperature (Ti). Weather conditions utilized to perform these transformations 325 

are average summer and winter conditions for the cooling and heating models. The indoor temperature 326 

is assumed to be 25 C for the cooling model and 20 C for the heating model.    327 

Table 3 Formulas for feature engineering  328 

Design parameters (Actual inputs) Transformed inputs (Feature engineered inputs) Units 

Length (l) Building area (BA) 

l × w × nfloors 

m2 

Width (w) 

Height (h) Building volume (BV) 

l × w × h × nfloors 

m3 

Number of floors (nfloors) 
U-value 

of wall, window, floor, roof 

Heat flow (HF) 

U-value × Area × (To – Ti) 

W 

Window g-value Solar gain (SG) 

Area × gwin × average solar radiation 

W 

Infiltration air change rate Infiltration gain (IG) 

Air specific heat capacity × density × air volume × (To – Ti) 

W 

 329 

3.2.2 Model architectures and corresponding input configuration   330 

The global model architecture is presented in this section, and hyperparameters in each layer are tuned 331 

during the training process. Table 4 indicates the trained model architectures and their input 332 

configuration. A simple NN is the reference ML model architecture for the deep learning model 333 

architectures. Therefore, the simple NN is trained with all input configurations. Benchmarking of deep 334 



learning models against simple NNs with actual inputs is performed to examine if the deep learning 335 

model can extract good features. Additionally, benchmarking against a simple NN with feature 336 

engineered inputs is performed to determine the quality of the extracted features. 337 

The multilayer NN is evaluated to understand the feature extraction capability of the deep learning model. 338 

Hence, input configuration 1, i.e., actual input, is provided. The CNN is evaluated to understand its ability 339 

to extract good features from similar input parameters. Hence, input configuration 3 (Act + FE inputs) is 340 

provided. 341 

Table 4 Model architecture and input configuration 342 

Model architecture Number of hidden layers Model input 

configuration 

Reference in text 

Simple NN 1 FC layer Act ip Simple NN – Act ip 

FE ip Simple NN – FE ip 

Act + FE ip Simple NN – Act + FE ip 

Multilayer NN 2 FC layers Act ip Multilayer NN – 2 layers 

3 FC layers Multilayer NN – 3 layers 

4 FC layers Multilayer NN – 4 layers 

CNN 1 Convolution layer 

1 FC layer 

Act + FE ip CNN – 1+1 layers 

2 Convolution layers 

1 FC layer 

CNN – 2+1 layers 

3 Convolution layers 

1 FC layer 

CNN – 3+1 layers 

 343 

Simple and multilayer NNs require the inputs to be in a vector form. However, a CNN requires a matrix 344 

input. Table 5 presents the DM structure used for the CNN. Each design parameter (also referred to as 345 

actual inputs), wherever possible, is paired with its equivalent transformation or a design parameter. The 346 

objective of the grouping is to bring similar parameters together, which allows the convolutional layer to 347 

learn an equivalent parameter weight (see Figure 4). Equivalent transformations capture the effect of 348 

changes in one over another parameter. Examples of equivalent transformation are building length (l) to 349 

building area (BA) and U-values to HF. Similar design parameters are parameters that have similar effects 350 

on the energy consumption. Examples are lighting gain (Q’light) and equipment gain (Q’equip). Within the 351 

current feature space, if a parameter does not have an equivalent transformation or a similar design 352 

parameter, it is not paired with any other parameter (i.e., Feature 2 is zero). Orientation (α) is an example 353 

of a parameter that is not paired with any other parameter. Other potential arrangements of the data 354 

structure need to be researched further.   355 

Table 5 Input data structure (i.e., DM) of a design option for CNN 356 

Parameter group Feature 1 Feature 2 

1 Length (l) Building area (BA) 

2 Width (w) Building area (BA) 

3 Height (h) Building volume (BV) 

4 Number of floors (nfloors) 0 

5 Orientation (α) 0 

6 Overhang length (loh) Window to wall ratio (WWR) 

7 Window g-value  Solar gain 



8 U-value Heat flow (HF) 

9 Floor heat capacity 0 

10 Infiltration air change rate (nair) Infiltration gain 

11 Lighting heat gain (Q’light) Equipment heat gain (Q’equip) 

12 Chiller COP / Boiler efficiency Chiller type / Boiler pump type 

 357 

3.2.3 Computational environment 358 

The simple NN and deep learning model are developed using the PyTorch library in Python [46]. Models 359 

are trained on NVIDIA Quadro M1000M, which has 512 CUDA cores and 2 GB memory. The training 360 

time3 in Intel Core i7 processors takes approximately 5.3 min. In contrast, the training time in a graphical 361 

processing unit (GPU) is approximately 2 min. Training the deep learning model in this GPU is ~3 times 362 

faster than in a central processing unit. 363 

3.2.4 Model selection and evaluation 364 

All model architectures are trained using the ADAM optimization algorithm. The learning rate to update 365 

the model weights is 1e-4. Model overfitting is addressed through an L2 regularization penalty of 0.01. 366 

The optimization algorithm needs 10000 epochs for obtaining satisfactory convergence. 367 

During the training process, the model performance is evaluated through the coefficient of determination 368 

(R2) and mean absolute percentage error (MAPE) on the CV data. The CV data are a subset of training 369 

data, which has not been used in the training process. In this study, 20% of the training data are randomly 370 

selected to form the CV data. Model hyperparameters such as the number of hidden units are tuned until 371 

the CV error is low. The hyperparameter combination that resulted in a low CV error is used to train the 372 

final model. 373 

The model generalization is evaluated based on the prediction accuracy in test design cases (see Figure 374 

6). A model architecture is considered to have generalized when the R2 is higher than 0.9 and MAPE is 375 

lower than 15%. Models meeting the abovementioned evaluation criteria are considered to have a 376 

satisfactory performance. Similarly, models that do not meet the above criteria are considered to have a 377 

poor performance.     378 

3.3 Kernel-PCA for analyzing the effect of features 379 

Using kernel-PCA, the effects of actual inputs, feature engineered inputs, and features extracted by deep 380 

learning models on model generalization are analyzed. To make the features extracted by deep learning 381 

model comparable with features received by a simple NN, the features from the n−1 hidden layer are 382 

analyzed. Kernel-PCA reduces the high-dimensional input/features to a two-dimensional input space. 383 

Dimensionality reduction makes input features with different dimensions comparable. For instance, 384 

models with actual inputs have 24 inputs, while models with feature engineered inputs only have 14 385 

inputs. 386 

The reduced two-dimensions from kernel-PCA are the 1st and 2nd principal components. The 1st 387 

principal component represents the highest variance in the input/feature space. The 2nd principal 388 

component is orthogonal to the 1st principal component and represents the second highest variance in 389 
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the feature space. The following methodology is utilized to analyze the effect of features on model 390 

generalization: 391 

1. The kernel for kernel-PCA is selected based on its ability to reconstruct actual design inputs. To 392 

obtain comparable low-dimensional reductions, both feature engineered inputs and features 393 

extracted by deep learning models utilize the same kernel as actual design inputs. In this study, 394 

the radial basis function kernel is selected, as it has the lowest reconstruction error.   395 

2. A training design case represented by different input configurations, i.e., actual inputs, feature 396 

engineered inputs, and features extracted by deep learning models, are reduced into two 397 

dimensions. 398 

3. Test design cases represented by different input configurations are reduced to two dimensions 399 

using eigenvectors determined for training design case with different inputs. 400 

4. Visualizing the principal components of training and test design cases along with information on 401 

floor area and energy provides us with insights on the characteristics of features for 402 

generalization.  403 

3.4 Evaluating early design decisions using building performance simulation (BPS) and 404 

ML models  405 

The objective of this section is to illustrate the evaluation of an early design case using the ML model 406 

and BPS. The evaluation is performed for an 8-story building design located in Brussels. The design 407 

process (reflection of what-if analysis) illustrated in this study has three stages. In each stage, the 408 

following are conducted: 409 

Stage 1: Initial estimate of energy.  410 

Stage 2: Decision on south and north window to wall ratio (WWR) is made.  411 

Stage 3: Designers decide whether to change the window g-value or insulation level.  412 

The methodology used to evaluate the ML models and BPS for the early design process takes the 413 

following criteria into consideration: 414 

1. Estimate energy demands from the BPS and ML models with best test data performance. 415 

Comparing the energy demand estimates from the BPS and ML models shows the reliability of 416 

decisions taken from both approaches.  417 

2. Estimate the time required to make a prediction from each model. The time required to estimate 418 

energy allows quantifying the suitability or effort required for steering early stage design through 419 

BPS and ML.  420 

3. Visualize the principal components of the evaluated design to understand the reason for a 421 

prediction. The principal components are estimated using the same eigenvectors determined in 422 

Section 3.3. 423 

4 Results 424 

4.1 Performance of model architectures 425 

In this section, the performance of heating and cooling models with different architectures on CV and 426 

test data is presented. The CV data are used to tune the number of hidden units/convolution operations 427 

in each layer, while the test data show the generalization of model architecture. Generalization refers to 428 



the validity of models beyond the training design cases, assuming that test design cases are within the 429 

data distribution. 430 

4.1.1 CV data performance 431 

Table 6 lists the heating model’s hyperparameters obtained after manual tuning while Table 7 provides 432 

the corresponding CV errors. For peak heating predictions, the R2 and MAPE range between 0.98 and 433 

0.99 and 7.07% and 9.87%, respectively, indicating that all architectures have a satisfactory performance 434 

on the CV data. For total heating predictions, the R2 and MAPE range between 0.94 and 0.97 and 15.65 435 

and 26.48%, respectively. The deep learning architecture has a better CV data performance compared to 436 

the simple NN.  437 

The data indicated that the simulated design cases are cooling dominated, which is the result of the 438 

utilized HVAC system configuration and internal gains. The cooling dominance, in turn, made a lot of 439 

similar designs to have significantly different energy demands caused by complex interactions within the 440 

building. Hence, the utilized features (in simple NNs) are not able to segregate similar design options 441 

effectively, resulting in the poor prediction quality from simple NNs on total heating predictions. The 442 

good performance of deep learning models indicates that the extracted features can segregate similar 443 

design options effectively.  444 

Table 6 Heating model hyperparameters 445 

Model architecture Number of input 

parameters 

Hidden unit per layer Number of output 

parameters 

Simple NN with actual inputs 24 40 

2 

Simple NN with feature engineered inputs 14 40 

Simple NN with actual and feature engineered 

inputs 

30 40 

Multilayer NN - 2 layers 24 30, 25 

Multilayer NN - 3 layers 24 30, 30, 20 

Multilayer NN (4 layers) 24 30, 30, 25, 20 

CNN - 1+1 layers 30 30, 25 

CNN - 2+1 layers 30 30, 30, 20 

CNN - 3+1 layers 30 30, 30, 25, 20 

 

Table 7 Heating model hyperparameters and CV errors on heating demand predictions 446 

Model architecture Coefficient of determination 

(R2) 

Cross-validation 

MAPE (%) 

Peak Total Peak Total 

Simple NN with actual inputs 0.98 0.95 9.87 23.83 

Simple NN with feature engineered inputs 0.98 0.94 7.94 25.54 

Simple NN with actual and feature engineered inputs 0.99 0.95 7.47 23.31 

Multilayer NN - 2 layers 0.99 0.97 7.56 17.98 

Multilayer NN - 3 layers 0.98 0.96 9.16 18.95 

Multilayer NN - 4 layers 0.99 0.97 7.37 15.65 

CNN - 1+1 layers 0.98 0.94 7.89 26.48 



CNN - 2+1 layers 0.99 0.97 7.07 17.31 

CNN - 3+1 layers 0.98 0.97 7.61 19.13 

 447 

Table 8 presents the cooling model hyperparameters obtained after manual tuning while Table 9 indicates 448 

the CV errors. The R2 and MAPE for peak cooling predictions range between 0.97 and 0.99 and 5.77 and 449 

14.15%, respectively. For total cooling predictions, the R2 and MAPE range between 0.97 and 0.99 and 450 

5.78 and 13.21%, respectively, indicating that all architectures have a satisfactory performance on the 451 

CV data. 452 

Table 8 Cooling model hyperparameters 453 

Model architecture Number of input 

parameters 

Hidden unit per layer Number of output 

parameters 

Simple NN with actual inputs 24 25 

2 

Simple NN with feature engineered inputs 14 25 

Simple NN with actual and feature engineered 

inputs 

30 25 

Multilayer NN - 2 layers 24 30, 20 

Multilayer NN - 3 layers 24 30, 25, 20 

Multilayer NN - 4 layers 24 30, 25, 20, 20 

CNN - 1+1 layers 30 30, 25 

CNN - 2+1 layers 30 30, 30, 20 

CNN - 3+1 layers 30 30, 25, 20, 20 

 

Table 9 Cooling model hyperparameters and CV errors on cooling demand predictions 454 

Model architecture Coefficient of 

determination (R2) 

Cross-validation 

MAPE (%) 

Peak Total Peak Total 

Simple NN with actual inputs (Act ip) 0.97 0.98 14.15 13.21 

Simple NN with feature engineered inputs (FE ip) 0.98 0.98 8.15 7.8 

Simple NN with actual and feature engineered inputs 

(Act + FE ip) 

0.97 0.97 12.59 13.21 

Multilayer NN (2 layers) 0.98 0.97 11.42 12.52 

Multilayer NN (3 layers) 0.98 0.99 8.75 8.21 

Multilayer NN (4 layers) 0.99 0.99 5.77 5.78 

CNN (1+1 layers) 0.98 0.99 8.68 7.52 

CNN (2+1 layers) 0.99 0.98 7.41 7.50 

CNN (3+1 layers) 0.99 0.99 6.74 6.22 

 455 

4.1.2 Performance of ML models on test design cases 456 

Figure 7 shows the performance of the heating models on the test design cases. As defined in Section 457 

3.2.4, the performance of a model is satisfactory when R2 and MAPE are higher than 0.9 and lower than 458 

15%, respectively. Models that do not meet these performance criteria are considered to have poor 459 



performance. It can be noted from Figure 7 that the performance of the different architectures is not 460 

consistent in the different test cases.  461 

The 4-story building falls within the interpolation zone of the training design cases. It can be noted from 462 

Figure 7 that in general, all model architectures perform well for the 4-story building. As the test cases 463 

move far away from the training design cases, the performance starts to reduce. The amount of 464 

performance reduction depends on the model architecture. The reason for performance reduction is due 465 

to the difference is thermal behavior captured in the training design cases when compared to test design 466 

cases. However, results show that utilization of appropriate ML model features and model architecture 467 

reduces the prediction error (i.e. increase in ML model performance). Finally, the 2-story building cases 468 

have a poorer performance than the 8-story building cases. However, both cases are close to the training 469 

design case. The reason for the poorer performance on the 2-story building is the absence of an 470 

intermediate floor, which influences both the top and bottom floor’s thermal behavior independently.  471 

For peak heating energy prediction, the performance of all model architectures is satisfactory for the 4- 472 

and 8-story buildings. In addition, the performance of specific model architectures is satisfactory in the 473 

other design cases. For the other design cases, the following architectures have satisfactory performances: 474 

    • Simple NN with FE inputs and Act + FE input, 475 

    • Multilayer NN with 4 hidden layers, and 476 

    • All CNN architectures. 477 

It can also be noted that models with FE input parameters (both simple NNs and CNNs) consistently 478 

have better performances than models with only actual design inputs, indicating the significance of 479 

having features engineering with physical equations. Finally, the satisfactory performance of the selected 480 

deep learning architectures indicates that they can automatically extract generalizable features from data. 481 

For total heating energy prediction, most of the models have an R2 above 0.9. However, the overall error 482 

in predictions is higher, which is reflected in high MAPE values. The multilayer NN with 4 hidden layers 483 

and CNN with 2 convolutional layers have better performances compared to other architectures. The 484 

reason for the poorer performance of the other architectures is due to the complexity of data. The 485 

complexity is caused by similar design options having different total heating energy consumptions, which 486 

is the result of interactions within the building. The satisfactory performance of deep learning models 487 

indicates that the extracted features can segregate design options effectively.  488 

Figure 8 shows the performance of cooling models on the test design cases. For peak cooling energy 489 

prediction, all model architectures have satisfactory performances on the 4-, 8-, and 9-story buildings. 490 

For other test design cases, the selected model architectures also performed well. The selected 491 

architectures are the simple NN with FE inputs and all CNN architectures. The satisfactory performance 492 

of the CNN on all design cases indicates that convolutional layers can extract good features from data. It 493 

should also be noted that the simple NN with actual and FE inputs has a poor performance in extreme 494 

test cases, highlighting the importance of feature selection. A similar trend is observed for the total 495 

cooling energy predictions. 496 

In general, the CNN generalizes better than the simple NN with actual inputs. Depending on the 497 

architecture of the CNN, the reduction in MAPE varies. For peak heating demand predictions, the average 498 

reduction in MAPE ranged between 7.1% and 8%. Similarly, the average reduction in MAPE for the 499 



total heating predictions ranged between 1.4% and 9%. For cooling energy demand predictions, the 500 

reduction in MAPE for peak predictions ranged between 10.9% and 13.7%, and for the total demand 501 

predictions, the reduction in MAPE ranged between 10.8% and 15%. However, when comparing the 502 

CNN with the simple NN with feature engineered inputs, the overall reduction in MAPE ranged between 503 

0% and 8%.   504 

For the simple NN, manual feature engineering and selection play a crucial role in model generalization. 505 

Deep-learning model architectures can extract good features that extend the reusability of the model in 506 

complex datasets. Within the evaluated deep learning architectures, the proposed CNN architecture 507 

results in a better model generalization.  508 

 509 

Figure 7 Performance of heating models on test design cases 510 



 511 

Figure 8 Performance of cooling model in test design cases 512 



4.2 Effect of features on model generalization 513 

In supervised learning, the models learn to identify the relationship between input and output variables. 514 

Input features determine the data distribution for a simple NN while for deep learning, the model 515 

determines the data distribution by hierarchically extracting features from input features. In this section, 516 

the effects of actual inputs, feature engineered inputs, and features extracted by the deep learning models 517 

on model generalization are analyzed. The data distributions generated by training and test design cases 518 

are referred to as training and test design spaces.   519 

High input dimensional features are reduced to two dimensions using the kernel-PCA. The total heating 520 

demand and total floor area information are overlaid on the principal components from the kernel-PCA. 521 

The total heating demand is used to show the effect of features on model generalization, as simple NNs 522 

with all input configurations have a higher test data error compared to deep learning models. The total 523 

floor area captures information on increasing the number of floors. Only the 2- and 13-story buildings 524 

are presented in this section as the effects of features on the other test cases lie between these design 525 

cases. 526 

4.2.1 Kernel-PCA on training design space 527 

Figure 9 shows the 1st and 2nd principal components from the kernel-PCA of the training design space 528 

obtained through actual inputs, feature engineered inputs, and features extracted by the deep learning 529 

models. In Figure 9, information of the total heating demand is represented through purple to yellow 530 

gradient, and the total floor area is represented through black to white gradient. Models with actual and 531 

feature engineered inputs have equivalent features. Example of equivalent feature is the use of building 532 

area instead of building length and width as model input. Figure 9a shows six clusters: they represent 533 

buildings with 3, 5, and 7 stories with two types of boiler pumps. From Figure 9b, it can be noted that 534 

feature engineering has transformed six clusters into two clusters. The two clusters represent the type of 535 

boiler pump. For each cluster in Figure 9b, the building area and energy consumption increase as we 536 

move from the bottom to the top of the graph. The deep learning models have also learned to group 537 

similar designs together as the conventional feature engineering method. The multilayer NN features 538 

have buildings with area and energy gradients that move from right to left. Similarly, the CNN features 539 

have a gradient that moves from the right to the left.   540 

Figure 7 shows that deep learning models generalize better in predicting total heating energy demand 541 

than simple NNs with feature engineering. The reason for the poorer performance of the simple NN is 542 

the poor segregation of the total heating energy clusters by feature engineered inputs (see Figure 9b) 543 

compared with feature learning by deep learning models (see Figure 9c and d). For other response 544 

variables such as cooling energy (not included in this study), feature engineered inputs resulted in 545 

satisfactory segregation of energy clusters, resulting in a satisfactory performance. 546 



 547 

Figure 9 Principal component from kernel-PCA of training design space for actual inputs, multilayer NN feature, feature 548 
engineered inputs, and CNN features: (top) overlay with information of total heating demand (W); (bottom) overlay with 549 
information of total floor area (m2) 550 

4.2.2 Kernel-PCA of training and test design space 551 

In this section, two test design cases are analyzed. The analyzed test design spaces are from the 2- and 552 

13-story buildings, which are at the extremes of the test cases. Figure 10 shows the kernel-PCA of the 2-553 

story building compared to the training design space whereas Figure 11 shows the kernel-PCA of the 13-554 

story building compared to the training design space. The top row graphs have the test cases in orange 555 

and overlaid with the energy gradient of the training design space. The bottom row graphs have test cases 556 

with the floor area gradient, and the training design space is in blue. 557 

For simple NNs with actual inputs, it can be noted from Figure 10a and Figure 11a that the test design 558 

cases fall outside the training design space. Feature engineering helps the simple NN (see Figure 10b and 559 

Figure 11b) to identify similar design options within the training design space. The multilayer NN 560 

extracts features that can identify similar designs within the training design space. Furthermore, in Figure 561 

11c, it can also be noted that certain design cases from the 13-story building fall outside the training 562 

design space. For CNNs, in Figure 11d, the 13-story building mostly falls outside the training design 563 

space. However, the generalization of the CNN is similar to the multilayer NN (see Figure 7 bottom), 564 

indicating that features that locate the design space in the appropriate region of the data distribution result 565 

in a satisfactory model generalization.     566 

From Figure 10 and Figure 11 it can also be noted that general ML models for design can be developed 567 

when features provided or learned can identify similar design options within the data distribution. The 568 

features can be either provided through manual feature engineering/selection or extracted through a deep 569 

learning model. Hence, the characteristics of features extracted automatically or provided manually for 570 

model generalization are as follows: 571 

 can identify similar design options within the data distribution, and 572 

 identified similar design is mapped to appropriate response variables.   573 

More research should be conducted to identify the training process that can incorporate these conditions 574 

during training, thereby resulting in general and reliable ML models.   575 



 576 

Figure 10 Principal component from kernel-PCA of training and 2-story test design space for actual inputs, multilayer NN 577 
feature, feature engineered inputs, and CNN features. (top) Orange cluster is the 2-story design space and training design 578 
space overlay with information of total heating demand (W). (bottom) Blue cluster is the training design space and 2-story 579 
design space overlay with information of total floor area (m2) 580 

 581 

Figure 11 Principal component from kernel-PCA of training and 13-story test design space for actual inputs, multilayer NN 582 
feature, feature engineered inputs, and CNN features. (top) Orange cluster is the 13-story design space and training design 583 
space overlay with information of total heating demand (W). (bottom) Blue cluster is the training design space and 13-story 584 
design space overlay with information of total floor area (m2)  585 

4.3 Evaluation of design cases with BPS and ML models 586 

In this section, energy estimates from BPS and ML models are evaluated for a design case to understand 587 

the reliability of decisions taken based on each approach and the effort required to obtain the energy 588 

estimates. Figure 12 shows the design process utilized in this study. The design decision process is for 589 

an 8-story building located in Brussels. The length and width of the 8-story building are 50 m and 60 m, 590 



respectively. The design decision process is covered in three stages. In each stage, the following action 591 

or decision is taken: 592 

 Stage 1: The initial estimate of energy is obtained for the 8-story building with a length and width 593 

of 50 m and 60 m, respectively. All other technical specifications are assigned randomly (see 594 

Table 10), as the main object of this section is to evaluate a design process with ML models.  595 

 Stage 2: The decision on the south and north WWR is taken. The south WWR has been decided as 596 

0.5 and that of the north as 0.9.  597 

 Stage 3: Designers are thinking whether to change the window g-value or insulation level. As a 598 

first option, designers evaluate a window with a g-value of 0.5 (U-value is 1.4 W/(m2∙K)). In the 599 

second option, designers evaluate a window with U-value of 0.9 W/(m2∙K) (g-value is 0.78). 600 

  601 

Figure 12 Case for illustrating design decisions with ML model and BPS 602 

Table 10 Design parameters used to make the initial estimation 603 

 Units Stage 1: Initial estimation 

Length (l) m 50 

Width (w) m 60 

Height (h) m 4 

Overhang length (loh) 2 m 0 

Window to wall ratio (WWR)4  S = 0.9, N = 0.3, E = 0.6, W = 0.9 

Orientation (α) Degree 0 

Wall U-value (Uwall) W/(m2∙K) 0.55 

                                                 
4 Varies differently in all orientations 



Window U-value (Uwin) W/(m2∙K) 1.4 

Ground floor U-value (Ufloor) W/(m2∙K) 0.44 

Roof U-value (Uroof) W/(m2∙K) 0.32 

Window g-value (gwin)  0.78 

Floor heat capacity (cfloor) J/(kg∙K) 1107 

Infiltration air change rate (nair) h-1        0.8 

Number of floors (nfloor)  8 

Lighting heat gain (Q’light) W/m2 6 

Equipment heat gain (Q’equip) W/m2 12 

Chiller COP  3.9 

Boiler efficiency (ηBoiler)  0.95 

Chiller type  Electric reciprocating chiller 

Boiler pump type  Constant flow 

 604 

The ML models used are simple NN with FE inputs and CNN, as these methods have a better 605 

generalization. With the CNN architecture, heating demand predictions are performed using CNN with 606 

2 convolutional layers, and cooling demand predictions are performed using CNN with 3 convolutional 607 

layers. Figure 13 and Figure 14 show the heating and cooling demands estimated through the BPS and 608 

ML models. For heating demand predictions, the simple NN has an error range of −4% to 8% for peak 609 

predictions and 3% to 10% for total demand predictions, while the CNN has an error range of −2% to 610 

8% for peak predictions and −5% to −14% for total demand predictions. Similarly, for cooling demand 611 

predictions, the simple NN has an error range of −4% to −12% for peak predictions and 1% to −8% for 612 

total demand predictions. The CNN has an error range of −5% to −12% for peak predictions and −4% to 613 

4% for total demand predictions. It can be noted from Figure 13 and Figure 14 that both simple NN and 614 

CNN have similar performances. However, the advantage of CNN is the elimination of feature selection 615 

during model development, which saves time.  616 

It can be observed from the peak heating predictions in Figure 13 (left) that the relationship learned by 617 

the ML model is not similar to that of the BPS. Therefore, taking decision on the size of heating system 618 

may not be accurate. However, by observing the total heating demand predictions from Figure 13 (right), 619 

the designer can choose Option 2 as it offers the lowest total heating demand compared with Option 1. 620 

The decision to choose Option 2 taken through ML predictions is consistent with the decision taken with 621 

BPS. Figure 14 shows the cooling demand predictions. It can be noted from Figure 14 that the changes 622 

observed in the cooling energy demand from the ML models and BPS are similar. Looking at Figure 14, 623 

the designer can select Option 1. By comparing the total heating and cooling demands, it can be observed 624 

that the design is cooling dominated and Option 1 can be chosen as it offers greater energy savings. This 625 

design decision is consistent with the use of BPS or ML models.    626 

The advantage of ML models over BPS is the computation time required to obtain the heating and cooling 627 

energy demand. Performing one simulation using BPS takes ~2 min. Similar results can be obtained from 628 

ML models in less than 1 s. The high computation speed of the ML models together with their ability to 629 

take similar design decisions make them suitable for early design stage predictions.    630 



 631 

Figure 13 Estimation of heating demand from BPS and ML models: (left) peak heating demand and (right) total heating 632 
demand 633 

 634 

Figure 14 Estimation of cooling demand from BPS and ML models: (left) peak cooling demand and (right) total cooling 635 
demand 636 
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Figure 15 shows the location of the evaluated design options in the heating data distribution. Figure 15 637 

(top) is overlaid with information of total heating demand within the data distribution, whereas Figure 638 

15 (bottom) is overlaid with information of peak heating demand within the data distribution. Figure 15a 639 

shows the data distribution, which is the result of feature engineering and selection for a simple NN and 640 

Figure 15b shows the data distribution determined by the features extracted by the CNN. The location of 641 

design options within the cooling model is similar to observations present within the heating model; 642 

hence, they are not shown in this study. The red point in Figure 15 (top, b) shows the initial design option 643 

that falls in the data distribution region of 200 MWh to 400 MWh. The CNN predicts a total heating 644 

demand of 395 MWh. Similarly, Decision 1, i.e., the green point (approximately on top of red point) in 645 

Figure 15 (top, b) falls in the data range of 200 MWh to 400 MWh. The CNN predicts a total heating 646 

demand of 398 MWh. The movement of design options with the simple NN with feature engineered 647 

inputs (see Figure 15a) shows a similar pattern as observed in the CNN. Finally, such visualizations 648 

enables justification of a prediction.  649 

 650 

Figure 15 Location of design options with respect to the heating data distribution: (top) overlaid with total heating demand 651 
information and (bottom) overlaid with peak heating demand information 652 



5 Discussion 653 

Developing an ML model with a satisfactory generalization performance is crucial for the effective 654 

utilization of ML models in the design stage performance analysis. Results indicate that manual feature 655 

engineering and selection play a vital role in extending the model reusability of simple NNs. In addition, 656 

deep learning model architectures could extract features from data, which extends their reusability in 657 

design. Irrespective of the use of simple or more advanced ML methods, for an ML model to generalize 658 

in unseen design, it should be able to identify similar design options within the data distribution.  659 

Although most resulting ML models support decisions well as shown in Figure 13, there are some models 660 

that represent relationships that are not in alignment with the BPS simulation and lead to deviations in 661 

the decision process (see Figure 13 (left)). Nonetheless, the prediction error in specific design options 662 

are within acceptable ranges. Hence, such deviations can be mitigated by introducing prediction intervals 663 

within the ML prediction process. Prediction intervals provide information on uncertainties present 664 

within an ML model prediction, allowing for predictions with high uncertainty to be viewed critically. 665 

Except for some deviations in peak heating predictions, evaluations of specific design options show that 666 

other parameters have learned appropriate relationships. Incorporating prediction intervals for these 667 

parameters can improve the reliability of decisions made using the ML models. More research on 668 

methods of incorporating design stage prediction intervals needs to be done.  669 

The evaluated design cases are limited to typical design cases. The reason for this limitation is that the 670 

primary objective of the paper is to propose and obtain an initial understanding of deep convolutional 671 

learning methods for early building design performance evaluation. Furthermore, by limiting to typical 672 

design cases, intuition on the working of deep learning methods for building design evaluation is obtained 673 

(see Figure 15). Based on this intuition, appropriate DM to extract features from data for more complex 674 

design cases can be derived. Further research on extending the current models to more complex early 675 

design case will be performed.  676 

Nevertheless, the proposed ML models are reliable for typical early design options. Hence, for evaluating 677 

complex building designs, architects and engineers can use the (rough) predictions from the current 678 

models along with their experience to make an appropriate design decision. Even though the prediction 679 

for complex design is rough, the high computational speed of the deep learning model facilities the 680 

discussion between engineers and architects; reducing the need for rule-of-thumb knowledge.     681 

The current ML models are reliable for typical early design stage decisions. Further research will be 682 

necessary to extend the current models to different design stage performance predictions. Research to 683 

extend ML models to other design stages can incorporate two different strategies. The first strategy will 684 

be to develop flexible components (based on component-based ML approaches presented in [7]) using a 685 

deep learning architecture to emulate data from a more detailed BPS. The advantages would be that all 686 

information required for training can be obtained from parametric simulation models and domain 687 

knowledge allowing for the development of ML models for quick design stage feedback. The drawback 688 

of using BPS data is the occurrence of model errors present within the collected data. Model error is the 689 

result of model simplification made by simulation tool like EnergyPlus and assumptions of a model 690 

developer. Such errors in data reduce the effectiveness of ML models. Therefore, methods to collect data 691 

from BPS for ML needs to be researched further. The second strategy can be the development of deep 692 

learning models from smart city data with real building energy consumption. Such models can potentially 693 

lower the performance gap for the design stage energy evaluation. One challenge to overcome with real 694 

building consumption data is missing information from key factors such as building occupancy.  695 



In this study, feature engineering is performed using physical equations of HF. Simple NNs learning on 696 

features with physical significance generalize better than simple NNs with only design information. 697 

Within the deep learning model, CNNs generalize better than multilayered NNs, where CNN requires 698 

both design and physical information, indicating that feature engineering is still a relevant step in the 699 

model development process. However, the feature selection process can be eliminated, as the 700 

convolutional layer filters out irrelevant features, improving the model development process for multiple 701 

design performance indicators, because identifying and selecting such features for multiple response 702 

variables could be a time-consuming and expensive process.  703 

For total heating demand prediction, deep learning models generalized better than simple NNs. This 704 

indicates that for complex data, deep learning methods can identify better features than manual feature 705 

engineering and selection. Within the deep learning architecture, the CNN architecture performed 706 

consistently better than multilayer NNs. Further research will be required to further understand CNNs 707 

for design stage predictions. 708 

The DM utilized in this study resulted in a satisfactory model generalization. However, it is possible to 709 

derive other DMs with better generalization, for example, the use of hourly HF information instead of 710 

static HF information. Further research will be performed to explore other potential DMs.   711 

CNNs utilize max pooling to reduce the size of the feature map (i.e., output of a convolutional layer). 712 

The current research results show that reducing the size of the feature map does not influence the model 713 

generalization. This indicates that max pooling removes features that are not related to the response 714 

variable (i.e., energy prediction). Furthermore, reducing the size of the feature map through max pooling 715 

creates an information bottleneck that induces invariance (i.e., insensitivity to irrelevant features) within 716 

a model. Based on the current results, it is not clear which aspect of input features is contributing to the 717 

generation of unrelated features. Identification of such characteristics of max pooling will provide an 718 

idea on non-relevant input features.  719 

The kernel-PCA shows that the extracted features identify similar design options within the data 720 

distribution and mapping the similar design option to the right response variable. These characteristics 721 

of extracted features allow the deep learning model to generalize well in unseen design cases. 722 

Furthermore, methods such as kernel-PCA can be utilized for (1) steering the feature engineering and 723 

selection process even before the training process and (2) diagnosing features extracted by the deep 724 

learning model, potentially increasing the efficiency of model development. Further research will be 725 

necessary to understand the deep learning model process. 726 

6 Conclusion 727 

General ML models enable reliable and quick predictions, which aid in the effective design decision-728 

making process. General ML models are ones that generalize in all possible unseen design cases. 729 

Developing such models using conventional methods requires considerable knowledge in both building 730 

performance analysis and ML. Knowledge on building performance analysis is required for manual 731 

feature engineering and selection, while knowledge on ML enables an effective development of ML 732 

models. The study shows that deep learning methods can indeed automatically learn features that results 733 

in the general model, thereby reducing the need for feature selection. Feature extraction capability of 734 

deep learning makes it easier to develop ML models for a wide range of design performance parameters.  735 



The ML model generalization through conventional ML methods rely on manual feature engineering and 736 

selection, while deep learning models extract features automatically from data resulting in a similar or 737 

better generalization. In both cases, model generalization is dependent on the feature's ability to identify 738 

similar design options within the data distribution. The need for ML to identify similarity within the data 739 

distribution makes ML model predictions top-down. For example, energy demand predictions from ML 740 

is based on energy demand of a similar design option. In contrast, BPS models make predictions based 741 

on a bottom-up approach, in which energy demand prediction results from hierarchical interactions (such 742 

as HFs) within the model. However, both approaches are prone to biases, which can mislead the designer. 743 

The quality of BPS prediction depends on the quality of inputs and model complexity. The quality of 744 

ML model prediction depends on the quality of the data utilized in the model development and quality 745 

of input features engineered, indicating that making decision from both the BPS and ML models can 746 

remove potential model-based biases. Hence, an ensemble of BPS and ML models can be a potential 747 

direction for model development, making BPS and ML methods complimentary technologies rather than 748 

competing ones. However, the computational efforts required to make predictions from ML and BPS are 749 

different. Hence, intelligent ensemble methods that can exploit the strengths of ML are necessary. 750 

Finally, based on the current research results, the designer can rely on the ML models for a quick 751 

assessment of the design and design strategy and moves toward BPS for a more detailed analysis. This 752 

will enable a model-driven design decision-making process, rather than reliance on rule-of-thumb 753 

knowledge.  754 
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