
SandSlide: Automatic Slideshow Normalization

Sieben Bocklandt? (�)[0000−0003−3833−624X]

Gust Verbruggen?[0000−0001−9182−597X]

Thomas Winters[0000−0001−7494−2453]

Department of Computer Science; Leuven.AI
KU Leuven, Belgium

firstname.lastname@kuleuven.be

Abstract. Slideshows are a popular tool for presenting information in a
structured and attractive manner. There exists a wide range of different
slideshows editors, often with their own proprietary encoding that is
incompatible with other editors. Merging slideshows from different editors
and making the slide design consistent is a nontrivial and time-intensive
task. We introduce SandSlide, the first system for automatically normal-
izing a deck of slides from a PDF file into an editable PowerPoint file that
adheres to the default slide templates, and is thus able to fully leverage
the flexible layout capabilities of modern slideshow editors. SandSlide
achieves this by labeling objects, using a qualitative representation to
find the most similar slide layout and aligning content from the slide
with this layout. To evaluate SandSlide, we collected and annotated slides
from different slideshows. Our experiments show that a greedy search is
able to obtain high responsiveness on supported and almost supported
slides, and that a significant majority of slides fall into this category.
Additionally, our annotated dataset contains fine-grained annotations on
different properties of slideshows to further incentivize research on all
aspects of the problem of slide normalization.

Keywords: Slideshow normalization, Document annotation

1 Introduction

Slideshows are one of the most popular methods for transferring information in
a structured and attractive manner to an audience. Many different applications
allow users to easily create their own slideshows, the most popular of which are
PowerPoint, KeyNote, Google Slides, Beamer and Prezi. Each of these applications
has the same goal of helping a user to design a beautiful deck of slides with text,
images and other multimedia content. In order to do so, they provide design
templates that control the look and feel of all slides. These design templates
allow the user to focus on their content, rather than requiring them to spend
hours overlooking the individual layout of each slide.

One large issue is that most applications use their own proprietary encoding
format and compatibility between these tools is therefore extremely low. For

? Sieben and Gust contributed equally to this work.

2 Bocklandt et al.

example, it is borderline impossible to edit a given KeyNote presentation in
PowerPoint and vice versa. Merging slides from different editors into a single
slideshow with a uniform design requires the user to manually fix each slide, often
making it easier to create the uniform slides from scratch. Even the simple task
of presenting a slideshow on a machine that does not have the correct application
will often cause it not to be displayed correctly.

To address this last issue, there is one type of file that almost all editors can
export slides to: the Portable Document Format (PDF). While sacrificing some
of the functionality provided by each tool, this encoding allows for slideshows
to be opened on platforms that do not have the slideshow editor itself. The
main drawback of exporting a slideshow as a PDF is losing the ability to edit
the slideshow in a slide editor. Several tools are available for converting PDF
slideshows back into editable slideshows, but they tend to bluntly convert the
content without any regard for the templates that slides were initially designed
with. The user can then edit text or replace images, but they cannot easily change
the overall design of the slideshow. For example, the font of each piece of text is
attached to that specific piece of text, as opposed to having a uniform font for
the whole slideshow as provided by the design template.

We propose a new normalization process for converting PDF slideshows back
into an editable slideshow that respects the templates provided by slideshow
editors. In the resulting slideshow, each object is assigned a specific role using
placeholders and the editor decides where it places objects based on this role and
the design template that the user selected. Examples of such roles could be title
or leftmost column of a slide with multiple columns. Changing the template then
changes the overall design of the slideshow. This allows interoperability between
different applications, as it allows different slideshows to be merged seamlessly or
the design of different slideshows to be made uniform with minimal effort.

As the exported PDF does not contain semantic information about the objects
it contains, nor where they came from in the original editor, this task is highly
nontrivial. Even worse, the words that make up a single paragraph are often split
up as different objects. The normalization process thus needs to discover the
high-level objects that make up a slide, assign them a semantic label and align
these labeled objects with those of one of the slide layouts to discover their role.

In this paper, we make the following contributions:

– We identify and introduce the problem of normalizing slides by assigning a
specific role to each object.

– We describe and implement an algorithm based on qualitative representations
of slides to obtain this assignment of objects to roles.

– We create and release a benchmark dataset to evaluate the novel problem of
slide normalization.

2 Background

We start by providing background on the structure of slideshows and describing
the limitations of existing converters.

SandSlide: Automatic Slideshow Normalization 3

2.1 Slideshow Structure

A slideshow is a sequential set of slides filled with objects. All slides generally follow
the same design template that specifies the default fonts, colors, backgrounds and
style of other components for each type of slide layout. Each slide is instantiated
using a particular slide layout, which defines the objects that it contains and
their roles. These roles are implicit and the user interacts with them by editing
placeholders for the objects of each role. A placeholder is thus an object that the
user interacts with that has an implicit role defined by the slide layout.

Example 1. Examples of slide layouts are Title slide, Section header and Title
with double content. The latter of these has three placeholders, one for the title,
one for its left content and one for its right content.

Most design templates provided by editors support the same slide layouts.
When changing to a different design template, objects in placeholders automati-
cally move to the positions defined by their role in the corresponding layout of
the new template. Objects not in a placeholder remain in the same position.

Example 2. Figure 1 shows three slide layouts in the default design template
and their placeholders. The user can edit these placeholders and fill them with
content. By selecting a new design template, all slides are automatically adapted
to the layouts defined by this new template.

Fig. 1: Steps a user encounters when creating a new slideshow in PowerPoint.
Slides are created by filling placeholders in slide templates and the layout is
decided by choosing a specific slide master.

4 Bocklandt et al.

2.2 PDF to PPT converters

Several online tools for converting PDF files into editable PowerPoint files already
exist, such as smallpdf, ilovepdf, pdf2go, simplypdf and online2pdf.? For each
page in the PDF, these applications first create a slide with the empty slide
layout and then convert all objects of the PDF page into PowerPoint objects.
Not only do they not use placeholders, some applications even convert text into
images, making it even harder to change the design of the slides. The inability of
dealing with a change of design template is illustrated in Figure 2.

Fig. 2: A slide converted with ilovepdf.com does not adapt its layout when
changing the new design template.

2.3 Automatic Document Annotation

Automatic document annotation enables the retrieval of structured textual content
from PDF files. In this field, algorithms are crafted or trained to automatically
labeling parts of the document with their function, such as abstract, title and
author. These annotations are then used to improve the performance of further
downstream tasks, such as search. While most document annotation tools use
heuristics for annotating the text [5, 10], some also use limited machine learning
methods—such as support vector machines—to additionally annotate metadata
[11]. To provide the required data to train such document annotation algorithms,
researchers recently released PubLayNet, a dataset containing multiple hundreds
of thousands annotated documents [14]. While document annotation tools usually
focus on annotating formal documents, the task of slide segmentation has recently
been gaining attention. Slide segmentation tools like SPaSe and WiSe are build
to automatically segmenting pictures of slides by detecting regions using neural
architectures [6, 7].

? Found at their name.com.

SandSlide: Automatic Slideshow Normalization 5

3 Slideshow Normalisation

In this section, we describe the problem of slide normalization and define the
scope of this paper.

3.1 Problem Statement

The goal of normalizing a slideshow is to allow users to easily change its design by
editing or changing the design template. This is trivial when all content is added
in a placeholder and thus has a semantic role. We therefore define a normal slide
as a slide in which all objects are stored in placeholders. A normal slideshow
consists of only normal slides.

Given a slide and a set of design templates, the problem of slide normalization
is to select one of these templates such that each object of the slide is assigned
to exactly one placeholder and each placeholder is assigned exactly one object
in such a way that objects from the input slide fulfill the role in the normalized
slide that the user intended them to. Evaluating whether an object is assigned
the correct role is impossible without human intervention. It is the task of the
normalization algorithm to try and maximize the probability of this happening.

Example 3. Three examples of slides and their normalization in the default design
template are shown in Figure 3. It is important that “Lorem” is assigned to the
placeholder which fulfills the title role and not to the subtitle placeholder.

Fig. 3: Three slides that share the same normalization

3.2 Scope

In this paper, we limit the scope of object types considered in the normalization
process. Our system currently deals with text objects (normal text, bullet lists,
captions, footers, slide numbers) and pictures. More complicated objects—such
as SmartArt, mathematical equations and charts—are thus out of scope for this
paper. Some of these are easy to integrate with the correct preprocessing, such
as charts, and others are interesting pointers for future work, such as arrows and
equations.

6 Bocklandt et al.

4 SandSlide: Automatic Slideshow Normalization

We propose and implement a method called SandSlide (Searching to Automatically
Normalize Decks of Slides) for automatically obtaining normal slideshows from
PDF exports. SandSlide is based on three main components. First, it detects
high-level objects and annotates them with a semantic label. Second, it uses
spatial relations between these objects to obtain a qualitative representation of a
slide, which allows for aligning the objects across two slides and quantitatively
comparing them. Third, it searches for the best alignment between the objects of
a slide and a layout. The obtained alignment can be used to convert the slide
into its normalized equivalent.

4.1 Detecting and Labeling Objects in Slides

In the first step, SandSlide looks for and semantically labels objects from the
PDF slide. This is achieved in four steps, which are illustrated in Figure 4 and
briefly covered in the following paragraphs.

Fig. 4: Converting a page of a PDF file to annotated slide objects.

PDF to objects First, it converts the input PDF file into XML using pdf2txt?.
SandSlide then removes all objects that are not text or images; either because
they are artifacts from the tool, like rectangles around text boxes and single-color
pictures, or because they are out of the scope of the system, like curves and
SmartArt. The remaining objects are grouped into high-level objects. In Figure 4,
this corresponds to the PDF → XML and Preparsing steps.

?
https://github.com/euske/pdfminer/blob/master/tools/pdf2txt.py

SandSlide: Automatic Slideshow Normalization 7

Annotating objects Each of the remaining objects is then assigned a label
representing its most likely type of content. Heuristic approaches are often used
in document annotation methods and have as the main benefit that they do not
require training data [5, 10, 11]. Each object is assigned a score for each label
using a local heuristic, computed as the sum of several smaller heuristics. An
overview of these heuristics for all labels is shown in Table 1. The label assigned
to an object is that with the highest score. The mean title is the weighted mean
of the bounding boxes of the title in previous slides, with the slide number as
weights.

Example 4. The normalized feature vectors for the text objects of the slide in
Figure 4 are shown in Table 2. The assigned labels are printed in bold.

Table 1: Local heuristics for assigning a label to objects in a slide, and whether
or not it is used in the qualitative representation later (denoted by Q). Bold
words are used to refer to objects in Table 2.

Label Heuristic Weight Q

background Area covers more than 80% of the slide. 1.0 No
listing image Two or more identical images are placed in a vertical line. 1.0 No
normal image None of the above. 1.0 Yes

slide number Positioned on the outside 20% of the slide. 0.33 No
Follows \d+ or \d+[/\]\d+. 0.66

title Largest font size in slide. 0.14 Yes
Positioned in the upper 40% of the slide. 0.29
More than 20% overlap between object and mean title. 0.57
First slide and largest font size. 1.0
Largest font size is similar to font size of title in first slide 0.57
Not in upper 40% of the slide. 0.43

footer Positioned in the outside 10% of the slide 0.33 No
Either contains a word from {src, source,...} or is a URL. 0.66

listing Over 20% of the sentences start with a listing character or
listing image.

0.66 Yes

Contains more than one line of text. 0.33
caption Image is positioned 20% of the slide height above the object

with a 90% horizontal overlap.
0.75 No

Is a single line of text. 0.25
normal text None of the above. 0.5 Yes

4.2 Qualitative Representation

Annotated slide objects are now converted into a qualitative representation. Such
a representation provides a level of abstraction on top of the numerical properties

8 Bocklandt et al.

Table 2: Feature vectors for the example slide in Fig. 4

object number title footer listing caption normal

1 0.00 0.53 0.00 0.00 0.16 0.31
2 0.00 0.00 0.00 0.40 0.00 0.60
3 0.00 0.00 0.00 0.00 0.67 0.33
4 0.00 0.00 0.57 0.00 0.14 0.29
5 0.48 0.00 0.16 0.00 0.12 0.24

of objects and is typically used in systems that need to reason about concepts in
space and/or time [9]. In the context of this paper, it is hard to compare a slide
with a template based on the exact positions of their objects. Simply knowing
whether an object is placed above or left of another object then provides enough
information to compare two slides and align their objects.

The Allen relations [1] describe seven configurations of two intervals, as
illustrated in Figure 5a. By projecting two objects on the x- and y- axes defined
by the top and left border of a slide, their relative position can be uniquely
described by exactly two of these relations, one in each dimension. We write
rx(a, b) if relation r holds between objects a and b along the x-axis.

Example 5. In Figure 4, we can see that beforex(2, 3) and duringy(3, 2) hold.

The qualitative representation of a slide is obtained by the Allen relations
between all pairs of objects that are not trivially aligned. Slide numbers and
footers, for example, are trivially aligned across two slides. The Q column in
Table 1 indicates for every object whether it is included in the qualitative
representation or not. Additionally, we extend this set of relations with the unary
title(o) and background(o) predicates and whether or not the slide is the first
slide of the slideshow. The title serves as an anchor for comparing two slides,
as it is present in all slide layouts that contain other content. A full example of
the qualitative representation of a slide is shown in Figure 5b. We write Ra to
describe the representation of a slide a.

4.3 Searching for Slide Layouts

The final and most important step is finding the most suitable slide layout for
each slide. This is achieved by first creating possible reference slides for each
slide layout and then (qualitatively) moving objects in the given slide until its
representation is equal to that of one of the reference slides. This process is
represented schematically in Figure 6.

Generating Reference Slices For each of the given slide layouts, SandSlide
generates reference slides by filling their placeholders with content of varying size
and selecting different design templates. Each reference slide is converted to a
qualitative representation using the method described in the previous section.

SandSlide: Automatic Slideshow Normalization 9

yx
x before y

yx
x meets y

yx
x overlaps y

yx
x starts y

y x
x finishes y

y x
x during y

x y
x equals y

(a) Allen relations (b) Qualitative representation using the Allen relations

Fig. 5: Allen relations are used to obtain a qualitative representation of a slide.

Obtaining more reference slides can be interpreted as a backward search that
yields more target slides to be found at the cost of requiring more comparisons
after each moved object.

Qualitatively Comparing Slides Two slides are equal if their representation
is equal, but this is not invariant to a permutation of the identifiers for objects
in slides. For example, two slides with representations

R1 = {beforex(1, 2),duringy(1, 2)} and R2 = {beforex(2, 1),duringy(2, 1)}

are equal, but their representations are not. A substitution is a transformation of
a representation that simultaneously replaces an object identifier with another
identifier in all of its relations. For example, the substitution {1 → 2, 2 → 1}
can be applied to either R1 or R2 to make them equal. More generally, when
comparing two slides a and b, we say that they are equal if and only if there
exists a substitution θ such that θ(Ra) = Rb.

Finding such a substitution is called the set unification problem and is shown
to be NP-complete [8]. Many algorithms for set unification have been presented
and exact details are considered out of the scope for this paper. Anchoring the
title across two slides allows us to greatly prune the search space and we use a
brute force approach.

Qualitatively Transforming Slides Rarely will an arbitrary slide be equal to
one of the reference slides. SandSlide will thus perform qualitative transformations
of the representation of the given slide and match the transformed slide with
references. Let R be the set of Allen relations. A transformation t is a function that
replaces one or more relations rd(o1, o2) ∈ R with a new relation r′d(o1, o2) ∈ I
along the same axis d. The length of a transformation |t| is the number of
replacements that it performs.

10 Bocklandt et al.

Fig. 6: Discovering the most suitable slide layout type for a slide based on its
qualitative representation.

Fig. 7: Qualitative transformation of objects. Fig. 8: Confusion matrix of an-
notations with local heuristics.

Example 6. An example of a transformation of length 2 is shown in Figure 7.

Not all transformations yield a qualitative representation for which there
exists an actual configuration of objects. Checking if such a configuration exists is
called the satisfaction problem for interval algebra and it is also shown to be NP-
complete [12]. We opt to simply not check whether a transformed representation
is consistent as these intermediate, inconsistent representations serve as stepping
stones to find an exact match.

Searching for Slides Given a slide s and a set of slide layouts L with each
layout Li ∈ L described by a set of representations lji ∈ Li, we then look for the

smallest transformation t such that there exists a representation lji ∈ Li such

that t(s) is equal to lji .

SandSlide: Automatic Slideshow Normalization 11

A slide with n objects is represented by 2n relations. Each relation can
be transformed into six new relations. There are then

(
n(n−1)

d

)
× 6d different

transformations of length d. Each transformed slide has to be compared with all
reference slides. Even for small d, this quickly becomes intractable to compute.?

We therefore use a heuristic algorithm based on the similarity between a slide

and all reference slides. The Jaccard similarity J(A,B) = |A∩B|
|A∪B| is a common

way to compute the similarity between two sets A and B. In order to obtain a
similarity between two slides a and b that respects an optimal alignment between
objects, we compute

sim(a, b) = max
θ∈Θ

J(θ(a), b)

with Θ all possible substitutions. The score for a transformation on the original
slide is

score(t) = max
L∈L

max
l∈L

sim(l, t(slide)) (1)

with L the set of all layouts, L a specific layout, l a possible representation of
that layout and t(slide) the representation of the transformed slide. Note that
the similarity for equal slides is 1 and computing the heuristic also informs us
when an exact match is found. We do not need to find the optimal substitution
twice as the heuristic is obtained when checking for a solution.

SandSlide performs a greedy search using the heuristic. At each step, the
best transformation so far according to Equation 1 is expanded. All six possible
transformations of a relation are considered at once. Relations across different
axes are transformed independently. Loops are prevented by first generating all
transformations of length one and combining these to form larger transformations.

If a solution is not found after a few transformations, any solution is not
likely to be closely related to the intended solution. Search is therefore cut short
after a predefined number of comparisons, in other words, the number of times
an optimal substitution has to be computed. The layout assigned to a slide is
then given by

solution(s,L) = arg max
Li∈L

max
l∈Li

max
t∈T

sim(l, t(s)) (2)

where T is the set of all transformations evaluated during search.

5 Evaluation

We performed several experiments to answer the following research questions.

Q1 Do we require search or can we simply look for the most similar reference
slide according to the heuristic?

Q2 What is the effect of performing a deeper backward search at the cost of
requiring more comparisons in each iteration?

Q3 Does our algorithm guarantee that objects are assigned their intended role?
? For a slide with five objects, there are 25920 transformations of length 3. For as little

as 40 reference slides, that is over a million comparisons.

12 Bocklandt et al.

5.1 Experimental Setup

Data In order to answer these questions, we start from a set of 1000 slideshows
provided by the U.S. Library of Congress [3]. We filtered out all files that were
not PowerPoint files and slideshows that are completely out of scope for slideshow
normalization, which leaves 640 slideshows.

From those slideshows, we manually annotated a randomly sampled set of 500
slides using VIA [4] after the PDF → XML and the preparsing steps. Two types
of annotations were recorded; the slide as a whole and individual objects. For
slides, we make the following annotations; (1) objects in scope and corresponds
to a layout; (2) objects in scope and superset of a layout; (3) objects not in
scope, but would otherwise fit 1 or 2; (4) does not match a layout but would
make an interesting layout or (5) completely out of scope. Slides of type (1) and
(2) are used in our evaluation. For objects, we made precise annotations of their
semantic type and their intended role. We use these last annotations as a human
evaluation of the algorithm, as it allows to check if the annotations assigned by
the algorithm match those assigned by humans.

The role of an object denotes the positions on a slide where it is allowed to
end up after transformation. For example: when there are two images besides
each other, the one on the left should stay on the left or when there is a title
and a subtitle, the subtitle should be used as a subtitle and not as content. This
implies that the image on the left should never be the rightmost piece of content
and that the subtitle should be below the title and above the content.

These annotations are more precise than required for our experiments. Our
goal is to encourage research on different aspects of slideshow normalization and
to work towards an established benchmark for this problem. We make the code,
original slides, results after the preparsing and annotation steps and all ground
truth annotations publicly available.??

Evaluation We measure two properties of aligning a slide with a reference. The
responsiveness is the proportion of objects that can be assigned to a placeholder. A
random assignment of objects to placeholders trivially yields high responsiveness.
We therefore use annotated roles to compute the sensibility of an alignment as
the proportion of alignments that are allowed with a set of handcrafted rules. The
sensibility measure acts as qualitative evaluation, as it checks if all the elements
stay in allowed positions.

We do not compare SandSlide with existing online tools (2.2) using these
measures as the results are trivial: they do not assign objects to placeholders
and place the objects on the same position as in the PDF, which results in zero
responsiveness and undefined sensibility.

Reference slides Most design templates support ten layouts. Using these
layouts, we created three levels of reference slides. The baseline set considers

?
https://github.com/zevereir/SandSlide_data

?
https://github.com/zevereir/SandSlide

SandSlide: Automatic Slideshow Normalization 13

only the placeholders from the default design theme, without filling them with
content, resulting in one reference for each layout. The learned set considers the
default design theme, where placeholders are filled in with content of different
lengths. This results in 137 representations. The masters set also considers
different design themes, which results in 1117 unique representations. Limiting
the search based on the number of comparisons was done to ensure a fair
comparison between the sets of references.

5.2 Results

We did not perform an extensive evaluation of object annotation using local
heuristics, as we found them to be sufficiently accurate for our purposes. A
confusion matrix of assignments is shown in Figure 8. Each row represents the
normalized number of assignments made by the local heuristics. Listings, normal
text and pictures are all content and no distinction is made between them in
the qualitative representation. Some objects are not used in the representation,
either because they are trivially aligned or no placeholder exists for them. Our
experiments focus on evaluating the qualitative representation and search.

Responsiveness and sensibility for all sets of reference slides are plotted in
function of the maximal number of comparisons in Figure 9. Figure 10 shows the
distribution of the slides over the different transformation lengths. We use these
figures to answer the research questions in the following paragraphs.

Q1: Requiring search We can see that the heuristic alone obtains respectable
results, but that even a little bit of search significantly improves results, especially
for the learned set. Searching for longer transformations increases the number of
alignments—the responsiveness increases—but that some faulty alignments are
introduced, which can be seen from the decreasing sensibility. Greedy search is
able to correctly and quickly identify almost all slides with supported layouts.

Q2: Backward search More references yields improved results, with the learned set
outperforming the other sets in both methods. Adding references from different
designs does not improve responsiveness, as many comparisons are wasted on the
excess references. The masters set only catches up in responsiveness after a high
number of comparisons, at the cost of significantly more wrong alignments. The
effect of the backward search on the transformation lengths is as expected: more
possible references causes less transformations needed to complete the search.

Q3: Alignments As expected, deeper searches yield more alignments at the cost
of making more mistakes. In general, our greedy method obtains very sensible
alignments, even for searches with many comparisons. Adding references from
different design templates has a negative effect on the sensitivity as most slides
follow classic layouts.

14 Bocklandt et al.

(a) Responsiveness for all slides (b) Separate responsiveness

(c) Sensibility for all slides (d) Separate sensibility

Fig. 9: Left: Main results for all slides (all) – Right: Main results for slides that
exactly match a layout (equal) and supersets of layouts (super). Each data point
is the average over all slides for an experiment with a specific parameter—the
maximal number of allowed comparisons per slide.

5.3 Rebuilding slides

From the layout and alignment, SandSlide can build a new slide. An example
that obtained perfect responsiveness and sensibility is shown in the top part of
Figure 11. The logos on top are copy-pasted onto the new slide, to avoid losing
any information, and the slide number is trivially aligned with a placeholder,
as can be seen after applying a new template. The bottom of Figure 11 shows
an example of an imperfect normalization, as the subtitle in the original slide
is converted to left content in the normalized one. The new slide has a perfect
responsiveness, but only two out of three elements in the slide were assigned a
sensible role.

6 Conclusion and Future work

This paper introduces the nontrivial problem of slideshow normalization and
implemented a first system for solving it, called SandSlide. This system is able to
transform a given PDF file representing a slideshow into a normalized slideshow
with a responsive slide layout using placeholders. The resulting slideshow can
easily be edited and transformed into another design template. Our experiments

SandSlide: Automatic Slideshow Normalization 15

Fig. 10: Distribution of the number of replacements to find the best alignment in
the experiment with the learned set and maximal 15000 comparisons per slide.

Fig. 11: (top) Perfectly normalized slide with new template. (bottom) Normalized
slide with imperfect sensibility as the subtitle is assigned the role of left content.

show that search is a necessary component, that the heuristic works well and
that it is beneficial to generate more varied representations for each slide layout,
but that too many reduces the quality of the alignment.

Future Work An immediate pointer for follow-up is to support more complex
objects—like curves and word art—and objects that require anchors to existing
objects—like arrows. This will make the search more complicated and using
relational learners [2] would allow to easily incorporate background knowledge
about these objects. Our qualitative representation provides an excellent starting
point for such learners. As SandSlide allows to efficiently annotate objects and
retrieve their semantic role, it can be used to improve downstream tasks involving
slideshows. For example, it can be used to create datasets for approaches that
learn to automatically generate slideshows [13].

Acknowledgments This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] SYNTH: Synthesising Inductive Data
Models). Thomas Winters is supported by the Research Foundation-Flanders

16 Bocklandt et al.

(FWO-Vlaanderen, 11C7720N). We would like to thank Luc De Raedt for his
frustration with merging slideshows, which led to the master’s thesis that formed
the basis for this research.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. De Raedt, L.: Logical and relational learning. Springer Science & Business Media
(2008)

3. Dooley, C.: In the library’s web archives: 1,000 u.s. government
powerpoint slide decks (2018), https://blogs.loc.gov/thesignal/2019/11/

in-the-librarys-web-archives-1000-u-s-government-powerpoint-slide-decks/, last vis-
ited 04/02/2021

4. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video.
In: Proceedings of the 27th ACM International Conference on Multimedia. MM
’19, ACM, New York, NY, USA (2019), https://doi.org/10.1145/3343031.3350535

5. Ferrés, D., Saggion, H., Ronzano, F., Bravo, A.: PDFdigest: an Adaptable Layout-
Aware PDF-to-XML Textual Content Extractor for Scientific Articles. In: Pro-
ceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018). European Language Resources Association (ELRA),
Miyazaki, Japan (May 2018), https://www.aclweb.org/anthology/L18-1298

6. Haurilet, M., Al-Halah, Z., Stiefelhagen, R.: Spase-multi-label page segmentation for
presentation slides. In: 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). pp. 726–734. IEEE (2019)

7. Haurilet, M., Roitberg, A., Martinez, M., Stiefelhagen, R.: Wise—slide segmen-
tation in the wild. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR). pp. 343–348. IEEE (2019)

8. Kapur, D., Narendran, P.: Np-completeness of the set unification and matching prob-
lems. In: International conference on automated deduction. pp. 489–495. Springer
(1986)

9. Kuipers, B.: Qualitative reasoning: Modeling and simulation with incomplete
knowledge. Automatica 25(4), 571–585 (1989), https://www.sciencedirect.com/science/

article/pii/000510988990099X

10. Luong, M.T., Nguyen, T.D., Kan, M.Y.: Logical structure recovery in scholarly
articles with rich document features. Int. J. Digit. Libr. Syst. 1, 1–23 (2010)

11. Tkaczyk, D., Szostek, P., Fedoryszak, M., Dendek, P.J., Bolikowski, L.: CERMINE:
automatic extraction of structured metadata from scientific literature. International
Journal on Document Analysis and Recognition (IJDAR) 18(4), 317–335 (Dec
2015), https://doi.org/10.1007/s10032-015-0249-8

12. Vilain, M., Kautz, H., Van Beek, P.: Constraint propagation algorithms for temporal
reasoning: A revised report. In: Readings in qualitative reasoning about physical
systems, pp. 373–381. Elsevier (1990)

13. Winters, T., Mathewson, K.W.: Automatically generating engaging presentation
slide decks. In: Computational Intelligence in Music, Sound, Art and Design - 8th
International Conference, EvoMUSART. Ekart, A., Lecture Notes in Computer
Science. Springer, Cham (2019)

14. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document
layout analysis. In: 2019 International Conference on Document Analysis and
Recognition (ICDAR). pp. 1015–1022. IEEE (2019)

