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Abstract 

Objective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies 

asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations 

at risk of disease progression. 

Methods: Baseline plasma NfL concentrations were measured with Simoa in original (n = 277) 

and validation (n = 297) cohorts. C9orf72, GRN and MAPT mutation carriers and non-carriers 

from the same families were classified by disease severity [asymptomatic, prodromal and full 

phenotype] using the CDR® Dementia Staging Instrument plus behavior and language domains 

from the National Alzheimer’s Disease Coordinating Center FTLD module (CDR®+NACC-

FTLD). Linear mixed effect models related NfL to clinical variables. 

Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who 

showed phenoconversion or disease progression compared to non-progressors (original: 11.4 ± 

7 pg/mL vs. 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs. 8.7 ± 6 pg/mL, p = 0.035). 

Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or prodromal 

disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 

pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse 

longitudinal CDR®+NACC-FTLD sum of boxes scores, neuropsychological function and atrophy, 

regardless of genotype or disease severity, including asymptomatic mutation carriers.  

Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-

term risk of disease progression, and is a potential tool to select participants for prevention 

clinical trials. 

 

Classification of evidence: This study provides Class I evidence that in carriers of FTLD-

causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression. 

 

Abbreviations: AUC = area under the curve, ARTFL = Advancing Research and Treatment in 

Frontotemporal Lobar Degeneration, bvFTD = behavioral variant frontotemporal dementia, 
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CDR®+NACC-FTLD = CDR® Dementia Staging Instrument plus Behavior and Language 

domains from the National Alzheimer’s Disease Coordinating Center Frontotemporal Lobar 

Degeneration module, CBS = corticobasal syndrome, CGI-S = Clinical Global Impression of 

Severity, FAS = Functional Assessment Scale, FTLD = frontotemporal lobar degeneration, f-

FTLD = familial frontotemporal lobar degeneration, FTD/ALS = frontotemporal dementia with 

amyotrophic lateral sclerosis, LEFFTDS = Longitudinal Evaluation of Familial Frontotemporal 

Dementia Subjects, MoCA = Montreal Cognitive Assessment, MBI/MCI = mild behavioral or 

cognitive impairment, NPI = Neuropsychiatric Inventory, NfL = neurofilament light chain, p-NfH = 

phosphorylated neurofilament heavy chain, PPA = primary progressive aphasia, ROC = receiver 

operating characteristic, SEADL = Schwab and England Activities of Daily Living, UPDRS = 

Unified Parkinson’s Disease Rating Scale Motor Section  
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Introduction 

Blood-based biomarkers are uniquely valuable for therapeutic development, because they are 

easily obtainable and relatively inexpensive.1 Frontotemporal lobar degeneration (FTLD) 

produces behavioral, cognitive, language and motor deficits that impair the quality of life of 

patients and caregivers more severely than other forms of dementia.2 About 20-30% of FTLD 

cases are familial and about 60% of those are caused by autosomal dominant mutations in 

three genes:3 chromosome 9 open reading frame 72 (C9orf72),4 progranulin (GRN)5 and 

microtubule-associated protein tau (MAPT).6 Several therapies are poised to begin clinical trials 

for familial FTLD (f-FTLD) due to these mutations.7 Planning such studies is challenging due to 

the low f-FTLD prevalence and the lack of good clinical endpoints to monitor disease severity 

and therapeutic response. 

Neurofilament light chain (NfL) is a sensitive marker of neurodegeneration.8 CSF NfL is 

elevated in patients with FTLD, compared to Alzheimer’s disease and healthy controls,9-12 with 

concentrations that correlate with disease severity, cognitive function and disease 

progression.13, 14 CSF NfL concentrations normalize upon effective treatment in multiple 

sclerosis15 and spinal muscle atrophy,16 suggesting that NfL is sensitive to treatment effects. 

Serum NfL is elevated in FTLD17 and, in symptomatic carriers of f-FTLD-causing mutations, 

concentrations correlate with brain atrophy.18 We tested the hypothesis that plasma NfL could 

identify asymptomatic f-FTLD mutation carriers at high risk of progression to symptomatic 

disease. We examined baseline plasma NfL differences related to phenotype, genotype and 

disease severity, and whether it predicts disease progression in two independent cohorts. 

 

Methods 

The primary research question was: Do plasma NfL concentrations identify f-FTLD mutation 

carriers at risk of clinical progression (Class I level of evidence)? 

 

Standard protocol approvals, registrations, and patient consents 
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Participants or their caregivers provided written informed consent and the study procedures 

were approved by the local Institutional Review Board committees at each of the participating 

centers. Patients were recruited through the North American multicenter observational studies 

Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS, 

ClinicalTrials.gov NCT02372773) and Advancing Research & Treatment in Frontotemporal 

Lobar Degeneration (ARTFL, ClinicalTrials.gov NCT02365922),19 and the Genetic 

Frontotemporal dementia Initiative (GENFI).20 

 

Participants 

Participants were divided into original (LEFFTDS/ARTFL, n = 277) and validation (GENFI, n = 

297) cohorts. LEFFTDS/ARTFL is a North American network of 19 clinical research centers. 

LEFFTDS enrolled members of families with a known mutation in one of the three major FTLD 

genes: C9orf72, GRN and MAPT. ARTFL enrolled participants who met research criteria for an 

FTLD syndrome and asymptomatic individuals with family history of an FTLD syndrome, 

whether or not an FTLD-causing mutation had been identified in the family.19 Upon evaluation, 

some participants with family history of FTLD were determined to have prodromal disease or 

mild cognitive or behavioral impairment (MBI/MCI), as defined previously.21 GENFI involves 25 

research centers across Europe and Canada, and enrolls symptomatic carriers of mutations in 

the three major FTLD genes with frontotemporal dementia, and those at risk of carrying a 

mutation because a first-degree relative is a known symptomatic carrier. Both cohorts consisted 

of participants with available baseline NfL concentrations, known genotype and CDR® Dementia 

Staging Instrument plus behavior and language domains from the National Alzheimer’s Disease 

Coordinating Center FTLD module (CDR®+NACC-FTLD) global and sum of boxes scores.21 

Mutation non-carriers with CDR®+NACC-FTLD global score > 0 were excluded (11 in the 

original cohort and 22 in the validation cohort). The validation cohort data have been reported 

previously.22 In the original cohort, clinically defined phenotypes included: 184 normal (66.7%), 

12 mild behavioral impairment (4.3%), 16 mild cognitive impairment (5.8%), 3 amnestic 
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dementia (1.1%), 48 behavioral variant frontotemporal dementia (bvFTD, 17.4%), 7 

frontotemporal dementia with amyotrophic lateral sclerosis (FTD/ALS, 2.5%), 4 primary 

progressive aphasia (PPA, non-fluent or semantic, 1.4%) and 3 corticobasal syndrome (CBS, 

1.1%). Participants in the validation cohort included: 240 normal (80.8%), 36 bvFTD (12.1%), 6 

FTD/ALS (2%), 3 CBS (1%) and 12 PPA (4%). Data on whether or not there was conversion 

from asymptomatic to MBI/MCI or full phenotype, or from MBI/MCI to full phenotype were 

available in 221 out of 277 subjects in the original cohort and in 159 out of 297 subjects in the 

validation cohort. 

 

Clinical procedures 

Participants underwent annual standardized evaluations that included neurological assessment, 

caregiver or companion interview, neuropsychological testing, brain MRI and biofluid collection 

for up to 3 years in the original cohort, and for 2 years in the validation cohort. Clinical scales 

included: CDR®+NACC-FTLD global and sum of boxes (sb) scores21 and Clinical Global 

Impression of Severity (CGI-S),23 which are based on semi-structured interviews and provide 

global measures of clinical severity; Montreal Cognitive Assessment (MoCA); Unified 

Parkinson’s Disease Rating Scale III, Motor Section (UPDRS);24 Schwab and England Activities 

of Daily Living (SEADL), for measurement of impairment in activities of daily living;25 Functional 

Assessment Scale (FAS), for assessment of impairment in instrumental activities26 and 

Neuropsychiatric Inventory (NPI).27 CDR®+NACC-FTLD and Mini-Mental State Examination 

(MMSE) were the only severity scales available in the validation cohort. Neuropsychological 

testing available in both cohorts included the California Verbal Learning Test (CVLT) – Short 

Form, immediate and delayed recall,28 the Benson figure recall;29 forward and backward digit 

span, number of correct trials, Trail-making Test parts A and B (time to completion)30 and 

phonemic and semantic fluency. In the original cohort, blood samples were centrifuged at 1500 

g at 4°C for 15 minutes. Plasma was aliquoted in 1000 microliter vials and stored at -80°C at the 

National Centralized Repository for Alzheimer’s Disease and Related Dementias (NCRAD). In 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



the validation cohort, blood samples were collected and processed as previously reported.22 

Genetic screening was conducted to identify FTLD-causing mutations in the C9orf72, GRN and 

MAPT genes, and APOE polymorphisms as described previously.22, 31  

 

Plasma neurofilament-light chain measurement 

In the original cohort, plasma NfL concentrations were measured at baseline with single 

molecule array technology (Simoa), using the commercially available NF-light® digital 

immunoassay kit (Quanterix, Lexington, MA). Plasma samples were thawed at room 

temperature (one cycle), mixed thoroughly and centrifuged at 14000 g for 3 minutes. The 

supernatant was loaded onto a Quanterix HD-1 Analyzer with a 1:4 specified dilution. Measures 

were completed in duplicate over a total of six batches, each one with an 8-point calibration 

curve tested in triplicate and two controls tested in duplicate. Plasma concentrations were 

interpolated from the calibration curve within the same batch and corrected for the dilution. All 

samples were quantifiable within the dynamic range of 0.69 to 2000 pg/mL and with an average 

coefficient of variation of 6.5%. Measurements were completed using the same platform in two 

centers: Quanterix (n = 226, February 2018) and Novartis Institutes for Biomedical Research (n 

= 64, July 2018). Samples from a subset of 186 participants were analyzed twice, independently 

by each center, with plasma NfL concentrations that were highly correlated (r = 0.98, p < 0.001). 

The samples analyzed by the two centers also had comparable means and standard deviations 

(21.8 ± 35 pg/mL, Quanterix and 20.2 ± 34 pg/mL, Novartis) and there were no differences in 

the median plasma NfL concentrations in two groups of age-matched asymptomatic non-carrier 

controls measured separately (6.9 ± 4 pg/mL Quanterix, n = 38 vs. 6.4 ± 6 pg/mL Novartis, n = 

50, p = 0.6). The center where samples were analyzed was added as a covariate in statistical 

analyses. Instrument operators were blinded to clinical and genetic information. In the validation 

cohort, plasma NfL concentrations were measured with the multiplex Simoa Neurology 4-Plex A 

kit.22 
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CSF biomarker measurements 

CSF biomarkers were available in 113 of the 277 participants at baseline in the original cohort 

only. Using fit-for-purpose immunoassays, CSF samples were analyzed for NfL, tau, 

phosphorylated tau181 (p-tau), neurogranin, and phosphorylated neurofilament heavy chain (p-

NfH) at the following dilutions, 1:50, neat, 1:20, neat, and 1:4, respectively. NfL and tau were 

measured on the Quanterix Simoa HD-1 (catalog# 103186 and 101552, respectively), p-tau was 

measured using the Innotest kit (catalog # 81581), neurogranin was measured using the 

Euroimmun kit (item code: EQ-6551-9601-L) and p-NfH was measured on the Protein Simple 

Ella platform (catalog # SPCKB-PS-000519). Measurements were conducted by an 

independent lab, with operators blinded to clinical data (Biogen, Inc.) 

   

Neuroimaging 

Brain MRI was obtained in the original cohort as described previously,32 within 45 days of 

plasma collection except for 15 patients for whom images were obtained within more than 45 

days of plasma collection (median 60 days, range 50-423 days). To simplify relationships with 

plasma NfL and control for multiple comparisons, bilateral frontal and temporal gray matter lobar 

composites were created with regions of interest involved in FTLD syndromes. Frontal regions 

included frontal pole, lateral orbitofrontal cortex, medial orbitofrontal cortex, middle frontal gyrus, 

pars opercularis, pars orbitalis, pars triangularis, superior frontal gyrus, and precentral gyrus. 

Anterior cingulate (caudal and rostral) and insula were also included in the frontal composite, 

given their significant involvement in FTLD.33 Temporal regions included banks of the superior 

temporal sulcus, entorhinal cortex, fusiform gyrus, middle temporal gyrus, parahippocampal 

cortex, superior temporal gyrus, temporal pole, and transverse temporal gyrus. 

 

Statistical analyses 

Biofluid measurements, disease status determination and statistical analyses were separately 

performed by different investigators. Original and validation cohort data were handled 
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independently. Data were visually explored with box plots. NfL data were not normally 

distributed. Group differences in NfL concentrations were determined with non-parametric tests. 

Log transformed NfL data were used as outcome in general linear models to determine 

between-group differences in NfL concentrations corrected for age and sex. Receiver operating 

characteristic (ROC) curves tested the diagnostic accuracy of plasma NfL concentrations. 

Combined forward and backward stepwise linear regressions controlling for age, sex, and 

genotype determined baseline associations between plasma NfL and clinical variables. Starting 

with minimal models, the stepwise criteria were such that a variable entered a model when p < 

0.05, and it was removed when p ≥ 0.1. For associations with gray matter volumes, total 

intracranial volume was an additional control variable.32 Linear mixed models tested the ability 

of baseline log plasma NfL to predict change in clinical variables. All models included interaction 

terms of log plasma NfL with time as a discrete predictor. Models used compound symmetry 

covariance, random slows and intercepts, and were controlled by sex, age, genotype, clinical 

center and, when modeling prediction of gray matter volumes, also by total intracranial volume. 

Models were run with log plasma NfL as a continuous independent variable and, subsequently, 

as a categorical independent variable based on cutoff points derived from Youden indices 

estimated with ROC curves. Models were run separately for each one of the disease severity 

levels defined by the CDR®+NACC-FTLD global score: normal or asymptomatic (carriers and 

non-carriers ran independently) (0), MBI/MCI or prodromal disease (0.5) and dementia or full 

phenotype (≥1).21 Model results were corrected for multiple comparisons across dependent 

variables for a given disease severity level using False Discovery Rate.34 Analyses were done 

with SPSS Statistics software, version 26 (IBM, Armonk, NY) and GraphPad Prism, version 8.4 

(GraphPad, La Jolla, CA). 

 

Data Availability 

Joint ARTFL and LEFFTDS data and biospecimens and GENFI data are available to qualified 

investigators for replication of the present study results or further projects.  
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Results 

Group differences in baseline plasma NfL concentrations, original cohort 

Of 277 subjects with baseline evaluations (Table 1), 221 (79.7%) and 148 (53.4%) also had 

follow-up data available for years 1 and 2, respectively. In all genotypes combined, and after 

correction for age and sex, amnestic dementia, bvFTD, FTD/ALS, CBS and PPA phenotypes 

had higher plasma NfL concentrations than asymptomatic participants (mutation carriers and 

non-carriers combined) and MCI (Figure 1).  

As defined by disease severity, 65.7% of the participants (33.2% carrier and 32.5% non-

carrier) were asymptomatic (CDR®+NACC-FTLD = 0), 11.9% had MBI/MCI (CDR®+NACC-

FTLD = 0.5) and 22.4% had full phenotype (CDR®+NACC-FTLD≥ 1). Median baseline plasma 

NfL concentrations were highest in participants with full phenotype (Figure 2). There were no 

differences in NfL concentrations between asymptomatic mutation carriers and non-carriers for 

any genotype. Median plasma NfL concentrations tended to be higher in MBI/MCI than 

asymptomatic mutation carriers, but the results did not reach statistical significance (12.2 ± 10 

pg/mL vs. 7.5 ± 6 pg/mL, p = .085, mean estimate difference 0.44, 95% CI: 0.85 – 0.99, p = 

0.016) in all genotypes combined. In C9orf72 carriers, NfL concentrations were higher in 

MBI/MCI compared to asymptomatic individuals (13.6 ± 34 pg/mL vs. 6.6 ± 5 pg/mL, p < 0.001, 

Figure 3), but not in GRN or MAPT. There were no genotype-related differences in NfL in 

asymptomatic mutation carriers or MBI/MCI. In full phenotype, NfL was higher in GRN (61.5 ± 

54 pg/mL) than in C9orf72 (33.9 ± 33 pg/mL, p < 0.001) and MAPT (20.5 ± 11 pg/mL, p < 

0.001).  

In all participants combined, a cut point of ≥ 13.6 pg/mL discriminated individuals with full 

phenotype from asymptomatic or MBI/MCI with 87.5% sensitivity, 82.7% specificity, 59.7% 

positive predictive value and 96.2% negative predictive value [area under the curve (AUC) 

0.901, 95% CI: 0.861 – 0.942, p < 0.001]. Plasma NfL was a poor discriminator between 

asymptomatic mutation carriers and MBI/MCI (AUC 0.676, 95% CI: 0.588 – 0.724, p < 0.001), 
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but it was a better discriminator between MBI/MCI and full phenotype (0.803, 95% CI: 0.744 – 

0.862, p < 0.001). The proportion of participants with high (≥ 13.6 pg/mL) NfL differed by 

severity group: 12.2% in asymptomatic mutation non-carriers, 14.1% in asymptomatic mutation 

carriers, 39.4% in MBI/MCI and 88.7% in full phenotype (χ2 = 119.6, p < .001).  

 

Baseline correlations with clinical variables, original cohort 

Baseline NfL strongly correlated with age in the overall sample (ρ = 0.69, 95% CI: 0.505 – 

0.695, p < 0.001), and in asymptomatic (ρ = 0.63, 95% CI: 0.437 – 0.769, p < 0.001) and 

MBI/MCI individuals (ρ = 0.71, 95% CI: 0.364 – 0.917, p < 0.001), and weakly in full phenotype 

(ρ = 0.23, 95% CI: -0.109 – 0.402, p = 0.07). NfL concentrations were higher in women than in 

men (10.7 ± 13 pg/mL vs. 7.6 ± 9 pg/mL, mean estimate difference 0.75, 95% CI: 0.59 – 0.95, p 

= 0.01), even after controlling for age, disease severity and genotype (β = 0.251, 95% CI: 0.092 

– 0.409 p = 0.002). In all participants, plasma NfL was strongly associated with all clinical, 

neuropsychological and gray matter volume variables at baseline. None of the relationships 

were affected by genotype and they remained essentially unchanged after exclusion of 

asymptomatic non-carriers (eTable 1). The strongest associations were observed with 

measures of disease severity, including CDR®+NACC-FTLDsb, CGI-S, SEADL and FAS. 

Weaker associations were observed with gray matter volumes. CSF biomarkers were available 

in 113 (40.7%) participants (34 asymptomatic non-carriers, 46 asymptomatic mutation carriers, 

14 MBI/MCI and 19 full phenotype). Plasma NfL correlated with CSF NfL (ρ = 0.74, p < 0.001), 

CSF p-NfH (ρ = 0.73, p < 0.001) and CSF tau (ρ = 0.45, p < 0.001), but not with CSF 

neurogranin (ρ = 0.06, p = 0.94) or CSF p-tau (ρ = 0.07, p = 0.46). There were no differences in 

the proportion of APOE carriers as a function of clinical phenotype, genotype or disease 

severity, or differences in NfL concentrations by APOE genotype. 

 

Baseline NfL, phenoconversion and disease progression, original cohort 

 

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.  

 



Twenty-six mutation carriers phenoconverted after two years [15 asymptomatic (12 to MBI/MCI 

and 3 to full phenotype) and 11 MBI/MCI to full phenotype]. Phenoconversion occurred in 10/21 

(47.6%) of asymptomatic or MBI/MCI mutation carriers with baseline NfL ≥ 13.6 pg/mL, 

compared to 16/84 (11.4%) of those with baseline NfL < 13.6 pg/mL (p = 0.007). Median 

baseline NfL concentrations were higher in asymptomatic mutation carriers who 

phenoconverted to either MBI/MCI or dementia over the next two years as compared to those 

who remained asymptomatic (11.4 ± 7 pg/mL vs. 6.7 ± 5 pg/mL, p = 0.002, Figure 4). Plasma 

NfL concentrations were also higher in asymptomatic mutation carriers whose CDR®+NACC-

FTLDsb scores progressed by 1 point, even in the absence of phenoconversion (10.8 ± 8 

pg/mL), compared to those whose scores remained stable (6.6 ± 3 pg/mL, p = .0017, data 

available from Dryad: https://doi.org/10.7272/Q6W957CZ, eFigure 1).  

 

Asymptomatic mutation carriers 

As a continuous variable, baseline NfL related to future decline in CDR®+NACC-FTLDsb, CGI-S 

and FAS (Table 2). For example, every baseline log NfL pg/mL in asymptomatic mutation 

carriers was associated with a 1.6 point increase in CDR®+NACC-FTLDsb at year 1 (95% CI: 

0.75 – 2.6; p < 0.001) and a 2.5 point increase at year 2 (95% CI: 1.6 – 3.4; p < 0.001). Similar 

results were observed when NfL was analyzed as a categorical variable. For example, 

asymptomatic mutation carriers with high (≥ 13.6 pg/mL) baseline NfL had CDR®+NACC-

FTLDsb scores that were 1.6 points higher at 1 year (95% CI: 1.0 – 2.2; p < 0.001) and 2.4 

points higher at 2 years (95% CI: 1.8 – 3.0; p < .001) than those with low baseline NfL (Figure 

5). High NfL also related to lower frontal and temporal brain volumes after two years. NfL did not 

predict change in any of the clinical scales or brain volumes in mutation non-carriers.  

 

MBI/MCI 

In mutation carriers with MBI/MCI at baseline (CDR®+NACC-FTLD = 0.5), baseline NfL was 

strongly associated with decline at year 2 on CDR®+NACC-FTLDsb, MoCA, SEADL, FAS, 
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CVLT immediate recall, Benson recall, digits forward and semantic fluency, but not in brain 

volumes (Table 2). 

 

Full phenotype 

In mutation carriers with full phenotype (CDR®+NACC-FTLD ≥ 1), baseline NfL related to 

decline in CDR®+NACC-FTLDsb, MoCA, SEADL phonemic fluency, and brain volume 

composites after two years (Table 2).  

 

Validation cohort 

In the validation cohort, of 297 participants with baseline evaluations, 189 (63.6%) had follow up 

year 1 data (available in Dryad: https://doi.org/10.7272/Q6W957CZ, eTable 2). Plasma NfL 

concentrations were higher in all symptomatic mutation carriers compared to asymptomatic 

participants, except for CBS (Figure 1). Median baseline plasma NfL concentrations were 

higher in participants with a full phenotype (50.6 ± 59 pg/mL) compared to asymptomatic 

mutation non-carriers (8.8 ± 5 pg/mL), asymptomatic mutation carriers (9.1 ± 8 pg/mL) and 

MBI/MCI (12.1 ± 20 pg/mL, p < 0.001) (Figure 2). A cut point of ≥ 19.8 pg/mL discriminated 

subjects with full phenotype from asymptomatic or MBI/MCI with 87.4% sensitivity, 84.3% 

specificity, 58.1% positive predictive value and 96.4% negative predictive value (AUC 0.907, 

95% CI: 0.861 – 0.954, p < 0.001). This cut point was also a fair discriminator between MBI/MCI 

and full phenotype (AUC 0.805, 95% CI: 0.704 – 0.906), but not between asymptomatic 

mutation carriers and MBI/MCI (AUC 0.641, 95% CI: 0.530 – 0.752). The proportion of 

participants with high (≥ 19.8 pg/mL) NfL was different in each disease severity group (6.1% in 

asymptomatic mutation non-carriers, 13.9% in asymptomatic mutation carriers, 28.1% in 

MBI/MCI and 84.3% in full phenotype, χ2 = 122.6, p < 0.001). In the whole cohort or in mutation 

carriers only, baseline plasma NfL correlated with CDR®+NACC-FTLDsb, MMSE and all 

neuropsychological measures (eTable 2). 
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Twenty one mutation carriers phenoconverted after 1 year [15 asymptomatic (13 to 

MBI/MCI and 2 to full phenotype) and 6 MBI/MCI to full phenotype]. Plasma NfL concentrations 

were higher in phenoconverters than non-phenoconverters in asymptomatic mutation carriers 

(14.1 ± 12 pg/mL vs. 8.7 ± 6 pg/mL, p = 0.038) and MBI/MCI (67.3 ± 49 pg/mL vs. 9.0 ± 8 

pg/mL, p = 0.006) (Figure 4). Plasma NfL concentrations were also higher in asymptomatic 

mutation carriers whose CDR®+NACC-FTLDsb scores progressed by 1 point, even in the 

absence of phenoconversion (15.3 ± 33 pg/mL), compared to those whose scores remained 

stable (8.9 ± 7 pg/mL, p = 0.014, eFigure 1). In asymptomatic mutation carriers, baseline NfL 

predicted worsening at year 1 in CDR®+NACC-FTLDsb, MMSE and Trails-making Test A. In 

MBI/MCI, baseline NfL predicted decline at year 1 in CDR®+NACC-FTLDsb, MMSE, Trails-

making test B and phonemic fluency. In full phenotype, baseline NfL was associated with 

subsequent decline in MMSE and Trails-making Test A, but the relationships did not survive 

correction for multiple comparisons (available in Dryad: https://doi.org/10.7272/Q6W957CZ 

eTable 3). 

 

Discussion 

We analyzed the prognostic value of plasma NfL concentrations in carriers of the most common 

FTLD-causing mutations, C9orf72, GRN and MAPT, over 1-2 years of follow up, with a special 

emphasis on asymptomatic mutation carriers and carriers with prodromal disease (MBI/MCI). In 

two independent cohorts, plasma NfL concentrations were strongly related to disease severity 

with stepwise increases from asymptomatic (clinically normal), through MBI/MCI, to full 

phenotype. At baseline, plasma NfL was strongly correlated with global and functional status, 

neuropsychological scores and brain volume. Higher baseline NfL was associated with greater 

disease severity after one or two years of follow up, regardless of disease severity and 

genotype. Remarkably, this included asymptomatic mutation carriers, in whom plasma NfL was 

also associated with future clinical decline, allowing identification of individuals at high risk for 

phenoconversion to symptomatic status within two years. Consistent with this finding, NfL also 
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predicted worse clinical and neuropsychological status or more brain atrophy, regardless of 

disease severity and genotype. The results suggest a role for plasma NfL as a prognostic 

biomarker in f-FTLD.  

The findings in our original and validation cohorts are consistent with previous studies of 

serum NfL in familial and sporadic FTLD. In familial FTLD, serum NfL is associated with disease 

severity, brain volume and brain atrophy.18 In symptomatic sporadic FTLD, baseline serum NfL 

correlated with executive function and brain atrophy, but not with longitudinal change in 

neuropsychological scores,17 which is similar to what we observed in participants with full 

phenotype. This study and others18, 22, 35 found that in fully symptomatic patients, GRN mutation 

carriers had higher NfL concentrations than C9or72 and MAPT mutation carriers. This does not 

seem to be due to differences in the number of participants by genotype or the age of 

symptomatic participants in each genetic group, and may reflect a faster rate of 

neurodegeneration in symptomatic GRN mutation carriers. Consistent with previous studies, we 

observed baseline NfL differences between symptomatic and asymptomatic FTLD-mutation 

carriers and between phenoconverters and non-converters.35 Similar to those studies, we also 

observed a large within-group variability in NfL concentrations, regardless of clinical phenotype, 

disease severity, or genotype. This variability likely explains why median NfL concentrations in 

asymptomatic mutation carriers were not elevated, yet high concentrations were still associated 

with future clinical progression. In this group, NfL showed good negative predictive value, but 

poor positive predictive value for phenoconversion. The absolute cutoff values for discrimination 

between asymptomatic and symptomatic participants were similar to those reported in previous 

studies based on data from our validation cohort.17, 18, 35 However, one study reported a higher 

cutoff (33 pg/mL)17 that may be explained by the inclusion of older controls and sporadic cases 

as compared to the familial cases reported here.36 

  Unlike previous studies, we used the CDR®+NACC-FTLD to stratify patients by level of 

global impairment, allowing delineation of MBI/MCI, a prodromal state of mild or questionable 

disease between asymptomatic and full phenotype. The CDR®+NACC-FTLD is more 
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appropriate for FTLD patients and superior to relying on the clinical phenotype or the traditional 

Clinical Dementia Rating®, because the CDR®+NACC-FTLD includes measures of behavioral 

and language impairment.37 We found baseline NfL concentrations in asymptomatic and 

MBI/MCI mutation carriers best predicted changes in global and functional scales (i.e. 

CDR®+NACC-FTLDsb, CGI-S and FAS). In addition, NfL predicted declines in activities of daily 

living, as measured by the SEADL and FAS scales and several neuropsychological tests, in 

MBI/MCI, but not in asymptomatic mutation carriers or full phenotype. The severity dependent 

differences in predictive value of baseline NfL are probably attributable to a number of factors. 

These include a faster rate of functional decline in MBI/MCI, differences in the duration of the 

MBI/MCI stage depending on the phenotype, and absence of activities of daily living 

impairments in asymptomatic, and a ceiling effect for deterioration in fully symptomatic 

individuals. Identification of MBI/MCI individuals, however, may be challenging. The sample 

sizes for MBI/MCI in both cohorts of this study were relatively small and the follow up durations 

were limited. This may explain why differences in baseline NfL concentrations in MBI/MCI 

participants by conversion status were not as strong, compared to differences between MBI/MCI 

and asymptomatic or fully symptomatic mutation carriers. These observations might also reflect 

a short duration in the MBI/MCI state and fluctuation in clinical status over time, with some 

MBI/MCI participants progressing to full phenotype and others returning to asymptomatic status. 

The additional follow up data that will be collected as part of the ongoing ALLFTD study38 will 

improve the understanding of the clinical value of plasma NfL in prodromal f-FTLD.  

Our results suggest that plasma NfL may be a promising endpoint for FTLD clinical trials. 

A variety of therapies that target the underlying pathological proteins encoded by the three 

FTLD-causing genes studied here are entering clinical trials for f-FTLD.7 The ultimate goal for 

these therapies is to prevent disease onset in mutation carriers. A major challenge for testing 

the efficacy of such interventions is the inability to measure clinically meaningful endpoints in 

asymptomatic individuals who are at risk for disease. Recent US Food and Drug Administration 

guidance on developing therapeutics for presymptomatic or early Alzheimer’s disease suggests 
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that therapies might be approved under an accelerated mechanism on the basis of a biomarker 

that is “reasonably likely to predict clinical benefit”.39 Our data show associations between 

plasma NfL concentrations and subsequent functional status, which are considered inherently 

clinically meaningful, within two years of follow up. Therefore, plasma NfL might be used as a 

continuous variable endpoint (difference in mean NfL concentration in placebo vs. intervention 

arm) or as a time to event endpoint (delay in onset of sharp rise in NfL that occurs at the 

transition from the asymptomatic to symptomatic phase of disease). Such an approach was 

previously employed for drugs to treat macular degeneration that were approved for marketing 

by using optical coherence tomography measurements as endpoints that are highly predictive of 

future declines in visual acuity.40   

 Our study has limitations. NfL is not a pathophysiology-specific biomarker of FTLD, and 

its elevations in a number of general conditions render it a non-specific marker of neuronal 

injury. Future projects should aim at identifying and deploying specific markers of disease 

activity and severity in FTLD, and we have previously reported the comparative diagnostic value 

of plasma NfL versus plasma p-tau in FTLD and Alzheimer’s disease.41 Based on work in 

dominantly inherited Alzheimer’s,42 longitudinal plasma NfL measurements may have better 

predictive ability for clinical decline than the cross sectional measures we used. Longitudinal 

plasma samples of participants of the LEFFTDS and ARTFL projects are being collected and 

future projects will examine longitudinal NfL concentrations and their relationship with disease 

progression. Finally, we found no influence of the APOE genotype on NfL concentrations or 

predictive ability. The analyses, however, did not examine other potential genetic risk factors 

such as polymorphisms within MAPT,43 TMEM106B44 or EGFR45 that have been identified as 

potential modulators of FTLD risk.  

 

Conclusions 

This study adds to a large body of evidence supporting plasma NfL as a useful prognostic 

biomarker for syndromes associated with FTLD.12, 14, 17, 35, 46, 47 By demonstrating the ability to 
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identify asymptomatic FTLD-mutation carriers at risk of progression to symptomatic status over 

two years, our findings provide a strong rationale for developing this biomarker as a potential 

inclusion criterion or endpoint for prevention studies in asymptomatic f-FTLD mutation carriers. 
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Figure legends 
 
Figure 1. Baseline plasma neurofilament-light chain concentrations by clinical 

phenotype. A) Original (LEFFTDS/ARTFL) cohort. B) Validation (GENFI) cohort. The 

phenotypes are based on clinical diagnosis and did not rely on severity scales. Only the original 

cohort included clinically-diagnosed prodromal disease (MBI or MCI). The horizontal bars 

represent median values. Upper and lower quartiles are delimitated by the boxes. Lowest and 

highest values are indicated by whiskers. bvFTD = behavioral variant frontotemporal dementia, 

CBS = corticobasal syndrome, FTD/ALS = frontotemporal dementia with amyotrophic lateral 

sclerosis, MBI = mild behavioral impairment, MCI = mild cognitive impairment, PPA = primary 

progressive aphasia (non-fluent or semantic). * = compared to normal; ** = compared to normal 

and MCI, p < .05. 
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Figure 2. Baseline plasma neurofilament-light chain concentrations by disease severity 

and diagnostic performance. A-C) Original (LEFFTDS/ARTFL) cohort. D-F) Validation 

(GENFI) cohort. Severity was determined by the CDR® Dementia Staging Instrument plus 

Behavior and Language domains from the National Alzheimer’s Disease Coordinating Center 

Frontotemporal Lobar Degeneration module (CDR®+NACC-FTLD). (A, D) The boxplots show 

plasma NfL concentrations in asymptomatic carriers (i.e. CDR®+NACC-FTLD = 0), mild 

behavioral or cognitive impairment (MBI/MCI, CDR®+NACC-FTLD = 0.5) and patients with full 

phenotypes (CDR®+NACC-FTLD ≥ 1). The horizontal bars represent median values. Upper and 

lower quartiles are delimitated by the boxes. Lowest and highest values are indicated by 

whiskers. (B, E) The receiver operating characteristic (ROC) curves show that plasma NfL was 

a good discriminator between subjects with full phenotype and those either asymptomatic or 

with MBI/MCI. (C, F) The proportion of patients with low or high plasma NfL concentrations, 

determined by the ROC curve, is presented for each disease severity. AUC = area under the 

curve 
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Figure 3. Plasma neurofilament light chain concentrations by disease severity in each 

genotype group. (A-C) Original cohort. (D-F) Validation cohort. MBI/MCI = Mild behavioral or 

cognitive impairment (CDR®+NACC-FTLD = 0.5). 
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Figure 4. Baseline plasma neurofilament-light chain concentrations according to 

conversion status by follow up. Severity was determined with the CDR® Dementia Staging 

Instrument plus Behavior and Language domains from the National Alzheimer’s Disease 

Coordinating Center Frontotemporal Lobar Degeneration module (CDR®+NACC-FTLD). (A-C) 

Original (LEFFTDS/ARTFL) cohort. (D-F) Validation (GENFI) cohort. (A, D) Median baseline 

NfL concentrations were higher in asymptomatic mutation carriers (CDR®+NACC-FTLD = 0) 

who progressed to either mild behavioral or cognitive impairment (MBI/MCI, CDR®+NACC-

FTLD = 0.5) or full phenotype (CDR®+NACC-FTLD ≥ 1) upon follow up. (B, E) A similar trend 

was observed in subjects who had MBI/MCI at baseline, and when all subjects (asymptomatic 

mutation carriers and MBI/MCI) were combined (C, F). The horizontal bars represent median 

values. Upper and lower quartiles are delimitated by the boxes. Lowest and highest values are 

indicated by whiskers. Circles = asymptomatic, Triangles = MBI/MCI. Blue = C9orf72 mutation 

carriers, Yellow = GRN mutation carriers, Red = MAPT mutation carriers. 
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Figure 5. Prediction of clinical progression by plasma neurofilament-light chain in 

familial frontotemporal lobar degeneration. (A-C) Original (LEFFTDS/ARTFL) cohort. (D-F) 

Validation (GENFI) cohort. The figure shows the results of models using data from all genotypes 

in each severity group. In the original cohort, patients with high (red, ≥ 13.6 pg/mL) baseline 

plasma NfL showed worse clinical scores at 2 years, compared to patients with low (blue, < 13.6 

pg/mL) NfL, which was supported by NfL level by time interaction. This differential predictive 

effect by NfL level was observed regardless of disease severity, including asymptomatic 

carriers. Similar results were observed in the validation cohort with a cut point value of 19.8 

pg/mL. CDR®+NACC-FTLDsb = CDR® Dementia Staging Instrument plus Behavior and 

Language domains from the National Alzheimer’s Disease Coordinating Center Frontotemporal 

Lobar Degeneration module sum of boxes score. * = between-group contrast at that time point, 

p < .05.  
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Table 1. Baseline demographic characteristics by disease severity, original cohorta,e 

 Asymptomatic 

non-carrier 

(n = 90) 

Asymptomatic 

carrier 

(n = 92) 

MCI/MBI 

(n = 33) 

Full phenotype 

 (n = 62) 

Age: median (IQR, range) 50 (19, 24-76) 44 (21, 19-71) 54 (13, 29-80)b 61.5 (18, 33-

74)b,c 

Sex: male/female 32/58 43/49 18/15 24/38 

Plasma NfL, pg/mL 6.4 (5) 7.1 (5) 12.2 (12)b,c 24.1 (21)b,c,d 

Genotype     

Non-carriers: n (%) 90 (100) 0 (0) 0 (0) 0 (0) 

NfL, pg/mL 6.7 (5) - - - 

C9orf72: n (%) 0 (0) 35 (43.8) 13 (16.2) 32 (40) 

NfL, pg/mL - 6.6 (5) 13.6 (34)b 33.9 (33)b 

GRN: n (%) 0 (0) 27 (52.9) 11 (21.6) 13 (25.5) 

NfL, pg/mL - 9.1 (7) 7.1 (8) 61.5 (54)b,d 

MAPT: n (%) 0 (0) 30 (53.6) 9 (16.1) 17 (30.4) 

NfL, pg/mL - 7.8 (5) 12.1 (11) 20.5 (11)b,d 

CDR®+NACC-FTLDsb 0 (0) 0 (0) 1.5 (2)b,c 7.2 (5)b,c,d 

MoCA 28 (3) 28 (3) 25 (4)b,c 20.5 (5)b,c,d 

UPDRS 0 (0) 0 (0) 0 (4)b,c 3 (7)b,c 

CGI-S 1 (0) 1 (0) 2 (1)b,c 3 (1)b,c,d 

SEADL 100 (0) 100 (0) 90 (10)b,c 65 (25)b,c,d 

FAS 0 (0) 0 (0) 0 (2) 11 (17)b,c,d 

NPI 0 (1) 0 (2) 6 (9)b,c 6.5 (9)b,c 

CVLTi 9 (3) 8 (2) 7 (3) 3.5 (6)b,c,d 

CVLTd 8 (3) 7 (3) 6 (6) 4 (6)b,c,d 

Benson delayed recall 13 (4) 13 (3) 12 (4) 8.5 (6)b,c,d 

Digits forward 7 (2) 7 (2) 6 (2) 5.5 (2)b,c,d 
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Digits backward 6 (1) 5 (1) 5 (2) 4 (1)b,c 

Trails A (sec) 22 (10) 21 (8) 25 (14)c 45 (17)d 

Trails B (sec) 49 (29) 58 (28) 59 (77)b,c 92.5 (105)b,c,d 

Phonemic fluency 15 (7) 15 (7) 13 (8)b 6 (8)b,c,d 

Semantic fluency 23 (8) 23 (8) 21 (8) 13 (6)b,c,d 

TIV,f mm3 x 106 1.4 (0.1) 1.4 (0.2) 1.4 (0.1) 1.3 (0.2) 

Left frontal,f mm3 x 104 4.7 (0.5) 4.6 (0.7) 4.3 (0.9)c 3.7 (1.2)b,c,d 

Right frontal,f mm3 x 104 4.7 (0.6) 4.6 (0.7) 4.2 (1.0)c 3.7 (1.2)b,c,d 

Left temporal,f mm3 x 104 2.7 (0.3) 2.7 (0.3) 2.7 (0.8) 2.1 (0.6)b,c,d 

Right temporal,f mm3 x 104 2.6 (03) 2.6 (0.3) 2.6 (0.7)c 2.1 (0.6)b,c,d 

CSF NfL, pg/mL 313 (359) 331.5 (375) 615.5 (834) 1659.7 (2099)b,c 

CSF tau, pg/mL 121.2 (87) 146.3 (102) 136.8 (91) 206.3 (153)c 

CSF p-tau, pg/mL 37.4 (20) 39.9 (16) 34.5 (12) 31.9 (23) 

CSF neurogranin, pg/mL 312.8 (156) 364.7 (184) 311.7 (252) 278.6 (148) 

CSF p-NfH, pg/mL 662.9 (392) 485.9 (571) 768.3 (585) 1252.1 (1368)b,c 

CVLTd = California Verbal Learning Test, Short Form – delayed recall (number of words); CVLTi = 

California Verbal Learning Test, Short Form – immediate recall (number of words); CGI-S = Clinical 

Global Impression of Severity; FAS = Functional Assessment Scale; CDR®+NACC-FTLDsb = CDR® 

Dementia Staging Instrument plus Behavior and Language domains from the National Alzheimer’s 

Disease Coordinating Center Frontotemporal Lobar Degeneration module sum of boxes score; MBI/MCI 

= mild behavioral impairment or mild cognitive impairment; MoCA = Montreal Cognitive Assessment; NfL 

= plasma neurofilament-light chain (uncorrected); NPI = Neuropsychiatric Inventory; p-NfH = 

phosphorylated neurofilament heavy chain; SEADL = Schwab and England Activities of Daily Living 

score; TIV = total intracranial volume; UPDRS = Unified Parkinson’s Disease Rating Scale, motor section 

 

a = Disease severity determined by the CDR®+NACC-FTLD, 0 = asymptomatic, 0.5 = mild cognitive or 

behavioral impairment, 1 ≥ full phenotype/dementia 

b = p < 0.05, compared to asymptomatic carrier 
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c = p < 0.05, compared to asymptomatic non-carrier 

d = p < 0.05, compared to mild cognitive or behavioral impairment 

e = unless indicated otherwise, values are expressed as median (interquartile range). Other units of 

measure are: Benson delayed recall: points, phonemic and semantic fluency: words/min, digits forward 

and backward: number of digits in the largest string correctly recalled 

f = volumes are expressed as mean (standard deviation) 
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Table 2. Prediction of disease progression at 2 years by plasma neurofilament light chain in 

frontotemporal lobar degeneration-causing mutation carriers, original cohort 

 NfL (as a continuous variable) x time 

 Asymptomatic MBI/MCI Full phenotype 

 
Estimatea p value Estimatea p value Estimatea p 

value 

CDR®+NACC

-FTLDsb 

2.5 (1.6 – 3.4) < 0.001 6.4 (3.5 – 9.4) < 0.001 6.9 (2.6 – 11.2) 0.002 

MoCA 
-2.3 (-0.01 – -4.5) 0.049* -14.7(-21.3 – -

8.1) 

< 0.001 -13.2 (-21.3 – -

5.2) 

0.002 

UPDRS 
0.4 (-1.0 – 1.9) 0.56 7.1 (-0.3 – 14.7) 0.06 4.4 (-16.5 – 

25.5) 

0.6 

CGI-S 1.2 (0.7 – 1.7) < 0.001 1.2 (0.1 – 2.5) 0.07 1.7 (0.4 – 3.0) 0.01 

SEADL 
-2.8 (-15.2 – 9.4) 0.6 -38.8 (-65 – 12.7)  0.004 -21.0 (-51.5 – 

9.4) 

0.1 

FAS 
5.0 (2.7 – 7.3) < 0.001 12.2 (5.8 – 18.5) < .001 -0.8 (-14.6 – 

16.2) 

0.9 

NPI 0.8 (-1.8 – 3.5) 0.5 -1.3 (-6.5 – 3.7) 0.5 -3.0(-14.1 – 7.5) 0.5 

CVLTi -1.7 (-3.5 –0.1) 0.07 -3.8 (-6.6 – -1.0) 0.009 -2.2 (-6.1 – 1.6) 0.2 

CVLTd -1.4 (-3.3 – -0.3) 0.1 -2.6 (-5.8 – 0.4) 0.09 -2.0 (-5.8 – 1.7) 0.2 

Benson recall 
-0.4 (-1.6 – 0.8) 0.4 -5.7 (-8.6 – -2.9)  < 

0.001 

-2.3 (-9.6 – 4.9) 0.5 

Digits forward -1.0 (-2.1 – 0.1) 0.09 -2.4 (-4.1 – -0.7) 0.005 -1.4 (-4.6 – 1.7) 0.3 

Digits 

backward 

-1.0 (-2.3 – 0.1) 0.07 -0.9 (-2.3 – 0.4) 0.1 -1.6 (-4.2 – 0.9) 0.2 

Trails A 3.7 (-11.2 – 18.7) 0.6 1.3 (-8.5 – 11.1) 0.7 -8.8 (-21.5 – 3.7) 0.16 

Trails B 31.6 (-78 – 15)  0.18 4.9 (-43 – 53) 0.8 41 (-25 – 107) 0.2 

Phonemic -0.8(-4.7 – -3.0) 0.002 -1.9 (-7.0 – 3.1) 0.4 -2.3 (-2.1 – 6.8) 0.3 
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Estimates, 95% confidence intervals and p values are presented for the interaction of NfL with time as 

predictors or each of the clinical variables. a = The estimates represent the predicted change in absolute 

values in each scale, neuropsychological test or composite volume per increase in one log concentration 

unit in plasma neurofilament light chain at each time point (fixed effect). Significant associations appear in 

bold. * = did not survive correction for multiple comparisons within that severity level 

 

CVLTd = California Verbal Learning Test, Short Form – delayed recall; CVLTi = California Verbal 

Learning Test, Short Form – immediate recall; CGI-S = Clinical Global Impression of Severity; FAS = 

Functional Assessment Scale; CDR®+NACC-FTLDsb = CDR® Dementia Staging Instrument plus 

Behavior and Language domains from the National Alzheimer’s Disease Coordinating Center 

Frontotemporal Lobar Degeneration module sum of boxes score; SD = standard deviation; IQR = 

interquartile range; MBI/MCI = mild behavioral/cognitive impairment; MoCA = Montreal Cognitive 

Assessment; NfL = plasma neurofilament-light chain; NPI = Neuropsychiatric Inventory; SEADL = 

Schwab and England Activities of Daily Living score; UPDRS = Unified Parkinson’s Disease Rating Scale, 

motor section 

fluency 

Semantic 

fluency 

-2.4(-7.0 – 2.0) 0.2 -8.2 (-14.4 – -2.1) 0.009 -9.6 (-16.5 – -

2.7) 

0.007 

Left frontal 
-3786 (-5848 – -

1723) 

< .001 -979 (-4933 – 

2974) 

0.5 -11349 (-19842 

– -2856) 

0.012 

Right frontal 
-2460 (-4422 – -

498) 

0.01 -949 (-4866 – 

2967) 

0.4 -2159 (-12400 – 

8081) 

0.6 

Left temporal 
-1797 (-3104 – -

491) 

0.008 -237 (-2377 – 

1903) 

0.8 -7874 (-13555 – 

-2194) 

0.01 

Right 

temporal 

-1468 (-2419 – -

516) 

0.003 92 (-1715 – 

1900) 

0.9 0.1 (-6748 – 

6748) 

1.0 
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