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ABSTRACT
This paper introduces an industrial decision problem emerging

from daily operations of a company which provides its clients in

Europe and Latin America with machine rentals. The company

faces several challenges in distribution of these machines using a

fleet of trucks. The trucks with a non-convex loading surface are

loaded with multiple machines of irregular shapes to be picked

up or delivered to/from customer or depot locations. Within the

algorithmic framework utilized by the company, for each route

generated, one must verify whether or not it is possible to load the

corresponding machines onto the truck without violating certain

restrictions.

The aim of this paper is to develop a competitive and automated

algorithm capable of efficiently classifying load plans in a very re-

strictive scenario. For this purpose, we extend a well-known heuris-

tic algorithm from the two-dimensional (2D) packing literature and

compare its performance with two other methods: the original 2D

packing method and the current method employed by the company

in practice. The computational experiments are performed in a set

of candidate load plans provided by the company. We observe that

the newly introduced adaptation outperforms the other methods

and correctly classifies 90% of the given load plans provided.

CCS CONCEPTS
• Applied computing → Supply chain management; Transporta-
tion; • Computing methodologies → Cross-validation; Classifi-

cation and regression trees.
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1 INTRODUCTION
The feasibility verification andmachine packing problem (FVMP)

introduced in this paper emerges from a necessity to automate

decisions concerning whether or not a given set of machines can be

loaded onto a non-convex truck loading surface before physically

performing those loading operations in reality. To better appreciate

how andwhy this problem is relevant, wewill first provide a broader

description of the operations of the company in question.

The company which inspired this research owns a set of non-

identical machine types which they rent to their customers. A fleet

of identical trucks is employed by the company to pickup and deliver

machines from/to the depots or customer locations on a daily basis.

Each customer uses the requested machines for a number of days

before requiring those machines to be picked up once the rental

period ends. On a given day, it is possible to have both pickup

and delivery requests from different customers. A machine to be

delivered to a customer does not necessarily depart from a depot,

but can instead be picked up from another customer on the same

day. In order to minimize transportation costs, it is desirable to

transport multiple machines in the same truck whenever possible

and profitable. However, this requires ensuring the feasibility of

loading multiple machines in a truck before it departs on its journey

and, ideally, during the planning phase of the routes.

Most of the considered machines have irregular shapes with

arms or forks, as illustrated in Figure 1. The total length of these

Figure 1: Machines with an arm (machine 1) and with a fork
(machine 2).

machines is divided into its wheelbase and these special parts. These
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special parts allow the vertical projection of machines to overlap

with others when loading them onto trucks. Other machines have

their length completely defined by their wheelbase, as illustrated in

Figure 2. During transportation, the machines may assume different

forms by (un)folding these arms or raising their forks to better

position themselves on the truck’s loading surface.

Figure 2: Machines with a lift which can be folded and un-
folded.

Trucks have a regular surface on which any machine can be

loaded. An additional loading surface can be occupied over the

gooseneck by only a subset of machines and by respecting the

relevant restriction which will be detailed in Section 2.

The company which introduced this problem employs a routing

algorithm for scheduling the pickup and delivery of machines. To

validate the loading feasibility at each pickup location, the rout-

ing algorithm considers only a scalar value to represent the area

occupied by each machine on the truck loading surfaces. These

values, referred to as the truck occupation percentages, are calcu-

lated based on the observations and knowledge of truck drivers. It

is thus far from being an automated process at present. Hencefor-

ward we address to this method as the predicted percentage method

(PPM). Although the PPM percentages are calculated by taking into

account the dimensions of the machines, these scalar values are

not sufficiently accurate to separate feasible and infeasible loading

combinations. As a result, the routing algorithm with the PPM ends

up scheduling many routes which are infeasible with respect to

loading constraints which results in delayed deliveries and the use

of additional trucks.

The company in question owns nearly 1700 different types of

machine and new machine types are constantly being added to

their inventory. Therefore, it is impractical to physically enumerate

all possible feasible loading configurations (with all subsets of ma-

chines) in a pre-processing step prior to the routing algorithm. In

fact, since routing algorithms often perform hundreds of thousands

iterations, see for instance the genetic algorithm by Vidal et al. [13],

any routing feasibility verification should be carried out as fast

as possible to avoid excessive runtimes. The challenge is thus to

develop a more effective yet fast way of checking the feasibility of

truck load plans.

The algorithm introduced in Section 4 considers machines as two-

dimensional (width, length) items and a truck with two different

loading surfaces. The foundation for the heuristic algorithm to

solve this very challenging problem is the two-dimensional best-fit
heuristic of Burke et al. [2]. However, given the problem’s special

restrictions, the best-fit heuristic alone is not enough to serve as an

accurate feasibility check. In this paper we propose an extension of

the best-fit heuristic which is able to handle tailored constraints to

better adapt to the company’s scenario.

In order tomaintain the developed heuristic’s efficiency, wemake

a series of assumptions and simplifications regarding the real-world

problem. Although rarely, due to these assumptions, the algorithm

can yield load plans which are infeasible in reality. Therefore, as a

means of evaluating the effectiveness of the algorithm, we conduct

a classification study. The motivation for this classification study is

briefly outlined in what follows.

The company provided us with real-world data concerning their

machines and potential load plans. Prior to executing any pack-

ing method, we do not have any knowledge on the feasibility of

a potential load plan in reality. Therefore, there are two possible

outcomes in reality: (i) a positive outcome, that is, there exists a

feasible loading scheme and (ii) a negative outcome, that is, there

exists no feasible loading scheme. In theory, an exact method for

solving the problem with all its given elements and without any

simplifications or assumptions always returns the actual reality.

In that case, the algorithmic outcomes can be classified into two

types: true positive (the method finds a feasible loading scheme

and a feasible scheme exits in reality) or true negative (the method

terminates with no feasible schemes and there exists no feasible

scheme in reality). The outcomes of a heuristic algorithm for the

same problem include an additional classification type: false nega-

tive (the method terminates with no feasible schemes while there

exits a feasible scheme in reality).

Finally, a heuristic method solving a simplified version of the

problem with certain assumptions can provide a fourth type of

classification: false positive (the method terminates with a feasible

loading schemewhile there exists no feasible scheme in reality). The

algorithm we introduce in this paper and the two other algorithms

used for computational comparison all fall into this last group of

heuristic methods. In these experiments, our approach significantly

outperforms the PPM correctly classifying 90% of the potential load

plans (the percentage of true positives and true negatives), which

is considered highly satisfactory by the company.

The remainder of this paper is organized as follows. Section 2

describes the problem in detail. Section 3 briefly reviews the most

relevant studies in the literature. Section 4 details the algorithm we

develop, while Section 5 presents the results of the computational

study we conducted. Finally, Section 6 concludes the paper and

outlines some future research directions.

2 PROBLEM DESCRIPTION
The feasibility verification andmachine packing problem (FVMP)

consists of two main components: a truck and a set of machines.

Trucks have two areas onto which machines can be loaded. The

first is simply the regular loading area, which is 10 meters long and

2.5 meters wide. The second loading area, which is referred to as the

gooseneck, extends the length of the truck by an additional 3 meters.

As illustrated in Figure 3, the gooseneck is not at the same height

as the regular loading surface and therefore not every machine can

occupy this part of the truck.

Certain machines can occupy the gooseneck while positioned

in the regular loading surface, as illustrated in Figure 4. Other

machines can be entirely placed on the gooseneck if their length
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Figure 3: The gooseneck and the regular loading surface of
the truck.

is not greater than that of the gooseneck and if they have wheels

enabling them to climb onto the gooseneck with the assistance of a

portable or build-in ramp (see Figure 5).

Figure 4: Illustration of a machine partially occupying the
gooseneck.

Figure 5: Illustration of a machine placed entirely on the
gooseneck.

Most machines do not have a fixed shape. In fact, many machines

have articulated arms which can be folded into several forms, some

of which can be cuboid. Meanwhile, some machines have forks

which can partially go under the arms or wheel base of other ma-

chines (see Figure 6). Two length values are considered per machine:

the length of the wheelbase (WBL) and the total length (TL). There-

fore, a partial overlapping of the projection of the machines is

sometimes possible.

Figure 7 illustrates just one example of such overlap. In this

example machine 1 has a small wheelbase when compared to its

total length. However, not all of its extra length can be overlap-

ping another machine. While part of the arm is suspended above

the loading surface allowing overlap with shorter machines, the

cage (on the end of its articulated arm) is located at ground level

forbidding any overlap. Thus, only a portion of the difference be-

tween the machine’s wheelbase length and total length may overlap

with another machine. In Figure 7, by placing machine 2 over the

gooseneck a feasible solution is possible without overlapping. On

the other hand, the gooseneck in Figure 8 is occupied and only by

overlapping machines a feasible load plan would be possible.

Figure 6: Illustration of twomachines partially overlapping,
where the fork of onemachine goes under the wheel base of
the other.

Figure 7: Illustration of an overlap where one machine is
placed entirely under the arm of another.

Figure 8: A loading scheme with overlap and use of the
gooseneck.

A feasible load plan for the FVMP must take into account the

following constraints:

• All machines must fit onto the loading surface of the truck.

• For safety reasons there must be open space between two

machines that are positioned side by side.

• All load plans are subjected to maximum weight limits.

• The wheelbase of machines should never overlap.

• Machines must not be stacked.

• Given the need to drive the machines onto the truck, a fixed

orientation is defined. Machines either drive forward onto

the truck or reverse onto the truck, but never sideways.

3 RELATEDWORK
The FVMP combines several components from different Cutting

and Packing problems [14]. However, it is difficult to fit the FVMP

into a single problem category without over-generalizing. In re-

lation to the typology provided by Wäscher et al. [14], the FVMP

is a three-dimensional (3D) packing problem with a single large

object (all dimensions fixed) and a few small heterogeneous items

of irregular shapes. The FVMP is a feasibility problem where the

goal is to decide whether or not a feasible packing of the small
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items into the larger object is possible. Therefore, the FVMP does

not aim to minimize or maximize any objective function.

The FVMP can be considered as a variant of the container loading

problem (CLP) where rectangular-shaped items, which are often

referred to as boxes, are placed in a cuboid container [1]. In the 2D

case of the CLP, items can neither be stacked on top of each other

nor are they allowed to overlap. A typical example of the 2D-CLP

is the pallet loading problem [12]. Stacking is allowed in the 3D

version of the problem [15].

The irregular shape of machines in the FVMP resembles the 3D ir-

regular packing problemwhere items of irregular shapes are packed

into a cuboid [9]. The machines can also be treated as tetris-like

items [4]. However, the FVMP differs from all the aforementioned

problems as its loading surface is not convex. The machines cannot

be suspended in the air and should be standing on their wheels

with a fixed orientation. Additionally, the structure of the truck’s

loading surface introduces additional restrictions which do not exist

in the aforementioned studies. Although this structure resembles a

multi-compartment CLP variant [6], the fact that some machines

can partially occupy both loading surfaces distinguishes the FVMP

from the traditional multi-compartment CLP problems.

Despite the distinguishing properties mentioned earlier, it is

clearly possible to utilize or adapt some of the methods from the

irregular 3D packing literature to address the FVMP. However, we

foresee that these methods would require much more processing

time which is undesirable as it makes the overall routing and feasi-

bility checking process highly inefficient.

The company is using an off-the-shelf vehicle routing algorithm

for the pickup and delivery of machines while the FVMP is solved

for each route to ensure its feasibility or to detect infeasibilities and

re-route accordingly. However, one might consider tackling these

two problems, namely the routing and the loading problems, with

the help of integrated methods. When we examine the literature,

we see examples of such methods for combined vehicle routing

and container loading problems with 2D or 3D rectangular-shaped

items. To the best of our knowledge, no such method is readily

available for solving the combined irregular 3D loading and the

pickup and delivery problem.

For interested readers, we refer to Leao et al. [7] for a recent

review on the irregular packing problems including those with

irregular containers, to do Nascimento et al. [3] for a review of the

CLP with practical constraints and to Pollaris et al. [11] for a review

of combined CLP and vehicle routing problems.

4 LOAD PLAN METHOD
This paper introduces the load plan method (LPM) which uses

a placement heuristic and determines the placement (position) of

items inside trucks. This method should be capable of being effi-

ciently embedded within the company’s routing algorithm and will

be called frequently when creating routes. Therefore, it is important

for the LPM to produce high quality load plans in low computational

runtimes.

An adaptation of the best-fit placement heuristic proposed by

Burke et al. [2] is used in this paper which follows the efficient im-

plementation by Imahori and Yagiura [5]. This approachwas chosen

given its simplicity to implement, computational performance and

the high-quality solutions generated. The best-fit heuristic is a con-

structive method. Given a list of items and a container, the method

finds the position furthest from the rear of the container and places

the item that fits best in it. Items are iterated over in a predeter-

mined order until one item can be successfully placed. Once an

item is inserted, the furthest position is updated and the placement

continues until all items have been loaded.

The implementation in this paper sorts machines based on their

width, length and area. Ties between machines with the same di-

mension are broken by either length or width. When placing a

machine inside the truck, one of two insertion policies can be fol-

lowed: insert the machine next to the longest neighbor machine

or insert the machine next to the neighbor with the most similar

length. The LPM combines each machine ordering with an insertion

policy and returns the first feasible load plan generated.

To further adapt our load plan method so that it can accommo-

date the specific characteristics of the problem presented in Section

2, we introduce the following parameters:

• Extra width (𝑒𝑥𝑊 ): for safety reasons, a certain amount of ex-

tra space must be preserved between machines when loaded

side by side. In order to ensure this safety distance is re-

spected, we extend machines’ width by 𝑒𝑥𝑊 if their origi-

nal width is below a threshold𝑚𝑎𝑥𝑤 . This extension is not

needed for wider machines as it will never be possible to

load multiple wide machines side by side.

• Minimum machine length required to partially occupy the
gooseneck (𝑚𝑖𝑛_𝑔𝑁𝑒𝑐𝑘): given the difference in height, only

large machines are able to occupy both the loading surface

and the gooseneck. Parameter 𝑚𝑖𝑛_𝑔𝑁𝑒𝑐𝑘 indicates how

big a machine must be to be positioned partially on the

gooseneck and partially on the loading surface.

• Maximum weight (𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 ): the considered machines

are often large and heavy, which may lead to infeasible load

plans due to their total weight instead of the physical space

they occupy. We set 𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 based on the maximum

weight regulations in effect in the country where the com-

pany provides services.

• Reduced length percentage (𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛%): in addition to the

total length, the wheelbase length is provided. While the

wheelbase indicates a portion of the machine which can

never overlap with another, the machine’s arms or forks can

often overlap depending on the combination of machines.

Using 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛% we define a new machine length to be

considered which is outlined in Equation (1). This new length

is equal to the total length if 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛% = 0 and equals

the wheel base if 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛% = 1.

𝑅𝐿 = 𝑇𝐿 − ((𝑇𝐿 −𝑊𝐵𝐿) ∗ 𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛%) (1)

Note that the company currently uses the PPM to solve a sim-

plified version of the problem which does not consider the newly

introduced LPM parameters. Given a set of machines returned by

the PPM, truck drivers rely on their experience to generate a load

plan and do not explicitly consider constraints associated with

the introduced parameters. These parameters are thus specific to

the LPM and have not previously been exploited by the company.

Therefore, a careful calibration of these parameters is essential to
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generate a model well tuned to the problem-specific scenario and

capable of efficiently classifying load plans.

In a scenario where LPM is called repeatedly, the load plan,

whether it is feasible or not, can be stored in a memory structure

referred to as Trie [8]. Trie avoids evaluating routes that have

already had their load plan checked, significantly accelerating the

runtime of the overall algorithm (vehicle routing plus LPM).

5 COMPUTATIONAL STUDY
This section presents computational experiments to validate the

performance of the developed approach and compare the LPM with

the current practice. The company provided us with the dimensions

and characteristics of their machines: length, width, height, weight,

wheelbase length and predicted percentage. A set of 196 candidate

load plans, including both feasible and infeasible configurations,

was also provided with the classification of experienced human

operators.

Table 1 provides the necessary parameters for the LPM. The value

of𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 should be selected so as to remain compliant with

national regulations. We set this value to 22 tons in our experiments

which corresponds to the value stipulated in Belgian legislation.

We should note here that the values of these parameters will vary

from country to country and have a significant impact on possible

combinations. Using a random subset of the available instances, all

the remaining parameters were calibrated using irace [10].

Table 1: LPM parameters and their values

Parameter Value

𝑒𝑥𝑊 25 cm

𝑚𝑎𝑥𝑤 132 cm

𝑚𝑖𝑛_𝑔𝑁𝑒𝑐𝑘 744 cm

𝑟𝑒𝑑𝑢𝑐𝑒𝑑_𝑙𝑒𝑛% 0.47

𝑚𝑎𝑥_𝑤𝑒𝑖𝑔ℎ𝑡 22 tons

The goal of the LPM is to classify load plans as (in)feasible with

more precision than the PPM, which simplifies the real dimensions

of machines. The LPM is thus a decision method which divides

machine combinations into two classes: feasible and infeasible load

plans. We compare the accuracy of three different methods: (i) the

predicted percentage method currently employed by the company,

(ii) the LPM-Base method which corresponds to the best-fit heuris-

tic proposed by Burke et al. [2] for solving 2D packing problems

and (iii) the LPM method which we adapted from LPM-Base by in-

tegrating all of the extra parameters described in Section 4. For the

purpose of this comparison, Table 2 provides the confusion matrix
of each method where columns TP, FP, TN and FN correspond to

each classification method’s number of true positives, false posi-

tives, true negatives and false negatives, respectively. We provide

the precise meaning of these categories in Table 3.

To assess the performance of each method, well-known metrics

to compare binary classifiers are calculated. The F1-score measures

the method’s accuracy and is calculated as per Equation (2).

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 0.5(𝐹𝑃 + 𝐹𝑁 ) (2)

Since F1-score do not take into account the number of true neg-

atives, a second metric, Matthews Correlation Coefficient (MCC),

is also employed and is calculated as per Equation (3).

𝑀𝐶𝐶 =
(𝑇𝑃 ×𝑇𝑁 ) − (𝐹𝑃 × 𝐹𝑁 )√

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
(3)

Table 2: Confusion matrix of the loading methods.

Loading

method

TP FP TN FN F1-score MCC

PPM 74 16 83 23 0.791 0.603

LPM-Base 82 19 80 15 0.828 0.654

LPM 87 10 89 10 0.897 0.796

Table 3: Confusion categories.

Confusion Method’s

parameter Abbreviation decision Actuality

True positive TP Feasible Feasible

False positive FP Feasible Infeasible

True negative TN Infeasible Infeasible

False negative FN Infeasible Feasible

The PPM obtains the worst results, misclassifying up to 20%

of the considered instances. Since operators often assign a higher

predicted percentage to machines, this method results in many

feasible routes having a total predicted percentage greater than

100%. This leads to many false negatives.

LPM-base considers machines as 2D rectangles, but does not take

into account constraints related to the gooseneck or safety concerns

in regards to width. Consequently, this method also results in a high

number of false positives. In other words, many combinations that

LPM-base considers feasible are not feasible in reality. Moreover,

when ignoring the possibility of machine overlapping many feasible

solutions are misclassified as infeasible, which helps explain most

of LPM-Base’s false negatives.

Although LPM does not correctly classify all instances, it exhibits

better accuracy across all metrics and classifies approximately 90%

of the instances correctly. By employing this method, the com-

pany is able to significantly improve their routing plans. Moreover,

LPM was able to discover several feasible load plans which were

unknown to the company’s operators prior to this study.

When we take a closer look at the misclassifications by LPM,

we observe that these mostly occur due to special cases where

operators push the limits of safety restrictions by permitting extra

width or increasing maximum weight. For false negative cases,

some machines can make better use of the gooseneck in reality

because the LPM method is overly restrictive when calculating the

amount of space they can occupy over the gooseneck. Similarly,

when overlapping machines may occupy a larger area in reality

than allowed by the LPM method.
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6 CONCLUSION
This paper introduced the feasibility verification in machine

packing problem (FVMP): a real-world container loading problem

where one must decide whether or not a given set of non-identical

irregular machines can be loaded onto a non-convex truck loading

surface without violating several practical restrictions. The set of

machines include a variety of forklifts, arms and cages as well as

lifts that can be folded. The practical constraints include maximum

weight restrictions, fixed orientation for machines and a minimum

amount of empty space between the machines. Specific character-

istics of the FVMP allow a partial overlapping of some machines

which increases the possibility of feasibly loading the machines.

The FVMP must be solved very frequently within a computa-

tionally demanding routing algorithm. Therefore, the method for

solving the FVMP should not only be highly accurate but also

very efficient. In order to solve the FVMP, we developed an algo-

rithm based on the best-fit placement heuristic which was originally

introduced for solving the two-dimensional rectangular packing

problem. The results of computational experiments conducted us-

ing real-world data indicated that the new algorithm outperforms

the approach currently employed by the company.

Regarding future work, some of the defined parameters can be

applied with different values depending on the machine type. For

instance, for a forklift, everything which is not wheelbase (the

fork) may be completely overlapped. By contrast, the articulated

arm and cage of certain machines can only be partially overlapped,

which means these machines needs to have a different percentage

of overlapping.

The analysis and methods in this paper focused only on the fea-

sibility verification of loading a set of machines associated with a

given route onto a truck. Future research should also focus on prob-

lem extensions which combine loading and routing decisions and

address them with integrated methods. This will necessarily result

in the loading problem becoming even more complex since when

routing trucks internationally each country may have different

loading regulations which need to be adhered to.
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