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Abstract

Molecular dynamics (MD) simulations represent a powerful investigation tool in the field of soft

matter. By using shear flows, one can probe the bulk rheology of complex fluids, also beyond the

linear response regime, in a way that imitates laboratory experiments. One solution to impose a

shear flow in particle-based simulations is the Lees-Edwards technique which ensures that particles

experience shear by imposing rules for motion and interactions across the boundary in the direction

of the shear plane. Despite their presentation in 1972, a readily available public implementation

of Lees-Edwards boundary conditions has been missing from MD simulation codes. In this article,

we present our implementation of the Lees-Edwards technique and discuss the relevant technical

choices. We used the ESPResSo software package for Molecular Dynamics simulation of soft matter

system, which can be used as a reference for other implementers. We illustrate our implementation

using bulk dissipative particle dynamics fluids, compare different viscosity measurement techniques,

and observe the anomalous diffusion in our samples during continuous and oscillatory shear, in good

comparison to theoretical estimates.
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I. INTRODUCTION

The response of many soft matter materials to deformations includes a viscous and an

elastic component, thereby giving rise to the category of viscoelastic materials. Many ex-

perimental techniques have been developed throughout the years to investigate these unique

properties, in both the linear and non-linear regime, including the combination of confocal

microscope imaging and other techniques to monitor microstructural changes [1]. Despite

these new developments, many experimental challenges remain [2], such as probing shorter

time and length scales. Optical [3] and magnetic tweezers [4] enable the monitoring of

minimal forces and displacements, but remain restricted to small observation windows.

Computer simulations represent an interesting alternative to experimental observations

for soft condensed matter. In Molecular Dynamics (MD) simulations, the movement of atoms

is governed by Newton’s laws of motion. One can, thus, access the coordinates of the atoms

and compute all relevant observables [5, 6]. The size and duration of MD simulations is

mainly restricted by the available computational power. Dedicated computational methods

have been developed to address larger system sizes and durations with respect to atomistic

methods, such as the coarse-graining of atoms into “effective atoms” that represent atomic

ensembles (e.g. water molecules or polymeric units) or fluid elements (e.g. DPD and MPCD

for instance [7, 8]), or colloidal particles.

Thermostats can also be used to achieve a set temperature, as opposed to constant-energy

systems, using for instance the Langevin thermostat whose properties are well known [9].

In practice, the thermostatting is achieved by adding a random force, the noise, and a

dissipative force, the friction, whose magnitudes are related by the fluctuation dissipation

theorem. Such simulations, using a Langevin thermostat, do not represent the fluid flows and

can only mimic liquid-like behavior. More specifically, they do not take collective effects into

account and do not conserve momentum. Recent developments related to the fluctuation

dissipation theorem could solve some of these restrictions. This allows the linear modulus

of more complex systems, including yield stress systems, to be accessible.[10] Despite these

improvements, the fact that the Langevin thermostat breaks momentum conservation makes

it a poor choice for pseudorheological measurements.

The dissipative particle dynamics (DPD) method was introduced for the simulation of

thermostatted particle-based soft-matter systems [11–13]. DPD simulations use only pair-
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wise forces, including for noise and friction, are not restricted to the linear regime, and

provide direct access to nonequilibrium situations for which Green-Kubo methods would

not apply. Due to momentum conservation, DPD can be used to study hydrodynamic phe-

nomena. Applications of DPD include polymer solutions [14], colloidal suspensions [15],

multiphase flow phenomena [16] and biological systems [17]. Recent investigations [18] have

shown further ways to improve the accuracy of the DPD method and pointed out its possible

use to investigate non-linear material behaviour.

To simulate the non-linear behavior using pseudorheological measurements, several solu-

tions are available. The simplest way to introduce a deformation of the simulated volume

element is to abandon the periodicity in the shear plane. Replacing these boundaries with

moving walls leads to a shear flow [19]. Applications of such simulations can be found in,

e.g., the migration of polymer in small gaps as present in bearings [20]. The drawback of

this method is the loss in periodicity and the appearance of boundary effects. Large systems

can only be simulated by increasing the size of the primary simulations box, which entails a

corresponding increase of computational work load. Two interesting techniques have been

developed to avoid using walls for driving the shear flow. The first is the SLLOD technique,

which consists of modified equation of motions in which the flow velocity is added to the

particles’ motion [21–23]. When using the SLLOD equations of motion, thermostatting is

done on the peculiar velocity of the particles (the laboratory reference frame minus the

assigned flow velocity). In practice, this means that the flow profile is imposed via a bias

in the thermostat [24–26]. As the flow velocity is different at the boundaries of the shear

plane, the simulation boundaries must be adjusted by deforming the box according to the

shear velocity. The SLLOD technique is available in the LAMMPS package (Large-scale

Atomic/Molecular Massively Parallel Simulator [27]), for instance. The second method con-

sists in establishing, via an applied periodic external force, a periodic flow profile [26]. The

periodic flow method is convenient to implement as it does not require modification to the

box geometry or to the boundary conditions. Whereas the results of SLLOD simulation

can be used to simulate materials in a simple shear flow, they do not provide any feedback

between the material structure and the flow profile, which means they fail with regard to

more complex systems such as yield stress fluids [26]. Shear banding is one of the many

effects that cannot be observed with such a technique [28]. Furthermore, it is not possible

to achieve correct hydrodynamics, since the bulk fluid is only modelled implicitly. Viscous
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losses cannot be measured and hence the loss modulus of any material is inaccessible. A

limitation of periodic flow simulations is that one cannot use them for linear shear profiles.

The most promising technique to combine the advantages of the previous mentioned

approaches are Lees-Edwards boundary conditions (LEbc). Introduced in 1972 [29], they

are a technique to address non-linear material behaviour during flow, and are distinguished

from other non-linear simulation methods as they do not require a biased thermostat [23, 30]

or non-periodic walls to initiate a shear flow, but rely on the specific rules at the boundary

that lead to a translationally invariant system. LEbc are sometimes referred to as sliding

brick boundary conditions [18]. Despite being developed more than four decades ago, there

is presently no open-source implementation of the Lees-Edwards boundary condition. There

is a clear need for such flow phenomena simulations and simulations using the Lees-Edwards

boundary conditions are of broad interest in academic as well as industrial research.

In this paper, we present the principle of the Lees-Edwards method and its implementa-

tion in the ESPResSo molecular simulation package in section II. We provide the correspond-

ing code under the same open-source license as ESPResSo. The source code availability, as

well as the parameter and analysis files, are discussed in appendix A. We describe the

simulation methods, including the details of the dissipative particle dynamics method, in

section III. We present our results on the dynamics of fluid and colloidal particles in shear

flow in section IV and conclude in section V.

II. LEES-EDWARDS BOUNDARY CONDITIONS

A. Principle of Lees Edwards boundary conditions

Lees-Edwards boundary conditions (LEbc), are a generalisation of the periodic bound-

ary conditions for systems undergoing shear [29]. With periodic boundary conditions, a

particle exiting the simulation cell is replaced at its periodic location inside the cell and

the computation of distances across the boundaries uses the minimal image convention [6].

When using LEbc, a particle crossing the shear plane is also replaced in the simulation box.

The position and velocity of the particle, however, are shifted so that the trajectory of the

particle is compatible with its image in the adjacent moving cell. The LEbc thus allows

the simulation of infinitely extended systems, as with periodic boundary conditions with a
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prescribed shear, using a finite simulation cell.

In the stationary regime, a constant shear flow in the shear direction, here the x-direction,

is obtained and the simulation has translational invariance in the direction normal to the

shear plane, i.e., the gradient (y) and vorticity (z) direction. The change in position x′

as a function of time t for a particle that leaves the computational domain in the velocity

gradient direction normal to the shear plane is

x′(t) = x(t) + xLE (1)

where the Lees-Edwards offset, xLE the displacement of the adjacent simulation cell with

respect to the primary cell, is

xLE = vLE · t (2)

for steady shear, with vLE as the Lees-Edwards velocity. The change in velocity is

v′x(t) = vx(t) + vLE (3)

based on the drift velocity vLE of the periodic images. This can be seen in Figure 1(a) where

a particle leaves the primary simulation box and is re-introduced at position p′′ instead of p′.

The updated position is then wrapped into the primary simulation cell. When the periodic

boundary conditions in the other directions remain unaltered these modifications result in

a shear flow of the magnitude γ̇ = vLE/h, where h is the height of the simulation box (in y).

B. Application of Lees-Edwards boundary conditions to the velocity Verlet inte-

grator

To implement the principle of the Lees-Edwards boundary conditions in a molecular

dynamics (MD) program, it is necessary to specify practical details: the computation of

distances, of relative velocities, and the combination with the velocity Verlet algorithm

[31, 32]. We implemented the LEbc method in the ESPResSo package with the goal to

provide a reference implementation of LEbc and a user friendly interface for steady shear

and for sinusoidal shear, which is useful to determine the dynamic moduli G′ and G′′.

The update of a particle’s coordinates in the velocity Verlet integrator occurs in the
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following order:

v∗ = v(t) +
1

2m
f(t) (VV 1)

x(t+ ∆t) = x(t) +
1

2
(v(t) + v∗)×∆t (VV 2)

update all forces at time t+ ∆ , using x(t+ ∆t)

v(t+ ∆t) = v∗ +
1

2m
f(t+ ∆t) (VV 3)

where ∆t is the time step, m is the particle mass, and f is the force on the particle.

To translate the LEbc, we must apply the rules exposed above within this framework,

which leads to a two step approach for the application of the velocity and position jumps

which we illustrate in Figure 1(b). A one step approach for the integration is not suitable as

it can lead to numerical instability. In the first step, we determine the Lees-Edwards velocity

at the present simulation time t, i.e. vLE(t) and the Lees-Edwards offset at one half time-step

∆t ahead of the simulation time: xLE(t+ ∆t
2

). After the position update in step (VV 2), we

check if the particle has left the primary computational domain 0 ≤ y(t+ ∆t) < h. In that

case, we apply the position jump

x(t+ ∆t)→ x(t+ ∆t)− xLE

(
t+

∆t

2

)
(4)

and apply half the velocity jump

v∗ → v∗ − vLE(t+ ∆t/2) , (5)

following the structure of the velocity Verlet scheme. The forces, including the DPD dis-

sipative and random forces, are updated at the middle of the time step of the integration.

It is thus necessary to have current velocities to ensure the correct thermalisation of the

particles. Therefore, we tag the particle as undergoing the Lees-Edwards transformation, so

that we can apply the second part of the jump after step (VV 3), using vLE(t+ ∆t).

As simulation cells move with respect to each other due to the shear, the distance and

the relative velocity between particles across the shear plane must include the Less-Edwards

offset. This is shown in Figure 1(a) where the arrows crossing the boundary represent the

applied distance function. While particles might experience a positive offset while cross-

ing the box, the distance function in fact must include the negative offset to reflect these

changes correctly. Accordingly, we modified the distance function in ESPResSo, so that
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FIG. 1. (a) A simplified representation of the particle movement including the Lees-

Edwards boundary conditions. The particle is reintroduced at position p′′ instead of p′

due to the shift in the image boxes. This has to be captured in the distance function as

indicated by the arrows crossing the box boundary. (b) Changes to the commonly used

velocity Verlet integrator, which is displayed in the central box introduced with the

inclusion of the Lees-Edwards boundary conditions. As indicated by the surrounding

boxes, the Lees-Edwards velocity is updated at t and t+ ∆t, and the offset is included

at t+ ∆t/2.

the appropriate offset distance is used for all actions, such as computing the force, as well

as building the neighbour lists. The modification of the relative velocities is necessary for

the computation of the velocity-dependent DPD forces. Thus the velocity function is also

modified in ESPResSo.

The trajectories in LEbc simulations will display discontinuous jumps whenever a particle

crosses the shear plane. Since LEbc simulations include an infinitely extended system, it

is possible to recontruct physically meaningful trajectories. For this purpose, we store the

accumulated offset in position during the numerical integration xLE of a particle and its
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movement in a periodic image i(t) according to

xpart, LE =
∑
j

xLE(tjump) +
∑
t

∆t · vLE(t) · i(t). (6)

where j stands for occurring jumps at the LE boundary. xpart, LE represents the displacement

of the particle as it moves outside of the primary simulation cell. This data, which is

necessary for the reconstruction of the full trajectory of the particle, must be computed

as the simulation proceeds and cannot be obtained later using only recorded positions and

velocities.

C. Modification of the cell system

In principle, the number of pairs in a system of N particles is O(N2). Such a high

computational cost of the force calculation is unpractical. It is, in principle, possible to

compute only O(N) pair forces as long as only short-range forces are used, which can be

cut off after a certain distance. This can be accomplished via neighbor lists and it is often

practical to sort the particles into cells. This is realised in ESPResSo with the technique

of domain decomposition, where the system is partitioned into cubic cells for the purpose

of storing the particles’ coordinates and for spatially sorting the particles[33]. The sliding

nature of the boundary in shear flow simulations breaks the periodic assumption on which

the domain decomposition is based and requires an appropriate modification.

To keep the computational advantage of domain decomposition, we introduce a columnar

domain decomposition: we treat all cells in the layer adjacent to the boundary of the primary

simulation box as neighbours, as shown using the orange-red colors in Figure 2. It does not

influence the domain decomposition in the gradient and vorticity directions. A special node

grid that consist of [x, y, z] = [m, n, o], i.e. Nnodes = m · n · o nodes, has to be chosen.

This grid must be chosen such that it has exactly one node in the shear direction, i.e. the

x-direction as shear direction leads to a [1, n, o] node grid. This guarantees that no possible

particle interactions are lost or considered twice due to the Lees-Edwards offset. In this way,

a “re-wiring” of the cell-neighborship relations during a running simulation can be avoided.

Figure 2 shows a representation of this system and illustrates the column as well as the

communication directions used.

The cells located near the Lees-Edwards boundary, oriented along a column in the shear
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z

y

x

shear

gradient

FIG. 2. Communication pattern for the columnar cell system. The arrows shown

on the x-y surface show how the local cells communicate with all other cells of the

same z-column and y ± 1. For local cells in the other directions the usual domain

decomposition method is used which is shown here.

direction, communicate with all other cells in the x-column as well as with the cells in the

columns directly above and below (y ± 1). Thus, as shown in the x-y plane wit arrows, all

teal cells are considered in the neighbor list. These interactions are superimposed onto the

usual domain decomposition between local cells, as shown for the grey box on the y-z plane

with the limitation that all cells in a column communicate with each other. Communications

in the shear directions are carried out via all cells in a column, where as for communications

in the other two directions a regular domain decomposition is used. During all distance

calculations the modified minimum image vector is used because it accounts for jumps

across the box. The strategy chosen here minimizes the changes to the source code of the

existing simulation package ESPResSo.
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D. Spurious discontinuity of the velocity profile

Some articles about the Lees-Edwards method have reported discontinuous velocity pro-

files near the shear plane boundary. We consider here the work of Chatterjee [34]: in order

to mitigate the discontinuity in the velocity profile, Chatterjee proposed to disable the ther-

mostatting (pairwise friction and noise terms) in the vicinity of the simulation cell boundary

that corresponds to the shear plane. Since the LEbc method is invariant under translation,

Leimkuhler and Shang argued that the strategy of Chatterjee was only necessary in order

to counteract programming errors in the simulation code [18]. In their article, Leimkuhler

and Shang verify their hypothesis by introducing voluntarily the suspected bug in their own

simulation code. In the presence of this bug, they are able to reproduce the suspicious profile

observed by Chatterjee. In our implementation, we have not introduced any local change to

the thermostat and find a continuous and linear velocity profile for the DPD particles. We

present those results in Section IV B.

III. SIMULATION METHODS

We implemented the Lees-Edwards method, from scratch, within the software package

ESPResSo (Extensible Simulation Package for Research on Soft Matter) [35–38]. We provide

the details on the specific version in appendix A.

A. Dissipative particle dynamics

We consider a bulk fluid consisting of point particles with a mass m, a position ri and

a velocity vi. We use Molecular Dynamics (MD), which solves Newton’s equation for all

particles, subject to interaction forces:

m
d2vi

dt2
= fi (7)

where fi is the total force on the i-th particle. For dissipative particle dynamics (DPD)

[39], there are two modifications from this starting point: the particles are coarse-grained to

represent effective fluid elements instead of atoms, and the relative velocity of particle pairs

is thermostatted to introduce thermal motion and damping. The pairwise thermostatting

method in DPD implies that the method conserves linear momentum and can be used for
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hydrodynamic simulations, which sets it apart from Langevin dynamics, another common

choice in coarse-grained MD simulations.

The total DPD force fDPD
i on particle i can be decomposed into:

fDPD
ij =

∑
i 6=j

(
fR
ij + fD

ij + fC
ij

)
, (8)

where the random force fR
ij is

fR
ij = σ wR(rij) θij r̂ij , (9)

the dissipative force fD
ij is

fD
ij = −γ wD(rij) (r̂ij · vij) r̂ij , (10)

and fC
ij is a conservative force, which we define in Eq. (16). σ is the noise amplitude and r̂ij

is the distance vector. All the components of the DPD interaction are short-ranged, with

a cutoff distance rcut. The factors γ and θij characterize the strength of the random and

dissipative force, subject to the weight functions, wR and wD when r < rcut. The time

averaged white noise θij must have the following properties:

〈θij〉 = 0 (11)

〈θij(t)θkl(t
′)〉 = (δikδjl + δilδjk)δ(t− t′) (12)

with δij as Kronecker’s delta. We define the relation between wR and wD as[
wR(r)

]2
= wD(r) (13)

for r < rcut [40]. In order to satisfy the fluctuation dissipation theorem, the relation

σ2 = 2kBTγ , (14)

where kB is Boltzmann’s constant and T is the temperature, must hold [13]. This results in

the noise amplitude σ. The weight function wR is defined as:

wR(r) = 1− r

rcut

(15)

In DPD simulations, it is customary to use a soft repulsive interaction with amplitude

aij to account for conservative (C) forces fC
ij .

fC
ij = aij

(
1− r

rcut

)
(16)

for r < rcut and zero otherwise. This soft potential allows the use of larger time steps in the

simulation.
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B. Green-Kubo techniques

The simplest way to evaluate bulk properties in MD simulations is to use Green-Kubo

relations. They allow bulk properties to be connected to macroscopic fluxes caused by

thermal fluctuations. In the present study, we focus on the self-diffusion coefficient D and

the shear viscosity η. Thus we evaluate the fluxes of the particle velocities and the shear

stress. The characteristic equation for the self-diffusion coefficient is

D =
1

3

∫ ∞
0

〈vi(0)vi(t+ τ)〉|tdτ (17)

where v represents the velocity of an individual particle i in three dimensions. The angular

brackets 〈 〉|t represent the ensemble average over all lag times present in the simulation. We

use τ as the lag time. For the shear viscosity in the unsheared case, we use

η =
V

kBT

∫ ∞
0

〈σxy(0)σxy(t+ τ)〉|tdτ (18)

where kBT is the thermal energy, V is the box volume, and σxy is the off diagonal element

of the instantaneous virial stress tensor, also known as Irving-Kirkwood stress tensor,

σk,l =

∑
imiv

(k)
i v

(l)
i

V
+

∑
j>i F

(k)
ij r

(l)
ij

V
(19)

where k and l ∈ [x, y, z] indicate the dimension of the coordinate.

C. Brownian motion

The migration of the fluid particles with time is evaluated using the mean-square dis-

placement (MSD)

MSD(τ) = 〈(x(t+ τ)− x(t))2〉 (20)

where x describes the position of a particle in three dimensions. With the shear flow be-

ing absent, the MSD allows the diffusion coefficient to be calculated using the relation

6Dt = MSD(t). The computation of the mean square displacement is also relevant in shear-

ing and non-steady state regimes. Furthermore, it can be evaluated for several directions

independently allowing more detailed insight. This is of particular interest for the simu-

lations with shear flow.[41] Several predictions can be made for the diffusion of Brownian

particles under shear flow. The MSD of our DPD fluid particles should follow the prediction
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for Brownian particles. In steady shear flow, the displacement of particles along the shear

direction x is given by [42]

〈(x(t)− x(0)− γ̇z(0)t)2〉 = 2Dt

[
1 +

1

3
(γ̇t)2

]
(21)

with a cubic dependence of time, indicating an enhanced diffusion due to the particles

migrating through regions with different shear velocities [41]. For oscillatory shear flow, the

MSD in the shearing direction x follows the relation 〈∆x(t)2〉 = 2Defft [43] with

Deff = D

[
1 +

γ2
0

2

(
2 sin2 Φ + 1

)]
(22)

where Φ represents the phase and γ0 the deformation amplitude, indicating a squared de-

pendence from the amplitude of the shear flow. No position correction is necesary if particle

positions are evaluated at integers of complete periods.

D. Calculation of correlations

We rely on two different procedures to compute formulas of the form

〈X(ti)X(tj)〉 (23)

found in Eqs. (17) and (20). A logarithmic correlator is available in ESPResSo for the set of

built-in observables. Such a correlator samples the term X(ti)X(tj) for fixed time differences

[0,Mm∆t, 2Mm∆t, . . . , N · Mm∆t], for consecutive values of the exponent m, taking the

form of blocks having time intervals that increase by a factor M between successive blocks.

Storing lag times that are M times larger implies the addition of N samples instead of M

times more samples: Storing samples up to a time lag τmax = N ·Mmmax∆t requires mmaxN ,

which is O(log τmax) hence the name logarithmic correlator. This technique, which is useful

when the number of samples would otherwise exceed the available memory, is presented in

the book by Frenkel and Smit [5].

Another technique is the Fast Correlation Algorithm (FCA) that relies on Fourier trans-

forms [44] to speed up the computation. We use the implementation provided by the Python

package tidynamics [45] for autocorrelation and mean-square displacements. We refer to this

method as a linear correlator as it requires data samples linearly spaced in time. To use the

FCA method, we store the variables of interest to disk (the position for the mean squared

displacement or selected components of the stress tensor for the viscosity).
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The logarithmic correlator and the FCA only differ in their statistical sampling. The FCA

method is equivalent to compute the pairwise correlation for all time intervals available and

provides the same results, up to rounding errors, as computing the correlations with a naive

O(N2
samples) loop, where Nsamples is the total number of sample times.

For the computation of Eq. (22), we do not perform an average over time. The correlation

is not of the form (23) and the two techniques presented above do not apply.

IV. RESULTS AND DISCUSSION

We carried out all of our simulations with 10,000 particles and densities of ρ = [3, 4, 5, 6, 7].

We used a strength of the repulsive parameter from aij = 0, i.e. no repulsive force, up to

aij = 175. These parameters are similar to the ones used by Zohravi et al. [46] as this was

the most complete study concerning the influence of the density ρ and the strength of the

conservative interaction parameter aij on the shear viscosity, thus providing a good reference

point to benchmark our method. All simulations use a time step of ∆t = 0.005. The results

are available in full in the analysis notebooks, see appendix A for details.

A. Self-diffusion coefficient and viscosity of DPD fluids

In this section, we use the mean square displacement, Green-Kubo techniques, and Lees

Edwards boundary conditions to evaluate the equilibrium and non-equilibrium properties

of the DPD fluid. First, we start by measuring the self-diffusion coefficient D via the

mean square displacement and then we investigate the shear-viscosity η and its various

contributions using the two other mentioned methods. Simulations using Green-Kubo were

conducted at quiescent conditions whereas samples under shear used the LEbc method.

1. Self-diffusion coefficient

We show the diffusion coefficient that was obtained from the mean square displacement,

equation (20), of 10,000 particles at kBT = 1.0 in Figure 3. Each individual trajectory of

the particle was correlated using the logarithmic correlator from ESPResSo and subsequent

fitting of MSD = 6Dt. This results in 10,000 individual diffusion coefficients per simula-
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tion run. The results, shown in Figure 3, are obtained from an average of three individual

quiescent runs. Our results show that the diffusion coefficient decreases with an increase
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FIG. 3. The self-diffusion coefficient of a quiescent DPD fluid in dependence of the

repulsive force parameter aij for the densities ρ = [3, 4, 5, 6, 7] and kBT = 1.0. The lines

connecting the symbols are to guide the eye.

in repulsive strength as is expected since particles are hindered in their movement by the

other surrounding particles and their repulsive interaction. By increasing either the number

density of the particles or their repulsive strength, the overlap between the repulsive spheres

increases, hence, the movement is hindered through “caging” particles with other DPD par-

ticles due to the higher number of possible interaction partners or the higher interaction

strength. This leads to the lower effective diffusion coefficients with increasing density and

increasing repulsive strength shown in Figure 3. The diffusion coefficient reduces monoton-

ically with increasing repulsive strength for all number densities. Furthermore, the figure

shows that diffusion coefficients for lower densities are higher than those with increased

samples. This effect is present over the entire range of repulsive forces.
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2. Viscosity

The viscosity of the DPD fluid, on the one hand, is connected to the inter-particle forces

that are described in equation (8) and on the other hand to the overall momentum of the

particles that results in the kinetic contribution. The contributions can be further devided

up into the viscosity based on the random force fR, the dissipative force fD, the conservative

force fC. The sum of the kinetic and the conservative viscosity is referred to as the total

viscosity fT. We measure the viscosity using the Green-Kubo method as well as the Lees

Edwards method, which measures the instantaneous stress at the “wall”. That means that

we include the noise in these measurements as it generates a non-negligible contribution to

the integral of the autocorrelation. We measured the viscosity by two methods: First, by

the Green-Kubo formula (18) and, hence, by measuring the stress fluctuations in quiescent

simulations and second, by directly measuring the stress in a fluid sheared with the Lees-

Edwards method which will be explained in the next part of the paper. Here, we start by

discussing the results of the quiescent simulations. In order to fully describe our methods,

we first show how we obtained these results. Green Kubo results are calculated with the

logarithmic correlator of Espresso. We also sampled the data in a trajectory file at linear

time intervals and used the acf method of tidynamics. The online correlator collects data

up to τ = 100, 000. Following the initial warm up of 1,000,000 integration steps, we run the

simulation for a total 500,000 time steps of ∆t = 0.005. We then plot the integral of the

autocorrelation function and choose a uniform cut-off for all the simulation in order to avoid

any bias between the iterations. The convergence of the autocorrelation function as needed

by the Green Kubo method is illustrated in Figure 4.

Depending on the contribution, we show the two possible correlation methods. For the

kinetic component, a linear correlator was used (shown in green in the left plot of Figure 4).

This linear correlator was necessary because the kinetic component cannot be extracted

from the simulation package directly. A distinct plateau beginning at t = 2.0 can be found

in this data. For the conservative stress, Figure 4 center, we used a linear (green) as well a

logarithmic (blue) correlator, to illustrate differences between them only due to the sampling.

Once more, a distinct plateau beginning at the cut-off is visible. The dissipative part of

the viscosity as shown in the right plot of Figure 4 could only be evaluated using the

logarithmic correlator. The dominant part of this viscosity contribution originates in the
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FIG. 4. Integral of the autocorrelation (ACF) of the DPD fluid (ρ = 6.0 and aij = 25)

as measured by the Green Kubo method. Data obtained using a linear correlator are

shown in green and a logarithmic correlator in blue.

delta peak around τ = 0 of the autocorrelation due to the sampling of the random noise.

The fluctuating contribution to the autocorrelation function are very small. We decided to

cut off the integral at this very initial point where the noise starts to dominate.

The results for the Lees Edwards experiments were obtained from one simulation run per

data point. The warm up of our fluid consists of 100,000 integration steps. After this warm

up, we turn on the shear flow with γ̇ = 1.0 and obtain 200,000 stress values, 100 integration

steps apart from each other (20,000,000 integration steps in total). We applied the blocking

method [47] to obtain mean and standard deviation of this data and present the results

in the right column of Figure 5 using the pyblock Python module [48]. For this analysis,

we only used the last 217 = 131, 072 measurement values in order to ensure a steady shear

profile is obtained. The usage of more or fewer data points, e.g. the last 216 or 170,000, did

not change the results, Therefore, we are comfortable with the assumption that a stationary

regime was obtained. We also chose the number of sampling points as a power of 2 because

it is most efficient to apply the blocking method on such a data set.

In Figure 5, we show the collected results from all simulations. The left column shows the

quiescent results from the Green Kubo method and the right column shows the shear results

from the experiments using the Lees Edwards method. We also show a superimposed view

of this data in the analysis notebook supplementary information to this paper. The kinetic
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FIG. 5. The viscosity of a DPD fluid for various repulsive force parameters aij for the

densities ρ = [3, 4, 5, 6, 7], at kbT = 1.0. The left column shows the results of the quiescent

Green Kubo analysis and the right column shows the same values as obtained with

shearing Lees Edwards boundary conditions. The dashed line shown in the DPD

viscosity represent the approximation found by Groot and Warren [39]. The dotted

lines are shown to guide the eye.
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viscosity decreases with increasing repulsive strength for both methods. This is in agreement

with the reduced diffusion constant of the particles (Figure 3). Samples with a higher density

ρ have a lower kinetic viscosity, except for the case of aij = 0.0 (no repulsion). Here, the

kinetic viscosity is the highest for all samples with a value of around ηkin = 1.2. The same

trends can be observed for viscosity measured via the Lees Edwards technique. However, the

reduction in the kinetic viscosity is more pronounced; the quiescent method always showing

higher viscosities than for Lees Edwards at high repulsive forces. For example, ηkin = 0.19

using Green-Kubo and ηkin = −0.07 using Lees Edwards at ρ = 3.0 and aij = 175. This

phenomenon can be explained by the additional impulse particle undergo when exposed to

a shear flow. Since the total viscosity consists of the contribution from the kinetic part and

from the conservative part that means it takes the contributions of the increasing repulsive

strength into account. The results are consistent with the case of no repulsive force present

where all samples show the same kinetic and total viscosity. The negative value for the

Lees-Edwards result can be explained by the high repulsive force between the spheres that

might result in a huge elasticity of the fluid. While there is a difference between the kinetic

component of the viscosity between the quiescent and shearing samples, no such difference

is observed in the total viscosity. Increasing the repulsive strength between the particles

increases the viscosity. The similarity between the Green Kubo and Lees Edwards results

is remarkable on average, there is only a maximal difference of ∆η
η

=
ηle−ηgk
ηgk

= 0.07 between

the two methods.

In our experiments, we also directly measure the dissipative part of the viscosity and

compare these values to the prediction by Groot and Warren [39]. Figure 5 shows that, for

no repulsive force present, the data points from Green Kubo lie exactly on the predicted line

whereas all points seem to be slightly shifted downwards but remain on a constant value for

higher repulsive forces. For the measurements obtained by the Lees Edwards technique, a

bigger separation between the theoretical prediction and the obtained values can be observed.

The values for an absent repulsive force also already deviate from the predicted values. A

possible reason for this discrepancy could be caused by the linear interpolation of the velocity

differences between the particles at the boundary. This might underestimate the real velocity

difference and, hence, also the real stress caused by the relative movement. Furthermore,

the introduction of additional energy via the shear could change the system in a way that

makes is effectively different from the quiescent one.
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The conservative viscosity shows a similar trend as the total viscosity. It starts from

ηcons = 0.0 in the cases without conservative force and increases monotonically thereafter.

The higher the density of a sample, the steeper is this increase. Error bars in this plot

are based on the sum of errors from the kinetic viscosity and the total one. Overall, our

experiments clearly show an agreement between both the static and the dynamic measuring

technique, even though the trends and numerical values for the Lees Edwards measurements

are less obvious and show a larger error.

B. Flow profile

We perform simulations for a DPD fluid with N = 10000 particles, a number density

ρ = 3, a friction coefficient γ = 4.5, a cut-off radius rcut = 1.0 and Fmax = 25.0. The

shear velocities in our simulations were v = 0.1, 1.0, and 1.5. We investigated the height

dependence of the flow velocity in the gradient direction to check if the flow profile was

properly equilibrated and uniform across the box. For this purpose we divided the box in 50

horizontal slabs, oriented along the gradient direction and determined the average velocity

of the DPD fluid particles in each slab after a start-up time of 1000 t = 50, 000. We show the

average and standard deviation based on three different, independent snapshots for three

different shear velocities in Figure 6. The expected flow linear flow profile is also included

as dashed lines for comparison.

The resulting shear gradient is linear and in good agreement with the expected shape.

Furthermore, an increase in the number of bins to improve the sampling resolution along the

box height did not have an impact on the linearity or slope. We find that our implementation

does not show any discontinuity or spurious flows in the shear profile near the simulation

boundary. Therefore, the correction proposed by Chatterjee of omitting dissipative forces at

the boundary is not required here and such discontinuities are not inherent to Lees-Edwards

boundary conditions. We conclude that the corrections suggested by Chatterjee [34] are not

necessary and confirm the previous research by Leimkuhler and Shang [18].
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FIG. 6. Height dependent velocity profile of the DPD fluid for 3 different shear veloc-

ities v = [0.1, 1.0, 1.5]. The expected linear shear profile is shown as a dashed line.

C. Brownian motion with shear flow

The analysis of the mean-square displacement (MSD) enables the identification of Brow-

nian motion by the linear dependence of the MSD on time. Whereas the viscosity of the

DPD fluid is of Newtonian character, the MSD is influenced by the shear. In sheared sys-

tems, there exists a cubic-in-time contribution (Eq. (21)) to the MSD that was observed

experimentally for polystyrene spheres by Orihara and Takikawa [42].

In computer simulations using the Lees-Edwards method, the study of diffusion depends

on the ability to reconstruct the physical trajectories of the particles even though they ex-

perience “jumps” when crossing the boundaries. As the coordinates remain in the primary

simulation box, we use the accumulated offset defined in Eq. (6) to obtain physically consis-

tent trajectories. The study of Brownian motion thus serves as an extra verification of the

correctness of our implementation. Once more we perform simulations for a DPD fluid with

with the parameters mentioned in subsection IV B. A repulsive force of Fmax = 25.0 for the

continuous shear simulations and Fmax = 5.0 for the oscillatory shear simulations was used.
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1. Continuous shear

We chose five different shear velocities between v = 0.1 and v = 1.5 resulting in shear

rates ranging from γ̇ ≈ 0.003 and γ̇ ≈ 0.05. The MSD of the particles was measured after

equilibration of the shear flow.
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FIG. 7. Results for the MSD and diffusion coefficient D in continuous shear. The

upper part shows the development of the MSD over time for the neutral direction

(black) and the shearing direction for 5 different shear rates γ̇. The lower part shows

diffusion coefficient D determined from fits to the neutral and shearing direction, for

each shear rate.

Figure 7 shows the expected scaling behaviour of the MSD for the neutral and the shearing

direction for one example per shear rate. Colored curves show the actual measurement

data, black dotted lines show fitted curves to this data. Following the relations presented
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in subsection III C the slope m = 1.0 in the neutral direction is unaffected by the shearing.

The MSD in the shearing direction shows a gradual transition from m = 1.0 to m = 3.0

depending on the shear rate γ̇. The corrected mean squared particle displacement, which

accounts for the shear contribution, shows a cubic behaviour as expected from equation (21).

The lower part of Figure 7 shows the measured diffusion coefficient D and standard deviation

for the neutral and shearing direction as determined by three independent runs. We obtain

these values by fitting the theoretical expressions of subsection III C to the measured values.

The ratio of the diffusion coefficient in the neutral and vorticity direction has a maximum

value of around 2.5%. Hence, we can say that the values are in excellent agreement with

each other.

2. Oscillatory shear

We measured the diffusion coefficient in the neutral direction during the oscillatory flow

to be D = 0.61±0.01. We then plot the expected effective diffusion coefficient Deff following

equation (22). The results shown were obtained from fits to 299 periods of oscillatory shear.

Fittings of the MSDs were cut off at τ = 104 as the MSD at larger times is the result of too

few averaging points.

For oscillatory shear, we can obtain a phase dependent diffusion coefficient, as shown in

Figure 8 for two different strains γ. Furthermore, we show the strain dependence of Deff at

two fixed phases φ which follows a squared relationship with the strain. Both results indicate

the correct handling of jumps across a boundary and the correct handling of interactions. For

large strains, we can observe a deviation of the measured Deff that is significantly higher.

This deviation can be explained by the high velocity at the boundaries. Since the shear

velocity is higher in this case.

Hence, Lees Edwards boundary conditions are indeed translationally invariant and do not

require any special modification at the boundary in order to avoid a spurious discontinuities

in the flow. As long as the thermalization and velocity difference is calculated correctly by

taking the shear velocity into account one can even model shear flow phenomena with a

shear velocity that is changing over time.
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V. CONCLUSIONS

We have designed and implemented the method proposed by Lees and Edwards in 1972

for the simulation of linear shear flows in Molecular Dynamics. We provide in section II the

information for the practical implementation in the simulation software, specifically on the

distance function, the cell system, and the storage of the trajectory offset, that will be useful

as a starting point for other scientists. In addition, our code is available publicly under an

open-source license.

We demonstrated the Lees-Edwards method with a dissipative particle dynamics (DPD)

fluid, a common choice in mesoscopic fluid simulations, to obtain a linear velocity profile.

We find a good agreement between the equilibrium and non-equilibrium properties of DPD

fluids as evaluated by Green-Kubo, for quiescent experiments, with Lees-Edwards boundary

conditions experiments under shear flow. We were able to reconstruct continuous trajectories

from the shear simulations, as if the system was infinitely extended, as is typically done

for periodic simulation boxes. We observe the diffusion of particles with the mean square

displacement and diffusion coefficient in equilibrium as well as in non-equilibrium situations,

using then the reconstructed trajectories. We recover the predicted enhanced diffusion of

Brownian particles in shear flow, which would be impossible to do without the quantity

xpart, LE defined in Eq. (6). These results are of special interest as they allow for a direct

comparison to the experiment of Orihara and Takikawa under steady shear [42] and to the

one of Takikawa and Orihara under oscillatory shear [43].

Our work opens up new possibilities to conduct numerical experiments involving simula-

tions that require an explicit solvent undergoing shear flow within the convenient simulation

package ESPResSo. We confirm the results of Leimkuhler and Shang [18] that the combi-

nation of DPD and Lees-Edwards yields a translationally invariant system, which ensures a

sound basis for further research with this simulation setup.

One prospective use case is the yielding of gels where periodic boundaries are necessary

to capture the macroscopic behavior. Highly localized restructuring can lead to a feedback

between the applied shear deformation and network structure that would not be captured

by other methods. This work also allows us to capture the shear-induced orientation of, e.g.,

soft particles or liquid crystals where many neighboring interactions must be considered.
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Appendix A: Computational reproducibility

We perform the simulation with the package ESPResSo [35–38]. We based our work on

version 4.0 of ESPResSo and took care to minimize the number of locations modified. Our

modifications to ESPResSo are available on Zenodo [49]. ESPResSo is a C++ package with

Python bindings, so that a simulation consists in a Python program that configures and exe-

cutes the algorithm from the C++ “core”. For dumping trajectories, we used the H5MD [50]

writer of ESPResSo. H5MD is a HDF5-based specification for molecular simulation data.

We collected all the parameters, simulation programs, and analysis notebooks (jupyter

notebooks http://jupyter.org/) in a dedicated repository, also archived on Zenodo, for

reproducibility purposes [51]. We use NumPy [52] for basic numerical operations, SciPy [53]

for numerical integration and curve fitting, matplotlib [54] for the figures, h5py [55] to read

HDF5 files, tidynamics [45] to compute correlations, and pyblock [48] for the block analysis.
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