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Abstract In general, multibody models are described with a set of redun-
dant coordinates and additional constraints. Their dynamics is thus expressed
through differential algebraic equations. As an alternative, the minimal co-
ordinate formulation permits to describe a rigid system with the minimal
number of variables leading to ordinary differential equations which can be
employed in a coupled state/input estimation scheme. However, in some cases
the explicit relation between the full system coordinates and the minimal co-
ordinates may not be available or analytically obtainable, as for closed-loop
mechanisms. In this work, a previously presented deep learning framework
to find the non-linear mapping and reduce a generic multibody model from
redundant to minimal coordinates is employed. The resulting equations are
then exploited in an extended Kalman filter where the unknown inputs are
considered as augmented states and jointly estimated. The necessary deriva-
tives are given and it is shown that acceleration measurements are sufficient
for the estimation. The method is experimentally validated on a slider-crank
mechanism.

Keywords Kalman filter, input estimation, multibody dynamics, minimal
coordinates, deep learning, physics-informed neural networks

1 Introduction

Nowadays, operational data are more and more important to guide the con-
trol algorithms in taking decisions: following the rise of ‘artificial intelligence’,
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Nomenclature
Z integer numbers ot matrix inverse
R real numbers ® Kronecker product
a € R™ column vector AA=A, ;. Ap tensor-matrix
a €R  scalar product (Einstein sum conven-
A € R"1X"2 matrix tion)
A € R"1xXn2Xn3 3.4 tensor . a0 = 420 .. .
I, € Z™a*"a jdentity matrix U= U= gz time derivatives
0y, €Z""1 ze)fo vector % € R™a1*Ma2 partial derivatives
Mg Ng s
Oay,ap € Z"e1 792 zero matrix o- a priori prediction
t time + Lo L
. O a posteriori prediction
At time step O =0 = th ti 1
aT transpose operator r=00=7) 7 1me sample

the smart products and production lines are expected to react to the environ-
mental conditions. In order to do so, an evaluation of the relevant variables is
required.

However, while some quantities such as temperature or acceleration are
relatively easy to measure, others are more difficult to obtain in an inexpen-
sive, non-invasive way. A typical example is the force/torque estimation in
mechanical systems for which sensors exist, but they may be difficult or even
impossible to mount in practice due to geometrical or economic reasons. These
quantities might be of paramount importance in design, prediction or mainte-
nance decisions. In this case, the engineering community frequently resorts to
the state estimation discipline, combining models and available measurements.

If the physical system is a complex mechanism composed by several parts,
its digital counterpart is typically a multibody model. Several coordinate selec-
tions have been proposed in literature and the most common ones, such as the
‘Cartesian Coordinates (CC)’ [1] or the ‘Natural Coordinates (NC)’ [2] for rigid
systems, involve a redundant number of variables and additional constraints,
leading to a formulation in Differential Algebraic Equations (DAESs) to ex-
press the dynamics. On the other hand, the ‘Minimal Coordinates (MC)’ [3]
make use of a minimal amount of variables, allowing to formulate the dynamics
through Ordinary Differential Equations (ODEs) and express the system in its
state-space representation. However, for a generic model, the MC may not be
available if the explicit non-linear mapping with the full system coordinates is
unknown or not analytically obtainable as, for instance, for spatial closed-loop
mechanisms.

In the case the model has an ODE structure, it can be effortlessly coupled
with estimation algorithms since they are typically developed for such formu-
lation. For example, a Kalman Filter (KF) [4,5] can be employed to combine
model and measurements information to update the states which describe the
system. Several KF variations have been proposed in literature for specific
aims, for instance: the common discrete KF grants a straightforward imple-
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mentation in digital computers (in contrast to the continuous time KF [6]),
the extended KF permits to deal with non-linear equations thanks to a local
linearisation and the augmented KF allows the combined estimation of states
and unknown inputs added as augmented state.

Due to the typical redundant coordinate formulation and consequent DAEs
structure of common multibody models, the application of Kalman filtering
methods is usually not straightforward. Different approaches to convert such
DAEs into ODEs to employ multibody models in a Kalman filtering scheme
and perform state-input estimation have been proposed in literature [7]. In
fact, over the past years, several authors have explored the use of dynamic
multibody models for state-estimation purposes. On the one hand general
multibody formulations have been explored in this context [8,9,10,11]. For
example in [10], the constraints in the DAEs of the dynamics formulation are
eliminated at each iteration allowing the reduction to ODEs and the coupling
with an estimator. The price to pay is a non-negligible additional computa-
tional load during the simulation. In [11] on the other hand, the constraints
are approximately enforced through penalty terms. While this solution per-
mits to convert the DAEs to ODEs, care has to be taken in the choice of the
penalty factors in order to approximate the constraints with sufficient accu-
racy. These methods have a broad applicability, but carry a relatively high
computational cost and specific modifications to the multibody formulation
are generally required to be able to handle the constraint equations. More
dedicated approaches have also been explored where nonlinear reduced order
modelling methods have been deployed [12,13] such that they can be more
readily integrated in an estimation framework. In [12], the DAEs are reduced
to ODEs in an offline phase for various configurations and during the on-
line phase an interpolation is performed. This method has the benefit that it
does not impact the simulation (and estimation) time, however, it requires an
ad-hoc solver for the reduced order model setup and the interpolation may
become non-trivial for spatial mechanisms with more rigid DOF's.

In this work, a model order reduction approach based on deep learning
presented in [14,15,16] is exploited to obtain the minimal coordinate mapping
and reduce a multibody model from redundant to minimal coordinates. The
non-linear mapping from redundant to minimal coordinates is approximated
with a neural network. This permits to reduce the general multibody model
DAEs to ODEs that can be implemented in an estimation scheme. Here, in
particular, the resulting minimal coordinate model will be employed in an
Augmented Discrete Extended Kalman Filter (ADE-KF) for the combined
estimation of system states and inputs. In this framework, the acceleration
measurements are sufficient to guarantee the observability of the system as
showed theoretically by the given derivatives and practically by the experi-
mental results. This can be a strong benefit for industrial applications where
accelerometers are typically available or easily applied, in contrast to more
expensive or invasive sensors.

The paper is structured as follows: the remainder of this section lists the
main contributions; section 2 recalls the Kalman filter formulation; section
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3 refers to the multibody formulation and the model order reduction frame-
work used in the procedure; section 4 reports the proposed methodology which
combines the reduced-order model in a Kalman filter and provides the formu-
lation for a generic case; section 5 shows a validation case on a slider-crank
mechanism; section 6 contains some concluding remarks.

The main contributions are:

— deep learning is used to approximate the unknown explicit mapping be-
tween full and minimal multibody coordinates, obtaining an ODE model;

— the obtained model is embedded in an augmented discrete extended Kalman
filter to jointly estimate states and unknown inputs and the required deriva-
tives are given;

— the methodology is experimentally validated on a slider-crank mechanism,
demonstrating that acceleration measures are sufficient to guarantee the
observability of the system without additional position-level sensors.

2 Kalman filtering

In this section, the Augmented Discrete Extended Kalman Filter (ADE-KF)
is briefly reviewed, as it will be exploited in the proposed estimation scheme.

2.1 (Discrete) Kalman filter

In general, the system to be predicted can be represented as a dynamic process,
described by the states € R™ and subjected to the inputs w € R™*, which
can then be related to the (measurable) outputs y € R™v:

&= f"(x,u)+r,: (1)
y=h(z,u) +r, (2)

where f* € R"», h € R™ respectively represent the system and measurement
equations, each subjected to noise r, € R" and r, € R"v, in corresponding
order.

The scope of the state-estimation discipline is to predict the process states
@. In practice, the (continuous) system equation f* is usually implemented in
a digital computer, thus it is converted into its discrete form f.

2.2 Augmented Kalman filter

In certain applications, some unknown excitations may act on the system. In
this case x, which represents the system states * € R"=* can be augmented
with the unknown inputs a € R™ to be estimated:

- [7]

a
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In absence of more accurate information, the unknown input can be considered
a random walk:

a=r, (4)
where r, € R™e is random noise.

Assuming that f, h are known together with the previous states wj71 and
inputs u,_1, they can be used to make the a priori prediction:

z; = f@l i, ur) (5)

When the measurement y, then becomes available, it can be used to update
the prediction a posteriori. The optimal least-square correction leads to the
Kalman filter [5]:

y; = h(z; ur) (6)
P =FP' F'+R, (7)
K,=P  H' (HP  H'+R,) (8)
af =27 + K- (yr —y;) (9)
Pf=(I,- K, H) P~ (10)

Where P € R™=*"= indicates the state covariance, K € R"=*"v is the Kalman
gain and R, € R™*"= R, € R™*"v are the supposedly known covariances
of, respectively, r;, ry,. F' € R"*"= H € R™*"= are, in the case of linear
systems, respectively the state-update and measurement matrices.

2.3 Extended Kalman filter

For non-linear systems, the formulation can be extended performing a local
linearisation which leads to:

_ Of (@,u)

F=—0 (11)
~ Oh(z,u)

H=— (12)

In the next section, a redundant multibody formulation is reduced to min-
imal coordinates, which permits to define the dynamic function f in ODEs for
multibody systems. It is then plugged into the KF scheme in section 4, where
F and H are derived.

3 Multibody dynamics

This section reviews the different multibody formulations and the model order
reduction procedure.
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3.1 Generalized coordinates

Several formulations have been proposed in literature to describe the dynamics
of a multibody model. In general, a system can be described by the Lagrange’s
equations:

T
d (9£(a,9) 9L(q,9) 9cq(q) _

E( agq)_ azq +( cgqq) Ac = u4(q) (13)
cy(q) = 0.

where g € R™ is the vector of generalized coordinates of the system, u, € R™
is the vector of (non-conservative) external forces, A, € R is the vector of
Lagrange multipliers, ¢, € R"¢ is the constraints function. £ is the Lagrangian
function that, in the case of rigid mechanisms, corresponds to the kinetic
energy, assuming that there are no additional energy-preserving forces:

. 1 . .
L(g.4) =5 4" My(a)d (14)
where M, € R"¢*"¢ is the mass matrix.

Generally, the coordinates g can be a composition of position and angular
DOFs.

3.2 Natural coordinates

A particular choice is the use of natural coordinates [2] g, € R™, where
(redundant) position-only DOF's are employed. As proposed in [17], the motion
of each body b can be described by 12 variables, the elements of one point o
and of the rotation matrix Ry, for the B bodies:

0y = [0h,20 Oby, Obz)" (15)
Ry = 1oz, Toy, Tb:)
= [[ro,1, mo2 T3], o4, To5, Tos) s [To7s Tos, Teo]’] (16)
T
Qnb = [04, T)pr oy Ty ] (17)
T
qn = [(I};p RS} qg,b’ ce qE,B] (18)

Choosing position-only DOFs allows to express a constant mass matrix
M,(gn) = M, € R™*" with the added benefit that the velocity inertia
forces vanish. Thus, Eq. (13) becomes the DAEs:

T
Cn(qn) - Oc

Given its inertia and rotation parametrization, a generic (redundant DOF's)
multibody model can be post-processed into NC [14]. Thus, NC are considered,
without loss of generality, the starting formulation, in order to benefit from
the constant mass matrix definition.
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3.3 Minimal coordinates

As an alternative, it is possible to use a minimal amount of DOFs; as in the
minimal coordinates [3] g,,, which do not require additional constraints. Thus,
it leads to the ODEs:

Mm(qm) dm +Qm(qm) [qm QEJ = u'rrz(qm) (20)

where M, € R"m*"m and G,, € R"m*"m>"m are respectively the MC mass
matrix and the MC gyroscopic tensor.

The aim is to reduce the initial redundant DOF's to the minimal coordinates
and eliminate the need of algebraic constraints.

3.4 Model order reduction

Knowing the non-linear mappings that relate the NC and the MC:

qm = gm(qn) (21)
qn = gn(qm) (22)

the model initially expressed (or post-processed into) NC can be projected
into the corresponding MC model through:

dgn\ " ., Ogn
M, = M 2
" <5qm> " ogm, (23)
G, = < aqm> M, 9,00, (24)
_ (9g.\"
Uy, = < aqm> Uy, (25)

as showed in [14] where it is proposed to use deep learning to approximate
the mappings g,,, g, as in general they may not be available or analytically
obtainable.

Such procedure thus permits to reduce the original DAEs in NC q, to
ODEs in MC gq;, which can be solved with a more versatile choice of inte-
gration schemes and straightforwardly included in an estimation framework.
The reference to the system full coordinates can be re-obtained with a back-
projection as in Eq. (22):

whose time derivatives are:
. g, .
n = —— dpm 26
n =5, 4 (26)
= q,, 1 +8qm0qm [dm ] @7
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Thus, the model order reduction procedure presented in [14] which allows
to obtain the minimal coordinate model for a generic multibody system is
here exploited in order to obtain the ODE formulation which can then be
combined in the estimation scheme. The procedure with the required system
and measurement equations (and related derivatives necessary for the Kalman
update) is presented in the following section.

4 State and input estimation for multibody models

In this section, the MC multibody model is embedded in a KF scheme for
coupled state and input estimation. The given equations are general for any
number of MC n,, and augmented states n,.

4.1 System equation

Given a mechanical application where the mechanism is represented with a
multibody model, some external inputs acting on the system may be unknown
because they are too difficult or impractical to measure. The system dynamics
of Eq. (20) can thus be rewritten as:

M (gm) Gm + G, (Gm) [Qm qu] = U (qm) + an(a) (28)

where a,, € R"™ whose expression is defined in subsection 4.3, is an additional
force term dependent on the unknown parameters a € R™@ which can be
considered augmented states to be estimated.

As shown in section 2, state-estimators are usually derived for first-order
systems, with few exception (for example [18]). Thus, the system equation can
be rewritten as a first-order relation in the states x:

dm
T =|qmnm (29)
a

dm
T = qm = f"(z,um) (30)
a

where as in Eq. (4), the augmented state a is assumed a random walk:
a=r,
and from Eq. (28):

gm = M',;l (um +an, — Qm [Qm q;I;L]) (31)
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Here, in order to discretize f* into f, a forward Euler solver is used leading

to:

Tr = f(xT—la um,‘r—l)

qm,r dm,r—1 _Qm,‘rfl Om
Qm,r = q.m,T—l + At dm,‘r—l + Om
ar ar—1 _Oa Tq

It is thus possible to derive F

Om,m Im Om,a

Of (z, un) Oion  Oéim Oéion
F= Oox =T+ At G am da
L Ya,m Ya,m Oa,a
where:
o4 OM ! L
oqm

0qm
ou da 0G
—1 m m Yy 7. .T
M <6qm N Oqm  Ogqm [dm q’”])
Om M-l <5am

= ) i
aqm m aqm Qm q )

8‘jm —1 aam

“Am gOm

da m da
with ‘9(5;—(;" defined in Section 4.3 and:

Iqm 0¢m0qm, " Ogqm Iqm " 0¢m0qm
-G, +G,
oM -1 oM
m_ _ _M—l m M—l
0qm "oogqy, ™"

O, &g, Tu

0qm  \0¢mOqm "

0Gn _ (g \' \y Pon
0qm  \9qm0gn " 0qmOgm

dgn \ g,
M, — I
* (3qm) " 0¢m0¢m0qm

4.2 Measurement equation

2 T T 2
oM, ( 0°gn ) 8gn+<8gn> M 0°gn

(32)

(33)

(34)

(41)

As measurements, it is assumed to employ only accelerometers. Recalling the
definition of NC displacements for each body, Eq. (17), and for the full system,
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Eq. (18), they can be extended to NC accelerations:

qnb = [O;)ra rlrJI::m rbT:yv rl’;I:z] (42)
Gn = [Gp 1 s Gpps - G ) (43)

where ¢, , € R'? is the body NC acceleration for the b = 1,..., B bodies and
Gn, € R™ is the full-system NC acceleration.

Thus, assuming that the NC points o are chosen in correspondence of the
accelerometer positions, the measurements y can be written as:

Yy= SyEn Qn (44)

where Syc, € R™*™ is the (generalized Kronecker delta) sparse matrix to
select the n, accelerometers channels from the n,, natural coordinate acceler-
ations.

Thus, recalling Eq. (27) for the acceleration, the measurement equation
becomes:

. 8 n .. 62 n . .
Y= h(w7 um) = SyEn qn = SyEn (ag qm + ﬁ [Qm qg;]) (45)

And it is possible to derive H:

Oh(z, u,,) Oh_ _Oh_ Oh
H = ox - [fﬁlm Gm %] (46)
where:

Oh [ 329n .. 8971 3‘1m aggn . - T
a.  — n | 5. a. dm m Um 4
ae = 59 (gt It G 2 T i 51| (47
Oh [ 09, Odm g, .
. = YEN . 2 m 4
B~ U | Oam D | Damday (48)
8h _agn 8d77l

— =85, == 4
da Syen 10g,, Oa (49)

In case the accelerometer rotates in space, the local body-frame accelera-
tion 07, which supposedly has the same orientation of the accelerometer, can
be retrieved with the body rotation matrix Ry as:

6t = Ry, 6, (50)

and used instead of the global-frame acceleration 6,. In this situation, the
derivative of R}, with respect to the MC g,, has to be included in Eq. (47).
It is also highlighted that the assumption for which the NC points are
chosen in correspondence of the accelerometer positions does not impact gen-
erality since, if it is not the case, an affine transformation can be performed:

g, =Vi(oi, R;) quyp

- H[[éaOITZ]]] ®IS} b (51)



Title Suppressed Due to Excessive Length 11

where, for body b, the initial g, can be projected into the i—accelerometer
position g;, , through the constant projection matrix V; € R'*'? given the
accelerometer initial position and orientation, respectively o; € R3, R; €
R3*3, with respect to the local body frame.

4.3 Augmented state

In certain cases, an external force a,, dependent on some unknown input may
be acting on the system and its estimation can be performed including an
augmented state a to track (and estimate) the related unknown input.

Assuming that the projection matrix of external inputs into NC is known,
it leads to:

a, = Sn(gm) a (52)
(99, \"
a, = <8qm> S, a (53)

where a,, € R", a,, € R"" are respectively the NC and MC projection of
the unknown external force and S,, € R™*"= is the input projection matrix
whose expression is given in App. A.

Then, it is possible to determine the derivatives required for the calculation

of F, H:
99, \ " 9(S. a)
4
(3qm3qm) Snat (3qm> Oqm (54)
8am
9 =On (55)
dan,  (0g.\"
Oan _ ( aqm) s, (56)

With these quantities, all contributions are known for evaluating the aug-
mented state-estimator.

4.4 Observability analysis

An essential part in the deployment of estimation schemes is to ensure the long
term stability, or boundedness, of the estimator covariance. If the system is
observable, the long term stability of the estimator is guaranteed [5]. Ensuring
observability in multibody systems and input estimators is often particularly
challenging as steady-state drift can occur when no position level measure-
ments are available [11,19]. As a pragmatic approach, dummy measurements
can be added to stabilize these measurements, but this scheme requires addi-
tional tuning and can lead to a reduced accuracy [20].
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The (local) observability of a system can be assessed through the Popov-
Belevitch-Hautus (PBH) observability matrix [21]. For the proposed scheme,
the following PBH observability matrix Oppy can be obtained:

[F* —sT
Orpn = | g ’
[—s I, I, 0.0
9gm OGm __ Odm
frng 6q"L (aq"L § Im da (57)
Oa,m Oa,m —S Ia
oh oh oh
L Ogm 9qm da

where F* € R"=*"= ig the continuous time counterpart of F'. This system is
(locally) observable if:

rank(OpBH) =n, VseC (58)

where C is the complex domain and s represents the eigenvalues of F* to as-
sess the observability at the corresponding eigenfrequencies. A full rank should
be obtained from the combination of the system and measurement matrices
in order to establish the observability. For s = 0, the upper part of the ob-
servability matrix becomes singular and this is typically where issues occur
for classical multibody model-based estimators, requiring additional position-
level measures as, for instance, in [11]. However when considering the measure-
ment equations from Eqgs. (45)-(49), it can be seen that the structure of the
measurements enables a full column rank observability matrix Oppg. This
is obtained thanks to the independent coordinate formulation and it implies
that, for the proposed approach, a fully observable system is obtained in the
case of n, < n, < ny, provided that the n, measurements are linearly inde-
pendent. The estimation scheme can therefore be reliably deployed over long
time frames, which is key when considering multibody applications. In par-
ticular, in the validation case of the next section, it is demonstrated that a
single unknown input force and a single accelerometer measurement lead to a
stable estimation; in general, the observability analysis should be repeated for
different combinations of sensors.

5 Validation

In this section, the experimental validation of the methodology is presented.

5.1 Slider-crank mechanism

The proposed approach is validated on a slider-crank mechanism. The original
multibody model is based on the CAD representation of the test rig and com-
posed by 10 rigid bodies: the base block, the motor support, the crank support,
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the motor, the motor shaft, the crank shaft, the crank, the connecting rod,
the slider, the track.

The NC description which consists of 12 variables per body (centre of grav-
ity position plus parameters of the rotation matrix) is employed, according to
[17]. The bodies are linked by joints which constraint the relative motion,
leading to one rigid degree of freedom. In particular: the motor shaft is con-
nected to the motor with a revolute joint and fixed to the crank; the crank is
connected to the connecting rod with a revolute joint; the connecting rod is
connected to the ground with a sliding joint; the remaining bodies are fixed
to the ground (they are reported for completeness even if not impacting the
dynamic analysis). The constraint equations are supposedly unknown and not
used in the proposed methodology as presented in the model order reduction
procedure of Sec. 3.4.

The experimental setup and the corresponding multibody model are shown
in Fig. 1, while the list of bodies and related inertia properties are reported in
Tab. 1.

X m]

02
¥ [m)

Fig. 1 the slider-crank mechanism. On the left, the experimental setup; on the right, the
corresponding multibody model.

body mlkg] Jzalkg - m?] Jyylkg - m?] J=2[kg - m?]
Base Block 3217.5 292.256 627.413 871.406
Motor Support 1.349 | 6.052-1073 3.89-1073 2.346-1073
Crank Support | 0.841 | 2.678-1073 | 1.954-1073 | 8.04e-10—*

Motor 14.2 0.0286 0.0937 0.0937
Motor Shaft 1 1.214-1073 | 2.997-10~3 | 2.997.103
Crank Shaft 0.496 | 3.873-10°° 7.069-10—4 7.069-10~4

Crank 0.183 | 1.652-10737 | 4.015-10739 | 1.506-10—35

Connecting Rod | 0.254 | 7.535-1073% | 5.477-10739 | 2.897-10735
Slider 0.219 2.271-10~4 9.641-10-° 2.808-10—4
Track 13.774 0.331 0.0523 0.334

Table 1 the list of bodies for the slider-crank model with the respective mass m and inertia
moments J.
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The brushless servomotor is a MAC3000 with integrated controller MACQ0-
B4 from JVL (www.jvl.dk). The motor encoder sensor returns the measured
rotation angle and velocity of the shaft, respectively indicated as 6 and 6.

In addition, a monoaxial MEMS accelerometer (3711D1FB200G) from
PCB (www.pcb.com) is placed on the slider to measure its translational ac-
celeration along the y-axis, indicated as Y.

A target on the (rotational) velocity is given to the controller which sub-
sequently determines the motor torque, indicated as T'.

5.2 Input estimation

test rig I comparison
- T .
Y controller »—‘ T@, 0,Y,T
KF
,,,,,,,,,,,,,,,,,,,,,,,,, T

1 offline - ! l'ﬂ h

[ T —

| multibody | .2 |

‘ —&-=— AE r--1 ODE model

g2 |

| model =g |

T F'& |

| o |

Fig. 2 diagram of the coupled state-input estimation scheme and signal comparisons. § and
6 are respectively the crank angle and rotational velocity; Y is the slider translational accel-
eration; T is the motor torque. f and h indicate respectively the system and measurement
equations.

The original NC multibody model is reduced to MC according to the proce-
dure presented in section 3. The crank angle is chosen as minimal DOF and the
MC-NC mapping is obtained with a (periodic) neural network as introduced
in [14,16].

In this application, the neural network approximating the g,, mapping con-
sists of two non-linear layers with 8 units (each) and the (hyperbolic tangent)
sigmoid activation function [22] to ensure the required twice differentiability
and a final (linear) regression layer to reconstruct the original NC. The neu-
ral network model is built in Tensorflow [23], a common machine learning
library. A numerical simulation of the NC model is used in the (offline) neural
network training to obtain the reduced-order MC model, without any experi-
mental data which are employed only in the Kalman filtering validation. The
neural network training is performed with the Adam optimization scheme [24]
fed with batches [22] of the training set; 10% of the data are employed as
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test set for the early stopping regularization [25]; 10000 epochs (i.e. training
iterations) are employed, taking about 30 minutes on a consumer laptop.

The obtained MC model is then embedded in the ADE-KF as showed in
section 4. The unknown input torque is estimated through an augmented state
and the Kalman filter update is based solely on the slider y-acceleration. The
crank rotational angle and velocity are also retrieved with the reduced order
model as additional virtual measures, but they are used merely for comparison
purposes and not employed in the estimator.

A diagram of the coupled state-input estimation scheme with the time
signals retrieval and comparison is reported in Fig. 2.

A (rotational) velocity profile of 10 seconds and composed by three levels
(respectively 40, 50, 60 rad/s) is given to the slider-crank controller. The noise
on the multibody states —i.e. MC position and velocity — is supposed zero and
all the noise is assumed on the augmented state as r, = 1.5 - 1074,

A comparison between the measured and the estimated quantities —i.e. the
crank angle and rotational velocity, the slider translational acceleration — is
reported in Fig. 3, with a zoom-in in Fig. 4 to show the start-up and the two
velocity transitions.

The supposedly unknown input torque is shown in Fig. 5 for the full time-
series and the velocity transitions, where the difference in amplitude between
the real and the estimated quantity can be ascribed to the un-modelled friction
acting on the slider.

—500 1 sl i 111}

0 2 4 6 8 10
t[s]

—— measured —== estimated

Fig. 3 comparison between the measured and estimated quantities for the crank angle 6
and rotational velocity 0; slider translational acceleration Y. Only the latter sensor is used
for the Kalman filter update.
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Fig. 4 comparison between the measured and estimated quantities for the crank angle 6
and rotational velocity 0; slider translational acceleration Y. Zoom-in (per column) on the

velocity transitions.

T[N -m)]

3.00 3.25 350 3.75 4.00

—— measured —== estimated

t[s]

6.50 6.75 7.00 7.25 7.50

Fig. 5 comparison between the real and estimated torque 7. On the left, full time series;

on the right, zoom-in on the velocity transitions.

In order to better match the peaks in the velocity transitions, the assumed
noise on the augmented state can be increased to, for instance, r, = 51073
leading to the results shown in Fig. 6 and Fig. 7 for the sensor quantities and
in Fig. 8 for the input torque estimation. While the peaks, in particular the
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initial one at start-up, can be better matched, as expected the noise content
in the estimation is higher. It can be noticed that the stability of the filter is
not impacted, as shown by the comparison of the augmented state evolution
in the two cases, reported in Fig. 9.

0.0 1

0 [rad]

—2.5 4

0 [rad/s)

Y [m/s’]

~500 1
0 2 4 6 8 10
t[s]

—— measured —== estimated

Fig. 6 comparison between the measured and estimated quantities for the crank angle 6
and rotational velocity 6; slider translational acceleration Y. Case with assumed augmented
state noise rq = 5 - 1073,

In the case information on the input torque is available (based on the
application, e.g. periodic input), they could be included in a more detailed
augmented-state model instead of the generic random walk in order to im-
prove the estimation results. Similarly, the addition of an accurate friction
model is expected to reduce the discrepancy between the motor torque and
the estimation.

Finally, it is noted that, while in this specific slider-crank application it
would have been possible to employ an analytical mapping between the mini-
mal and the full coordinates, the model order reduction procedure is generally
applicable as it does not require access to the constraint equations (which in
the case of common multibody software packages may not be accessible) and
can be employed also on mechanisms with multiple rigid degrees of freedom
or with closed loops (for which analytical mappings cannot be obtained), as
shown in [14].
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Fig. 7 comparison between the measured and estimated quantities for the crank angle 6
and rotational velocity 0; slider translational acceleration Y. Zoom-in (per column) on the
velocity transitions. Case with assumed augmented state noise r, = 5- 1073,

0 2 4 6 8 10

—— measured —== estimated

Fig. 8 comparison between the real and estimated torque 7. On the left, full timeseries;
on the right, zoom-in on the velocity transitions. Case with assumed augmented state noise
rq=5-1073.
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Fig. 9 comparison between the evolution of the augmented state a with the two different
covariance values. While the noise level adapts, the stability of the prediction is not impacted.

6 Conclusion

A model order reduction framework based on deep learning is exploited in or-
der to find a minimal amount of variables to describe a redundant coordinates
multibody model. It allows to describe the dynamics with ordinary differen-
tial equations which can be easily employed in an estimation scheme. Thus,
the application with the augmented discrete extended Kalman filter to concur-
rently estimate states and unknown inputs (as augmented states) is introduced
and the formulation for a generic case is shown. Finally, the methodology is
demonstrated on an slider-crank mechanism. The benefit of the novel tech-
nique based on a non-linear model order reduction is the possibility to use
solely acceleration measurements without compromising the observability of
the system.
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A Input projection matrix

Here, the generic input projection into natural coordinates is obtained. Assuming that the
external input (to be estimated) a is a force or a torque in one of the 6 directions:

at.x

at,y

a a
a= | =002 (59)

ar Qr x

ar,y

Qr,z

where at, ar € R® are respectively the translational and rotational components.
If the force/torque is acting on the body b, its projection into natural coordinates a, , €
R!2 can be obtained as:

An b = |: I3 at:| = Sn,b a (60)

where @, € R3*? is the NC angular transformation matrix:

Oy (m) = (agb)T (61)

ary

with r, € RY representing the body rotation matrix components as in Eq. (16) and 40y € R3
as the angular displacement. Knowing [26] the NC force due to a torque along a certain unit
vector, the NC angular transformation matrix can be expressed as:

[rb»z} X *

O == | [roa). (62)
[Tbﬂz] X

Therefore, the obtained NC force can be projected into minimal coordinates as:

9 T
am = (%) S;Fen anp (63)

where Spe,, € Z'2X™n is the (generalized Kronecker delta) sparse matrix to select the 12
body coordinates from the n, natural coordinates and an, € R™™ is the MC projection of
the unknown external forces. If, instead of the reference body frame, the input is applied on
the generic body-attached frame f, a projection as in Eq. (51) has to be performed.

It is finally noted that while for the generic case the derivative of the input projection
matrix Sy has to be taken into account in Eq. (54), in the case of purely translational forces
it is constant, simplifying the expression.
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