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Abstract: Model predictive control (MPC) has shown to be an efficient technique for real-time flood control. The evaluation of the control
performance is, however, typically restricted to a limited set of flood events. In this paper, the control performance is evaluated for a long-term
time series of 116 years of meteorological data as well as after climate scenarios. Such an evaluation became feasible thanks to the use of
a computationally efficient MPC approach based on a fast conceptual river model and an adapted genetic algorithm. The uncertainties related
to the river model and the rainfall forecasts were accounted for. The influence of these uncertainties on the MPC control performance
was, however, found to be limited after applying data assimilation. Comparing the proposed MPC approach to a standard programmable
logic control (PLC)-based regulation shows that – despite the presence of uncertainties –MPC outperforms the PLC-based approach because
it strongly reduces the incurred damage cost, the flood risk, and the frequency of flooding. This is still the case after considering the
climate scenarios. DOI: 10.1061/(ASCE)WR.1943-5452.0001144. This work is made available under the terms of the Creative Commons
Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.
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Introduction

During recent decades, the number of river floods has steadily in-
creased in many parts of the world (EM-DAT 2005; MEA 2005;
Brouwers et al. 2015). Two examples of ongoing trends associated
with this increase are the increasing trend of extreme rainfall events
due to climate change (Lehner et al. 2006; Willems et al. 2012;
IPCC 2014; Vansteenkiste et al. 2014) and rising urbanization
(Huang et al. 2008; Hawley and Bledsoe 2011; Poelmans et al.
2011). Model predictive control (MPC) strongly reduces the im-
pact of these economically costly natural disasters in comparison
with classic programmable logic controller (PLC)-based control
strategies (Barjas-Blanco et al. 2010; Breckpot et al. 2013; Chiang
and Willems 2015). Several successful applications of improved
reservoir operation by MPC can be found in the literature

(Galelli et al. 2014; Schwanenberg et al. 2014; Tian et al. 2015;
Ficchi et al. 2016).

MPC was first used in the chemical process industry (Wendt
et al. 2002; Nagy 2009), but in the meantime this technique has
been widely used for many other control applications (Qin and
Badgwell 2003). For flood control applications, a nonlinear river
model is recommended to simulate the nonlinear river system dy-
namics that are excited during flooding. The resulting optimization
problem is a nonlinear and nonconvex programming problem,
which is difficult to solve. Nonlinear MPC is one of the success-
fully tested solutions to this problem (Barjas-Blanco et al. 2010;
Schwanenberg et al. 2010; Breckpot et al. 2013) but has important
obstacles related to computational efficiency and global optimality.
Therefore, Vermuyten et al. (2018a) presented a combination of
MPC and a reduced genetic algorithm (RGA) as a successful
and fast alternative for classic MPC controllers, utilizing fast con-
ceptual river models. This heuristic optimization method can solve
nonlinear, nonconvex optimization problems and has been success-
fully applied to the Demer basin in Belgium, but only after assum-
ing ideal circumstances of no uncertainties in the river model and
the rainfall forecasts. For the single flood events in that case, dam-
age cost reductions between 2% and 31% were obtained with the
combined RGA-MPC technique in comparison to the current
PLC-based regulation.

The optimization process of RGA-MPC depends on hydrologic
and hydraulic models and rainfall forecasts in order to anticipate
future rainfall events. The performance of such a model-based
approach inevitably depends on the magnitude of errors and uncer-
tainties (Walker et al. 2003; Brandimarte and Baldassarre 2012).
Consequently, these uncertainties must be considered when compar-
ing the proactive MPC controller with the reactive PLC-based regu-
lation. Therefore, this study introduces both a hydrodynamic model
and rainfall uncertainty to the RGA-MPC optimization process.

The feedback mechanism of MPC, based on the receding hori-
zon strategy, systematically eliminates model deviations, resulting
in some inherent robustness toward uncertainties (De Nicolao et al.
1996; Magni and Sepulchre 1997; Mayne et al. 2000). For large
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uncertainties, however, the impact of this inherent robustness is
limited and the optimization algorithm needs to be extended with
efficient model-updating algorithms and uncertainty propagation
techniques (Sarma et al. 2006). Such data assimilation (DA) meth-
ods update the river model and flood forecasts based on observa-
tions (Hutton et al. 2011, 2014a, b; Liu et al. 2012). The flexible
DA approach presented in Vermuyten et al. (2018b) is used in this
study to account for uncertainties and systematically eliminate the
deviations between predictions and observations.

The purpose of this study is to statistically investigate the impact
of model and rainfall uncertainty on MPC performance, compare
the flood control management of the PLC-based regulation and the
MPC regulation while accounting for uncertainties, and assess the
impact of future climatic conditions on the efficiency of both flood
control management strategies. For this, a long-term series of
116 years of meteorological data are considered for the analyses,
rather than analyzing a limited set of single flood events. This ap-
proach is possible thanks to the high computational efficiency of
the RGA-MPC technique.

Study Area

The Demer basin in Belgium is a densely populated area of
2,334 km2, mostly consisting of loam and sand. The Demer river,
which is the main stream of the basin, and its most important tribu-
taries (Herk, Velpe, and Gete) are highly sensitive to rainfall. The
average downstream discharge of the Demer river in the summer
(August) is 6 m3=s, and 34 m3=s in the winter (December). The
basin’s average annual rainfall is approximately 800 mm.

The Demer basin is a very flood-prone area with a long history
of floods. The Flemish government has installed several hydraulic
structures and flood retention basins to reduce the flood risk in this
area. These hydraulic structures are currently operated individually
by means of reactive PLCs. Typically, these PLCs only consider the
current upstream and downstream water level of the hydraulic
structures to determine the gate control actions based on if-then-else
rules. This local, instantaneous, and static control strategy is ex-
pected to result in nonoptimal control actions. Consequently, severe
floods still occurred during the storms of September 1998 and
February 2002, amongst others.

This paper considers the subbasin of the river Herk as the study
area. This subbasin covers the rivers Kleine Herk in the north and
Grote Herk in the south. An inline retention basin with a storage
capacity of 700,000 m3 is installed to protect the city of Stevoort
(Fig. 1). The water flow in this network is regulated by three
hydraulic structures. The Flemish Environment Agency (VMM)
has implemented a full hydrodynamic river model of this subbasin

in the InfoWorks RS software version 14.0, based on detailed cross
section data. This model includes the main floodplains, retention
basin, and hydraulic structures.

Materials and Methods

Conceptual Modelling

A full hydrodynamic river model, implemented in the InfoWorks
RS software, is available for the study area, but this type of model is
too computationally slow for optimization applications. Therefore,
this study makes use of conceptual models created semiautomati-
cally by means of the conceptual model developer (CMD) tool
from Wolfs et al. (2015). In this modelling approach, the entire net-
work is divided into distinct units to simplify the network topology
according to the storage cell concept. This results in a surrogate
model or emulator that is less detailed than the full hydrodynamic
river model, but computationally much more efficient. Simulation
results with the full hydrodynamic model are used to calibrate the
conceptual model. The number of locations with water level and
discharge observations is too limited to allow direct calibration
of the conceptual model for these data (Meirlaen et al. 2001;
Vanrolleghem et al. 2005). Successful applications of conceptual
models include river flood analysis, integrated catchment mod-
elling, and recently, real-time flood control (Wolfs et al. 2012;
De Vleeschauwer et al. 2014; Wolfs et al. 2016; Meert et al. 2016;
Vermuyten et al. 2018a).

The conceptual model schematizes the river network by reser-
voirs interconnected by hydraulic structures. The flows over these
structures are used to calculate the volume in each reservoir based
on a mass balance equation. Hypsometric curves transform the res-
ervoir volumes to water levels at one or more locations along the
river reach, represented by each reservoir. Based on these water
levels, the flows over the hydraulic structures and the different con-
trol objectives are calculated. The inputs to the conceptual model
are rainfall-runoff discharges. These can originate from measured
or synthetic hydrographs or hydrological models. This study makes
use of the same rainfall-runoff model as considered in the full
hydrodynamic InfoWorks RS model, which is the probability-
distributed model (PDM) (Moore 1985, 2007).

Model Predictive Control and Reduced Genetic
Algorithm

This study makes use of the RGA-MPC approach developed by
Vermuyten et al. (2018a) for real-time flood control. The RGA-
MPC technique applies MPC to the fast conceptual river model
and considers an RGA for optimizing the future gate positions.
MPC uses the predictions of the future system states generated
by the conceptual river model in order to determine the regulation
that minimizes the flood damage along the river network. In this
way, the interaction between the different hydraulic structures is
taken into account and the controller can anticipate future rainfall
and flow conditions. Consequently, this proactive MPC controller
results in an improved control strategy in comparison to the local
reactive PLC-based control strategy, as shown by Vermuyten et al.
(2018a) under idealized conditions by assuming perfect rainfall and
model predictions.

At each control time step of MPC, a new optimization with
RGA is performed. First the initial conditions of the prediction
model are updated in order to represent the actual system states.
Next, gate level (GL) scenarios representing possible future control
strategies are generated. The RGA heuristic optimization method
strongly reduces the number of possible solutions by considering

Floodplains

Retention basin

Hydraulic structure

Fig. 1. River network of the Herk case study, together with the reten-
tion basin, the hydraulic structures, and the city of Stevoort.
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only the gate operation positions at a subset of the future time mo-
ments as optimization variables. New GL scenarios can be gener-
ated randomly or by mutating the best control strategy so far. Each
newly generated control strategy is analyzed by applying it to
the conceptual river model and comparing the results with those
of the best regulation so far. The best control strategy is selected
based on the control objectives and used during the next iteration
until the stopping criteria are met. The RGA converges faster to-
wards a near-optimal solution than a standard genetic algorithm.
For more details about the RGA-MPC technique, the interested
reader is referred to Vermuyten et al. (2018a).

Hydrodynamic Model Uncertainty

Hydrodynamic river-model uncertainties result in deviations be-
tween the flood predictions used in the optimization process and
the actual river observations. The main cause of these deviations
is the strong seasonal variation in riverbed vegetation, which influ-
ences the flow regime along the river network. The influence of the
vegetation is limited in winter conditions, while the increased veg-
etation in summer results in higher riverbed roughness and, accord-
ingly, in higher water levels (De Doncker 2010). The InfoWorks
RS model of the Demer basin uses Manning’s roughness coefficient
to model riverbed roughness. Two vegetation growth scenarios are
considered in this study: an average vegetation growth scenario,
and a summer vegetation growth scenario with increased riverbed
roughness. For both scenarios, a conceptual river model is cali-
brated based on the results of the InfoWorks RS model with
adjusted settings for the Manning coefficients. The differences
in model simulation results between these two vegetation growth
scenarios are assumed to be indicative of the hydrodynamic
river model uncertainty. More details about this experimental
setup and river model uncertainty quantification can be found
in Vermuyten and Willems (2018).

Rainfall Uncertainty

MPC is known for its proactive control strategy, which means it can
anticipate a future flood event. However, because of rainfall uncer-
tainties, the wrong anticipatory control actions may be taken. For
example, if the rainfall forecast of an event is overestimated, a city
might be put under water based on that rainfall forecast to reduce
the flood damage peak later on in the event, whereas for the actual
rainfall it may have been possible to avoid any flood damage.

The inputs of the prediction model used in the MPC controller
are rainfall-runoff (RR) forecasts. The uncertainty in these RR in-
puts is defined as rainfall uncertainty and originates from rainfall
forecasts (rainfall forecast uncertainty) and the hydrological model
(hydrological model uncertainty). RR forecasts and corresponding
RR observations are required to investigate the effect of rainfall
uncertainty on the real-time control performance. RR forecasts
are, however, not available for this study. Therefore, an RR forecast
generator was developed.

The RR forecast generation starts from the observed RR series.
These RR series represent the actual rainfall over the river catch-
ment and originate from synthetic hydrographs or from a hydrolog-
ical model after applying historical rainfall and evapotranspiration
inputs. The purpose of the forecast generator is to create for each
event a set of RR forecasts based on the observed historical RR
series. To this end, random rainfall forecast errors are added to the
observed RR series; they are sampled from a distribution of rainfall
forecast errors and assessed based on historical forecast errors, as
per the method explained by Timbe (2007) and Barjas-Blanco et al.
(2010).

Rainfall uncertainty increases with an increasing prediction
horizon. For the same study region, Timbe (2007) quantified that
the relative rainfall forecast error ranges from approximately −10%
to approximately þ10% at the time of forecast, increasing by 0.2%
per hour over the prediction horizon. The same uncertainty esti-
mates were applied by Barjas-Blanco et al. (2010). Based on these
uncertainty estimates, the uncertain RR forecasts are generated as
follows:
• At the time of forecast, a uniformly distributed random error

percentage between −10% and þ10% is created.
• Then, with fixed time intervals, a beta-distributed random error

percentage between −p and þp is created. The variable p is
defined as 10þ 0.2i, with i the time in hours along the predic-
tion horizon. The maximum of this beta distribution is set equal
to the previous error percentage and the average set to the value
corresponding to a fixed percentage between the previous error
percentage and zero. By using beta distributions, the autocorre-
lation in the forecast error is taken into account (an overestima-
tion at time t will probably also lead to an overestimation at
time tþΔt).

• The generated random error percentages are then applied to the
observed RR discharges at the corresponding time steps.

• A piecewise cubic hermite–interpolating polynomial is fitted
through these error-perturbed discharges versus lead time,
resulting in a stochastic RR forecast.
Fig. 2 shows an example of a stochastic RR forecast generated

in this way. The forecast frequency, i.e., the frequency at which new
forecasts become available, is 6 h in this study. The control horizon
of the MPC controller is 48 h. Therefore, RR forecasts are gener-
ated with an interval of 6 h during the event and have a maximum
lead time of 54 h.

Data Assimilation

Without a feedback mechanism, state predictions tend to drift away
from the actual system states due to the presence of uncertainties.
Data assimilation methods use river observations to update the ini-
tial states of the river model and improve its accuracy.

State estimators can update all system states based on a limited
number of observations. This study uses the ensemble Kalman filter
(EnKF) to update the initial states of the prediction model (Evensen
1994). Because the effect of such a state estimator reduces with
increased lead time, a prediction error method was also applied to
reduce the prediction errors due to uncertainties, as recommended
by Madsen and Skotner (2005) and Vermuyten et al. (2018b).

R
R

 d
is

ch
ar

ge
 [m

3 /
s]

Lead time i [h]
0 54

3

6.5

Observed RR

Rainfall uncertainty [%]
10+0.2i

RR forecast

Fig. 2. Example of an RR forecast (black) generated from an observed
RR series (dark grey), together with the error band (light grey).
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The recently introduced flexible prediction error method (Flex
PEM) by Vermuyten et al. (2018b) analyzes past model residuals
and applies an appropriate error correction scheme to prior model
predictions based on this analysis. The combined approach of the
EnKF and Flex PEM reduces the loss in control performance due
to hydrodynamic model uncertainty by about 75% (Vermuyten
et al. 2018b).

Long-Term Analysis

In order to apply RGA-MPC to long-term series, a framework sim-
ilar to that proposed in Vermuyten et al. (2018a, b) for single flood
events is set up. In this case, a conceptual model is used to represent
the physical river system (i.e., the simulation model) and the opti-
mization procedure (i.e., the prediction model). When considering
model uncertainty, the conceptual model representing average veg-
etation growth is used as the prediction model, while the conceptual
model representing summer vegetation growth is used as the sim-
ulation model. Long-term RR series are considered as input for the
conceptual models. Based on these input series, both PLC-based
simulations and closed-loop MPC optimizations with a temporal
frequency of 15 min and a control horizon of 48 h are performed.
When considering rainfall uncertainty, uncertain RR forecasts gen-
erated with the methodology described above are applied to the
prediction model, while the historical RR observations are applied
to the simulation model. The number of considered GL scenarios
per optimization step in MPC is limited to 200 as a stopping cri-
terion. In order to further limit the computational time of the long-
term MPC analyses, the controller first analyzes the damage cost
for the PLC-based regulation over the next 48 h. If no flood damage
is expected for this control strategy, the PLC-based regulation is
applied and no optimization is performed. If the PLC-based regu-
lation does not succeed in avoiding flood damage, the MPC con-
troller optimizes the control strategy for the next 48 h and applies
the resulting optimal control strategy to the simulation model.
The flowchart in Fig. 3 summarizes the different steps taken by
RGA-MPC to determine the future control strategy.

The results of both the PLC-based regulation and the MPC regu-
lation are analyzed with respect to the cost of the incurred damages
of the entire study area. The peak-over-threshold (POT) method is
applied to the resulting long-term damage series, with a threshold
equal to EUR 1,000. This means that each flood event with a dam-
age peak larger than EUR 1,000 is selected and considered for the
flood damage cost analysis. This analysis compares the damage
costs of the flood events when applying the MPC regulation versus
those of the PLC-based regulation. The damage cost over the com-
plete long-term period is compared, as well as the number of flood
damage events. Also, the return period of the different flood dam-
age events is determined and plotted against the cost of incurred
damages. Based on these results, the flood risk can be approxi-
mated by Deckers et al. (2010)

R ~¼
Xn−1
i¼1

�
1

Ti
− 1

Tiþ1

�
�
�
Di þDiþ1

2

�
þDn

Tn
ð1Þ

where R = total flood risk per year; n = number of flood events
during the considered period; Ti = return period of flood event i;
and Di = damage cost of flood event i. The damage cost of a flood
event consists of the economic damage cost, calculated by means of
damage functions, and the cost for overtopping the retention basin
dike. The latter is assessed based on the land-use socioeconomic
data, by means of the LATIS tool (Deckers et al. 2010), which
is the standard tool for assessing flood-related damage costs in
Flanders.

Historical Observations and Climate Scenarios

For the long-term analyses, an observed series of 116 years of
hourly rainfall intensities, from January 1, 1900, until August 31,
2016, is applied. This series is simulated, together with daily po-
tential evapotranspiration observations for the same period, as
inputs to the PDM RR models of the Herk river. These lumped
conceptual hydrological models deliver long-term RR input series
for the conceptual river model. To assess the future impact of cli-
mate change on the Herk case study area, the observed rainfall and
potential evapotranspiration series are modified.

For precipitation, an advanced change factor−based statistical
downscaling method (Ntegeka et al. 2014) is applied, based on
two steps. In the first step, rainfall events are added or removed
depending on the change in the number of wet days. This change
is defined as the ratio of the number of wet days for the future sce-
nario period to the number of wet days for the historical period. For
a ratio larger than 1, indicating an increasing number of wet days,
dry days in the observed time series are converted into wet days.
The rainfall amounts for these wet days are randomly sampled from
the wet days in the observed time series. For a ratio smaller than 1,
wet days in the historical time series are converted into dry days in a
similar way. In the second step, the rainfall amounts are modified
using exceedance probability−based changes. For all wet days, the
corresponding exceedance probability is computed based on the

Fig. 3. Flowchart of the reduced genetic algorithm with data
assimilation.
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total daily rainfall amount. Next, the observed daily rainfall amounts
and corresponding subdaily variations are modified by the relative
change in the daily rainfall amount with similar exceedance proba-
bility. Relative changes larger than 1 indicate the intensification of
rainfall amounts, whereas changes smaller than 1 indicate drying.
For evapotranspiration, the daily amounts are modified by the change
in average daily evapotranspiration. This is the ratio of the average
daily evapotranspiration amount for the scenario period to the
amount for the historical period. All precipitation and evapotran-
spiration changes are defined and applied on a monthly time scale.
More information on these changes can be found in Tabari et al.
(2015) and Van Uytven and Willems (2018).

The modified time series are produced for a 29-membered
CMIP5 global climate model ensemble, the composition for which
is indicated in Table 1. The four most recent greenhouse gas sce-
narios of the Intergovernmental Panel on Climate Change (IPCC)
are represented in this ensemble (van Vuuren et al. 2011; Taylor
et al. 2012; IPCC 2014). Representative concentration pathway
(RCP) 8.5 is the business as usual scenario for which the temper-
ature rise at the end of the 21st century is not constrained and
reaches above 4°C. The corresponding subensemble includes nine
runs. On the other hand, RCP 2.6 is a strong mitigation scenario for
which the average global temperature rise is limited to 1.7°C. The
RCP 2.6 subensemble includes six runs. RCP 4.5 and RCP 6.0 are
two intermediate mitigation scenarios. Both subensembles consist
of seven runs. In this study, the historical period is defined as 1961–
1990 and the scenario period as 2071–2100 (2085). Hence,
the projected time series are representative of the end of the
21st century.

Results

Current Climatic Conditions

Figs. 4 and 5 summarize the damage cost analysis for the his-
torical rainfall observations. This analysis only considers flood
events with a damage cost higher than EUR 1,000. When apply-
ing the PLC-based regulation, flood events occur approximately
once every 1.5 years. The maximum induced damage cost is
equal to EUR 545,000. The 86 flood events that occur during
the considered 116-year period result in a total damage cost
of EUR 11 million. This corresponds to an annual flood risk
of EUR 97,000.

When applying MPC under ideal circumstances (Ideal MPC),
i.e., without considering model and rainfall uncertainty, only two
flood events occur. The maximum induced damage cost is limited
to EUR 5,000. This corresponds to a total damage cost and flood
risk reduction close to 100% in comparison to the PLC-based ap-
proach, given that almost all flooding over the past 116 years is

Table 1. Overview of the climate model ensemble

Modeling center or group Model name

RCP Model resolution

8.5 6.0 4.5 2.6 (Lon x Lat)

Centre National de Recherches Meteorologiques/Centre
Europeen de Recherche et Formation Avancees en Calcul
Scientifique

CNRM-CM5 1 — 1 — 1.4° × 1.4°

College of Global Change and Earth System Science,
Beijing Normal University

BNU-ESM — — 1 1 2.8° × 2.8°

Institut Pierre-Simon Laplace IPSL-CM5A-LR 1 1 — — 3.8° × 1.9°
IPSL-CM5A-MR 1 1 — 1 2.5° × 1.3°

Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for
Environmental Studies

MIROC-ESM-CHEM 1 1 1 1 2.8° × 2.8°
MIROC-ESM 1 1 1 1 2.8° × 2.8°

Meteorological Research Institute MRI-CGCM3 1 — 1 1 1.1° × 1.1°
Geophysical Fluid Dynamics Laboratory GFDL-CM3 1 1 — — 2.5° × 2.0°

GFDL-ESM2G 1 1 1 1 2.5° × 2.0°
GFDL-ESM2M 1 1 1 — 2.5° × 2.0°

Return period [y]

D
am

ag
e 

co
st

 [
]

1 10 100

0

545 000 PLC

MPC no DA

MPC DA
Ideal MPC

Fig. 4. Comparison of the incurred damage cost as a function of the
return period when applying the PLC-based control strategy and the
three considered MPC controllers, after historical rainfall observations.

Reduction by MPC [%]

0 20 40 60 80 100

Flood risk

Total damage cost

Number of floods

PLC MPC no DA MPC DA Ideal MPC

86

97 000

11M

Fig. 5. Comparison of the reduction of the number of flood events, the
total damage cost, and the annual flood risk by the three different MPC
controllers toward the PLC-based regulation, after historical rainfall
observations.
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avoided. This improved control performance of MPC toward the
PLC-based regulation can be explained by the anticipating capacity
of MPC and its prediction window. MPC performs an overall opti-
mization in which the operation of the various gates is coordinated
rather than providing a local solution such as the PLC-based regu-
lation. These regional, anticipating, and dynamic control actions,
taking future conditions and system interactions into account, are
the main advantage of model predictive controllers.

The presence of uncertainties can, however, lead the MPC con-
troller to take the wrong anticipatory actions. In order to take these
effects into account, model and rainfall uncertainties were intro-
duced in the model setup as described in the methodology section.
In this case, MPC without DA (MPC no DA) results in the same
number of floods as the PLC-based regulation. The induced dam-
age cost of each of these flood events is, however, strongly reduced.
This results in a reduction of the total damage cost and the flood
risk by 58%.

The introduction of a DA method (MPC DA) strongly reduces
the impact of the considered uncertainties on the real-time control
performance of MPC. As can be seen from Fig. 4, flood events
occur approximately once every 8 years in this case. This corre-
sponds to a reduction of the number of flood events by 83% to-
wards the PLC-based regulation. For all 15 remaining flood
events, the incurred damage cost is very low in comparison to the
corresponding damage cost with the PLC-based regulation. The
damage cost of a flood event with a return period of 116 years is
limited to EUR 40,000, which is 93% less than with the PLC-based
regulation. The total damage cost is reduced by 98%. Also, the
annual flood risk is reduced by 98% and is now equal to
EUR 1,900.

Based on the above results, it is concluded that MPC in combi-
nation with the applied DA method strongly outperforms the cur-
rent PLC-based regulation for the current climatic conditions.
Despite the presence of both model and rainfall uncertainties, the
performance of MPC with DA is close to that of ideal MPC. MPC
uses the available storage capacity more optimally, avoids unnec-
essary filling of the retention basin, and requires less storage to
avoid flooding. In this way, more storage capacity remains available
for possible future rainfall events and a better control performance
is obtained than with the reactive PLC controllers. It is expected
that the benefits of MPC toward the PLC-based approach will be
even more clear when considering larger networks.

Future Climatic Conditions

Climate change scenarios are applied to the historical observations
in order to further compare the flood control performance of the
PLC- and MPC-based control strategies and to investigate whether
they are climate proof and to what extent. The MPC results shown
in this section are those obtained with the MPC controller with DA
after introducing model and rainfall forecast uncertainty (MPC
DA). Similar to the analysis of current climatic conditions, only
flood events with a damage cost higher than EUR 1,000 are con-
sidered for the analysis.

Figs. 6 and 7 illustrate the impact of the different climate change
scenarios for both the PLC- and MPC-based regulations. The re-
sults of the 29 considered climate change scenarios are represented
by means of the median and the 50% and 90% confidence intervals
(CI). As can be seen from Fig. 6, climate change will increase the
frequency of flooding from less than once a year to more than once
a year when applying the PLC-based regulation. With the MPC
regulation, the flood frequency will increase from once every
8 years to once every 2 years, which is still less frequent than with
the PLC-based regulation under the current climatic conditions.
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Fig. 6. Comparison of the incurred damage cost as a function of the return period for the current and future climatic conditions, after PLC- and
MPC-based regulation: (a) PLC; and (b) MPC.
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Fig. 7. Comparison of the number of flood events, the total damage
cost, and the annual flood risk for the current and future climatic con-
ditions, after PLC- and MPC-based regulation.
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For both regulation strategies, the induced damage cost of each
flood event will increase in the future. This increase is, however,
more limited when applying MPC. Only the flood event with a re-
turn period of 116 years has an increase in damage cost of the same
order of magnitude as with the PLC-based regulation. Also, the
variation in the results due to climate change uncertainty is more
limited with the MPC regulation, especially for return periods
lower than 20 years. For higher return periods, the variation in-
creases and is more similar to the PLC-based regulation. Never-
theless, the induced damage cost with MPC when considering
climate change scenarios is consistently much lower than with
the PLC-based regulation, even for the current climatic conditions.
Only for flood events with a return period of 116 years are the varia-
tion in the results very high for both regulation strategies. However,
flood events with a return period of 116 years when applying MPC
have the same median damage cost as flood events with an approxi-
mate return period of 2.5 years when applying the PLC-based
regulation.

Fig. 7 evaluates how climate change will affect the number of
floods, the total flood damage cost, and the annual flood risk for
both the PLC- and MPC-based regulations. The results of the
29 considered climate change scenarios are represented by means
of boxplots. For both control strategies, the number of floods will
increase due to climate change. However, this increase and also the
variation in results is much larger with the PLC-based regulation.
For more than 75% of the climate change scenarios, MPC still re-
sults in a lower number of floods than the PLC-based regulation
does under the current climatic conditions. Moreover, the number
of floods for the most severe climate change scenario when apply-
ing MPC is only slightly higher than the number of flood events for
the least severe climate change scenario when applying the PLC-
based regulation. Climate change will also increase the total flood
damage cost and the annual flood risk for both control strategies.
Again, both the increase and the variation are larger when applying
the PLC-based regulation than with MPC. Moreover, the total dam-
age cost and the annual flood risk when applying MPC are for all
climate change scenarios much lower than when applying the PLC-
based regulation for the current climatic conditions.

For events with a return period less than 2 years, MPC avoids
flooding for almost all climate scenarios in comparison with the
PLC-based regulation, as can be seen in Fig. 8. Also, for events
with a higher return period, MPC reduces the damage cost by more
than 79% for at least 75% of the climate scenarios. Only for the
event with the highest return period of 116 years did damage cost
reduction become worse and the variation increase. Nevertheless,
MPC still obtains damage cost reductions of at least 21% for all
climate scenarios. The damage cost reduction by MPC is even
higher than 50% for 75% of the scenarios and can be as high as
93% for this extreme event.

For the future climatic conditions, the damage cost reduction
by MPC decreases compared to the performance obtained for the
current climatic conditions, see Fig. 8. This is, however, to be ex-
pected, because all climate change scenarios result in more extreme
events. The more extreme an event, the more difficult it is to reduce
the damage cost, as can be seen from Figs. 6 and 8. Moreover, the
decrease in damage cost reduction is limited for events with a return
period of 20 years or less. For events with a higher return period,
MPC still outperforms the PLC-based regulation with respect to
damage cost reduction.

MPC reduces the number of flood events by 83% in comparison
with the PLC-based regulation for the current climatic conditions,
see Fig. 9. Because climate change will result in more severe
events, it has to be accepted that more flood events will occur, also
after MPC, resulting in a lower reduction of the number of flood

events. MPC, however, still achieves reductions between 57% and
81% toward the PLC-based regulation with respect to the number
of floods. The reduction with respect to the total damage cost and
the annual flood risk will also be lower for the future climatic con-
ditions than for the current climatic conditions. The impact of cli-
mate scenarios on the reduction by MPC is, however, limited for
both criteria because reductions of more than 90% are still obtained
for the future climate scenarios.

In general, MPC strongly reduces the incurred damage cost and
the flood risk in comparison with the PLC-based regulation. More-
over, flooding occurs less frequently, as can be seen from the re-
duced number of flood events and the corresponding return periods.
Based on these findings, it is concluded that MPC outperforms the
current PLC-based control strategy, not only for the current climate
but also for climate scenarios. Consequently, the intelligent control
system by means of MPC is more climate proof than the PLC-based
control strategy.

Conclusions

Intelligent control systems are typically tested for single flood events
because most classic MPC controllers are too computationally de-
manding to perform long-term analyses. Long-term analyses
are, however, particularly useful to design new flood control
infrastructure based on statistical analysis considering long time
series of meteorological conditions, in order to perform risk
analysis and to investigate the efficiency of the flood control
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Fig. 9. Comparison of the reduction of the number of flood events,
the total damage cost, and the annual flood risk by MPC toward the
PLC-based regulation for the current and future climatic conditions.
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system under changing climatic conditions, among others.
Therefore, Vermuyten et al. (2018a) developed the RGA-MPC
technique, which combines MPC with a computationally efficient
RGA. This technique quickly converges toward near-optimal con-
trol strategies, allowing long-term optimizations to be conducted
within a few hours. In this way, more comprehensive analyses can
be performed, rather than considering only a limited set of indi-
vidual flood events.

This study conducted the first long-term analyses for the cur-
rent climatic conditions. The historical flooding in the Herk river
was analyzed for the historical observations between 1900 and
2016. Under ideal circumstances, i.e., without considering model
and rainfall uncertainties, MPC succeeds in avoiding almost all
flooding when this 116-year time series is considered, corre-
sponding to a damage cost reduction of EUR 11 million in com-
parison to the current PLC-based control strategy. This reduction
is due to the anticipating capacity of MPC, which allows the con-
troller to make use of the retention basin storage capacity at the
most optimal point in time. In addition, MPC requires less flood
storage to obtain this improved control performance, because it
makes more optimal use of the available storage capacity. Model
and rainfall forecast uncertainties can, however, have an impor-
tant impact on the real-time control performance by MPC. The
flexible DA method applied in this study strongly reduces this
impact. Performances close to that of ideal MPC are obtained
for the incurred damage cost, the flood risk, and the frequency
of flooding.

In a second phase, climate scenarios by the end of the 21st cen-
tury are considered. Because climate change results in more ex-
treme events, the number of floods, the incurred damage cost,
and the annual flood risk all increase. This increase is, however,
more limited when applying MPC than with the PLC-based control
strategy. For all climate scenarios, MPC strongly reduces the in-
curred damage cost, the flood risk, and the frequency of flooding
in comparison with the PLC-based regulation. It is concluded that
despite the presence of uncertainties, the intelligent control system
by means of MPC is more climate proof and outperforms the
current PLC-based control strategy.

It is advised to conduct follow-up studies in which the long-
term analyses are also carried out for larger river basins. In this
way, a more comprehensive analysis of the historical flood reduc-
tion and the impact of climate change can be obtained. Further-
more, the effect of rainfall forecast errors can be integrated into
flood predictions by using ensemble predicting systems (EPS) (Van
Steenbergen and Willems 2014). These EPS generate probabilistic
forecasts by perturbing the initial conditions of the numerical
weather prediction model. MPC, however, cannot explicitly deal
with these uncertainties because it is a deterministic controller.
Therefore, robust MPC methods have been developed to take
these uncertainties into account. Examples are multiple MPC (van
Overloop et al. 2008), adaptive multiple MPC (Delgoda et al.
2013), and tree-based MPC (Raso et al. 2014).
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study are available from the corresponding author by request.
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