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tively regulates FXR’s ability to activate the expression of the
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Lay summary
Activation of the nuclear bile acid recep-
tor FXR regulates gene expression net-
works, controlling lipid, cholesterol and
glucose metabolism, which are mostly
effective after eating. Whether FXR exerts
critical functions during fasting is
unknown. The results of this study show
that FXR transcriptional activity is regu-
lated by the glucagon/protein kinase A
and the FOXA2 signaling pathways, which
act on FXR through phosphorylation and
protein-protein interactions, respectively,
to increase hepatic glucose synthesis.
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Background & Aims: Embedded into a complex signaling net-
work that coordinates glucose uptake, usage and production,
the nuclear bile acid receptor FXR is expressed in several
glucose-processing organs including the liver. Hepatic gluco-
neogenesis is controlled through allosteric regulation of gluco-
neogenic enzymes and by glucagon/cAMP-dependent
transcriptional regulatory pathways. We aimed to elucidate
the role of FXR in the regulation of fasting hepatic
gluconeogenesis.
Methods: The role of FXR in hepatic gluconeogenesis was
assessed in vivo and in mouse primary hepatocytes. Gene
expression patterns in response to glucagon and FXR agonists
were characterized by quantitative reverse transcription PCR
and microarray analysis. FXR phosphorylation by protein kinase
A was determined by mass spectrometry. The interaction of
FOXA2 with FXR was identified by cistromic approaches and
in vitro protein-protein interaction assays. The functional
impact of the crosstalk between FXR, the PKA and FOXA2 signal-
ing pathways was assessed by site-directed mutagenesis,
transactivation assays and restoration of FXR expression in
FXR-deficient hepatocytes in which gene expression and
glucose production were assessed.

Results: FXR positively regulates hepatic glucose production
through two regulatory arms, the first one involving protein

kinase A-mediated phosphorylation of FXR, which allowed for
the synergistic activation of gluconeogenic genes by glucagon,
agonist-activated FXR and CREB. The second arm involves the
inhibition of FXR’s ability to induce the anti-gluconeogenic
nuclear receptor SHP by the glucagon-activated FOXA2
transcription factor, which physically interacts with FXR.
Additionally, knockdown of Foxa2 did not alter glucagon-
induced and FXR agonist enhanced expression of gluconeogenic
genes, suggesting that the PKA and FOXA2 pathways regulate
distinct subsets of FXR responsive genes.
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Conclusions: Thus, hepatic glucose production is regulated
during physiological fasting by FXR, which integrates the gluca-
gon/cAMP signal and the FOXA2 signal, by being post-
translationally modified, and by engaging in protein-protein
interactions, respectively.
Lay summary: Activation of the nuclear bile acid receptor FXR
regulates gene expression networks, controlling lipid, choles-
terol and glucose metabolism, which are mostly effective after
eating. Whether FXR exerts critical functions during fasting is
unknown. The results of this study show that FXR transcrip-
tional activity is regulated by the glucagon/protein kinase A
and the FOXA2 signaling pathways, which act on FXR through
� 2018 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Glucose supply to tissues is maintained through a complex reg-
ulatory network mostly driven by the pancreatic hormones
insulin and glucagon which control glucose use, storage and
synthesis. Through glycogenolysis and gluconeogenesis, the
liver contributes to �70–80% of glucose production during an
overnight fast,1 the remaining 30% coming from intestinal and
kidney gluconeogenesis in physiological conditions.2,3

Glucagon-induced gluconeogenesis is the only source of glu-
cose when glycogen stores are exhausted during fasting. Gluco-
neogenic substrates (lactate, alanine, and pyruvate) are
funneled to mitochondria to generate oxaloacetate (OAA)
through biotin-dependent pyruvate carboxylase. Cytosolic OAA
is decarboxylated and phosphorylated to yield phospho-
enolpyruvate (PEP), the primary building block of glucose,
through phosphoenolpyruvate carboxylase (PEPCK), a rate-
limiting enzyme of gluconeogenesis. Glycerol from triglyceride
breakdown also contributes by varying extents to gluconeogen-
esis, feeding into the gluconeogenic pathway as glyceraldehyde-
3-phosphate to generate fructose 1,6-biphosphate, the substrate
of fructose 1,6-bisphosphatase (FBP1) which irreversibly yields
fructose 6-phosphate (F6P).4 The regulation of hepatic glucose
production (HGP) is achieved through a sophisticated signaling
network involving post-translational protein modifications,
allosteric regulation and transcription factor activation and
018 vol. 69 j 1099–1109
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repression5,6 which essentially control the gene expression of
three rate-limiting enzymes, glucose-6-phosphatase (G6pc),
Fbp1 and PEPCK (Pck1)7 in a glucagon/cAMP-dependent
manner.8–11

Multiple transcription factors orchestrate hepatic gluconeo-
genesis, such as PPARc coactivator 1a (PGC1a), Forkhead box
protein O1 (FOXO1), small heterodimer partner (SHP) and cAMP
response element-binding protein (CREB), by regulating the
expression of gluconeogenic genes.12 The nuclear bile acid
(BA) receptor farnesoid X receptor (FXR) is a key regulator of
essential hepatic functions.13 Besides acting on BA homeostasis
and lipid metabolism, FXR participates in the regulation of glu-
cose homeostasis. Sequestration of intestinal BAs decreases
plasma glucose in patients with type 2 diabetes.14 This effect
correlates with increased GLP-1 expression and secretion which
may be attributed at least in part to FXR-mediated ChREBP inhi-
bition in intestinal L-cells,15 a mechanism equally operative in
the liver, where FXR represses glycolysis.16,17 Liver FXR controls
HGP through the regulation of Pck1 and G6pc gene expression.
Indeed, in vivo administration of natural or synthetic FXR ago-
nists improves glucose tolerance, decreases Pck1 and G6pc
expression and accordingly diminishes HGP in rodent models
of obesity or diabetes.18–22 Gene deletion studies mostly sup-
port a repressive role of FXR on gluconeogenesis,18,20 consistent
with the reported inhibitory action of SHP, a direct FXR target
gene, on gluconeogenic gene expression in vivo20 and
in vitro.23,24 However, whereas FXR activation may improve glu-
cose metabolism by downregulating HGP in pathological mod-
els of obesity and diabetes, its role in physiological fasting
conditions appears different. Fxr�/� mice develop transient
hypoglycemia and exhibit a delayed increase in HGP upon fast-
ing.25–28 In addition, the induction of hepatic G6pc and Pck1
expression is significantly blunted in fasting Fxr�/� mice.26,29

Taken together, these data point to pro-gluconeogenic proper-
ties of FXR during fasting. Since the molecular mechanisms of
FXR action in fasting are unknown, we studied the role of FXR
in the control of HGP and gluconeogenic gene expression in
physiological fasting.

Materials and methods
Mice strains and experimentation
Male homozygous Fxr�/� and wild-type littermates (Fxr+/+)
mice30 were bred on the C57BL/6J genetic background and
housed in a specific-pathogen-free facility on a 12 h light/12 h
dark cycle with free access to water and to a standard chow diet
(UAR A04, Villemoison/Orge, France) unless stated otherwise.
Mice were sacrificed by cervical dislocation after 6 h fasting

All experimental protocols conform to the ARRIVE guidelines
and were approved by the Lille Pasteur Institute ethical com-
mittee (Agreement # 20152152254461) and carried out in
agreement with European Union and French Ethical Guidelines.

Glucose production
Glucose production assessment: MPHs were maintained over-
night (16 h) in DMEM medium containing 5.5 mM glucose
(#21885, Gibco-Life Technologies) supplemented with 0.1%
BSA, 100 nM dexamethasone, 1% glutamine and 1% penicillin/
streptomycin and treated as indicated. MPHs were then
cultured in DMEM without glucose (#11966, Gibco-Life
Technologies) supplemented with 100 nM dexamethasone,
20 mM sodium DL-lactate (L1375, Sigma-Aldrich), 2 mM sodium
pyruvate (#11360, Gibco-Life Technologies) and the indicated
treatments for 8 h. Glucose secretion was measured using the
Glucose (GO) assay kit (GAGO-20, Sigma-Aldrich).

Statistical analysis
Raw data were analyzed using Graph Pad Prism 7.0. Results are
expressed as mean ± SEM and groups were compared using
either a t test or a 2-way ANOVA as indicated in figure legends.

For further information regarding chemicals, cell culture,
MPH preparation, plasmids and adenoviruses, protein extrac-
tion, purification and analysis, in vitro phosphorylation and
mass spectrometry analysis, gene expression assays, ChIP-PCR
and ChIP-seq protocols please refer to the supplementary infor-
mation and CTAT table.

Results
FXR enhances cAMP-induced glucose production by mouse
primary hepatocytes
To evaluate the contribution of FXR to fasting HGP, C57Bl6/J
Fxr+/+ or Fxr�/� mice (Fig. S1A) were subjected to fasting to
deplete hepatic glycogen stores and an intraperitoneal pyruvate
tolerance test was performed. The glycemic excursion in
response to pyruvate was blunted in C57Bl6/J Fxr�/� mice when
compared to Fxr+/+ mice (Fig. 1A), suggesting a positive contri-
bution of FXR to HGP. The ability of FXR to regulate glucose pro-
duction by MPHs from Fxr+/+ or Fxr�/� mice was assayed after an
8 h-treatment with the synthetic FXR agonist GW4064, with or
without the protein kinase A (PKA) activator 8-CPT-cAMP
(Fig. 1B), under experimental conditions defined as optimal for
observing glucose production by isolated hepatocytes
(Fig. S1B,C). GW4064 did not significantly affect GP, whereas
8-CPT-cAMP and glucagon increased glucose production
(Fig. S2A). Simultaneous activation of PKA and FXR with

Research Article Molecular and Cell Biology
and tissues were removed and immediately frozen in liquid
nitrogen.

Mouse primary hepatocytes (MPHs) were isolated from
8–10-week-old C57Bl6/J male mice from Charles River (Saint
Germain sur l’Arbresle, France) or from homozygous Fxr�/�

and wild-type (Fxr+/+) male mice housed on a 12 h light/12 h
dark cycle with free access to water and to a standard chow diet
unless stated otherwise.

Overnight fasted mice (5 pm–9 am) were injected intraperi-
toneally with sodium pyruvate (P4562, Sigma) (2 g/kg body
mass). Blood glucose levels were measured from the tail vein
at the indicated time points using an automatic glucose monitor
(One Touch, Lifescan).
1100 Journal of Hepatology 20
GW4064 or the natural FXR agonist CDCA potentiated glucose
production (Fig. 1B, S2B). While showing a lower basal glucose
production, Fxr�/� MPHs were similarly sensitive to PKA stimu-
lation as Fxr+/+ MPHs [fold change (FC) �2], but were insensitive
to FXR agonism (Fig. 1B), like wild-type MPHs in which Fxr
mRNA expression was knocked down (Fig. S3A,B). The expres-
sion of the gluconeogenic Foxo1 transcription factor did not vary
between the two genotypes and was mildly induced by gluca-
gon (Fig. S3C,D). Foxo1 knockdown, while affecting basal glucose
production by MPHs, did not affect the potentiation of cAMP by
the FXR agonist (Fig. S3E,F). We conclude that FXR activation
enhances HGP under conditions mimicking fasting, indepen-
dently of FOXO1.
18 vol. 69 j 1099–1109
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The glucagon/PKA pathway differentially regulates FXR-
driven gene expression
The crosstalk between the glucagon/cAMP and FXR signaling
pathways was investigated at the gene expression level. Gene
expression patterns from naive or glucagon-treated MPHs, with
or without GW4064 stimulation, were assayed at normal
glucose concentrations to avoid interference with the energy-
or glucose-sensitive AMP-activated protein kinase (AMPK) or
hexosamine pathways, respectively.31,32 A significant portion
of upregulated genes became refractory to FXR agonism in the
presence of glucagon (Fig. 1C). Conversely, a set of 71 transcripts
either poorly modulated, or not modulated, by GW4064 became
sensitive to FXR agonism in the presence of glucagon (Fig. 1C
and Fig. S4A,B), with 45 out of 71 transcripts being induced in
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physiological or prolonged fasting conditions in vivo
(Table S1). A gene ontology term enrichment analysis identified
transcription- and glucose metabolism-related processes as sig-
nificantly represented within these two gene clusters (Fig. 1C).
Further examination using gene and protein assays pointed to
known FXR-regulated genes and gluconeogenic genes, as
becoming sensitive (Fbp1, Pck1, G6pc, Slc51b/Ostb) or refractory
(Shp/Nr0b2, Abcb11/Bsep and Abcc4/Mdr3) to FXR synthetic or
natural agonists in the presence of glucagon in an FXR-
dependent manner (Fig. S4B-D, S5, S6A-F).

The expression of catalytic PKA subunits a and b (Prkaca and
Prkacb, Fig. S6G) was necessary for the synergistic induction of
Fbp1, Pck1 and G6pc by FXR and cAMP (Fig. 1D-F) but did not
alter Shp/Nr0b2 responsiveness to FXR agonism in the presence

hp/Nr0b2

** ***
***

mble siRNA
ca&b  siRNA

0

100

H

0

5

10

15
**

***
***

***

Scramble siRNA
Prkaca&b  siRNA

Glucose production

GW4064
8-Br-cAMP

GW4064
8-CPT-cAMP

R
el

at
iv

G
lu

co
se

/m
g 

pr
ot

ei
n

tolerance test in wild-type and FXR-deficient mice. Fasted mice were injected
times. (B) GP in wild-type and FXR-deficient MPHs. GP by MPHs was assayed
cted after a 6 h-treatment and analyzed on Affymetrix MoGene arrays. The
s (biological process) are shown with the enrichment percentage and p value.
es. MPHs transfected with the indicated siRNAs were treated as indicated and
s and presentation of results as in (B). (A, B, H) Results are the mean +/� SEM
oc test. (D-G) Results are the mean +/� SEM (n = 5) and are expressed relative
mpared using a 2-way ANOVA and a Tukey post hoc test. *p <0.05, **p <0.01,
ons. GP, glucose production; MPH, mouse primary hepatocytes; RT-qPCR,

18 vol. 69 j 1099–1109 1101



as
e  

ac
tiv

ity

Research Article Molecular and Cell Biology
of a cAMP analogue (Fig. 1G). Importantly, these transcriptional
effects translated into an altered biological output since cAMP-
induced and cAMP/FXR-regulated glucose production were
blunted upon PKA knockdown (Fig. 1H). Thus, the potentiation
of glucagon-stimulated glucose production by FXR agonism
relates to a combinatorial upregulation of gluconeogenesis-
promoting, glucagon/PKA-regulated genes (Fbp1, Pck1, G6pc)
and downregulation of the gluconeogenesis-inhibiting, PKA-
independent Shp gene.

Phosphorylation of FXR S325 and S357 by PKA regulates FXR
activity
We then assessed whether FXR is a direct PKA target. Purified
mouse FXRa1 or FXRa3 were used in an in vitro phosphorylation
assay, in which an efficient PKA-dependent transfer of radiola-
beled phosphate to both FXR isoforms was observed (Fig. S7A)
and of similar magnitude to that observed with protein kinase
C alpha, a previously identified FXR kinase (Fig. S7B).33 Mass
spectrometry identified phosphopeptides (Fig. 2A, Fig. S8) that
corresponded to three bioinformatically-predicted and two de
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novo identified phosphoserines (S132, S151, S357 and S114,
S325 respectively, Fig. 2A). GSK3b, which is regulated by PKA,34

was unable to phosphorylate FXR in similar conditions (Fig. S7C).
FXR transcriptional activity in response to PKA activation

was tested using a transactivation assay in which FXR is
expressed as a Gal4-DNA binding domain fusion protein (one-
hybrid assay, Fig. 2B). While FXR was insensitive to PKA stimu-
lation in the absence of the FXR agonist GW4064 (Fig. 2B), acti-
vation of PKA by the adenylate cyclase activator forskolin
increased agonist-induced FXR activity (Fig. 2B). A similar
potentiating effect was observed when using an IR1-driven
reporter gene, mFXRa1 (Fig. 2C). S325 and S357 were necessary
and sufficient for PKA-enhanced FXR activity (Fig. S9A, Fig. 2C).
As individual mutations of S325 and S357 to alanine affected
neither the response to GW4064 (Fig. 2C) nor FXR protein sta-
bility (Fig. S9B), we concluded that these mutations did not
introduce major structural changes.

The contribution of FXR phosphorylation by PKA to HGP was
characterized in Fxr�/� cells, in which wild-type or S325,357A
FXR was expressed (Fig. 2D). While wild-type FXR restored
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the GW4064-induced potentiation of glucose production trig-
gered by PKA activation, the FXR mutant, which cannot be phos-
phorylated, did not convey this synergistic response.
Importantly, G6pc, Pck1 and Fbp1 gene expression followed a
similar pattern (Fig. S9C-E).

PKA potentiates FXR-induced gene transcription
How FXR and PKA cooperatively regulate gluconeogenesis was
investigated for the two cAMP-regulated gluconeogenic genes
Fbp1 and Pck1. FXR binding site(s) coordinates were identified
in the Fbp1 and Pck1 upstream regulatory regions (URRs) using
ChIP-seq data from mouse livers after fasting32,35 (Fig. 3A,
S10A), which overlapped with CREB DNA binding sites.36 The
DNA sequences encompassing both FXR and CREB co-binding
regions (CBRs) were cloned upstream of a luciferase reporter
gene to assess their functionality. Transactivation assays
(Fig. 3B, S10B,C) showed that the PKA-FXR cooperativity was
maintained on these chimeric constructs when using the wild-
type FXR. However, FXR S325,357 to A mutations ablated this
cooperative effect in line with the observed effect on HGP.
Endogenous gene regulation was measured in MPHs (Fig. 3C,
S10D) in which either Creb1 or Fxr expression was knocked
down (Fig. 3D, S3B). In line with our previous results, FXR was
required for the cooperative response with glucagon (Fig. 3C,
S10D). CREB contributed to the cooperative induction, in agree-
ment with FXR co-binding with CREB to both the Fbp1 (Fig. 3E,F)
and Pck1 URRs (Fig. S10E,F). Strikingly, the FXR density in URRs
was highest when MPHs were simultaneously treated with
GW4064 and glucagon (Fig. 3E, S10E), suggesting that increased
transcription may stem from increased or stabilized binding of
FXR to DNA.

Glucagon abrogates FXR-mediated transcription of Shp/Nr0b2
URR through FOXA2
FXR-induced expression of Nr0b2/Shp is counteracted by gluca-
gon and cAMP analogues in a PKA-independent manner
(Fig. 1G). Although many mechanisms may account for the
observed inhibition of FXR transcriptional activity, we hypothe-
sized that it results from a functional interaction with a
glucagon/cAMP-sensitive transcriptional regulator (TR). Since a
similar regulation pattern of Nr0b2/Shp was observed in both
hepatoblastoma HepG2 cells and MPHs (Fig. 4A, 4C, S11A-C)
and confirmed at the protein level (Fig. 4C), we tested this
hypothesis by determining which TRs co-localize closely with
FXR in the HepG2 cell genome by comparing the FXR cistrome31

to that of 51 TRs generated by the ENCODE Consortium37

(Fig. S12A).
FXR co-localizing TRs included the FXR obligate

heterodimerization partner RXRa,38 validating this approach
to identify direct, functionally relevant, protein-protein interac-
tions. Forkhead box A2 transcription factor (FOXA2) appeared as
a potential candidate (Fig. S12A), as its activity is inhibited by
insulin and enhanced by glucagon in mouse livers.39,40 FOXA2
co-occupied FXR genomic binding sites, with 1,642 FOXA2 bind-
ing sites being detected within +/� 100 bp from the center of
the detected 11,574 FXR peaks (Fig. 4B). These CBRs were
enriched in consensus binding sequences for FXR and FOXA2
as previously reported,41 Distances between FXR and FOXA2
binding sites diverged from the ones obtained by a random
repartition of the same number of ATF3 binding regions
(Fig. 4B). A similar analysis comparing the liver FXR and FOXA2
cistromes in the liver genomes of mice after fasting35,42 yielded
a figure similar to that extracted from HepG2 cell cistromes,
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with 1,219 FXR/FOXA2 CBRs out of 7,457 total FXR binding sites
(Fig. 4D). Interestingly, several CBR-associated genes are
involved in glucose metabolic processes (Fig. 4D). The contribu-
tion of FOXA2 to FXR-regulated transcription was then charac-
terized by microarray analysis of RNAs from wild-type or
FOXA2-depleted MPHs after glucagon or insulin stimulation
(Fig. 4E and Fig. S12B, C, D). In control MPHs (Ad-shLacZ), a sub-
set of genes (197) displayed a reduced inducibility by GW4064
in the presence of glucagon (Fig. 4E, lanes 3 vs. 4) when com-
pared to GW4064 treatment in the presence of insulin
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(Fig. 4E, lanes 1 vs. 2). The ability of glucagon to blunt the
expression of this subset of FXR-inducible genes was lost in
Foxa2-depleted cells (Ad-shFoxa2) (Fig. 4E, lanes 7 vs. 8, compare
to 3 vs. 4), thereby identifying FOXA2 as a repressor of a subset
of FXR-regulated genes. In particular, glucagon-mediated repres-
sion of Shp/Nr0b2 was FOXA2-dependent (Fig. 4F), thereby iden-
tifying FOXA2 as a critical regulator of FXR activity at this locus.
Finally, blunting FOXA2 expression in MPHs (Fig. S12E)
decreased glucose production in response to cAMP alone or to
cAMP and GW4064 in a Shp/Nr0b2-dependent manner
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(Fig. 4G, S12E). This suggests that FOXA2 positively contributes
to FXR-independent and FXR-induced gluconeogenesis by
inhibiting Shp expression.

FOXA2 interacts with DNA-bound FXR at the Shp/Nr0b2 locus
FXR and FOXA2 both bind to the Shp URR in mouse liver
(Fig. 5A). FOXA2 DNA binding was dependent on FXR (Fig. 5B)
and was increased by glucagon and GW4064 (Fig. 5C). A
ChIP-reChIP analysis confirmed the co-localization of these
two TRs at this genomic locus (Fig. 5D). GST pulldown and
co-immunoprecipitation assays established that FXR specifically
interacts with FOXA2 in HepG2 cells (Fig. 5E,F) and in mouse
liver (Fig. S12F). FOXA2 binding to the Shp URR was also FXR-
dependent in the immortalized mouse hepatocyte cell line
AML12 (Fig. 6A), which displays transcriptional regulatory fea-
tures similar to HepG2 cells and MPHs (Fig. S11A,B;S13). FOXA2
opposed FXR-mediated activation of Shp/Nr0b2 (Fig. 6B), how-
ever FXR binding was not dependent on FOXA2 (Fig. 6C). FOXA2
inhibited the FXR-mediated induction of an IR1 FXRE-driven
reporter gene by all four FXR isoforms (Fig. 6D,E). The DNA
binding activity of FOXA2 relies on the integrity of a highly con-
served winged-helix DNA binding domain. Mutation of S237
and W239 within this domain abolishes DNA binding43 and
FOXA2 transcriptional activity (Fig. 6F). Comparing the repres-
sive activity of wild-type FOXA2 to that of the DNA binding-
crippled FOXA2 in the IR1 FXRE-tk-Luc transactivation assay

demonstrated that the repressive activity of FOXA2 is indepen-
dent of its interaction with DNA (Fig. 6G). Thus, FOXA2 likely
represses FXR transcriptional activity by a tethering
mechanism.

FOXA2 and PKA regulate FXR target genes independently
Whether PKA-regulated FXR target genes are also sensitive to
the insulin-inhibited, glucagon-activated FOXA2 transcription
factor was investigated next. The FOXA2 target gene Igfbp1
was induced by glucagon in a FOXA2-dependent manner and
was insensitive to FXR agonism in both wild-type and Foxa2-
depleted MPHs (Fig. 7A). The FXR target gene Ostb was induced
upon FXR agonism, but not by glucagon treatment. Simultane-
ous treatment with glucagon and GW4064 cooperatively
induced Ostb expression in a FOXA2-independent manner
(Fig. 7B). Expression of the gluconeogenic genes Fbp1, Pck1
and G6pc was induced by glucagon and further enhanced by
FXR agonist treatment, a response which was not altered by
Foxa2 knockdown (Fig. 7C-E). This suggests that the FOXA2
and PKA signaling pathways regulate distinct subsets of FXR-
responsive genes, cooperating to enhance HGP (Fig. 7F).

Discussion
Glucose homeostasis is regulated by a complex and intricate
signaling network involving multiple organs. The BA nuclear
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receptor FXR is integrated into this regulatory network and par-
ticipates in glucose handling and metabolism. Intestinal FXR
favors glucose absorption and induces FGF15/19 secretion
which, through signaling via the hepatic b-Klotho/FGFR4 mem-
brane receptor, inhibits GSK3b, hence increasing glycogenesis.
Liver FXR inhibits ChREBP activity, hence decreasing glycolysis
and pancreatic FXR potentiates glucose-induced insulin secre-
tion. All these effects contribute to maintain glucose homeosta-
sis in the post-prandial state44 and led to the prediction that
FXR activation could favorably impact on glucose metabolism.
Prolonged in vivo activation of FXR by natural or synthetic ago-

nists led to unclear results. Contrasting with cholic acid treat-
ment of C57BL/6J mice (five days), GW4064 treatment did not

modulate gluconeogenic gene expression.20 GW4064 treatment
for seven days in C57Bl6 mice increased the expression of glu-
coneogenic genes without detectable increases in plasma
glucose45 Fasting plasma glucose was increased in high fat

diet-fed C57BL/6J mice treated for three months with
GW406446 but decreased after a six-week treatment.22 Thus,

further details.
long term interference of the FXR signaling pathway by either
whole body gene knockout or prolonged agonist treatment did
not provide information on a potential role of FXR in the highly
dynamic physiological fasting response, which we investigated
in this study.

In our study, FXR acts positively on the gluconeogenic path-
ways through two arms. The first positive arm is controlled
through the novel glucagon/cAMP/PKA/FXR pathway, which
potentiates gluconeogenic gene transcription. This synergy
requires PKA-catalyzed phosphorylation of FXR on S325 and
S357 and CREB, which co-localizes with FXR at the Fbp1 and
Pck1 URRs. ChIP-PCR assays showed that PKA activation corre-
lates with increased FXR DNA binding. Three-dimensional struc-
tures of the FXR ligand binding domain bound to natural or
synthetic ligands show that S325 is located in helix 7 (H7)
which constitutes part of the coactivator LXXLL binding groove
and is poorly exposed to solvent in the agonist-bound,
coactivator-FXR complex. S357 localizes on the b-loop connect-
ing H7 and H8 and is more accessible to solvent than S325 in
this configuration. In light of these structural data, it is still
unclear how phosphorylation of S325 and S357 might
increase/stabilize DNA binding.

Nevertheless, our data add PKA to the growing list of
metabolism-sensitive FXR modifiers that includes O-GlcNAc
transferase,31 AMPK,32 protein kinase C alpha,33 sirtuin 1 (Sirt1)
and p300.47,48 A pending question is how these post-
translational modifications (PTMs) vary according to the meta-
bolic status. Prolonged energy shortage could lead to selective
activation of AMPK and FXR inhibition, whereas PKA would
predominantly specify FXR activity in normal fasting
conditions. These PTMs have been studied independently and
Sirt1-mediated deacetylation and activation of FXR is likely to
directly superimpose its regulatory effect on FXR transcriptional
activity. As daily variation of protein subcellular localization,
phosphorylation and activities49,50 are very likely to top on
these metabolically-regulated FXR functional alterations, it
becomes mandatory to decipher the PTM code of FXR during
fasting/feeding periods to fully appreciate how this affects
FXR-regulated biological output(s). These outputs might extend
beyond metabolic control, as we recently showed that liver FXR
may also regulate other specific gene sets and biological
pathways as it interacts with other TRs.51
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The prototypical FXR target gene Shp/Nr0b2 controls BA syn-
thesis and lipogenesis52 and has been proposed to be a negative
regulator of gluconeogenesis through interactions with the pro-
gluconeogenic glucocorticoid receptor, HNF4a, Foxo-related
transcription factors or C/EBPa.53 This repressive activity pro-
vides a direct link between the observed plasma glucose lower-
ing effect of prolonged FXR agonism in mice and gluconeogenic
gene transcription. Our data however show that FoxA2 could
serve as a repressor of FXR transcriptional activity on a limited
number of genes, including Shp/Nr0b2, in short-term fasting
conditions which represents another example of signal integra-
tion at specific genes. FOXA2-mediated repression of FXR activ-
ity proceeds from a DNA binding-independent mechanism, and
affects a limited number of genes with no common function, as
studied by gene set enrichment analysis or gene ontology term
enrichment analysis (data not shown). The repression of Shp
gene transcription by FOXA2 is intriguing in light of the ability
of SHP to prevent FOXA2 DNA binding in vitro.54 However, the
physiological significance of these findings is unclear, as these
investigations were carried out without including hormonal sig-
nals such as glucagon, which triggers FOXA2 acetylation and
subsequent activation to control fatty acid oxidation and keto-
genesis in a process involving Sirt1 and p300.55 It is important
to note here that our mechanistic investigations were carried
out at normal glucose concentrations to avoid any confounding
effects related to either energy depletion, hence activating
Sirt1 and/or AMPK, or to glucose overload, hence activating
the hexosamine biosynthetic pathway. A highly integrative
approach combining biochemical, proteomic, epigenomic and
transcriptomic approaches is required to fully understand
PTM-dependent FXR activity variations in the physiologically-
varying fasting and fed conditions, to which we now add the
glucagon/cAMP pathway as an important regulator of FXR.
Whether this physiological mechanism is dysregulated in type
2 diabetes remains to be explored. A decreased activity of both
hepatic FOXA2 and FXR through phosphorylation and acetyla-
tion, respectively, has been reported in rodent models of
T2D,47,56 and we observed that exposure of MPHs to glucolipo-
toxic conditions abolished FXR’s contribution to glucose produc-
tion (data not shown). However, no correlation between FXR
expression and that of its cognate target genes could be estab-
lished with the diabetic status of human patients (Table S2),
suggesting that this novel regulatory pathway is more likely
at play in physiological conditions.
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