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Abstract 1 

The quasi-Monte Carlo (QMC) method was enhanced to solve the population balance model 2 

(PBM) including aggregation and fragmentation processes for simulating the temporal evolutions 3 

of characteristic sizes and floc size distributions (FSDs) of cohesive sediments. Ideal cases with 4 

analytical solutions were firstly adopted to validate this QMC model to illustrate selected pure 5 

aggregation, pure fragmentation, and combined aggregation and fragmentation systems. Two 6 

available laboratory data sets, one with suspended kaolinite and the other with a mixture of 7 

kaolinite and montmorillonite, were further used to monitor the FSDs of cohesive sediments in 8 

controlled shear conditions. The model results show reasonable agreements with both analytical 9 

solutions and laboratory experiments. Moreover, different QMC schemes were tested and 10 

compared with the standard Monte Carlo scheme and a Latin Hypercube Sampling scheme to 11 

optimize the model performance. It shows that all QMC schemes perform better in both accuracy 12 

and time consumption than standard Monte Carlo scheme. In particular, compared with other 13 

schemes, the QMC scheme using Halton sequence requires the least particle numbers in the 14 

simulated system to reach reasonable accuracy. In the sensitivity tests, we also show that the 15 

fractal dimension and the fragmentation distribution function have large impacts on the predicted 16 

FSDs. This study indicates a great advance in employing QMC schemes to solve PBM for 17 

simulating the flocculation of cohesive sediments.  18 

 19 

Key words: Cohesive sediments; flocculation; quasi-Monte Carlo; population balance model; 20 

floc size distribution  21 
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1. Introduction  1 

Fine-grained cohesive sediments abound in open water systems such as estuaries, reservoirs, 2 

and coastal waters. The transport of cohesive sediments has great impacts on bed morphology, 3 

water quality, and estuarine circulations (Maggi, 2005; Edmonds and Slingerland, 2010; Geyer 4 

and MacCready, 2014; Burchard et al., 2018). One significant characteristic of cohesive 5 

suspended sediments is flocculation, which is the process where sediment particles go through 6 

aggregation and fragmentation simultaneously to form clusters (flocs). Accurate modeling 7 

flocculation of fine-grained sediments is still a challenge since the process is influenced by 8 

physical (e.g., turbulence intensity and sediment concentration), biological (e.g., Extracellular 9 

Polymeric Substances), and chemical (e.g., mineralogical composition, PH value, and salinity) 10 

effects (Tolhurst et al., 1999; Winterwerp, 1998; Tran and Strom, 2019; Azhikodan and 11 

Yokoyama, 2021; Fall et al., 2021).  12 

Over the past decade, different kinds of flocculation models have been developed to track 13 

the sediment particle quantities. The first is the simplified Lagrangian model (sometimes also 14 

known as the floc growth model) developed by Winterwerp (1998) to track the evolution of a 15 

characteristic size under shear-dominated environments. Later, the constant fractal dimension 16 

(Maggi et al., 2007; Khelifa and Hill, 2006) and yield strength (Son and Hsu, 2009) in the 17 

Winterwerp’s model were enhanced as a function of floc size, and the breakage parameter was 18 

connected with the Kolmogorov microscale (Kuprenas et al., 2018) to better address the effects 19 

of suspended sediment concentration on flocculation. This low-cost single class model can be 20 

easily adopted in real environments (e.g., Zhang et al., 2020); however, some properties of 21 

flocculation such as the effects of differential settling and the variations of bi- or multi-peak 22 

FSDs cannot be dealt with using the Winterwerp’s model. The second flocculation model is the 23 
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population balance model (PBM), which is a transport model based on an integro-partial 1 

differential equation that accounts for the number density of flocs with particular size at any 2 

location and time in a system. Although PBM has been widely used in many fields (e.g., aerosol, 3 

droplet, milling, and granulation), only few studies applied it to simulate FSDs for fine-grained 4 

cohesive sediments in natural environments (e.g., Maggi et al., 2007; Lee et al., 2011; Shen and 5 

Maa, 2015, 2016, 2017). Note that although the Winterwerp’s model could be sometimes treated 6 

as a one-class PBM, here it is classified separately since the model cannot track the bi- or multi-7 

peak FSDs. Most of the other flocculation models mainly focused on the details of forces 8 

governing particle–particle interactions. For example, Zhang and Zhang (2011) extended the 9 

Lattice Boltzmann Model by adding fluid-solid boundary using bounce-back method to simulate 10 

the FSDs of cohesive sediments considering hydrodynamics and attractive van der Waals forces 11 

during differential settling, and their model was later applied under shear conditions as well 12 

(Zhang et al., 2013). In addition, Zhao et al. (2020) investigated the Stokes drag, lubrication, 13 

cohesive, and direct contact forces between particles, which performed well in the transient stage 14 

of flocculation in a conceptually simple and small cellular flow set-up. These models often 15 

consume exorbitant memory and computational resources, which limits themselves on studying 16 

large domains. 17 

 Among the above mentioned models, the population balance model (PBM) outperforms 18 

other models for its advantages in the ability of tracking FSDs and describing various 19 

flocculation mechanisms. Several numerical methods for solving PBM have been proposed, 20 

including discretization methods (Kumar and Ramkrishna, 1996; Bertin et al., 2016; Kumar and 21 

Kaur, 2016; Singh et al., 2019), moment methods (McGraw, 1997; Shen and Maa, 2015, 2016, 22 

2017; Passalacqua et al., 2018; Li et al., 2019) and Monte Carlo (MC) methods (Khelifa and Hill, 23 
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2006; Xu et al, 2014; Lee et al., 2015; Das et al., 2020). The first approach, i.e., the discretization 1 

method, converts the PBM to a series of ordinary differential equations by discretizing the 2 

continuous number density function into several pivots to track the particle quantities (Singh et 3 

al., 2019). The disadvantage of this method is the requirement of large computing resources to 4 

obtain a desirable accuracy especially for cases with wide range of sizes (Shiea et al., 2020). The 5 

second approach, the methods of moments, was developed as an approximated solution that 6 

tracks the moments of the number density function and then reconstructs the number density 7 

function. The process of reconstructing the FSDs from their moments, however, may cost 8 

expensively in computing resource (Shen and Maa, 2015,2016; Li et al., 2019; Wang et al., 9 

2020). The third approach, the Monte Carlo (MC) methods, deals with physical processes such 10 

as aggregation and fragmentation as discrete events by using probabilistic tools. With MC 11 

methods, one can conveniently obtain the time evolution of particle systems by using an array 12 

containing the particle size to represent a sample of the whole system and simulating the 13 

particulate behaviors, which makes it suitable for extension to multivariate (e.g., size, density, 14 

and biomass fraction) problems (Su et al., 2009; Zhao et al., 2011; Xu et al., 2014, Kotalczyk and 15 

Kruis, 2017). This capability of easy extension for finding other physical properties is our main 16 

motivation to use the MC method. 17 

The MC methods for PBM can be classified into event-driven MC and time-driven MC by 18 

time discretization. In event-driven MC (Garcia et al., 1987), a specific event (e.g., aggregation 19 

and fragmentation) is first selected according to the probability that is proportional to the rate of 20 

its occurrence. The time increment is calculated for each event during the simulation. In the 21 

time-driven MC (Liffman, 1992), a specified time is first given less than the minimum time scale 22 

of all the possible events, and then all possible occurring events proceed within this pre-specified 23 
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time. MC methods can also be divided into constant-volume MC and constant-number MC 1 

according to the simulated volume. The former keeps the system in a constant volume and thus 2 

changes the total number of particles but conserving the mass (Lin et al., 2002), while the latter 3 

adjusts the volume to keep the particles number unchanged. With the constant-volume MC, 4 

either the statistic error increases with time because of the reduction in particle number for 5 

aggregation events, or the computational cost increases due to the increasing particle number for 6 

fragmentation events. To balance the simulation efficiency and accuracy, the constant-number 7 

MC was developed to keep the particle number unchanged during the simulation by continuously 8 

adjusting the sampling volume (Tang and Matsoukas, 1997; Smith and Matsoukas, 1998).  9 

The MC methods have rarely been applied to solve PBM for simulating the time evolution 10 

of FSDs for suspended sediments flocculation, except for some early studies by Khelifa et al. 11 

(2005, 2006). Although the MC methods have their superior discrete nature, the convergence rate 12 

of standard MC method can often be very slow, which costs more computational resources and 13 

time, especially for multivariate and high-dimensional problems (Caflisch, 1998; Wang and 14 

Sloan, 2011; Singhee and Rutenbar, 2010; Dick et al., 2013). Thus, a quasi-Monte Carlo (QMC) 15 

method was later developed by using quasi-random numbers (namely the low-discrepancy 16 

sequences) instead of standard MC’s pseudorandom numbers (Radović et al., 1996; Sobol, 1998; 17 

Hou et al., 2019) to improve the efficiency and accuracy of standard MC. In this way, the QMC 18 

scheme for solving PBM has an optimal combination of high accuracy and efficiency. 19 

The objective of this study is to simulate the temporal evolution of FSDs and characteristic 20 

sizes (e.g., mean size and median size) of fine-grained suspended sediments including 21 

aggregation and fragmentation using a modified quasi-Monte Carlo based PBM. In order to 22 

check the effectiveness of the model, data from (1) three analytical solutions given by Scott 23 
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(1968), Ziff and McGrady (1985) and McCoy and Madras (2003) including pure aggregation, 1 

pure fragmentation, and combined aggregation and fragmentation systems, respectively, and (2) 2 

two laboratory experimental results from Tran and Strom (2017) and Maggi et al. (2002, 2007) 3 

are used for validations. Furthermore, the effectivity and efficiency of different QMC schemes 4 

are tested and compared with standard MC scheme to find the optimal model performance. The 5 

sensitivities on selected parameters are also discussed in order to investigate the model behavior.  6 

This paper is organized as follows. Section 2.1 reviews the PBM model and explains the 7 

selection of inner functions in PBM. Section 2.2 presents the QMC schemes and describes the 8 

flocculation model. The model is thus calibrated and validated in section 3, with three analytical 9 

solutions and two laboratory experimental data sets. In the following, the discussion and 10 

conclusions are delivered in Section 4 and Section 5 respectively.  11 

 12 

2. Flocculation model 13 

2.1 Population balance model and sediment flocculation dynamics  14 

The PBM model, neglecting the advection, diffusion and settling terms, is used to 15 

characterize aggregation and fragmentation dynamics to model the time evolutions of number 16 

density of flocs with size D. The size-based PBM in a continuous form can be written as 17 

(Marchisio et al., 2003b; Kariwala et al., 2012; Shen and Maa, 2016): 18 
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            (1) 1 

where  (   ) is the number density function of particles with size D at time t,  (   ) is the 2 

collision frequency for two particles of size D and η that collide to form a particle with size 3 

(     )  ⁄ ,  (   ) is the collision efficiency,  ( ) is the fragmentation frequency for 4 

particles with size D, and  ( | ) is the fragmentation distribution function that includes 5 

information on the daughter particles produced by fragmentation. The first term on the right-6 

hand side of Eq. 1 is the birth rate of flocs with size D due to aggregation of smaller particles, the 7 

second term is the death rate of flocs with size D due to aggregation with other particles, the 8 

third term is the birth rate of flocs with size D due to fragmentation of bigger flocs with size η, 9 

and the last term is the death rate of flocs with size D due to their own fragmentation. 10 

The collision efficiency α describes the probability of successful aggregation after collision 11 

between flocs. It is often used in the form of a calibration parameter (e.g., Mietta et al., 2008; 12 

Shen and Maa, 2015; Verney et al., 2011). The collision frequency β between sediment particles 13 

with size Di and Dj in natural environments consists of three mechanisms: Brownian motion, 14 

differential settling, and turbulent shear. These terms can be written as (Smoluchowski, 1917; 15 

Maggi, 2005; Shen and Maa 2015) 16 
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where K is the Boltzmann constant, T is the absolute temperature, μ is the dynamic viscosity of 1 

the fluid, ωs,i and ωs,j are the settling velocities of particles i and j, and G is the shear rate. 2 

Although Brownian motion is commonly known as a negligible factor in estuaries region 3 

(McCave, 1984; Winterwerp, 1998; Shen et al., 2018b), it is considered in this study for a 4 

complete expression.  5 

The fragmentation frequency function a(D) accounts for the disruption of flocs by stress 6 

produced by fluid shear and collision between flocs. The relative importance of these two 7 

influences are still debatable and not well understood (Khelifa and Hill, 2006; Shen and Maa, 8 

2015). Models for floc fragmentation often employ complicated functions with fitting parameters 9 

(Winterwerp, 1998, 1999; Maggi et al., 2007; Shen and Maa, 2015, 2017). It is important to note 10 

that the probability of fragmentation of particles can be easily related to the floc size (Khelifa 11 

and Hill, 2006). A common kinematic approach regarding floc breakage defines a maximal floc 12 

size Dmax instead of specifying the mechanism for fragmentation, which assumes that overlarge 13 

(i.e., larger than Dmax) flocs always tend to break into fragments. The fragmentation distribution 14 

function  ( | ) describes the number and size of daughter flocs after fragmentation. The 15 

assumptions used in this function are the discrete (e.g., binary breakup with mass ratio 1:1 or 16 

ternary breakup with mass ratio 1:1:2, see Spicer and Pratsinis, 1996; Shen, 2015) and the 17 

continuous form (e.g., Gaussian distribution).  18 

 19 

2.2 Monte Carlo and Quasi-Monte Carlo 20 

In this study, the constant-number MC method is applied in order to keep constant statistic 21 

accuracy over the simulation (Lin et al., 2002). As described in Fig. 1, random number 22 

generation (RNG) is the first step to produce a series of random numbers. The input parameters 23 
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are the particles number (N), the maximum size (Dmax) of flocs, the turbulent energy dissipation 1 

rate, and the densities of solid particles (ρs) and of the fluid (ρw). The initial size distribution 2 

(ISD), fractal dimension (nf), and the fragmentation distribution function were selected before 3 

the events module. The initial particle array is filled randomly with a specific size distribution 4 

(e.g., Gaussian distribution and uniform distribution). The fractal dimension (nf) of flocs are 5 

given by (Maggi et al., 2007) 6 

     (
  

  
)
 

    (6) 7 

where Dp is the primary particle size, and        is used as suggested by Maggi et al. (2005). 8 

The floc size, Df, is converted to component particle numbers, Nf, to better track and conserve the 9 

mass, similar as proposed by Maggi (2005) and Khelifa and Hill (2006):  10 

   (
  

  
)
  

     (7) 11 

The next step is choosing the aggregation or fragmentation events. Since little is known 12 

about the occurrence rate of the fragmentation, the following probability Pfrag of floc breakage 13 

based on the number of overlarge flocs (larger than Dmax) is used as suggested by Khelifa and 14 

Hill (2006):  15 

      {

              
            
              

    (8) 16 

where nb is the number of overlarge flocs. The aggregation probability is              since 17 

the null event is not considered in the simulation. A random number r1 is taken from the random 18 

number series which is produced before simulating. The aggregation event is selected if Pfrag < r1, 19 

otherwise the fragmentation event is selected.  20 

                  



11 
 

The acceptance-rejection (AR) method is applied in the implementation of each selected 1 

event. Two random particles i and j are selected and their aggregation kernel Aij = αi,j·βi,j is 2 

calculated by Eqs. 2~5 with a constant α = C1 for the aggregation event. Here, the collision 3 

efficiency α is set as unity, which raises the flocculation rate while reasonably maintaining the 4 

feature of floc size distributions (Khelifa and Hill, 2006). This selection based on the assumption 5 

that α does not significantly depend on floc properties (e.g., size, shape, and biomass fraction) in 6 

our cases; nevertheless, the α shall be more challenging in QMC models if the biomass fraction 7 

is highlighted in natural waters (Kiørboe et al., 1990; Lai et al., 2018). A random number r2 is 8 

taken from the random number series produced before the simulation. The pair of selected 9 

particles i and j would aggregate to a floc containing Nfi + Nfj component particles (Fig. 1) if the 10 

aggregation kernel Aij satisfies the following condition (Khelifa and Hill, 2006; Zhao and Zheng, 11 

2013; Kotalczyk and Kruis, 2017): 12 

                (9) 13 

where Amax is the maximum of the aggregation kernel over all possible pairs. After a successful 14 

aggregation, the new formed floc is stored in the position of particle i. Then the position vacated 15 

by particle j is occupied by a duplicated particle of randomly selected particle k. If Eq. 9 is not 16 

satisfied, a new pair of particles is selected and the procedure is repeated until a pair of particles 17 

successfully aggregates. 18 

Note that the calculation of the maximum aggregation kernel Amax requests a double looping 19 

over all pairs of particles in each step, which computes expensively N(N-1)/2 times for every try. 20 

A simple constant maximum kernel may be used to reduce the calculation time as proposed by 21 

Smith and Matsoukas (1998), which is computationally feasible but not efficient in practical 22 

application for cohesive sediments. Kruis et al. (2000) introduced a so-called bookkeeping 23 
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strategy that calculates the aggregation kernels of all pairs of particles first and only updates the 1 

kernel of which particle size is changed after each event. Eibeck and Wagner (2001) and Xu 2 

(2014) proposed a differential weight MC (DWMC) which used the majorant of the aggregation 3 

kernel to calculate the Amax by a single looping over all particle pairs instead of double looping. 4 

Although both the bookkeeping strategy and DWMC cost less CPU time than a traditional 5 

double looping strategy, they still consume much time when the particle number N is large. 6 

Khelifa and Hill (2006) proposed an automatically adjusted correction factor CF to estimate the 7 

Amax by multiplying with the kernel of the mean size of flocs, which is validated with in-situ data 8 

of FSDs of cohesive sediments. Thus, the Amax is estimated as  9 

                (10) 10 

with 11 

   
   

     
     (11) 12 

where Amean is the aggregation kernel of flocs with mean size, and na and nr are the number of 13 

accepted and rejected tries respectively during each aggregation event. It is critical to note that 14 

the linear variation of CF tends to remain the ratio na: nr close to one and the calculation of Amax 15 

in Eq. 10 implies an assumption that Amax ~ 2Amean in the simulation.  16 

In the case of a fragmentation event, a particle i is selected randomly from the array. The 17 

acceptance-rejection (AR) method is also used to test the breakup probability with Bi = Nfi / Nmax. 18 

A random number r3 from the pre-produced series is taken. If Bi ≥ r3, the particle i breaks into 19 

daughter flocs. Taking binary fragmentation as an example (Fig. 1), a random number r4 is taken 20 

from the series produced already. The particle i breaks into two fragments i’ with r4·Nfi 21 

component particles and i   with (1−r4) ·Nfi component particles as follows:  22 
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     {
                      

      (    )   
     (12) 1 

The daughter particle i’ is placed in the position of particle i, while the particle i’’ replaces a 2 

particle in the system stochastically. 3 

After each step of aggregation or fragmentation, those key variables such as nf, Df, Nf of 4 

changed particles will be updated. The simulation will be terminated when equilibrium has been 5 

reached. The FSDs and the characteristic sizes can be directly computed from the particle array. 6 

Although the standard Monte Carlo method using pseudorandom numbers shows an 7 

advantage of discrete nature for solving PBM, it needs to be enhanced due to the huge 8 

computation cost. Thus, quasi-Monte Carlo schemes are developed to improve the performance 9 

of standard MC by substituting the pseudorandom numbers by quasi-number sequences 10 

(Singhee and Rutenbar, 2010; Dick et al., 2013; Hou et al., 2019), namely the deterministic 11 

low-discrepancy sequences, which show more uniformity in distribution. Two different quasi-12 

number sequences, the Halton sequence (Halton, 1960) and the Sobol’ sequence (Sobol, 1967), 13 

will be used in this numerical study. The Halton sequence is the first class of low-discrepancy 14 

sequences constructed in 1960 by Halton, which was frequently selected to substitute 15 

pseudorandom numbers in standard MC due to its good performance and simplicity (Wang and 16 

Hickernell, 2000; Hess and Polak, 2003; Mascagni and Chi., 2004; Chi et al., 2005). The Sobol’ 17 

sequence belongs to a new class of sequences called LPτ-sequences introduced in 1966, which 18 

has additional uniformity properties and can be computed in a “superfast” way using logical 19 

operations (Sobol, 1998; Burhenne et al., 2011).  20 

Besides, the Latin Hypercube Sampling (LHS) sequence (McKay and Beckman, 1979) as a 21 

classic low-discrepancy sequence is also tested. The LHS is suggested as a particular kind of 22 

stratified sampling to improve the efficiency of different sampling methods and used to be an 23 
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alternative of standard MC numbers in many research fields such as finite element analysis, 1 

structural reliability, and statistical circuit analysis (e.g., Keramat and Kielbasa, 1997; Olsson et 2 

al., 2002, 2003; Singhee and Rutenbar, 2010). 3 

In order to better assess the uniformity of different sequences, 1000 points generated by 4 

each of four random number sequences are scatter-plotted in Fig. 2. One can easily see that the 5 

pseudorandom number and LHS sequences has more gaps and clumps than the other two 6 

sequences. In other words, the Halton sequence and the Sobol’ sequence distribute visually more 7 

uniform than the others. For the purpose of qualifying the uniformity of these sequences, we 8 

define an area ratio index for the scatter-plot (Fig. 2) as 9 

   
    

    
     (13) 10 

where Aseq is the summed area in the image taken by all the markers of each points sequence, Aall 11 

is the whole area enclosed by the coordinates x = 0 to 1 and y = 0 to 1 (in this case). The value of 12 

index ra is between 0 to 1, and ra = 1 denotes that the sequence is uniformly distributed. In this 13 

study, the radius of each marker is empirically set to 20 pounds, and thus Aseq can be calculated 14 

using image processing tools. As shown in Fig. 2, the area ratio index ra shows that not only the 15 

pseudorandom number series is less geometrically uniform than the low-discrepancy series but 16 

the uniformity of the Sobol’ and Halton sequences are also of a higher level than others. The 17 

efficiency and accuracy of all four sequences-based MC method to solve PBM will be discussed 18 

later in Section 4.1. 19 

 20 

3. Case study 21 

In the following cases, all simulations were performed with N = 30,000 particles, which will 22 

be discussed in more details in section 4. Simulations were run for 5 × 10
5

 MC steps. 23 

                  



15 
 

Temperature and the dynamic viscosity of the water were kept constant at 20 ℃ and 0.001 Pa∙s. 1 

The density of the water and component particles were set to 1020 kg/m
3
 and 2650 kg/m

3
 2 

respectively.  3 

 4 

3.1 Comparison with selected analytical solutions 5 

Case I: Pure aggregation  6 

Based on the assumption that aggregation between particles is totally at random, a constant 7 

aggregation kernel is considered, which indicates that each pair of selected particles (i, j) is 8 

always aggregated after collision. With the simple assumption of Eq. 14, 9 

            (14) 10 

the analytical solution of the PSD for this case is given by Scott (1968) as 11 

 (   )  
     

 

  (    ) 
 
 

   

  (    )    (15) 12 

The initial particle distribution is specified as Ta = 0 in Eq. 16 13 

 ( )  
   

  
   

 
  

       (16) 14 

in which N0 is the initial total number of particles per unit volume (in units of m
-3

), v0 is the mean 15 

volume of the particles at the beginning (in units of m
-3

), and Ta = N0 β0 t is dimensionless time. 16 

Since the constant-number MC and the event-driven MC were applied in this study, the 17 

inter-event time need to be computed while running the model. Smith and Matsoukas (1998) 18 

gave the time increment of aggregation as 19 
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    (17) 20 

with 21 

               (18) 22 
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where Δtκ is the time increment (in units of s), κ is the counter of successful aggregation events, 1 

τc is the characteristic aggregation time, βC is the dimensional part of the aggregation kernel (in 2 

units of m
3
/s) which equals to β0 in this case, and C0 is total particle number concentration at the 3 

beginning. In addition, <βij> is the ensemble average kernel, which can be written as a discrete 4 

form, namely 5 

      
∑ ∑    

 
   

 
 

 (   )
     (19) 6 

All of the constants are selected the same as those of earlier researches on the purpose of 7 

comparing the model results with these earlier studies. For instance, C0 = N0 = 1, v0 = 1, and <βij> 8 

= βC = β0 = 1 are used in this study to match those of Shen and Maa (2016). Note that the 9 

analytical solution is a general formulation, the units of those parameter such as D, N0 and v0 in 10 

Eq. 15~16 are not important and only require consistency. The cumulative time t can be derived 11 

from Eq. 17 as 12 

  ∑       
   ((

 

   
)
 

  )    (20) 13 

Since the initial particle size distribution cannot be fitted perfectly with the discrete 14 

character of Monte Carlo method, the initial FSD calculated by analytical solution is divided into 15 

1500 size classes and fitted approximately with N = 30,000 particles. In order to simplify the 16 

computation, the particle size at the peak concentration at t = 0 is selected as the primary particle 17 

size, i.e., Dp = 0.87 (in arbitrary length units), as inputs of the model in this case.  18 

The predicted and analytical FSDs fit well with at t = 0, 10, 20, 50, 100, 200, and 300 s (Fig. 19 

3). One can easily calculate the arithmetic mean size (mean of number-based FSD) of the 20 

analytical solution given as (Shen and Maa, 2016) 21 
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by integral calculation. The simulated mean size also matches well with those given by analytical 1 

solution of the FSD (Fig.3). 2 

To better evaluate the progress of aggregation of a system, Marchisio et al. (2003a), gave an 3 

index Ia = 1 – m0(t)/m0(0) to show the degree of aggregation, and Scott (1968) gave the analytical 4 

solution for all the moments, as 5 

  ( )    (   )  (
 

       
)
  

 

 
   (22) 6 

where mk(t) is the kth moments of FSD at time t. In this case, m0(0) =∫  (   )  
 

 
 = 1. Here Ia = 7 

0 indicating no aggregation, and Ia = 1 denotes aggregation progresses in full pace. The relative 8 

error for mean size between simulated and the analytical result is less than 13% even at t = 1000 9 

s, and the calculated Ia = 99.8% for the system at that time indicates that aggregation is still in 10 

progress with full pace. 11 

 12 

Case II: Pure fragmentation  13 

We consider the population balance model for a power breakup kernel as 14 

      ( )     
       (23) 15 

where a0 = 1 together with a uniform fragmentation distribution given by Su et al. (2008) as  16 

 ( | )  
(   )

                  (24) 17 

Limited by the nature of discretion of MC method, the chosen floc will break into two classes j 18 

and k. Each of that includes two daughter flocs of the same size. The size of daughter flocs is 19 

decided by a random number r4 as 20 

{
                                         

             (     )    
     (25) 21 
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The time interval Δtκ of the counter of successful fragmentation events κ, is given by Tang 1 

and Matsoukas (1997) as 2 

    
 

    
 (  

  

    
)    (26) 3 

where <Ki> = ∑   
 
    is the mean fragmentation rate, and Mκ−1 and Mκ are the average mass 4 

before and after the κ fragmentation event. In order to reduce the computational resource, the 5 

average mass is estimated by the mass of the particle with average size. 6 

The analytical solution of the FSD was given by Ziff and McGrady (1985) with the power 7 

initial distribution (Eq. 16) for this pure fragmentation case as follows 8 

 (   )  
     

  
(       )

   
  

  
(       )    (27) 9 

In this case, we considered N0 = 1 and v0 = 1 following Shen and Maa (2016). It can be seen 10 

in Fig. 4 that all of FSDs at selected time and mean size obtained by model coincide with the 11 

analytical solution. The mean size and the peak size decrease quickly with the progression of 12 

fragmentation in the first ten seconds and the rate of reduction is slowing down with time. In 13 

addition, the maximum relative errors of mean size between analytical solution and the MC 14 

model at selected time is less than 9%. 15 

One should be aware that Case I and Case II are rarely possible for cohesive sediments in 16 

natural waters, since aggregation and fragmentation are often co-existing. Flocs do not unlimited 17 

grow or decay. But these two cases were simulated to show that the QMC model works well 18 

under pure aggregation and pure fragmentation conditions, as pre-steps to validate true cohesive 19 

sediment cases. The results of Case I and Case II illustrate that the constant-number QMC 20 

scheme, compared to the previous constant-volume QMC scheme, maintains stable statistical 21 

accuracy when particles aggregate and requires reasonable memory when particles break up. 22 

 23 
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Case III: Combined aggregation and fragmentation  1 

For the combined aggregation and fragmentation case, McCoy and Madras (2003) obtained 2 

a solution of the FSD for a constant aggregation kernel (Eq. 14 with a constant β0), a power 3 

breakage kernel (Eq. 23 with a constant a0), a uniform fragmentation distribution function (Eq. 4 

24~25), and an exponent initial distribution (Eq. 16) with the analytical FSD given by 5 

 (   )  
   

 

  
  [ (  )]
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    (28) 6 

and the total number fraction at Ta follows 7 
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    (29) 8 

where  ( )  (         ⁄ )      . 9 

The time increment of a chosen event is calculated by Eq. 17 and Eq. 26. Fig. 5 presents the 10 

comparison of FSD and the mean size between the analytical solution and the model with those 11 

constants selected as β0 = 100 in Eq. 14, a0 = 1×10
-6 

in Eq. 23, and N0 = 1, v0 = 100 in Eq. 26 12 

(Shen and Maa, 2016). The system reached an equilibrium state under the selected conditions 13 

after around fifty seconds. It can be observed that the model results at all time match quite well 14 

with the analytical solution. The aggregation process plays a leading role in the first 10 seconds 15 

and the mean size increases quickly. Then the fragmentation processes start to occur more 16 

frequently and the system reaches a steady state. 17 

 18 

3.2 Comparison with experimental data 19 

Case IV: Tran’s mixing chamber experiment  20 
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Tran and Strom (2017) conducted a laboratory experiment to explore the interaction 1 

between clays and silts under turbulent shear conditions. The experiments were carried out in a 2 

mixing chamber of 27.5 × 27.5 × 25 cm³, in which a variable speed paddle mixer was set to 3 

generate different magnitudes of turbulent shear. The pure clay sample consisted of a mixture of 4 

80% kaolinite and 20% montmorillonite to mimic estuarine mud (Keyvani and Strom, 2014) and 5 

the concentration was maintained constant at 100 mg/L. Floc images were recorded by a camera 6 

system with a LED in a waterproofed housing placed inside the mixing tank. The field of camera 7 

view was 2.4 × 1.4 mm² with an image resolution of 1.3 μm/pixel. The pure clay suspension was 8 

sonicated for 15 min to break down large clay aggregates and to obtain an average initial size 9 

distribution around 5 μm. Then the suspension was introduced to clearwater fluid and mixed at G 10 

= 50 s
-1

 and G = 95 s
-1

 respectively. The initial particle distribution obeys a Gaussian distribution 11 

with mean Dp and standard deviation Dp/3. The maximum floc size was selected as the maximum 12 

value between the Kolmogorov scale and the 95th percentile D95. Besides, the quantity and sizes 13 

of daughter flocs due to breakage of bigger flocs are logically and simply described by binary 14 

fragmentation at current stage (e.g., Khelifa and Hill, 2006; Lee and Molz, 2014; Mietta et al., 15 

2011; Verney et al., 2011). Other aggregation and breakage fitting parameters are given in Table. 16 

1. 17 

It can be observed in Fig. 6 (a) and (b) that the aggregation dominates in the first 2×10
5 

MC 18 

steps. But the particle size grows at a low speed within the first 10
5
 MC steps since the floc size 19 

still remains in the small level. The rate of increasing of floc size is higher between 1×10
5
 and 20 

2×10
5
 MC steps and larger flocs start to appear. After 2×10

5 
MC steps, the fragmentation rate 21 

gradually rises and the slope of the curve of median floc size is getting flatter. The system 22 

approaches an equilibrium state at 3×10
5
 MC steps, around which the aggregation and 23 
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fragmentation are closely matched in rate and the characteristic size keeps fluctuating. In order to 1 

eliminate the error from the fluctuation, the equilibrium result is calculated by averaging the 2 

results of the last 2×10
5
 MC steps. The fractal dimension (nf = 2.2) was calibrated under the 3 

shear condition G = 50 s
-1

, and the results for high shear condition were treated as validation 4 

cases. The predicted D50 when the turbulent shear G = 50 s
-1

 is 90.02 μm, which is highly 5 

consistent with the experiment result 88 μm. When it comes to higher turbulent shear condition, 6 

the simulated median size is 56.7 μm and appears to be slightly underestimated compared with 7 

the experimental result of 69 μm. The bias for the low shear condition (G = 50 s
-1

) was mainly 8 

statistical noise caused by sampling, which is inherent to any QMC approach. This error can be 9 

reduced with sufficient simulation particles (Hao et al., 2013). For the high shear condition (G = 10 

95 s
-1

) the error of median size was 17.8 %. This error seems reasonable as a model system error, 11 

as higher values (up to 27.2%) have been reported by Mietta et al. (2008). A possible reason 12 

accounted for this underestimation is that the fragmentation frequency assumption or/and the 13 

aggregation efficiency assumption or/and the fractal dimension are insufficient in a high-14 

intensity turbulent field. It is also critical to note that fixing the fractal dimension cannot account 15 

for this error. The change of fractal dimension from the constant 2.2 to a variable term (with δ 16 

calibrated using Eq. 6) would not help improving the accuracy in this case. With the calibrated 17 

value δ = -0.046, the error of the median size under G = 95 s
-1

 went up to 21.1%. In addition, one 18 

can directly obtain the predicted FSD by the MC model at any time step. The predicted FSD at 19 

MC Step = 1×10
5
, 2×10

5
, 3×10

5
, and the equilibrium state are given in Fig. 6.  20 

 21 

Case V: Maggi’s settling column experiment 22 
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Maggi et al. (2002, 2007) carried out a numerical study to explore the effect of variable 1 

fractal dimension on the FSD in a laboratory settling column with suspended kaolinite. The 2 

settling column is about 480 cm high with an inside diameter of 30 cm, above which a buffer 3 

tank is set to continuously mix and dilute the highly-concentrated suspension to the test 4 

concentration. The homogeneous turbulence field is produced by an oscillating 3-D grid to 5 

induce flocculation. Flocs settle through the turbulent field and are recorded by the camera 6 

system in the measuring section under the settling column. The experiment is performed with 7 

four turbulent shear rates G = 5, 10, 20, and 40 s
-1

 respectively and a constant sediment 8 

concentration of c = 500 mg/L. The density of the selected kaolinite is ρs ≈ 2650 kg/m
3
 and its 9 

mineral size is in the range 0.1 – 5 μm. The observation window is 6-by-6 mm² and the 10 

resolution is 6.42 μm/pixel, which limits the scope of measurement, and overestimates the 11 

number concentration.  12 

The experimental FSDs for G = 10 and 40 s
-1

 are used to calibrate the fitting parameters 13 

such as fractal dimension and fragmentation function. The other two shear rates are used to 14 

validate the model results. The fitting parameters are given in Table. 1. The initial particle 15 

distribution obeys a Gaussian distribution like case IV except that the Dp in this case is 2 μm. The 16 

maximum floc size is selected as the Kolmogorov scale, and the fractal dimension is set variable 17 

with the coefficient δ = −0.1 recommended in Maggi et al. (2005, 2007, 2008).  18 

The predicted and experimental results of the FSD at equilibrium state are given in Fig. 7. 19 

Note that the size classes under 6.4 μm are shown either in the FSDs in the blue shadow areas 20 

with solid edges to demonstrate the level of detail this study can provide. The FSDs given by the 21 

other solid lines are calculated by normalization of particle arrays excluding the particle smaller 22 

than 6.4 μm, and the size classes are the same as those in Maggi et al. (2007). As can be seen in 23 
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Fig. 7, the predicted FSDs of the four turbulent shear rates match quite well with the 1 

experimental results. 2 

One can see that for the case of the lower turbulent shear rate G = 5 s
-1

, the simulated FSD 3 

seems to slightly overestimate the fraction of large particles. It might be a consequence of the 4 

underestimation of Amax in Eq. 10 for low shear rates. The term of turbulent shear is smaller when 5 

the shear rate is lower, so the differential settling term is more dominant in the calculation of 6 

aggregation kernel and the Amax would be underestimated under the simplification that 7 

differential settling is zero. This leads to an overestimation of the aggregation rate of small 8 

particles. Another possible reason is that the assumption of aggregation efficiency or/and 9 

breakup function or/and binary fragmentation are less appropriate for kaolinite flocculation. 10 

Further study and improvement will be needed to accord for it. 11 

The predicted and experimental median size (D50) is shown in Fig. 8. Note that the median 12 

size of the experimental result is calculated by FSDs using linear interpolation. The predicted 13 

and experimental results match in good accuracy. The predicted median size is getting smaller as 14 

compared to the predicted result with increasing turbulent shear rate. Several reasons may be 15 

accounted for this trend. Firstly, particles smaller than 6.4 μm are neglected in the experimental 16 

results due to the resolution of the camera system, which would introduce a bias towards larger 17 

sizes in measurement. Secondly, the selection of Dmax or/and the assumptions about aggregation 18 

efficiency and fragmentation are insufficient to represent kaolinite flocculation.  19 

 20 

4. Discussion 21 

4.1 Monte Carlo and Quasi-Monte Carlo sampling  22 
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In this section, a numerical example, combining aggregation and fragmentation where an 1 

exact analytical solution is known (case Ⅴ in section 3), is used to compare the accuracy and 2 

efficiency of different QMC methods and the LHS scheme described above with the standard 3 

MC scheme. MC simulations run in a PC equipped with a CPU of Intel(R) Core(TM) i7-9750H 4 

CPU @2.60GHz and memory of 16 GB. The error that describes how well the FSD 5 

approximates the analytical solution is defined as 6 

   ∑ |  (   )    
 (   )|

  
        (30) 7 

where NC = 10 is the number of size classes, the superscript A indicates the analytical solution. 8 

The simulations were conducted with different numbers of particles N = 15,000, 30,000, 75,000, 9 

and 150,000, and the MC steps were set to 5×10
5
, 5×10

5
, 7×10

5
, and 15×10

5
 respectively to 10 

make sure that equilibrium is reached. 11 

The FSDs results of all the schemes converge towards the analytical solution as N increases 12 

(Fig. 9). Note that the errors of all schemes decrease significantly when N is larger than 30,000, 13 

and the benefit (reduction of error) decreases with further increase of N. In addition, errors of 14 

two QMC methods and the LHS scheme are always smaller than standard MC methods using 15 

pseudorandom numbers (also see Table 1). The result simulated using the Halton sequence 16 

reaches the highest accuracy when N is larger than 30,000. In other words, compared to the other 17 

three schemes, the QMC scheme using Halton sequence requires the least particle numbers in 18 

simulated system to reach reasonable accuracy (Er < 0.055 in this case).  19 

The computational costs of the four different MC methods are also tested (Fig. 10). Since 20 

the producing algorithm of quasi-numbers induces extra cost or/and the codes might not be 21 

optimized yet, the time consumptions of pre-producing random number series are not included. 22 

In addition, the time consumption of simulation with LHS sequence is not tested due to its low 23 
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efficiency of pre-production. The required CPU time of QMC schemes using Sobol’ and Halton 1 

sequences with any number of particles N are less than the standard MC method (Fig. 10 and 2 

Table 2). The simulation using Halton sequence saved more CPU time compared to that by using 3 

other two random number series when N is larger than 30,000. Note that the CPU time reduction 4 

of QMC compared to standard MC is around 8% with particle numbers N = 1.5×10
5
. It is 5 

reasonable to expect that the QMC method would save more calculation cost in solving the high 6 

dimensional problem (e.g. bio-adhesion included PBM).  7 

 8 

4.2 Sensitivity tests 9 

(1) Breakage events  10 

The fragmentation distribution function plays an important role in predicting the steady-11 

state FSD and characteristic sizes (Maggi, 2005; Khelifa and Hill, 2006; Shin et al., 2015). 12 

However, there were only simple theoretical assumptions about the fragmentation distribution 13 

since it is still difficult to carry out laboratory experiment to observe the micro-scale 14 

fragmentation processes directly (Maggi, 2005; Spicer and Pratsinis, 1996). In order to explore 15 

the influence of different fragmentation distribution functions on the modeling results, the three 16 

simplest assumptions, including binary breakup with mass ratio 1:1 (Eq. 12), ternary breakup 17 

with mass ratio 1:1:2 (Eq. 31), and uniform breakup (Eq. 24~25) (e.g., Spicer and Pratsinis, 1996; 18 

Shen and Maa, 2015,2016), are tested in the model and compared to the experimental data with 19 

different turbulent shear rates by Maggi et al. (2007).  20 

    {
                                           

             (    )     
    (31) 21 

The results given in Fig. 11 show that different fragmentation distribution functions will 22 

lead to significantly different predictions. Compared to the binary breakup assumption, the 23 

                  



26 
 

predicted FSDs from the ternary and the uniform breakup assumptions are skewed towards 1 

smaller size classes. The predicted median sizes simulated by using binary breakup function are 2 

higher than those by the other two assumptions. The results of the median sizes show a tendency 3 

that more fragments are produced after each fragmentation event, which will result in lower 4 

median sizes. This is to be expected since the mean size of fragments is smaller than that with 5 

assumptions of less fragments.  6 

It seems that using the binary fragmentation gives a much better match of both FSDs and 7 

median sizes. This assumption seems reasonable since Kramer and Clark (1999) proposed that 8 

the probability for a floc breaking into multiple fragments is small, and Tsai and Hwang (1995) 9 

found that flocs are prone to binary breakup into fragments with similar size. From another 10 

perspective, breakage into multiple fragments, which occurs infrequently, can be seen as several 11 

simultaneous binary fragmentation events. Nevertheless, selection of the breakage distribution 12 

function still requires a better understanding of floc structure (e.g., fractal property, density) and 13 

the breakup process under hydrodynamic impact. 14 

 15 

(2) Effects of fractal dimension  16 

The fractal dimension nf is used to empirically relate the geometry of flocs to their density, 17 

strength and settling velocity. Usually, nf is estimated from experimental floc size and settling 18 

velocity data. Note that the fractal dimension of flocs with even the same size may be different 19 

since flocs might not be self-similar at all, which is the basic assumption in the definition of 20 

fractal dimension. Most studies usually assume a constant nf on empirical understanding 21 

(Winterwerp, 1998), or an exponent form nf based on the knowledge that large particles have 22 

low nf than smaller particles (Khelifa and Hill, 2006; Maggi et al., 2007). Son and Hsu (2008) 23 
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found that a change of fractal dimension (from a constant to a power law) does not obviously 1 

improve the estimation of steady-state median size. Khelifa and Hill (2006) proposed an 2 

estimation of the coefficient δ in Eq. 1: 3 

  
   (    )

    (       )
     (32) 4 

where Dfc = 2,000 μm and Fc = 2 are suggested in Khelifa and Hill (2006).  5 

As is shown in Fig. 12, the predicted FSDs at steady state are quite sensitive to the fractal 6 

dimension nf. Using the constant nf = 2.2, both the modelling FSD skews toward the larger 7 

classes and the median size is larger than that by using the constant nf = 2.0. This is expected 8 

since flocs with a higher fractal dimension are more solid than those with a low fractal dimension. 9 

Another reason may be that the differential settling term in Eq. 2 becomes more important 10 

relative to the turbulent shear term since the velocity differences between small flocs and big 11 

flocs are significant compared to the case of low nf. Results from using a variable nf show a 12 

higher accuracy with experimental data. The value of coefficient δ = −0.1 suggested by Maggi et 13 

al. (2005, 2007, 2008) matched quite well both the FSDs and the median sizes.  14 

However, it is worth to mention that the predicted median sizes using constant nf and 15 

variable nf by Eq. 32 decrease rapidly with the turbulent shear increasing. In other words, the 16 

relative errors of D50 of those three cases using different nf reduced to nearly 30% when the 17 

turbulent shear rate is high. It might indicate that the calculation of differential settling (Eq. 4) is 18 

overestimated when the turbulent shear rate is low. In addition, the maximum aggregation kernel 19 

Amax calculated by Eq. 5 neglects the effect of differential settling, which may cause an error 20 

when the turbulent shear rate is low to some extent. 21 
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It is widely accepted that the density of the flocs decrease as a function of floc size. To 1 

better investigate their relationship, the variations of the excess density of the flocs were also 2 

simulated. 3 

    (     ) [
  

  
]
    

    (33) 4 

where ρw = 1000 kg/m
3
 is the density of water. Under the turbulent shear rate G = 40 s

-1
, it can be 5 

seen that the floc size increases while the floc density deceases with QMC steps, which indicates 6 

that the density of the flocs often decrease as a function of floc size (Fig. 13). 7 

 8 

4.3 Connections with field-scale sediment models 9 

With the rapid growth of computational ability, a large quantity of field-scale numerical 10 

models for simulating hydrodynamics and sediment transport have been developed in recent 11 

decades. According to the consideration of computational spatial dimension, these numerical 12 

models can be classified as one-dimensional models (e.g., MOBED and FLUVIAL 11), 2-13 

dimensional models (e.g., SERATRA, Delft 2D and MIKE 21), and 3-dimensional models (e.g., 14 

TELEMAC, Delft 3D, and ROMS) (Krishnappan, 1981; Chang, 1984; Onishi and Wise, 1982; 15 

Walstra et al., 1998; Warren and Bach, 1992; Hervouet and Bates, 2000; Delft Hydraulic, 1999; 16 

Song and Haidvogel, 1994). One of the most important parameters in simulating sediment 17 

transport and estuarine and coastal evolution is the settling velocity (ws) of cohesive sediments, 18 

which is controlled by floc size, floc shape, and floc density. However, the settling velocity is 19 

often treated as an arbitrary (although reasonable) constant or a fitting parameter in most field-20 

scale models. However, it usually does not match the measured ws (Papanicolaou et al, 2008; 21 

Toorman, 2012; Horemans et al., 2020). The lack of understanding of flocculation mechanisms 22 

would cause biased estimations in large-scale simulation for sediment transport processes.  23 
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Numerical models focused on multi-class cohesive sediment flocculation often give a better 1 

estimation of the settling flux but consume more computing resources with an increasing number 2 

of size classes (Lee et al, 2011; Toorman, 2012; Zhang et al., 2013; Shen and Maa, 2017). The 3 

PBM framework contains external and internal variables: the former describe the physical space 4 

of the location of particles, and the latter account for one or several distinguishable properties of 5 

particles such as size, volume, and biomass fraction (Shen and Maa, 2016; Iveson, 2002). The 6 

computational resources of PBM increase rapidly with the inclusion of additional internal 7 

variables. Thus, the PBM accounting for size in any 3-D model (i.e., with three external variables 8 

x, y, and z) is actually a 4-D model, which demands expensive computational costs and thus has 9 

not been widely adopted consequently. Nevertheless, simplified PBMs, e.g., the two-class PBM 10 

(Lee et al., 2011) and the three-class PBM (Shen et al., 2018a, 2018b), have already been 11 

employed in cohesive sediment studies. There is still a broad space for multiple class PBMs to be 12 

investigated in cohesive sediment field. 13 

It is also crucial to note that methods such as the simplified Lagrangian model (Winterwerp, 14 

1998) and the PBM solved by the discretization method (e.g., Krishnappan and Marsalek, 2002; 15 

Liu et al., 2019; Verney et al., 2011) or the quadrature method of moments (e.g., Shen and Maa, 16 

2015, 2016; Li et al., 2019) have explicit mathematical formulae. They are in favor of being 17 

coupled into hydrodynamic models to simulate cohesive sediment transport process. For instance, 18 

Krishnappan and Marsalek (2002) proposed a coupled 1-D advection-diffusion and pure-19 

aggregation PBM to predict the sediment flocs from an on-stream stormwater management pond, 20 

and Liu et al. (2019) implemented the PBM in a large eddy simulation of wave-driven Langmuir 21 

turbulence. On the other hand, the QMC models cannot be directly coupled with field-scale 22 

model in estuarine and coastal waters at current stage. Regarding the application of stochastic 23 
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methods in modeling the flocculation process, most of the existing works are based on the 1 

Winterwerp’s formula. For example, Maggi (2008) proposed a stochastic Lagrangian model to 2 

explore the temporal variability of the median floc size, similar as shown in Fig.6(a)(b), and Shin 3 

et al. (2015) adopted a MC method to determine the breakup probability and could calculate the 4 

FSD in log-normal forms. Nevertheless, their models seem difficult to extend to account for 5 

flocculation of bio-mineral aggregates with multi-modal FSDs due to the uncertainty and 6 

complexity of biomass-sediment interaction (Shen et al., 2019).  7 

The QMC models produce a new stochastic way to solve PBM and help determining 8 

various micro-scale flocculation behaviors, which provides new prospects to improve low cost 9 

bio-flocculation models to couple with large-scale model. Possibly coupled with computational 10 

fluid dynamics (CFD) in turbulent flow (Liu and Chan, 2017; Xu et al., 2017), the QMC based 11 

PBMs also have the potential to simulate the interactions between turbulence and flocculated 12 

particles in the future. 13 

 14 

5. Conclusions  15 

The following conclusions can be drawn for this study: 16 

(1) The quasi-Monte Carlo method is applied to develop a flocculation model by a size-17 

based population balance model for cohesive sediments. The maximum relative errors 18 

of the mean sizes are less than 10%. 19 

(2) The settling column experimental results for suspended kaolinite with a concentration of 20 

500 mg/L and different shear rates carried out by Maggi et al. (2002) are used to 21 

validate the simulated FSD and its median size. The QMC model predicted these well 22 

by selecting similar coefficients in aggregation and fragmentation processes given by 23 
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Mietta et al. (2008). The results of simulated median size for a laboratory experiment 1 

conducted by Tran and Strom (2017) also show a reasonable agreement. 2 

(3) The calculation accuracies and time consumptions of different QMC schemes and the 3 

LHS scheme were tested. All three considered low-discrepancy number schemes show 4 

better accuracy than the standard MC method, among which the QMC scheme using the 5 

Halton sequence is the best one in accuracy. On the other side, compared to the other 6 

schemes, the QMC scheme with Halton sequence requires the least particle numbers in 7 

simulated system to reach a reasonable accuracy. The CPU time of schemes using the 8 

Halton sequence and the Sobol’ sequence are less than that of standard MC. In this case, 9 

one can save around 8% CPU time with N = 1.5×10
5
 by replacing the pseudorandom 10 

number by the Halton sequence. 11 

(4) The model prediction will be significantly influenced by assumptions on the fractal 12 

dimension nf and fragmentation distribution functions, which should be checked 13 

carefully in every model for different applications. 14 

(5) The reasonable performance of the QMC model for cohesive sediments shows great 15 

prospect in solving multivariate and high dimensional problem (e.g. biomass effect on 16 

flocculation) due to its nature of discretion.17 
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Figure Captions  1 

Fig.1 The flowchart of the QMC model for cohesive sediment flocculation due to aggregation 2 

and fragmentation. 3 

Fig.2 Scatter plot of different sampling schemes with each of 1000 points. Top left is the results 4 

of pseudorandom (standard MC) approach, top right is Latin hypercube sampling, bottom 5 

left is Halton sequence, and bottom right is Sobol’ sequence. 6 

Fig.3 Time evolution of (a) normalized PSDs and (b) mean sizes for the pure aggregation event 7 

with a constant aggregation kernel (Case Ⅰ) 8 

Fig.4 Time evolution of (a) normalized PSDs and (b) mean sizes for the pure fragmentation 9 

event with a power law fragmentation kernel. (Case Ⅱ) 10 

Fig.5 Time evolution of (a) normalized PSDs and (b) mean sizes for the combined aggregation 11 

and fragmentation events with a constant aggregation kernel and a power law fragmentation 12 

kernel. (Case Ⅲ) 13 

Fig.6 The predicted and experimental characteristic sizes and the predicted FSDs for turbulent 14 

shear rate G = 50 s
-1

 (the first column) and G = 95 s
-1

 (the second column) respectively. 15 

Fig.7 Comparison between predicted and experimental FSDs of equilibrium for (a) (c) 16 

calibration and (b) (d) validation results for suspended kaolinite with different turbulent 17 

shear rate. 18 

Fig.8 Comparison between predicted and experimental characteristic sizes of equilibrium for 19 

suspended kaolinite with different turbulent shear rate. 20 

Fig.9 The errors between predicted and experimental results using different QMC sampling 21 

schemes for different number of particles. 22 
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Fig.10 The time consumptions of simulation using different QMC sampling schemes for 1 

different number of particles. (a) Absolute time consumption; (b) time reductions compare 2 

to pseudorandom sequence (standard MC). 3 

Fig.11 Sensitivity tests for different fragmentation distribution functions in simulation for their (a) 4 

characteristic sizes and (b) FSDs.  5 

Fig.12 Sensitivity tests for different constant and variable fractal dimensions in simulation for 6 

their (a) characteristic sizes and (b) FSDs.  7 

Fig. 13 The change of the mean size and the excess density of flocs with QMC steps. 8 
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 1 

Table. 1. The modeling parameters for each experiment, in which λ is the Kolmogorov 

length scale, Dmax is the maximum floc size , and δ is the coefficient in Eq. 32.  

Case N 
Dmax 

(μm) 

Dp 

 (μm) 
nf  B(D|η) 

Tran's experiment, G = 50 s
-1 

 30000 416  5.0 2.2 Binary 

Tran's experiment, G = 95 s
-1

 30000 258  5.0 2.2 Binary 

Maggi's experiment, G = 10 s
-1

 30000 316 2.0 δ=-0.1 Binary 

Maggi's experiment, G = 40 s
-1

 30000 158  2.0 δ= -0.1 Binary 

Maggi's experiment, G = 5 s
-1

 30000 447  2.0 δ= -0.1 Binary 

Maggi's experiment, G = 20 s
-1

 30000 223  2.0 δ= -0.1 Binary 

  2 
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 1 

Table. 2. The errors and the time consumptions of different RNG functions with N = 

15000, 30000, 75000, and 150000. 

 

 

N = 15000 N = 30000 N = 75000 N = 150000 
 

ERROR 
     

Pseudorandom 0.07341  0.06100  0.05799  0.05525  
 

Sobol' 0.05979  0.05735  0.05428  0.05348  
 

Halton 0.06345  0.05351  0.05162  0.05146  
 

LHS 0.06525  0.06085  0.05616  0.05544  
 

      
TIME CONSUMPTION 

(s)
a
 

     

Pseudorandom 119 149 271 551 
 

Sobol 118 144 265 530 
 

Halton 119 145 258 510 
 

a
 The time consumption of simulation using LHS sequence is not included due to its low efficiency of 2 

pretreatments.  3 

                  


