
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 1

Island Transpeciation: A Co-Evolutionary Neural
Architecture Search, applied to country-scale

air-quality forecasting
Konstantinos Theodorakos, Oscar Mauricio Agudelo, Joachim Schreurs,

Johan A.K. Suykens, Fellow Member, IEEE and Bart De Moor, Fellow Member, IEEE & SIAM

Abstract—Air pollution causes around 400.000 premature
deaths per year in Europe due to Particulate Matter, nitrogen
oxides (NOx) and ground-level ozone (O3) pollutants. Multiple-
Input Multiple-Output Nonlinear Auto-Regressive eXogenous
Deep Neural Networks are frequently used to predict a day
before, air-quality pollution incidents, at a country-scale. With
complexity and data sizes increasing, finding optimal models
becomes harder. We propose “Island transpeciation” to optimize
hyperparameters and architectures. Unlike single “off-the-shelf”
optimizers, island transpeciation combines results from multi-
ple optimizers, to consistently provide excellent performance.
Moreover, we show that island transpeciation outperforms ran-
dom model search and other previous modelling efforts. Island
transpeciation is a Neural Architecture Search (NAS) that uses
co-evolution (genes), to combine (transpeciation) populations
of incompatible optimizers (species). In island transpeciation,
heterogeneous hardware resources can be parallelized with fault
tolerance and distributed control. We have successfully used
these techniques to predict next-day O3 concentrations across
the Belgian territory.

Index Terms—deep neural networks, neural architecture
search, co-evolution, air quality forecasting

I. INTRODUCTION

A IR pollutants are substances that harm the human health
and the environment. They can be released from natu-

ral and anthropogenic sources: mining activities, agriculture,
waste treatment, industrial processes, energy plants, burning
fossil fuels, road transportation, residential activities and nat-
ural phenomena. Total air pollution was the 5th global risk
factor in 2017 [1], by total number of deaths from all causes,
ages and both sexes. Air pollution is the cause of around
400.000 premature deaths per year and is the one of the most
significant health risks in Europe [2]. In addition, there is a
negative economic impact by reducing productivity through
working days lost, increasing health care costs and human life
span shortening. The most dangerous pollutants in Europe are
Particulate Matter (PM), Nitrogen Oxides (NOx) and ground-
level ozone (O3).

Air pollution forecasting is a prevention measure against
the short-term (hours or days) and long-term (years) exposure

Corresponding author: Konstantinos Theodorakos. Manuscript received
March 12, 2020; revised March 12, 2020.

The authors are with KU Leuven, Department of Electrical Engineering
(ESAT), STADIUS Center for Dynamical Systems, Signal Processing and
Data Analytics, Kasteelpark Arenberg 10, box 2446, 3001 Leuven, Belgium
(e-mails: {konstantinos.theodorakos, mauricio.agudelo, joachim.schreurs, jo-
han.suykens, bart.demoor}@esat.kuleuven.be).

to harmful substances for vegetation, animals and humans.
With accurate forecasting, governments and policy-makers
could raise real-time “low air-quality” alerts. With timely
warnings, the public minimizes negative health effects by
reducing outdoor activities during dangerous times.

Multiple-Input Multiple-Output (MIMO), Nonlinear Auto
Regressive eXogenous (NARX) Deep Neural Networks
(DNN) for air-quality forecasting is an “all-in-one” modelling
architecture that can predict next-day O3 concentrations, at
a country scale. In this work, we used real-world, publicly
available data: Time-series (1990 to 2018) from 46 O3 Bel-
gian monitoring stations retrieved from the European Envi-
ronmental Agency (EEA) [3], which we combined with 51
weather variables [4] acquired from the surface-level ERA-
interim European Centre for Medium-Range Weather Fore-
casts (ECMWF) database. The proposed DNNs successfully
predicted one day before, an “inform-public” O3 alert level in
Belgium at critical times.

Optimized
Deep Neural

Network

Incompatible optimizer(s)Optimizer (species)

Hyperparameters and architectures (genes)

transpeciation

Figure 1. Island transpeciation is a global search technique that uses co-
evolution (genes) to combine (transpeciation) populations of incompatible
optimizers (species), in order to find optimal Deep Neural Network (DNN)
models.

With complexity and data sizes increasing, finding optimal
models becomes harder. To improve the forecasting perfor-
mance of DNNs, we developed island transpeciation [5] (Fig.
1). Unlike “off-the-shelf” optimizers, island transpeciation
can combine results from multiple optimizers, to consistently
provide good performance. Island transpeciation is a Neural
Architecture Search (NAS) technique that uses co-evolution
(genes) to combine (transpeciation) populations of incompati-
ble optimizers (species), in order to find optimal DNN models.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 2

Contributions:
• MIMO NARX DNN: A prototype for country-scale air

quality forecasting, using a single model.
• Definition of a new operator for evolutionary algorithms:

transpeciation.
• A new type of automated parallel and distributed NAS: Is-

land transpeciation. Heterogeneous networked computing
resources can cooperate with “hot-plugging” and fault-
tolerance.

• Deep learning model configuration suggestions for the
context of ozone forecasting.

This document is divided into 5 sections. Section II provides
a brief introduction to DNNs, Neural Architecture Search
and background information on air-quality standards and ex-
isting forecasting methods. Section III discusses the island
transpeciation neural architecture search. Section IV describes
the details of implementing island transpeciation and the
MIMO-NARX DNN model prototype. Section V shows the
performance of the air quality forecasting models and the
effectiveness of island transpeciation. Section VI, contains
insights and conclusions, Appendix A the data/code reposito-
ries and information on the CPU and Multi-GPU parallelism
implementation. Appendix B presents the exogenous variables
used in the models.

II. BACKGROUND

A. Hyperparameter optimization of neural networks

Recurrent Neural Networks (RNN) [6] is a type of Artificial
Neural Networks (ANN) that is commonly used to model
time series. These RNNs exhibit temporal sequential behavior
where memories are retained and recalled as stable entities
collectively. An extension of RNN is the Bidirectional Recur-
rent Neural Networks (BRNN) [7], which use sequential data
in both forward/backward time directions without the require-
ment of the input data length to be fixed. Long Short-Term
Memory (LSTM) [8] cells store information over extended time
intervals, without losing shorter time predictive capabilities.
Gated Recurrent Units (GRU) [9] are similar to the LSTM,
with less trainable parameters. LSTMs with a forget gate (Fig.
2), are expressed formally [8] as:

ft = σg(Wfxt +Ufht−1 + bf)

it = σg(Wixt +Uiht−1 + bi)

ot = σg(Woxt +Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt +Ucht−1 + bc)

ht = ot ◦ σh(ct)

(1)

where d is the number of input features, h is the number of
hidden units, ◦ the Hadamard product. xt ∈ Rd is the input
vector to the LSTM unit at time t, ft ∈ Rh is the forget gate’s
activation vector, it ∈ Rh is the input gate activation vector,
ot ∈ Rh is the output gate activation vector, ct ∈ Rh is the
cell state vector and ht ∈ Rh is the hidden state vector. The
W ∈ Rh×d, U ∈ Rh×h weight matrices and the bias vectors
b ∈ Rh, are learned during training. σg is a sigmoid function
and σc, σh are hyperbolic tangent functions.

σg σg σc σg

× +

× ×

σh

ct−1

state

ht−1

hidden

xtinput

ct

state

ht

hidden

ct

ft
it ot

ht

Figure 2. Diagram of a Long-Short Term Memory (LSTM) cell with a forget
gate [8].

LSTMs fall under a more general class of Nonlinear Auto-
Regressive eXogenous (NARX) models [10]. NARX is a predic-
tive mathematical formulation with output variables depending
on previous values as well as exogenous variables, along with
a stochastic (random) term:

y(t) = F(y(t−1), ...,y(t−ly),u(t), ...,u(t−lu))+e(t) (2)

where y(t) ∈ Rn is the output vector at time t (e.g., O3

concentrations), u(t) ∈ Rm is the vector of exogenous input
variables (e.g., temperature, total cloud cover, etc.). ly and
lu are the numbers of lags for y(t) and u(t) respectively.
e(t) ∈ Rn is the prediction error (white noise process
assumed) and F(.) is a nonlinear vector function (ANN,
polynomial function, etc). In this work, we focus on training
Multiple-Input Multiple-Output (MIMO) models. These allow
us to use multiple input time-series of air quality monitoring
stations, to predict the outcomes of multiple stations. With
Multiple-Input Single-Output (MISO), we forecast the output
of a single measuring station.

Due to the inherent difficulty of modern day prediction
problems, such as the air quality forecasting that we focus
on this paper, neural network type models typically have
an abundance of hyperparameters to tune. We here give an
overview of commonly used methods to explore and optimize
these parameters: Particle Swarm Optimization (PSO) [11]
solves problems iteratively, using populations of moving can-
didate solutions (particles), located within a parameter space.
Particles (swarm) influence each-other based on their fitness,
position, velocity etc. Genetic Algorithms (GA) [12] is a class
of Evolutionary Algorithms (EA) [13] that generate candidate
solutions via natural selection and biology-inspired operators:
mutation, crossover and selection. Differential Evolution (DE)
[14] is an EA that solves non-differentiable optimization
problems, by combining multiple elite candidate solutions.
Bayesian Optimization (BO) [15] defines prior and posterior
distributions (Gaussian process) over objective functions, us-
ing exploration/exploitation trade-offs on bounded parameter
spaces. Random Search (RS) [16] samples from random dis-
tributions to solve black-box optimization problems.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 3

Neural Architecture Search (NAS) automatically architects
Neural Network designs [17]. Due to the inherent complexity
of DNNs and the tasks at hand, empirically architecting
DNN can be tedious, time-consuming and ineffective. NAS
is overlapping with the fields of meta-learning [18] and
hyperparameter optimization and has three main components:
(1) Search space: The bounded or unbounded range of archi-
tecture parameters. It can be prone to human bias. Careful
treatment can significantly reduce the total NAS search space
and execution time [19]. (2) Search strategy: The method to
perform exploration and exploitation of the architecture search
space. (3) Performance estimation strategy: The metric that
can foresee the future performance of the trained ANN on
unseen data and future tasks. Neuroevolution [20] is a type
of NAS that uses EA to generate ANN rules, parameters,
topologies [21]. ANN neuron weights, hyperparameters and
topologies can be improved via the processes of evolution:
reproduction, mutation, recombination, etc. Two main variants
exist. (1) Direct encoding: It generates compact and fine-tuned
architectures that require a lengthy training process. (2) Indi-
rect encoding: Coarser but faster than direct encoding. Suited
for specific use-cases. To find optimal deep learning models
for the air-quality time-series forecasting, we used indirect
encoding. Architecture search is performed in conjunction with
hyperparameter tuning.

DNN models can be characterized by tenths up to hun-
dreds of hyper-parameters and architectures, with varying
levels of sensitivity. Manually tweaking the available options
does not guarantee optimal model performance [22]. There
is evidence that combining multiple optimization algorithms
leads to improvements in global model performance compared
to a homogeneous/single-optimizer case [23]. In this paper,
we argue that it is optimal for fast convergence to combine
different types of optimizers for NAS as well. The intro-
duction of island transpeciation in NAS, allows to combine
DNN architectures from vastly different global optimizers.
This ensures consistently good performance over different
initializations, parameter spaces or difficulty of the problem.

B. Air-quality standards

Ozone (O3) is an inorganic molecule, a less stable allotrope
of oxygen. It has industrial and consumer applications as an
oxidant, but damages the mucous and respiratory tissues of
humans and animals [24]. Exposure to O3 with a concentration
of 1 part per million (ppm) can affect the respiratory system.
Exposure to 15 to 20 ppm, for 2 or more hours can be life-
threatening. For the long term protection of human health and
vegetation, specific O3 concentration thresholds were set by
the European Union [25]:

1) Background: 60 µg/m3.
2) Healthy limit: 120 µg/m3.
3) Public informing (>1 station): 180 µg/m3.
4) Alert: 240 µg/m3.

We used real-world, publicly available data: Time-series
(1990 to 2018) from 46 O3 Belgian monitoring stations
retrieved from the European Environmental Agency (EEA) [3].

Data are sampled as a maximum daily 8-hour mean by the
following monitoring station types:

1) Urban: Protection of human health. Range: a few km2.
Location: residential areas of cities.

2) Suburban: Protection of human health and vegetation.
Range: tens of km2. Location: city outskirts.

3) Rural: Protection of human health and vegetation.
Range: sub-regional levels (a few km2). Location: small
settlements, crops, forests and natural ecosystems.

4) Background-rural: Protection of vegetation and human
health. Range: regional, national or continental (1.000
up to 10.000 km2). Location: crops, forests, natural
ecosystems, very low population regions.

C. Existing air-quality forecasting methods

In [26], the authors forecast daily PM in Belgium, us-
ing basic Artificial Neural Networks. A single model per
monitoring station was proposed, with only a few exogenous
variables. As a consequence, the numerical accuracy of the
predicted concentrations was limited. The authors identified
cloud cover, day of the week and wind direction as important
exogenous features for forecasting, which we also include in
our proposed model. Ensemble Kalman Filters (EnKF) [27]
and Optimal Interpolation (OI) [28], improved the O3 and
PM estimates of the air-quality model AURORA in Belgium.
Although clustering cannot offer direct numerical predictions
for air-quality stations, it is worth mentioning. Incremental
Kernel Spectral Clustering (IKSC) [29] clustered drifting non-
stationary time-series of multiple PM monitoring stations
over Belgium and three surrounding countries. Their approach
captured some spatial shifting patterns on the spread of a
pollution episode. In [30], the authors used Deep Learning
to forecast O3. The exogenous variables were reduced using
a decision classification tree. A human-in-the-loop approach
was used to tune a few DNN hyperparameters manually and
to avoid overfitting. As exogenous parameters, other than
meteorological variables the authors added chemical analytes.
To our knowledge, chemical concentration forecasts are not
easily obtainable and may require the additional dependency
of the outputs of (computationally demanding) deterministic
air-quality models. The authors used only 2 years of training
data, with 80% training, 20% testing split, without any form
of cross-validation or automated architecture search. Finally,
this approach seems to work only for single monitoring station
predictions.

III. MAIN RESULT: ISLAND TRANSPECIATION

Overview

Speciation is the evolutionary process with which popula-
tions evolve to become distinct species [31]. Island transpeci-
ation is a global search technique that uses evolution to com-
bine incompatible optimizers, in order to find optimal DNN
architectures (Fig. 3). Artificial populations of optimizers can
be combined into panmictic structures of complex system
networks called island or multi-population models [32]. Every
optimizer maintains a number of candidate solutions in their
internal representation level, in an island. In Fig. 3 we have

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 4

DNN model spacePhenotype

SpeciesGA Genotype

PSO Genotype
Transpeciation

Ph
en

ot
yp

e
⇔

G
en

ot
yp

e
⇔

In
te

rn
al

re
pr

es
en

ta
tio

n

individual

partic
le

poste
rio

r

distr
ibution

Meta-Learning Isla
nds

GA

PSO

Bayesian

Optim
ization

Migration

Figure 3. Island transpeciation is a co-evolutionary Neural Architecture
Search (NAS) that optimizes DNN models (phenotype). Optimizers (top
layer: meta-learning islands) like Bayesian Optimization, Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) can co-evolve DNN models
(bottom layer: DNN model space). Cooperation and competition between
incompatible optimizers is achieved via migration (transpeciation operator) of
solutions between optimizers (mid layer: species) using: genotype-to-internal
representation transformations.

three islands of the following iterative optimizers: Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) and
Bayesian Optimization (BO). PSO and GA islands have a
population of five (internal candidate solutions), whereas BO
only one (distribution of parameters). An optimizer that can
not directly use candidate solutions from other islands, is
considered a unique species. E.g., a PSO algorithm (which
contains individuals of the species “particle”) can not directly
accept and utilize candidate solutions from the “individual”
species of a GA.

Transpeciation Operator

Transpeciation is an evolutionary operator that allows inter-
nal representation to (globally compatible) genotype transfor-
mations. In other words, to enable transferring of candidate so-
lutions between incompatible optimizers, we project solutions
from the internal algorithm format to a commonly compati-
ble form. This way, we can achieve concurrent cooperation
between vastly different optimization algorithms. The transpe-
ciation operator is optimizer/implementation-dependent. For
example (Fig. 3), transpeciation can transform an individual
(from the GA species) into a particle (to the PSO species) and
allow GA and PSO to co-operate seamlessly. An individual

GA solution can migrate to a PSO island, after it is trans-
formed (transpeciated) into the particle species via a common
genotype. The bottom layer represents the final form of an
optimized and trained DNN model, expressed as phenotype.

A. Generalized Island Model formal extension

From the Generalized Island Model (GIM) [23], we have
Archipelago A which is the tuple:

A =< I,T > (3)

where i is the island identification with i = 1, 2, ...n, I the set
of islands Ii = {I1, I2, ..., In} and T the migration topology.
Every island Ii is a tuple:

Ii =< Ai, Pi,Pi,Ri > (4)

where Ai is the optimization algorithm, Pi is the candi-
date solution population, µi is the migration interval, Pi

is the migration-selection policy and Ri is the migration-
replacement policy of island i.

Our extension on the original formalism is the transpeciation
operator T . Lines 4, 7 of Algorithm 1 extend GIM [23]
(with µ as the migration interval). The deme M is a globally
compatible sub-population, generated by the island i. M is
created by the internal representation population of the island
i, using the transpeciation operator Ti:

M = Ti(internal_representationi) (5)

where Ti is the transpeciation operator for island i, M is
a deme, a sub-population of globally compatible candidate
solutions to be sent to adjacent islands. For example, the
internal representation of a PSO algorithm has a “particle
species” and for a BO a “distribution species”. Typically,
we would only be able to combine candidates from the
same species, with the same number and type of arguments.
However, transpeciation allows the back and forth cooperation
of these incompatible optimizers.

The operator T ′ performs the reverse (sometimes lossy)
transpeciation operation. Island i converts the globally com-
patible deme M′ that was received from the adjacent islands,
into the internal_representationi:

internal_representationi = T ′i (M
′) (6)

where M′ is the deme received from islands adjacent to Ii
and T ′i is the Transpeciation′ operator of island i, for reverse
transformations (global to internal representations). A lossy
case is when we transpeciate a particle from the PSO species
into an individual of the DE species: we retain and convert
all the particle position parameters. However, we lose the
internal parameters regarding particle velocity or acceleration.
For an optimization algorithm like random search there is no
inverse transpeciation operation, because this algorithm does
not accept demes internally.

In practice, the transpeciation operator performs mainly
rescaling on hyperparameter bounds, from the internal rep-
resentation format of each optimizer (i.e., for random search
∈ [0, 1]) to the globally compatible genotype bounds (i.e., for

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 5

Algorithm 1: ISLAND Ii WITH TRANSPECIATION OP-
ERATOR Ti

1 initialize P
2 while NOT(stop criteria) do
3 P ′ ← Ai(P, µi)
4 M← Ti(Pi(P

′)) // Transpeciation
5 Send M to islands adjacent to Ii ∈ T
6 Let M′ be the set of solutions received from

adjacent islands
7 P ′′ ← R(P ′, T ′i (M

′)) // Transpeciation′

8 P ← P ′′

9 end

the “unit” hyperparameter ∈ [64, 512]]). The inverse transpe-
ciation operator performs the opposite transformation. Special
cases may require additional operations, like with the Bayesian
optimizer [15], which has a distribution as internal represen-
tation. The transpeciation operation in that case, additionally
performs a “maximize” function call, where we get the Maxi-
mum A-Posteriori (MAP) hyperparameter estimation. In other
words, we get the mode of the posterior parameter distribution,
which is the “best suggested” hyperparameter point sample.
For the inverse transpeciation operation, we additionally have
a “probe” function call, where we “guide/suggest” solutions
(coming from the other islands) to the Bayesian optimizer.

Algorithmic flow

Fig. 4 shows a flow chart of the island transpeciation NAS.
There are three main phases: global optimization, transpecia-
tion and local optimization. In the global optimization phase,
every island is searching for DNN hyperparameters using a
common genotype. Each internal model candidate that an op-
timizer species generates, is trained using a distributed worker
(hardware resources) and evaluated for fitness. Periodically,
migrations send and receive candidate models to/from the
other adjacent islands. Out of all the neighboring models
received, one is chosen probabilistically, using rank selection.
The selected candidate is transformed into the internal repre-
sentation of the island via transpeciation. E.g., for a PSO [11]
island, the genotype received is transformed into a particle,
using the genes as location and an arbitrary velocity. The
accepted model can now replace the worst internal model of
the island since it has the same species. In the case of a PSO
island, the particle with the worst Mean Squared Error (MSE)
is replaced. Island transpeciation allows for diverse global
search methods to co-evolve models concurrently.

With island speciation, neuroevolution can be parallelized:
Each island [32], [33] could run on a distinct computing
thread, process or even a different computing node. Even
though the evolution progresses distinctly in each island,
populations of meta-learning individuals could migrate peri-
odically between islands. Table I shows the numerical non-
differentiable bounded global and local optimizers that we
used as meta-learning islands.

Distributed Workers

Train, Validation,
Test data

Train Candidate

NO

YES

Fit?

Train candidate

NO

YES

Fit?

START

Internal models

NO

YES

Migrations?

Rank selection

Replace worst model

LOCAL OPTIMIZATION

GLOBAL OPTIMIZATION ISLAND TRANSPECIATION

END

Parallel Islands

Species:
Global search

Transpeciation

Local Search

Figure 4. Flow chart of island transpeciation. Global optimization allows
diverse global search methods to co-evolve DNNs in parallel via transpe-
ciation. Local optimization polishes the final models. Flow: In the global
optimization phase, every (parallel) island/optimizer globally searches for
DNN hyperparameters using a common genotype. Each internal model is
trained using a distributed worker (hardware resources) and evaluated for
fitness. Periodically, migrations send/receive candidate models to/from the
other adjacent islands. Out of all the neighboring models received, one is
chosen probabilistically, using rank selection. The selected candidates are
transformed into the internal representation of each island/optimizer via
transpeciation and replace the worst internal model of the island. Finally,
after a number of co-evolutionary iterations, local optimization is performed.
Starting point is the best fit model that was co-evolved by global optimization.
Local search algorithms use the same search space as the global ones and
polish the final DNN model.

IV. METHODS USED FOR OZONE FORECASTING

A. Model

MIMO NARX DNN: Single-station forecasting of air quality
has been tried in the past with LSTM [30]. For multi-station
predictions, we have the MIMO NARX DNN (Fig. 5):

y(t) = F(y(t− 1),u(t)) (7)

where t is the time-step (in days), n is the number of
O3 monitoring stations (46 for Belgium), m is the number
of exogenous variables (51 weather/environmental variables
and 8 calendar cyclical features), y(t) ∈ Rn is the output
vector at time t (O3 concentration at each monitoring station),
y(t − 1) ∈ Rn the output vector at time t − 1, u ∈ Rm the
exogenous variables vector at time t and F(.) is the nonlinear
vector function (3-layered DNN in our case).

We use only one-day lags because we did not notice any
accuracy improvements experimentally by increasing them

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 6

Table I
ISLAND SPECIES (OPTIMIZERS) THAT COOPERATE IN ISLAND

TRANSPECIATION NAS FOR GLOBAL AND LOCAL SEARCH.

Island Species
Optimizer Internal

representation
(of hyperpa-
rameters)

Description

Global Optimizers
Random
Search (RS)

[0, 1] Uniform distribution sampling,
with island population of one [16].

Particle
Swarm
Optimization
(PSO)

position and ve-
locity

Multi-dimensional representation
of the parameters as real valued
positions, along with rate of
change of the positions [11].

Bayesian
Optimization
(BO)

parameter dis-
tribution

Candidates are sampled from a
bounded posterior distribution of
parameters [15].

Genetic Algo-
rithms (GA)

energy ∈ [0, 1] Variants used: simple, µ, µ+λ, Co-
variance Matrix Adaptation (CMA)
[12], [34].

Differential
Evolution
(DE)

energy ∈ [0, 1] Similar to GA [14].

Local (bounded) optimizers
L-BFGS-B - First derivative Quasi-Newton

method [35].
SLSQP - Sequential Least Squares Program-

ming [36].
TNC - Truncated Newton algorithm [37].
Trust-constr - Trust-region for unconstrained op-

timization solving quadratic sub-
problems [38].

y1(t− 1)

...

yn(t− 1)

u(t)

y1(t)

...

yn(t)

RNN
layer 1

RNN
layer h

Input
layer

Output
(FC)
layer

Figure 5. Multiple-Input Multiple-Output (MIMO) Nonlinear AutoRegressive
eXogenous (NARX) model, for next-day air-quality forecasting: y(t) =
F(y(t − 1),u(t)). Predict next-day (time t) air-quality for n measuring
station outputs y, using exogenous variables u(t) (e.g., weather forecasts)
and previous-day measurements y(t−1). Recurrent Neural Networks (RNN)
act as h hidden layers and the final Fully Connected (FC) layer provides the
output numerical predictions.

further. In addition, we had an increment (almost double
or more per extra delay) in dataset size and model training
times. We used daily time-step instead of hourly for two
reasons: (1) our exogenous weather data had a minimum time-
step of 3 hours and (2) because the environmental agencies
like the Belgian Interregional Environment Agency (IRCEL -
CELINE) usually inform the public with 24-hour means. Fig.
6 illustrates an example MIMO NARX DNN architecture. The

Input

First RNN

Second RNN

Third RNN

Output

Input(105)

LSTM(512)

GRU(128)

Simple RNN(256)

Gaussian Noise

Batch Normalization

Dense(46)

Figure 6. Illustration of an example MIMO NARX DNN architecture, evolved
by island transpeciation for next-day O3 forecasting of 46 measuring stations.
105 inputs (51 exogenous variables, 8 calendar features and previous-day
air-quality measurements from 46 stations), three Recurrent Layers (512
neuron LSTM, 128 neuron GRU, 256 neuron Simple RNN), two auxiliary
layers (Gaussian Noise, Batch Normalization) and one Dense Layer with 46
outputs (next-day air-quality predictions for 46 O3 stations). Note: layer types
and hidden neuron sizes shown are arbitrary, a depiction of the architecture
evolution possibilities.

layer types and hidden neuron sizes shown are arbitrary, a
depiction of the architecture evolution possibilities.

B. Search space

Representation: For the architecture and hyperparameter
search space representation, upper and lower bound arrays
were used as constraints. The arrays are of fixed length and
contain integer (nominal) or float value ranges. The genotype
of a model is a value set, sampled from this bounded space.
The candidate model phenotypes are the trained sequential
DNN models, using the architecture defined by the genotype.
The models were generated and compiled using the Tensorflow
framework [39].

The candidate models are fixed to three base recurrent layers
(see Table II). Architecture search genes are expressed as
bounded integer values. They represent: (1) the type of the
core recurrent layer (LSTM [8], simple RNN [6] or GRU
[9]) and (2) the recurrent layer sequence causality (simple
or bidirectional [7]). The auxiliary/utility layers are placed
between the base layers. Auxiliary placements are determined
by the evolutionary search. Auxiliary layer types can be: (1)
Batch Normalization [40] and (2) Gaussian Noise [41]. Layer
weight initializer genes (Table II), determine the sampling
distribution of the initial neuron weights. Optimizers are the
algorithms that guide the weight training of an Artificial Neu-
ral Network (ANN) [42]. We used all the available optimizers
that work with recurrent DNN architectures [43]. Note that in
this paper an ample amount of hyperparameters are considered
in the search space. The reasoning behind this is twofold:
First, to demonstrate the proposed solution in a large search
space setting. Second, restricting the hyperparameter search

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 7

Table II
DISCRETE HYPERPARAMETER BOUNDS (ARCHITECTURE SEARCH GENES

IN THE COMMON GENOTYPE).

Hyperparameter Values
Layer

Simple or Bidirectional LSTM, RNN, GRU.
Auxiliary Gaussian Noise, Batch Normaliza-

tion.
Weight Initializer Zeros, uniform (random, lecun, he),

ones, normal (random, lecun, he, glo-
rot, truncated).

L1/L2 weight decay Activity regularizers, bias regulariz-
ers, kernel regularizers.

Deep Neural Network
Optimizer Adam [44], nadam [45], amsgrad

[46], adagrad [47], adadelta [48].

Table III
NUMERICAL HYPERPARAMETER BOUNDS (FOR EACH DNN LAYER).

Hyperparameter Min Max Description
batch size 7 31 Samples per model up-

date.
epoch size 350 600 Training data pass count.
units 64 512 Neuron count per layer.
dropout 0.01 0.25 Unit fraction to leave-out.
recurrent dropout 0.01 0.25 Recurrent unit fraction to

leave-out.
gaussian noise STD 0.1 0.5 Noise distribution stan-

dard deviation.
L1, L2 regularizers 0.0 0.01 L1 and L2 layer optimiza-

tion penalty.

too much could result in a sub-optimal model. In practice one
could reduce the search space by expert knowledge about the
problem at hand.

The continuous floating-point value bounded parameters
that we optimized, are shown in Table III. We chose the hyper-
parameter bounds both empirically and from suggested ranges
on previous works [49], [50], [51]. Mini-batches increase DNN
model generalization [51] but we have to accept that model
training times will increase. We chose a minimum batch size
of 7 (days), because a week time-span may exhibit cyclical
calendar patterns. The epoch size parameter acts mostly as a
max range in our setup. We empirically chose large ranges,
since we also use early (model training) stopping [43] to avoid
overfitting. Due to model memory constraints, we chose to
have at maximum three RNN layers with at most 512 units
each. In terms of dropout and recurrent dropout, suggested
values range from 0.1 up to 0.5 [49], [50]. However, the
upper ranges are mostly destined for very large models, so we
empirically chose a conservative range of max 0.25. Gaussian
noise [52] and regularizers [50] improve model generalization.
Again, we chose noise bounds empirically.

C. Search strategy

In the ring topology, each island is a subpopulation that
connects virtually and directly to another subpopulation using
one dimension. Grid island or cellular topologies [32] of two
dimensions can be folded into a torus. Due to high graph
connectivity, a torus interconnect architecture [53] can have
vast amounts of optimization islands, while requiring very few

hops to propagate messages through the whole structure (Fig.
7). Solution diversity is maintained for multiple generations
and the most performant models will not rapidly dominate the
island structure. The neighborhoods can be expanded to four
dimensions (hypercubes) or more.

PSO DE Bayes GA

RS PSO DE Bayes

GA RS PSO DE

x

y

Figure 7. Adjacent island structure in 2D island transpeciation: Single-
direction Von Neumann neighborhood (radius 1) of a two-dimensional torus
interconnect architecture. The Bayes optimization island receives adjacent
demes (candidate solutions) from the DE (x dimension) and the PSO (y
dimension) islands. By constraining the migration direction, we achieve
a gradual, “wind-like” wave of propagation of solutions, instead of an
uncontrolled “wild-fire” spread.

The islands iterate asynchronously. Training and evaluation
times depend on the count of the trainable parameters of the
model. In addition, every optimization algorithm-island does
not iterate at the same pace. Removing any implicit or explicit
synchronization barriers after model training and evaluation,
allows the evolved models to complete not only in accuracy but
also training speed. The removal of synchronization barriers
allows for the usage of the competing consumers pattern,
which is discussed in Appendix II-A. Migrations of candidate
solutions can still occur but after a predefined count of island
iterations (migration interval). In our case, each island receives
migrating candidate solutions (demes) from its neighbors every
5 fitness evaluations.

An n-dimensional grid yields µ neighbors per island. But
which migrating candidate to accept? We used Linear Ranking
(LR) selection [54]:

1) Rank µ neighbors by fitness (worst rank: i = 0).
2) Adjust selection pressure s ∈ (1, 2]:

• Small s ⇒ ≈ uniform random.
• Large s ⇒ best ranks have higher selection proba-

bility.
3) Random choice given probabilities:

PLinearRank(i) =
(2− s)
µ

+
2i(s− 1)

µ(µ− 1)
(8)

Finally, the island’s worst candidate is replaced with the
newly selected, at the “internal representation” level. This is
a fitness-based replacement strategy known as replace worst
(GENITOR) [55]. The negative effect of the replace worst
strategy, is that there may be premature convergence and
genotype duplicates inside a population. The positive effect
is that the mean fitness of the whole population is rapidly
increased.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 8

Phenotypic plasticity is the adaptation of an individual to
a specific environment [56]. These adaptations are temporary,
act only during a lifetime and do not propagate to offspring.
To achieve a similar effect on DNN NAS, we applied ran-
dom phenotypic mutations [57]. Naturally, seemingly similar
DNNs can have vastly different performance due to neuron
weight training randomness. With phenotypic mutations we
can introduce additional DNN model variations, not guided by
evolution or the common genotype. The bounded architecture
search space is expanded from 25 variables to 53: we included
layer-based regularization hyperparameters. These regularizers
apply additional penalties to the loss function. L1 and L2 norm
weight decay penalty is randomly applied (sampled from a
uniform distribution) during weight optimization (Table II),
with: activity, bias and kernel regularizers.

D. Performance estimation strategy

To compare forecasting model performance in NAS, we
used two metrics. First, the symmetric Mean Absolute Per-
centage Error (sMAPE) [58], formally as:

sMAPE =
2

T

T∑
t

|y(t)− ŷ(t)|
|y(t)|+ |ŷ(t)|

∗ 100(%) (9)

where t is timestep of maximum T , ŷ(t) the forecast and y(t)
the observation at time t. Second, the Mean Absolute Scaled
Error (MASE) [58]:

MASE =
1

J

J∑
j

| y(j)− ŷ(j)
1

T−m
∑T

t=m+1 |y(t)− y(t−m)|
| (10)

where j is forecast period out of total forecasts J and m is
the seasonal period (with m = 1 for non-seasonal Naive-1
forecast error).

V. RESULTS

A. Description of the experiment

Real-world, publicly available data are used in all experi-
ments. Ozone (O3 max daily 8-hour rolling mean concentra-
tions) data were gathered from the European Environmental
Agency (EEA) [3]. Data was augmented with 51 weather
variables (see Table IV in Appendix B), acquired from the
surface-level ERA-interim ECMWF public database [4], [26].
The first set of air quality data from EEA, start from 1990 and
end up in 2011. The dataset contains daily, hourly and yearly
values. For the years 2012 to 2018 the data provided are only
hourly, which require pre-processing in order to be converted
to daily. In addition, all the time-series were standardized on
the training phase and unstandardized for the predictions. Extra
information of the implementation is given in Appendix A.

For the initial MISO models, we used as input 51 exogenous
weather variables (see Table IV in Appendix B) and a single
monitoring station time-series with 1-lag (1 day before). The
output is the forecast for the current day. The MIMO models
use the same inputs, but the output is the current day forecast
of all the time-series. All the data available for Belgium are
used. For the MIMO and MISO models predicting 2018,
we added 8 calendar cyclical features (sine and cosine of:

month, day of week/year, week of year). Fig. 8 shows the
geo-locations of all the 46 O3 stations used in the experiments.
This view contains all the station types: urban, suburban, rural
and rural background.

Figure 8. All the available 46 O3 monitoring station locations that we
used for country-scale (Belgium) air-quality forecasting. The full time-series
dataset (1990 to 2018) is publicly accessible from the European Environmental
Agency (EEA) [3].

Figure 9. Partial AutoCorrelation Function (PACF) for the O3 background-
rural station measurements (BETN073 at Andenne, Belgium: 2000 to 2009).
There is high partial autocorrelation for 1-day lag (0.82) but less significant
(0.09) for 2-day lags or more.

The datasets have two significant limitations. First, the
exogenous variables are only sampled by 1 location in the
middle of Belgium. The reason is data scaling issues. Adding
up to 46 stations x 51 variables would significantly increase
the model training times of the experiments. In future work
we will use local weather information, along with feature
reduction from hyperparameter tuning and expert knowledge.
Second, only 1-day lag was used in all cases. We tested adding
one extra lag-day, but we did not notice any increment in

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 9

accuracy, while we almost doubled the amount of training data.
The Partial AutoCorrelation Function (PACF) for O3 (Fig. 9)
shows high partial autocorrelation for 1-day lag (0.82) but
much lower (0.09) for 2-day lags or more.

For pre-processing, ECMWF performs 4D-variational data
assimilation on the weather data. EEA flags air-quality mea-
surements as “verified” if they pass full quality assurance
and quality control and “valid” if values are above detection
limit and not due to station maintenance or calibration. We
removed any invalid/unverified data and filled them with
values from the most correlated stations time-series of the
same timestep. For any remaining missing values, we applied
linear interpolation (forward/backward fill). Hourly values,
were aggregated as daily max of 8-hour rolling mean. Finally,
features are standardized.

To avoid model overfitting and allow for better generaliza-
tion for time-series predictions, we applied a variant of cross-
validation: Time-series Cross-Validation [59]. This technique
does not shuffle the data sequence and also there is no
information “spill-over” from future steps. The mean MSE of a
5-fold cross-validation determines whether a model is optimal
and generalizes well. The “test” data are held-out from the
start, never used in model training. Next to that, we employ
Early Stopping and Learning-Rate reduction on plateau [43].
In case there are no improvements in the global island model
fitness search, after a specific amount of iterations, the master
process can abort the searching operation and stops all the
other island processes. This can act as an additional stopping
criterion for the evolutionary search, along with the max
allowed iterations setting (set to 500). In our experiments,
we disabled the automatic stopping in order to examine the
co-evolution for around 350 to 500 iterations.

B. Results for MISO models

1) Island transpeciation versus random search: With the
GIM model [23], it was shown that combinations of different
global hyperparameter optimizers in island structures, can
outperform single optimizers. For the context of air-quality,
we used a subset of the real-world O3 measurements and
halved the max neuron count per layer, to compare island
transpeciation in NAS against a commonly found optimizer,
random search.

Fig. 10 shows the evolution of model accuracy during
NAS. The horizontal axis denotes the count of iterative model
improvements and the vertical axis the test accuracy. Each
scenario was repeated five times. Out of 2500 models trained
per case, island transpeciation found a better model (76.943%)
than RS (76.896%). Also, island transpeciation approaches
global maxima ≈ 150 iterations earlier than RS. For the first
≈ 200 iterations, RS had consistently worse performance than
island transpeciation. We noticed the same pattern with a
similar experiment repeated on 2012 as the test year and 1/4
the max allowed DNN model size. Island transpeciation setup
was: 18x optimization islands (4 x GA, 4 x BO, 4 x DE, 3 x
RS, 3 x PSO) on a 3x3x3 Cellular Automata grid, 3 directional
neighborhood, 500 iterations (350 global search + 150 for local
search polishing).

0 100 200 300 400 500
Fitness Evaluations

76.5

76.6

76.7

76.8

76.9

77.0

Ac
cu

ra
cy

 (1
00

 -
SM

AP
E%

)

18 islands + LS (Best: 76.943%)

0 100 200 300 400 500
Fitness Evaluations

76.5

76.6

76.7

76.8

76.9

77.0
Random Search (Best: 76.896%)

Figure 10. Island transpeciation (left) versus random search (right) NAS, on
a real-world O3 data subset: Island transpeciation generated more accurate
models (best: 76.943%, mean: 76.75% +/- 0.55%, model samples: 2500) and
converges (≈ 150 iterations) earlier than Random Search (best: 76.896%,
mean: 76.72% +/- 0.26%, model samples: 2500). Each NAS search was
repeated 5 times, for 500 iterations each. Target model type is MISO NARX,
for the background-rural station BETN073 (code-name for the Belgian city
Andenne). Train: 2000 to 2009, test: 2010, exogenous data: 6x weather
variables, three cross-validation folds.

2) Island DNN versus other models: Fig. 11 compares one-
day-ahead O3 forecasting MISO models. “Naive-1” at the
bottom is the baseline and simplest model: the forecast is the
value of the previous day. So, the baseline Mean Absolute
Scaled Error (MASE) is 1. We tried additional models but we
show only the ones that surpassed the baseline. The Island
DNN at the top was optimized by island transpeciation, both
in architecture and hyperparameters. It was the best model
and achieved the lowest MASE (0.655). Most of the other
model types were trained with Matlab Regression learner, 10-
fold cross-validation, regularization and 350 iteration hyperpa-
rameter Bayesian optimization. The Support Vector Machines
(SVM) had a medium gaussian kernel and performed the worst
with a MASE of 0.802. The best Gaussian Process Regression
(GPR) had an rational quadratic kernel and performed better
(MASE: 0.737) than the plain SVM. Least-Squares Support
Vector Machines (LSSVM) [60] are reformulations to the stan-
dard SVMs and exploit primal-dual interpretations. LSSVM
was the third best model (MASE: 0.705) and the second best
was the Tree Ensemble model (MASE: 0.678). One argument
against DNN is that they require long training times. However,
if one accounts for the hyper-parameter optimization process,
we noticed that the other model types did require multi-
hour/day training also (especially GPR). In addition, MISO
NARX DNN can be easily expanded to MIMO, in order
to forecast multiple measuring stations concurrently. To our
knowledge, this is not readily possible for most of the other
model types. Adding one or several extra outputs would also
considerably increase the convergence training times for the
other model types, but not for the DNN case.

Fig. 12 shows the prediction output of the best model, the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 10

optimized MISO NARX DNN model. The horizontal axis
denotes time, 365 days of the year 2010, with a day as a
time-step. The vertical axis denotes the sensor value for an O3

station: the background-rural station BETN073 (code-name for
the Belgian city Andenne). The blue line is the ground truth,
the sensor values at the monitoring station. The orange line
shows the next-day O3 prediction. Island transpeciation setup
was: 18x optimization islands (4 x GA, 4 x BO, 4 x DE, 3 x
RS, 3 x PSO) on a 3x3x3 Cellular Automata grid, 3 directional
neighborhood, 500 iterations (350 global search + 150 for local
search polishing).

0 20 40 60 80 100
Mean Absolute Scaled Error (MASE)

Naive-1

SVM

GPR

LSSVM

Tree Ensemble

Island DNN

100

80.2

73.7

70.5

67.8

65.5

Next-day O3 forecasting error

MASEx100

Figure 11. Next-day O3 background-rural station (BETN073 at Andenne,
Belgium) forecasting error: Baseline (previous day in-sample value: Naive-1)
against the best DNN, GPR, SVM and LSSVM MISO NARX models. Most
models were trained with Matlab Regression learner, 10-fold cross-validation,
regularization and 350 iteration hyperparameter Bayesian optimization. Island
transpeciation NAS trained the Island DNN, which had the lowest error. Island
transpeciation setup: 18x optimization islands (4 x GA, 4 x BO, 4 x DE, 3
x RS, 3 x PSO) on a 3x3x3 Cellular Automata grid, 3 directional neighbors,
500 iterations (350 global search + 150 for local search polishing). Training:
2000 to 2009, test: 2010, with 51 weather exogenous variables and linear
interpolation on missing values.

C. Results for MIMO models

Fig. 13 shows observations and predictions of 25 O3 mon-
itoring stations for the year 2012, projected one on top of
the other. It seems counter-intuitive to show a collective view;
the reason is to show the spike around day 210. During the
summer of 2012, there was an “inform public” alert, which
happens when more than one stations have a measurement
greater than 180 µg/m3. The MIMO island DNN predicted
the alert level successfully.

D. MISO versus MIMO models

Fig. 14 compares the MISO versus MIMO models for
single-station prediction. We want to predict one station,
BETN073 (background-rural O3 station). We compare three
models: (1) “1-station model”, (2) “all-stations model” (inputs
from all the 46 O3 stations in Belgium) and (3) “background-
rural-stations model” (inputs from only the 18 background-
rural O3 stations). The “background-rural-stations model” had
the worst performance in all metrics. The “1-station model”

Figure 12. One day ahead predictions of O3 (single-station): Multiple-
Input Single-Output (MISO) NARX DNN, optimized by island transpeciation
NAS. The horizontal axis denotes time, 365 days of the year 2010, with
a day as a time-step. The vertical axis denotes the sensor value for an O3

station, specifically the background-rural station BETN073 (code-name for the
Belgian city Andenne). The blue line is the ground truth, the sensor values
at the monitoring station. The orange line shows the model prediction. This
model outperforms the other ML approaches. Train: 2000 to 2009, test: 2010,
data: 51x weather variables [4].

Figure 13. One day ahead predictions of O3 (25 Belgian stations) with a
MIMO NARX DNN optimized by island transpeciation: At day ≈210 our
model successfully predicted a real-world incident, the “inform public” level
one-day earlier. Train: 1990 to 2011, test: 2012.

was mediocre initially, but improved vastly after 500 island
transpeciation iterations. The additional 8 cyclical calendar
features (sine and cosine of day of the week/month/year)
helped in accuracy even more. The “all-stations model” was
the most accurate: reduced the symmetric Mean Absolute
Percentage (sMAPE) error by 1.45% against the single-station
and 6.26% against the background-rural stations model.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 11

Figure 14. Single O3 station (BETN073) prediction comparison: all-station
vs 1-station model vs background-rural. All the models are NARX DNN,
optimized by island transpeciation NAS. “1-station model”: MISO NARX
trained only with the BETN073 station time-series and weather/calendar data.
“background-rural-stations model”: MIMO NARX trained only with the O3

background-rural stations (18 total) of Belgium. “all-stations model”: MIMO
NARX trained with all the stations O3 of Belgium (46 total). The all-stations
model was the most accurate. Train: 2010 to 2017, test: 2018.

E. Island transpeciation as NAS

We will see a case of global optimization with island
transpeciation for O3. In Fig. 15 we illustrate the NAS
model accuracy progression when trying to find a suitable
architecture for a MIMO NARX DNN model. The vertical axis
denotes the model accuracy on the test set and the horizontal
the total number of fitness evaluations. Each dot type rep-
resents DNN accuracy from different island/hyperparameter
optimizers. The blue line at the top shows the best found
model from the whole archipelago. The dashed line shows
the accuracy trend of all the models.

We used 18 island variants of the following global opti-
mizers: Bayesian optimization, random uniform search, dif-
ferential evolution, particle swarm optimization and genetic
algorithms. The global optimizers were organized into a 1-
dimensional ring of 18 slots. Every island had one neighbor.
NAS overall had a positive trend, during the ≈500 total fitness
evaluations. The first ≈400 iterations were devoted to global
search and the last 100 for local search. The local search was
done by three non-communicating islands, running different
local optimizers. Overall, the median model had 90.74% +/-
2.6% accuracy (100− sMAPE%). There was a vast range in
model performance (worst 74.01% and best 92.60%), which
further shows the need to optimize DNNs. If we would
have used only GA optimizers (blue triangles), DNN model
improvements would stop at 200 fitness evaluations: GA model
performance starts to degrade after ≈ 150. However, with
island transpeciation and the migration of models between
different optimizers, GA is able to provide improvements again
after 300 fitness evaluations. Local Search polishes the best
globally optimized models for the final ≈ 100 iterations. We
can see that island transpeciation NAS indeed generated a

consistently performant architecture because the final fitness
evaluations had similarly high accuracy.

0 100 200 300 400 500
Fitness Evaluations

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

 (1
00

 -
SM

AP
E%

)

Island Transpeciation - O3 test (median: 90.74%, worst: 74.01%, best: 92.60%)

Bayesian Optimization (BO)
Random (uniform) search (Rand)
Differential Evolution (DE)
Particle Swarm Optimization (PSO)
Genetic Algorithm (GA)
Local Search (LS)
trend: 0.002*x + 88.739
Best model

Figure 15. Accuracy progression with island transpeciation NAS on O3

2018 (all 46 stations). The global optimizer islands were organized into a 1-
dimensional ring of 18 slots. Every island had one neighbor. For every iteration
the DNN was trained from scratch, using the evolved architecture. The first
≈400 iterations were devoted to global search and the last 100 for local search.
The models had a vast accuracy range: worst 74.01% and best 92.60%. 18
islands (1D grid: 1x18), 5 individuals per island, calendar cyclical features.
Local Search (LS) iterations had similarly good accuracy (close to the best),
showing that at the end island transpeciation indeed generated performant
DNN architectures.

F. Champion NAS models

To examine the MIMO NARX DNN models in terms of
architecture and hyperparameters, we will aggregate all the
307 champion genotypes that were evolved from multiple
experiment NAS runs (total 6659 models). Fig. 16 shows
results from three important hyperparameters: layer size, layer
type and DNN optimizer.

The champion models (Fig. 16a) had a layer unit count close
to the middle of the bounded space (64 to 512 units).With
island transpeciation, models compete both on accuracy and
model training speed, which auto-regulates the “survival of
the fattest” (the tendency in GA where average model size
grows continuously) [61]. Models with the maximum trainable
parameters have higher learning capacity, but they can be slow
to train. Smaller models may perform worse than the large
ones initially, but they can be trained faster and evolve more.
Experiencing more iterative improvements may yield better
architectures. In Fig. 16b we examine the recurrent layer types
selected by the optimizers. The most selected was the LSTM,
almost 4 times more than the bidirectional simple RNN layers.
GRU layers stand in the middle of the selection preference.
The bidirectional versions were chosen the least because their
capabilities were not fully utilized: no future time-series steps
were provided. Even though the core recurrent layers return
full sequences between them, there was no tangible benefit.
In addition, all the models had only inputs of 1 slice, lag of
1 day. Fig. 16c shows that most of the champion models had

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 12

First Second Third
RNN Layers

200

400

U
ni

t c
ou

nt

Layer size: champion 307 models

(a) Units hyperparameter (layer size in neu-
rons).

LSTM
BiLSTM GRU

BiGRU
SimpleRNN

BiSimpleRNN

Layer type

0

20

40

60

80

C
ou

nt

Layer types: champion 307 models

(b) Layer type hyperparameter.

nadam
amsgrad

adagrad
adadelta adam

Optimizer

0

20

40

60

80

100
C

ou
nt

Optimizers: champion 307 models

(c) DNN optimizer hyperparameter.

Figure 16. Top 307 (out of 6659) island transpeciation champion model
hyperparameters. Layer size (a): The champion models had a unit count close
to the middle of the bounded space (64 to 512 units). Larger models with
more trainable parameters have higher learning capacity, but they can be
slow to train. Smaller models may perform worse but, they can be trained
faster and experience more iterative improvements by the global co-evolution.
With the implicit evolutionary pressure of the “model size vs training speed”
trade-off, we can find performant and accurate DNN architectures, instead
of architectures with the max trainable parameters possible (“survival of the
fattest” [61]). Layer types (b): LSTM was selected about 4 times more than
the bidirectional simple RNN layers. GRU layers stand in the middle of the
selection preference. The plain versions were selected more often than the
Bidirectional (Bi prefix) variants. DNN (weight training) optimizers (c): Most
of the champion models had nadam and amsgrad. Adam and adadelta were
preferred the least.

nadam and amsgrad as DNN weight optimizers. Adam and
adadelta were not preferred as often.

VI. CONCLUSION

Multiple-Input Multiple-Output (MIMO) Nonlinear Auto-
Regressive eXogenous (NARX) Deep Neural Networks
(DNN) can predict next-day O3 pollution episodes, at a
country-scale. This “all-in-one” modelling approach surpassed
single-model performance on real-world, publicly available
data: We used time-series (1990 to 2018) from 46 O3 Bel-
gian monitoring stations (European Environmental Agency)
that we combined with 51 weather variables acquired from
the surface-level ERA-interim European Centre for Medium-
Range Weather Forecasts (ECMWF) database. MIMO NARX
DNN successfully predicted one day before, an “inform-
public” O3 alert level in Belgium for 2012. Predictions
improved with: data standardization, time-series split (cross-
validation variant), adding weather/atmospheric variables and
cyclical calendar features. The main negative is that they
require long training times, especially if we increase the
model’s lag count.

“Island transpeciation”, optimized MIMO NARX DNN
hyperparameters and architectures that outperformed random
model search and other previous modelling efforts. Unlike

single “off-the-shelf” optimizers, island transpeciation can
combine results from multiple optimizers, to consistently
provide excellent performance. Island transpeciation is a co-
evolutionary meta-learning method that combines Neural Ar-
chitecture Search, neuroevolution and global/local optimizers.
With cooperation and competition, the “survival of the fat-
test” side-effect of meta-learning (model size versus train-
ing speed trade-off) is auto-regulated, via the asynchronous
Cellular Automata distributed communication. Heterogeneous
hardware resources can be parallelized with fault tolerance
and distributed control. However, island transpeciation re-
quires additional configuration, compared to “off-the-shelf”
hyperparameter optimizers. The encoding/decoding of internal
representations to genotypes can be lossy, requires altering
the optimizer source code internals and it is not always
bidirectional (e.g., random search can not algorithmically
accept model migrations). Finally, adding islands increases the
computational parallelism needs. Islands should iterate enough
in order for the underlying optimizers to perform sufficiently.

APPENDIX A
DEVELOPMENT AND REPOSITORIES

A. CPU and Multi-GPU parallelism

Initially, global optimization species are spawned in parallel
in the CPU. Distributed workers connect to the islands via
a message broker. The island architecture uses a (blocking)
master-slave [62] pattern (Fig. 17): Island migration is carried
out by slaves (islands) sending candidates to the master
(main CPU process). The master process keeps a buffer of
all the best candidates of each island. Every 5 generations
(the migration interval µ), an island sends its best candidate
model to the master process, while receiving a champion
candidate (randomly picked using linear ranking selection)
from the neighboring islands. Then, the island replaces its
worst internal model with the candidate that just received
from the neighborhood. Message Passing Interface (MPI) [63]
handles the communication between the islands and the master.

Master
process

Island:
PSO

migrat
ions

Island:
GA

m
ig

ra
tio

ns

. . .

m
igrations

Island:
Bayes

migrations

Figure 17. CPU parallel implementation for island-to-island model migra-
tions: Master-slave pattern. Message Passing Interface (MPI) [63] handles the
communication.

For DNN model training, the asynchronous “Competing
Consumers” pattern was utilized [64], using the Rabbit MQ
library [65] (Fig. 18) as a message broker. Networked het-
erogeneous workers (GPU hardware of different training per-
formance) and architecture were kept “always busy”: NVidia
GTX 970 4GB with Maxwell architecture and NVidia GTX
1070 Ti 8GB with Pascal architecture) were able to cooperate

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 13

seamlessly. The parallel implementation was tested simultane-
ously: on a local workstation (6 physical CPU cores, 2x Cuda
capable GPUs), on the Amazon Elastic Compute Cloud (EC2)
with p3.8xlarge Amazon Machine Image (AMI) containing 4x
Tesla V100 GPUs and on nodes of 4 NVidia Tesla P100 GPUs
from the Vlaams Supercomputing Centrum (VSC) [66].

Distributed
Message
Broker

Island:
PSO

Island: GA

...

Island:
Bayes

m

m

m Message queue

GPU
consumer

1GPU
consumer

2
...

GPU
consumer

n

m
m

m

Figure 18. Multi-GPU distributed implementation for DNN model training:
Asynchronous competing-consumers pattern (with m denoting the model
genotype to train). The message broker [65] keeps a queue of island DNN
models to be trained in sequence. Networked GPU heterogeneous consumers,
train models without synchronization delays and explicit barriers. The queue
is fault-tolerant by using acknowledgments and heart-beat timeout messages.
At any time during the island transpeciation training process, it is possible to
add or remove GPU hardware consumer nodes (hot-plugging).

B. Repositories

• Project: https://github.com/temp3rr0r/Ozone-Narx-DNN
• Weather, atmospheric and measuring station data:

https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/
master/models/NarxModelSearch/data

• Experiment runs: https://github.com/temp3rr0r/
Ozone-Narx-DNN/tree/master/models/
NarxModelSearch/runs

APPENDIX B
EXOGENOUS VARIABLES

See Table IV.

ACKNOWLEDGMENTS

EU: The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Horizon 2020 research
and innovation program / ERC Advanced Grant E-DUALITY (787960). This
paper reflects only the authors’ views and the Union is not liable for any
use that may be made of the contained information. Research Council KUL:
Optimization frameworks for deep kernel machines C14/18/068. Flemish
Government: FWO: projects: GOA4917N (Deep Restricted Kernel Machines:
Methods and Foundations), PhD/Postdoc grant. This research received funding
from the Flemish Government (AI Research Program). Konstantinos Theodor-
akos, Oscar Mauricio Agudelo, Joachim Schreurs, Johan Suykens, Bart De
Moor are affiliated to Leuven.AI - KU Leuven institute for AI, B-3000,
Leuven, Belgium. Ford KU Leuven Research Alliance Project KUL0076
(Stability analysis and performance improvement of deep reinforcement
learning algorithms).

KU Leuven: Research Fund (projects C16/15/059, C3/19/053, C24/18/022,
C3/20/117), Industrial Research Fund (Fellowships 13-0260, IOF/16/004) and
several Leuven Research and Development bilateral industrial projects. Flem-
ish Government Agencies, FWO: EOS Project no G0F6718N (SeLMA), SBO
project S005319N, Infrastructure project I013218N, TBM Project T001919N;
PhD Grants (SB/1SA1319N, SB/1S93918, SB/1S1319N), EWI: the Flanders
AI Research Program, VLAIO: Baekeland PhD (HBC.20192204) and Inno-
vation mandate (HBC.2019.2209), CoT project 2018.018. European Commis-
sion: European Research Council under the European Union’s Horizon 2020

Table IV
EXOGENOUS WEATHER VARIABLES [4], [26] (SURFACE-LEVEL

ERA-INTERIM ECMWF PUBLICLY-AVAILABLE DATABASE)

ID Short
name

Name Unit

20 parcs Clear sky surface photosynthetically
active radiation

J ·m−2

31 ci Sea ice area fraction (0− 1)
33 rsn Snow density kg ·m−3

34 sst Sea surface temperature K
35 istl1 Ice temperature layer 1 K
36 istl2 Ice temperature layer 2 K
37 istl3 Ice temperature layer 3 K
38 istl4 Ice temperature layer 4 K
39 swvl1 Volumetric soil water layer 1 m3 ·m−3

40 swvl2 Volumetric soil water layer 2 m3 ·m−3

41 swvl3 Volumetric soil water layer 3 m3 ·m−3

42 swvl4 Volumetric soil water layer 4 m3 ·m−3

49 10fg 10 metre wind gust since previous
post-processing

m · s−1

50 lspf Large-scale precipitation fraction s
59 cape Convective available potential energy J · kg−1

134 sp Surface pressure Pa
136 w Total column water kg ·m−2

139 stl1 Soil temperature level 1 K
141 sd Snow depth m of water

equivalent
142 lsp Large-scale precipitation m
143 cp Convective precipitation m
144 sf Snowfall m of water

equivalent
146 sshf Surface sensible heat flux J ·m−2

151 msl Mean sea level pressure Pa
159 blh Boundary layer height m
164 tcc Total cloud cover (0− 1)
165 10u 10 metre U wind component m · s−1

166 v 10 metre V wind component m · s−1

167 2t 2 metre temperature K
168 2d 2 metre dewpoint temperature K
169 ssrd Surface solar radiation downwards J ·m−2

170 stl2 Soil temperature level 2 K
175 strd Surface thermal radiation downwards J ·m−2

176 ssr Surface net solar radiation J ·m−2

179 ttr Top net thermal radiation J ·m−2

182 e Evaporation m of water
equivalent

183 stl3 Soil temperature level 3 K
186 lcc Low cloud cover (0− 1)
187 mcc Medium cloud cover (0− 1)
188 hcc High cloud cover (0− 1)
198 src Skin reservoir content m of water

equivalent
201 mx2t Maximum temperature at 2 metres

since previous post-processing
K

202 mn2t Minimum temperature at 2 metres
since previous post-processing

K

205 ro Runoff m
206 tco3 Total column ozone kg ·m−2

228 tp Total precipitation m
229 iews Instantaneous eastward turbulent sur-

face stress
N ·m−2

235 skt Skin temperature K
236 stl4 Soil temperature level 4 K
243 fal Forecast albedo (0− 1)
244 fsr Forecast surface roughness m

https://github.com/temp3rr0r/Ozone-Narx-DNN
https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/master/models/NarxModelSearch/data
https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/master/models/NarxModelSearch/data
https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/master/models/NarxModelSearch/runs
https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/master/models/NarxModelSearch/runs
https://github.com/temp3rr0r/Ozone-Narx-DNN/tree/master/models/NarxModelSearch/runs

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 14

research and innovation programme (ERC Adv. Grant grant agreement No
885682). Other funding: Foundation ‘Kom op tegen Kanker’, CM (Christelijke
Mutualiteit).

REFERENCES

[1] “Health Effects Institute. State of Global Air 2019,” 2019. [Online].
Available: www.stateofglobalair.org

[2] C. Guerreiro, F. de Leeuw, A. G. Ortiz, M. Viana, and A. Colette, “Air
quality in Europe — 2018 report | EEA,” 2018.

[3] “AirBase - The European air quality database.”
[Online]. Available: https://www.eea.europa.eu/data-and-maps/data/
airbase-the-european-air-quality-database-8

[4] D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli,
S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer,
P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann,
C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B.
Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler,
M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K.
Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart,
“The ERA-Interim reanalysis: configuration and performance of the data
assimilation system,” Quarterly Journal of the Royal Meteorological
Society, vol. 137, no. 656, pp. 553–597, 4 2011.

[5] K. Theodorakos, Air-quality forecasting in Belgium using Deep Neural
Networks, Neuroevolution and distributed Island Transpeciation. M.Sc.
thesis. Katholieke Universiteit Leuven. Faculty of Engineering Science.
Department of Electrical Engineering. ESAT-STADIUS, 9 2019.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[7] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation,” in Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar, 2014, pp. 1724–1734.

[10] H. Xie, H. Tang, and Y. H. Liao, “Time series prediction based on narx
neural networks: An advanced approach,” in Proceedings of the 2009
International Conference on Machine Learning and Cybernetics, 2009,
pp. 1275–1279.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[12] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagńe, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, no. 70, pp. 2171–2175, 2012.

[13] P. A. Vikhar, “Evolutionary algorithms: A critical review and its future
prospects,” in 2016 International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC).
IEEE, 12 2016, pp. 261–265.

[14] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Opti-
mization of Machine Learning Algorithms,” in NIPS’12: Proceedings
of the 25th International Conference on Neural Information Processing
Systems, 2012, pp. 2951–2959.

[16] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[17] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search,” in
Automated Machine Learning: Methods, Systems, Challenges, F. Hutter,
, L. Kotthoff, , and J. Vanschoren, Eds. Springer International
Publishing, 2019, pp. 63–77.

[18] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning
Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren,
Eds. Springer International Publishing, 2019.

[19] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[20] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62, 3
2008.

[21] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through
Augmenting Topologies,” Evolutionary Computation, vol. 10, no. 2,
pp. 99–127, 6 2002. [Online]. Available: http://www.mitpressjournals.
org/doi/10.1162/106365602320169811

[22] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
Hyper-Parameter Optimization,” in Proceedings of Neural Information
Processing Systems (NIPS), 2011.

[23] D. Izzo, M. Ruciński, and F. Biscani, “The generalized Island model,”
Studies in Computational Intelligence, vol. 415, no. January 2012, pp.
151–169, 2012.

[24] L. Hill and M. Flack, “The Physiological Influence of Ozone,” Proceed-
ings of the Royal Society B: Biological Sciences, vol. 84, no. 573, pp.
404–415, 12 1911.

[25] European Commission, “Directive 2002/3/EC of the European Parlia-
ment and of the council of 12 February 2002 relating to ozone in ambient
air,” Official Journal of the European Union, 2002.

[26] J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens, and O. Brasseur,
“A neural network forecast for daily average PM10 concentrations in
Belgium,” Atmospheric Environment, vol. 39, no. 18, pp. 3279–3289, 6
2005.

[27] O. M. Agudelo, O. B. Mendoza, P. Viaene, and B. De Moor, “Assimila-
tion of ozone measurements in the air quality model AURORA by using
the Ensemble Kalman Filter,” Proceedings of the IEEE Conference on
Decision and Control, no. ii, pp. 4430–4435, 2011.

[28] O. M. Agudelo, P. Viaene, and B. De Moor, “Improving the PM10
estimates of the air quality model AURORA by using Optimal Interpo-
lation,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 1154–1159, 2015.

[29] R. Langone, O. M. Agudelo, B. De Moor, and J. A. Suykens, “Incre-
mental kernel spectral clustering for online learning of non-stationary
data,” Neurocomputing, vol. 139, pp. 246–260, 2014.

[30] B. S. Freeman, G. Taylor, B. Gharabaghi, and J. Thé, “Forecasting air
quality time series using deep learning,” Journal of the Air & Waste
Management Association, vol. 68, no. 8, pp. 866–886, 8 2018.

[31] O. F. Cook, “FACTORS OF SPECIES-FORMATION.” Science (New
York, N.Y.), vol. 23, no. 587, pp. 506–7, 3 1906.

[32] M. Tomassini, Spatially Structured Evolutionary Algorithms. Springer,
2005.

[33] W. N. Martin, J. Lienig, and J. P. Cohoon, “C6.3 Island (migration)
models : Evolutionary algorithms based on punctuated equilibria,”
Handbook of Evolutionary Computation, 1997.

[34] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – A comprehen-
sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[35] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-BFGS-B:
Fortran Subroutines for Large-Scale Bound-Constrained Optimization,”
ACM Transactions on Mathematical Software, vol. 23, no. 4, pp. 550–
560, 12 1997.

[36] D. Kraft, “A software package for sequential quadratic programming,
Technical Report DFVLR-FB 88-28,” Braunschweig, p. 33, 1988.

[37] S. G. Nash, “Newton-Type Minimization Via the Lanczos Method,”
SIAM Journal on Numerical Analysis, vol. 21, no. 4, pp. 770–788, 8
1984.

[38] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods.
Society for Industrial and Applied Mathematics, 1 2000.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, X. Zheng, G. Brain, I. Osdi, P. Barham, J. Chen,
Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A System for Large-Scale Machine Learning,” in 12th
USENIX conference on Operating Systems Design and Implementation,
2015.

[40] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” in Proceedings
of the 32nd International Conference on Machine Learning, Lille,
France, 2 2015, pp. 448–456.

[41] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Advances in Neural Information Pro-
cessing Systems, vol. 2017-Decem, 6 2017, pp. 972–981.

[42] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5,
no. 4, pp. 115–133, 12 1943.

[43] F. Chollet and others, “Keras,” 2015. [Online]. Available: https://keras.io
[44] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-

mization,” in 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, San Diego, 12 2015.

www.stateofglobalair.org
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8
http://www.mitpressjournals.org/doi/10.1162/106365602320169811
http://www.mitpressjournals.org/doi/10.1162/106365602320169811
https://keras.io

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 15

[45] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in 30th International
Conference on Machine Learning, ICML 2013, no. PART 3, Atlanta,
Georgia, USA, 2013, pp. 1139–1147.

[46] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and
Beyond,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[47] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” in COLT 2010 - The 23rd
Conference on Learning Theory, vol. 12, 2010, pp. 257–269.

[48] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,”
CoRR, 12 2012.

[49] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[50] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” Advances in Neural Information
Processing Systems, pp. 1027–1035, 2016.

[51] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere, and M. Smelyan-
skiy, “On large-batch training for deep learning: Generalization gap and
sharp minima,” 5th International Conference on Learning Representa-
tions, ICLR 2017 - Conference Track Proceedings, pp. 1–16, 2019.

[52] Ian Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[53] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas, “Blue Gene/L torus interconnection network,”
IBM Journal of Research and Development, vol. 49, no. 2-3, pp. 265–
276, 3 2005.

[54] T. Bäck and F. Hoffmeister, “Extended Selection Mechanisms in Genetic
Algorithms,” in Proceedings of the 4th International Conference on
Genetic Algorithms, 1991, pp. 92–99.

[55] D. Whitley and J. Kauth, “GENITOR: A different genetic algorithm,” in
Proceedings of the Rocky Mountain conference on artificial intelligence,
1988, Fort Collins, Colorado, 1988, pp. 88–101.

[56] T. D. Price, A. Qvarnström, and D. E. Irwin, “The role of phenotypic
plasticity in driving genetic evolution,” Proceedings of the Royal Society
B: Biological Sciences, vol. 270, no. 1523, pp. 1433–1440, 7 2003.

[57] D. J. Whitehead, C. O. Wilke, D. Vernazobres, and E. Bornberg-Bauer,
“The look-ahead effect of phenotypic mutations,” Biology Direct, vol. 3,
p. 18, 5 2008.

[58] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679–
688, 10 2006.

[59] C. Bergmeir, R. J. Hyndman, and B. Koo, “A note on the validity
of cross-validation for evaluating autoregressive time series prediction,”
Computational Statistics and Data Analysis, vol. 120, pp. 70–83, 4 2018.

[60] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and
J. Vandewalle, Least Squares Support Vector Machines. Singapore:
WORLD SCIENTIFIC, 11 2002.

[61] S. C. Cunnane, “[Survival of the fattest: the key to human brain
evolution].” Medecine sciences : M/S, vol. 22, no. 6-7, pp. 659–63,
2005.

[62] T. G. Mattson, B. A. Sanders, and B. Massingill, Patterns for parallel
programming. Addison-Wesley, 2005.

[63] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using Python,” Advances in Water Resources, vol. 34, no. 9,
pp. 1124–1139, 2011.

[64] G. Hohpe and B. Woolf, Enterprise integration patterns : designing,
building, and deploying messaging solutions. Addison-Wesley, 2004.

[65] “RabbitMQ tutorial - Work Queues — RabbitMQ.” [Online]. Available:
https://www.rabbitmq.com/tutorials/tutorial-two-python.html

[66] “VLAAMS SUPERCOMPUTER CENTRUM ANNUAL REPORT
2018,” 2018. [Online]. Available: https://www.vscentrum.be/

Konstantinos Theodorakos was born in Chalkida,
Greece, on 12 December 1984. He has a Bachelor
of Science: Informatics Engineering (2013) from the
Technological Educational Institute (TEI) of Crete
(Technical College) Greece, with the thesis: “Client-
Server Online Storage Platform with the usage of
C# .NET Framework and TCP/IP socket program-
ming”. He received a Master of Computer Science:
Software Engineering (2017) from the Universiteit
Antwerpen in Belgium, with the thesis: “Modelling
of Stochastic Compartmental Spatio-Temporal Epi-

demic Simulations with Cellular Automata and acceleration with CPU and
GPGPU parallelism”. He has worked as an Electronic Hardware Technician
(2008-2011) and as a Numerics Software Developer for Spatial and Spatio-
Temporal Machine Learning on Geographic Information Systems (2013-
2018). He is currently a Ph.D. student in Engineering Science, at the
Department of Electrical Engineering (ESAT) and the STADIUS Center for
Dynamical Systems, Signal Processing, and Data Analytics of the KU Leuven
in Belgium. He is working on time series analysis and modelling in data
science applications.

Oscar Mauricio Agudelo received the B.S. de-
gree in electronics engineering from the Universidad
Autónoma de Occidente, Cali, Colombia, in 1997,
the M.S. degree in industrial control engineering
from the Universidad de Ibagué (in cooperation
with KU Leuven and Universiteit Gent), Ibagué,
Colombia, in 2004, and the Ph.D. degree in electrical
engineering from KU Leuven, Leuven, Belgium,
in 2009. From 1997 to 2004, he worked at the
Universidad Autónoma de Occidente as a full time
professor of control and automation. After his Ph.D.,

he held a postdoctoral position and later on a research manager position in the
research group STADIUS at the Department of Electrical Engineering of KU
Leuven. He is currently a project coordinator on systems and control in the
same research group. His research interests are in model reduction techniques,
systems and control theory, machine learning, model predictive control, data
assimilation, deep learning, polynomial optimization, system identification,
and analysis and design of intelligent control systems.

Joachim Schreurs was born in Hasselt Belgium,
October 13, 1994. In 2015 he received a Bachelor’s
degree in Engineering Science, Electrical Engineer-
ing and Computer Science and in 2017 a Master’s
degree in Engineering Science, Mathematical Engi-
neering, both at the KU Leuven. He is currently a
doctoral student in machine learning, at the STA-
DIUS research division of the Department of Elec-
trical Engineering (ESAT) at KU Leuven, under the
supervision of prof. Johan A. K. Suykens. Joachim’s
scientific interests include machine learning, kernel

methods, generative models, robust statistics and sampling algorithms for
kernel methods.

https://www.rabbitmq.com/tutorials/tutorial-two-python.html
https://www.vscentrum.be/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 8, MARCH 2021 16

Johan A.K. Suykens was born in Willebroek Bel-
gium, May 18 1966. He received the master degree
in Electro-Mechanical Engineering and the PhD de-
gree in Applied Sciences from the Katholieke Uni-
versiteit Leuven, in 1989 and 1995, respectively. In
1996 he has been a Visiting Postdoctoral Researcher
at the University of California, Berkeley. He has
been a Postdoctoral Researcher with the Fund for
Scientific Research FWO Flanders and is currently
a full Professor with KU Leuven. He is author of the
books “Artificial Neural Networks for Modelling and

Control of Non-linear Systems” (Kluwer Academic Publishers) and “Least
Squares Support Vector Machines” (World Scientific), co-author of the book
“Cellular Neural Networks, Multi-Scroll Chaos and Synchronization” (World
Scientific) and editor of the books “Nonlinear Modeling: Advanced Black-Box
Techniques” (Kluwer Academic Publishers), “Advances in Learning Theory:
Methods, Models and Applications” (IOS Press) and “Regularization, Opti-
mization, Kernels, and Support Vector Machines” (Chapman & Hall/CRC).
In 1998 he organized an International Workshop on Nonlinear Modelling
with Time-series Prediction Competition. He has served as associate editor
for the IEEE Transactions on Circuits and Systems (1997-1999 and 2004-
2007), the IEEE Transactions on Neural Networks (1998-2009) and the IEEE
Transactions on Neural Networks and Learning Systems (from 2017). He
received an IEEE Signal Processing Society 1999 Best Paper Award, a 2019
Entropy Best Paper Award and several Best Paper Awards at International
Conferences. He is a recipient of the International Neural Networks Society
INNS 2000 Young Investigator Award for significant contributions in the
field of neural networks. He has served as a Director and Organizer of the
NATO Advanced Study Institute on Learning Theory and Practice (Leuven
2002), as a program co-chair for the International Joint Conference on Neural
Networks 2004 and the International Symposium on Nonlinear Theory and
its Applications 2005, as an organizer of the International Symposium on
Synchronization in Complex Networks 2007, a co-organizer of the NIPS 2010
workshop on Tensors, Kernels and Machine Learning, and chair of ROKS
2013. He has been awarded an ERC Advanced Grant 2011 and 2017, and has
been elevated IEEE Fellow 2015 for developing least squares support vector
machines. He is currently serving as program director of Master AI at KU
Leuven.

Bart De Moor received the doctoral degree in ap-
plied sciences, in 1988, from the Katholieke Univer-
siteit, Leuven, Belgium. He was a visiting research
associate from 1988 to 1989 in the Department of
Computer Science and Electrical Engineering, Stan-
ford University, Stanford, CA. He is currently a full
professor at the Katholieke Universiteit, Leuven. His
research interests include numerical linear algebra,
system identification, advanced process control, data
mining, and bio-informatics. He is the (co-)author of
several books and several hundreds of papers, some

of which have been awarded. He received the Leybold-Heraeus Prize in 1986,
the Leslie Fox Prize in 1989, the Guillemin-Cauer Best Paper Award, of the
IEEE Transactions on Circuits and Systems, in 1990, the biannual Siemens
prize in 1994, and became a Laureate of the Belgian Royal Academy of
Sciences in 1992.

	Introduction
	Background
	Hyperparameter optimization of neural networks
	Air-quality standards
	Existing air-quality forecasting methods

	Main result: Island Transpeciation
	Generalized Island Model formal extension

	Methods used for Ozone forecasting
	Model
	Search space
	Search strategy
	Performance estimation strategy

	Results
	Description of the experiment
	Results for MISO models
	Island transpeciation versus random search
	Island DNN versus other models

	Results for MIMO models
	MISO versus MIMO models
	Island transpeciation as NAS
	Champion NAS models

	Conclusion
	Appendix A: Development and repositories
	CPU and Multi-GPU parallelism
	Repositories

	Appendix B: Exogenous variables
	References
	Biographies
	Konstantinos Theodorakos
	Oscar Mauricio Agudelo
	Joachim Schreurs
	Johan A.K. Suykens
	Bart De Moor

