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Abstract. A large part of the time invested in data science is spent on
manual preparation of data. Transforming wrongly formatted columns
into useful features takes up a significant part of this time. We present
the avatar algorithm for automatically learning programs that perform
this type of feature wrangling. Instead of relying on users to guide the
wrangling process, avatar directly uses the predictive performance of
machine learning models to measure its progress during wrangling. We
use datasets from Kaggle to show that avatar improves raw data for
prediction, and square it off against human data scientists.
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1 Introduction

Data scientists spend a lot of time simply preparing data for analysis. Even
before exploratory analysis, data cleaning and feature engineering, an additional
step of data wrangling is often required. This step consists of taking raw data
and wrangling it into a format that can be used for data science tasks, such as
visualisation and prediction. Data wrangling is typically carried out by writing
a program that transforms part of the data into the desired format. Writing
these programs is very time consuming to data scientists—according to popular
statistic, up to 80% of the time in the whole data science pipeline is invested in
wrangling [2], which explains the interest in automated data wrangling [10, 5].

The existing work on automated data wrangling, however, assumes that a
user knows which format the data should take and can provide input. This input
can take many forms. Early methods interactively propose transformations based
on data that the user selects and require the wrangling algorithm to learn how
to extract the selection [14, 7]. Other methods allow the user to give an example
of what the output should look like in order to learn a program that correctly
produces this output [5, 3]. This is clearly a strong assumption: the big lesson of
feature engineering is that users rarely know which features, and in which form,
are useful for the target task.

Taking inspiration from both feature engineering and data wrangling, we
introduce the problem of feature wrangling, which is concerned with wrangling at
the feature level. More specifically, we automatically search for transformations
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that wrangle individual columns into features of high quality to be used in
predictive models. For example, a date formatted as “01/01/2001” would be split
in its constituent day, month and year parts and these should be marked as
ordinal (day and month) or numerical (year) features. As the resulting features
are to be used in supervised machine learning, the quality of the generated
features can be assessed using the predictive performance of the resulting model.
A major benefit of our approach is that it eliminates the need for user interaction.

Motivational example Consider the excerpt of basketball data in Figure 1a.
Regardless of the task, we can see that it is not very suited for further analysis.
The height feature is not numerical and position is ambiguous—is “G-F” a
position on its own or is this player comfortable in multiple positions?

Suppose a fourth column salary exists that we want to predict. We can then
try different possibilities of representations for position and height and use
their performance in predicting salary to choose the most appropriate one. For
example, position can be one-hot encoded or split on “-” and then encoded with
a dummy variable for every symbol.

Whereas previous approaches would require the user to provide an example
of the desired feature, avatar generates and tries different alternatives to see
which ones yield the best performance. In this example, it will also discover that
splitting height by a “-” yields new columns that, after being made numerical in
a second iteration, are good features. The full wrangling program and its result
are respectively shown in Figures 1b and 1c.

name position height
Kuzma F 6-9
Wagner C 6-11
Ingram G-F 5-11

(a) Initial dataset D

splitDummies(position, “-”)
split(height, “-”)
makeNumeric(s1)
makeNumeric(s2)
drop(position)
drop(height)

(b) Wrangling program

name s3 s4 s5 s1 s2
Kuzma 1 0 0 6.0 9.0
Wagner 0 1 0 6.0 11.0
Ingram 1 0 1 5.0 11.0

(c) Wrangled dataset D′

Fig. 1: Example of data wrangling for machine learning.

Contributions In this paper, we make the following contributions.

– We introduce the problem of automated feature wrangling, which is concerned
with wrangling at the individual feature level and uses the performance of
the predictive models to evaluate alternative feature sets.

– We implement this idea in a prototype feature wrangling tool called avatar—
the Automated VAlue Transformator And extractoR. Given only a dataset
and a prediction task, it returns a new dataset with wranlged features that
are more suitable for the given task.

– We evaluate avatar on real datasets from the Kaggle1 data science platform.
1 www.kaggle.com
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Fig. 2: Overview of the data science pipeline.

2 Related work

Feature engineering aims to improve the performance of predictive models by
transforming and combining existing features into new features that are easier
for the model to use. Being a laborious process, automating it is an active area of
research [8, 9]. The goal of feature wrangling is to use wrangling transformations in
order to extract new features from previously unusable columns. Feature wrangling
therefore lies at the intersection of data wrangling and feature engineering.

AutoML is concerned with automating the data science pipeline as a whole.
The general structure of such a pipeline is shown in Figure 2. These systems
start either from the feature engineering or model selection steps and build a
data science pipeline with the goal of optimising performance on a prediction
task. Some examples of methods are TPOT [13], auto-sklearn [4] and OBOE [18].
Automated feature wrangling can be viewed as extending these approaches to
include wrangling transformations in the feature engineering process.

Two types of wrangling approaches aim to prepare data for the data science
pipeline. The first is concerned with extracting and restructuring data, as lots of
information is still stuck in inconvenient formats such as spreadsheets, XML or
json. Selecting a few examples of desired rows allows methods like FlashExtract
[10] to learn a program that extracts all similar rows. Auto-Suggest recommends
data preparation steps, such as pivot and join, for raw tables [17]. Foofah [6] and
AutoPandas [1] learn full transformation programs if an output example can be
given. A second type of wrangling is concerned with transforming and normalizing
individual columns based on examples provided by a user [5, 3]. Approaches in
both types of wrangling assume that a user knows how to represent their data
and provide a shortcut to obtain this representation. avatar, on the other hand,
automatically determines a suitable representation at the feature level.

3 Data wrangling for machine learning

Data wrangling in general is concerned with preparing raw data for data science.
In this paper, we focus on the specific task of transforming wrongly formatted
columns into usable features by automatically constructing a transformation
program—similar to how a human data scientist would perform the same task.
We formally describe this problem and present a simple language capable of
performing common data wrangling tasks in the following two sections.
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3.1 Problem statement

We are interested in learning a data transformation program P : X → X ′ that
transforms a dataset D with instances of the form (x, y) ∈ (X ,Y) into a new
dataset D′. The goal is to obtain a dataset D′ with a better feature representation
than the original dataset D to perform a given machine learning task. In this
paper, we consider the task of supervised learning. The dataset D is used to
learn a model m : X → Y that predicts the value of y given its features x. This
model m is learned using a learner F on the dataset D, written as m = F(D).

Assessing whether a dataset D′ contains better features than D is possible in
the existence of a scoring function s : (F , D) → R that estimates the performance
of a model F(D). The score of a model trained on a dataset then serves as a
proxy to evaluate the quality of the features of this dataset—better features will
result in better predictions. We assume the learner and scoring function to be
given, for example, a decision tree classifier and predictive accuracy.

The problem of feature wrangling for machine learning is then as follows.
Given a dataset D and a transformation language L, find a program P ∗ =
argmaxP∈L s(F , P (D)) that transforms D into a dataset D∗ = P ∗(D) on which
an optimal model F(D∗) can be learned.

It is intractable to find the optimal program, however, as an infinite number
of programs can be generated. Any program P such that s(F , P (D)) > s(F , D)
is an improvement over using the raw data.

3.2 A language for feature wrangling

Let us write D = [X1, . . . , Xm] when referring to columns of data. Let t(X,a) be
a transformation that takes a column X and (optional) arguments a, and returns
a new matrix of columns X. A transformation with fixed arguments is called a
wrangling transformation and written as t(a). This wrangling transformation is
valid for X if t(X,a) 6= X.

Example 1. The split(X, d) transformation takes a column X and a delimiter d. It
returns a set of columns obtained by splitting each row of X at every occurrence
of d. An example of a wrangling transformation is split(“-”). It is valid for the
height and position columns in Figure 1a, but not for the name column.

A wrangling program is simply a sequence of wrangling transformations. Data
scientists typically build such programs by iteratively picking a transformation t
and arguments a for a target column Xi such that t(Xi,a) yields new columns.
Each of these new columns is given a unique identifier and added to the data.

Example 2. An example of a dataset, wrangling program and its result is shown
in Figure 1a. Table 1 shows an overview of transformations currently supported
by avatar.
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Table 1: Overview of transformations supported by avatar and their generators.
The implicit column parameter is not mentioned. Argument d is a string, p is a
regular expression and L is a list of strings .
Transformation Description Generator

makeNumerical Make column numerical. true if Xi contains a number.
oneHot One hot encode. true if Xi contains limited number of

unique values.
NaN Encode value as hidden missing value. Values in Xi that match a predefined

set of patterns, such as “?” and “111”.

split(d) Split on delimiter. Strings consisting of subsequent, non-
alphanumeric characters found in Xi.

splitDummies(d) Split on delimiter and dummy encode
the resulting categorical features.

Same as split.

extractNumber(p) Extract numbers that follow a regular
expression pattern.

Extract numbers from Xi and generate
regexes from them by mapping digits
to \d. Additionally, generate patterns
where consecutive \d are mapped to \d+.

extractWord(L) Extract a specific word from L in each
row.

Greedily look for combinations of words
such that each row contains exactly one
of these words.

wordToNumber Convert written numbers to numerical. true if at least one written number is
found.

3.3 Generating arguments

To compose valid wrangling programs, we need to tractably identify the possible
arguments of transformation functions. We do so by following a generator-based
approach [1]. For each transformation t, we define a generator Gt(X) that takes
a column X as input and yields arguments a such that t(a) is a valid wrangling
transformation for X. In other words, the arguments of wrangling transformations
are generated from data and are not predefined by a user. Generators in avatar
are only allowed to yield a finite number of arguments.

Example 3. The generator for split yields strings of consecutive, non-alphanumeric
characters from rows in the input column, one at a time. Given either position
or height columns from Figure 1a, only a single argument is generated: “-”.

Generators for all transformations that avatar supports are described in Table 1.
A generator for a transformation without additional arguments returns true if
the function can be applied to X.

4 Machine learning for feature wrangling

At the core of avatar is the use of machine learning models for evaluating
progress during wrangling. As opposed to looking for a single transformation
at a time, multiple transformations are considered in parallel to allow feature
interactions to be considered when evaluating progress. In order to do so, avatar
explores the space of wrangling programs by exploiting the fact that, starting
from a dataset, the order in which transformations are applied to this dataset
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(a) Graphical overview. Arrows represent columns.

def avatar(D):
while true:
Dp = prune(D)
Ds, Dns = preselect(Dp)
Dr = rank(Ds)
De = evaluate(Dr)
if stop():

return previous De

D = wrangle(Dr +Dns)

(b) Algorithmic overview.

Fig. 3: The avatar algorithm.

does not matter. At each iteration, a large wrangling program is generated, which
is then pruned by subsequent steps. A high level overview of avatar is shown in
Figure 3 and the following sections describe each of these steps in detail.

4.1 Prune

Pruning aims to remove columns that are not and will never become useful
features. This step allows the generators for transformations to be significantly
less complex, as different edge cases don’t have to be explicitly considered. The
following columns are removed from the dataset.

1. Columns that are constant.
2. Columns in which more than pnan percent of values is missing.
3. Columns that are more than pid percent identical to another column.

4.2 Select

From all remaining columns, the selection step aims to find promising features—
those that have at least some predictive power. Selection happens in two steps:
preselection and feature ranking. This ranking of features is then used in the
next step to evaluate the fitness of the current dataset.

Preselection This step heuristically excludes the following bad columns.

1. Categorical columns that contain more than pu percent unique values.
2. Categorical columns Xj for which there exists a column Xi with i < j such

that a bijective mapping exists between these columns for at least pbi of rows.

Preselection serves to reduce the effort required by the feature ranking step that
follows. As opposed to the pruning step, columns excluded by preselection are not
removed from the dataset; instead, they remain available to subsequent wrangling
steps, as they may still become useful features after more transformations.
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Feature ranking The aim of this step is to quickly rank columns by potential
relevance. To do so, avatar uses a wrapper approach—learning shallow models on
subsets of features and aggregating the feature importances extracted from these
models. In every iteration, n rows are randomly sampled from a random subset of
columns. On this subset of data, we perform k-fold cross-validation with a shallow
learner Fr. In each of the folds, feature importances are estimated from these
learned models, averaged for each column and weighted by the cross-validation
performance. Final importances for each column are obtained by averaging the
weighted importances over multiple iterations.

To estimate model performance, we use accuracy in case of classification and
max(0, R2) in case of regression. Feature importances within each model are
estimated using SHAP values [12, 11]. They are a practical implementation of the
game-theoretic concept of Shapley values, which quantify an individual player’s
contribution towards the final outcome in a cooperative game [15]. Each feature
takes the role of a player and a prediction is considered the outcome of a game.

4.3 Evaluate

Given the ranking of features, avatar now heuristically evaluates its progress on
the current dataset. It looks for a k such that the top-k ranked features result in
the best performance. Performance for a set of features is evaluated using cross
validation on all rows of the dataset using a learner Fe. Accuracy is used for
classification and RMSE for regression.

If performance decreases with respect to previous iteration, avatar terminates
and returns the set of features that achieved the highest performance. A user can
easily request more features from avatar, which are returned in order of their
rank. The wrangling program is also generated from these selected features by
adding drop transformations for columns that are generated but not selected, as
was shown in Figure 1b.

4.4 Wrangle

In this step, avatar generates new candidate features by transforming the columns
of the current dataset. We exhaust the generators for all transformations on all
columns that were not wrangled before and apply the transformations to obtain
new columns. These new columns are appended to the current dataset, ensuring
that more complex features—obtained by applying more transformations—are
pruned over simpler ones.

5 Evaluation

We perform experiments to answer the following questions.

Q1 Is avatar able to find new and useful features?
Q2 How does avatar compare to human wranglers?
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Table 2: Data used for evaluating avatar.

(a) Classification (C) and regression (R)
datasets.

Dataset Type Columns Rows

Total Text

Android R 10 8 984
Car features R 17 8 11914
Car price R 27 10 205
Food choices R 61 13 121
GSM R 40 39 8628
House R 82 43 1460
Melbourne housing R 22 8 13580
NBA C 21 7 128069
NBA2K R 15 11 429
Pet C 11 4 18834
Shelter animals C 10 10 26729
Titanic C 12 5 891
iPhone 11 R 7 3 247

(b) Notebooks compared with avatar.

Dataset Lines of code # features

Human avatar

iPhone 11 28 6 7
NBA 34 10 9
Pet 44 66 10
Car features 42 3 26
Food choices 57 133 17
GSM 277 14 42

Data We use datasets from Kaggle, a popular data science platform. Kaggle
allows users to publish datasets and provides public notebooks which contain
snippets of code executing the data science steps. We search for datasets that (1)
contain scraped data, (2) have a single file, and (3) a clear prediction target. We
focus on evaluating avatar’s ability to wrangle interesting features and, therefore,
only use the datasets that have at least one column that requires wrangling. An
overview of datasets is shown in Table 2a.

Models and metrics As we are interested in avatar’s ability to wrangle new
features, not in obtaining the best possible performance on a dataset, our primary
concern when choosing the model for estimating feature importance is its speed
(as we need to train it frequently) and ability to identify useful features. We
assume that even low-capacity models are capable of identifying useful features,
though their estimate might be less robust compared to complex models. For
this reason, we focus on decision trees and limit their depth to 4 when evaluating
feature importance and to 12 when training the final model. We report the
relative performance over the absolute performance.

Experimental setup Experiments were performed on a laptop with a prototype
implemented in Python. Code, data and results are available on GitHub.2 We ran
avatar for four iterations, with 1600 iterations of feature selection on samples
of 1000 rows. In some datasets with many columns containing long strings, the
number of columns can quickly explode after a few iterations. If the pruning step
took longer than two hours, avatar was stopped early.

2 https://github.com/pidgeyusedgust/avatar-ida21
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Fig. 4: Relative performance of avatar after iterations of wrangling new features
when compared to the original dataset (iteration 0). Feature importances for
marked data points are shown in Figure 5a.

5.1 Wrangling new features

Evaluating the quality of features is impossible to do directly; instead, we evaluate
their quality implicitly through the performance of a model trained on the features.
More precisely, we compare performance of the model training the raw data
versus the model trained on data wrangled by avatar. The relative performance
after each iteration is shown in Figure 4. Note that avatar starts with pruning
and selection, and the baseline result at iteration 0 is thus also obtained after
greedily selecting features for the best performance without wrangling.

The results show that avatar consistently improves predictive performance by
wrangling new features. A single exception is the NBA dataset, where wrangled
features are not relevant to the target. This is reinforced in the next experiment,
where avatar performs on par with human wranglers. We observe a general
trend where performance drops after multiple wrangling iterations. The reason
for that is the noise in feature importance estimation: our estimate becomes less
robust with the increase of the number of features because avatar repeatedly
uses uniformly sampled subsets of features to estimate their importance. With
the increase in the number of features, there is a higher chance of a spurious
interaction between the features. This negatively impacts the performance of the
final model due to overfitting. avatar then terminates and returns the ranked
features from the previous iteration.

As a small case study, we take a closer look at the best performing features
for the Melbourne housing and iPhone 11 datasets in Figure 5a. One column
from their original datasets is shown in Figure 5b. For the Melbourne housing
dataset, the dummy encoded feature for “Southern” after splitting Regionname
on “ ” is found to be the most relevant one. The selected feature in the second
iteration first splits this column by “-” and then extracts the word “Metropolitan”,
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(a) Feature importances after wrangling for the
Melbourne housing (left) and iPhone 11 datasets
(right). Each colored segment is one feature.

Description
iPhone 11 256GB - Purple Unlocked
iPhone 11 64GB - Black Unlocked
iPhone 11 Pro Max 512GB - Silver Unlocked
iPhone 11 Pro 512GB - Silver Unlocked
iPhone 11 128GB - Black Unlocked

Regionname
Western Metropolitan
Eastern Metropolitan
South-Eastern Metropolitan
Eastern Victoria
Southern Metropolitan

(b) Original columns from (top)
iPhone 11 and (bottom) Melbourne
housing datasets.

Fig. 5: A closer look at selected features for two datasets.

“South” or “Victoria”. This results in “South-Eastern Metropolitan” and “Southern
Metropolitan” being projected to the same “South” feature, which a human
might not think of. On the iPhone 11 dataset, many features are extracted from
the Description. Very relevant is the full model name “iPhone 11 256GB” as
obtained by splitting on “-”. Human data scientists might expect that this feature
requires to be split up further. It is, however, an ordinal feature on its own and
provides a strong signal.

5.2 Comparison with humans

In the second experiment, we compare the performance of a predictive model
on a dataset wrangled by (1) human experts on Kaggle and (2) by avatar. We
obtain expert-wrangled datasets from the corresponding notebooks on Kaggle. As
we are interested in the ability to wrangle features, any feature engineering steps
are removed from the notebooks, but any feature selection is left untouched. A
list of notebooks and number of lines of wrangling code is given in Table 2b. We
compare the relative performance of the same model trained on features wrangled
by humans versus features wrangled by avatar and show them in Figure 6.

The results show that avatar performs similarly or better than human data
wranglers. The only exception is the iPhone 11 dataset. avatar still identifies
interesting features, but the main reason for bad performance are noisy examples—
iPhone 11 covers instead of phones—which negatively impacts the performance of
avatar. For the NBA and Pet datasets, human performance is marginally better.
Wrangled features are not representative of the target, which further explains
their small performance differences in Figure 4b. On datasets where avatar
greatly improves with respect to the baseline, it also beats human wrangling.
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Fig. 6: Comparing the relative performance of human wranglers to avatar.
Downward slopes indicates that avatar is better, which happens for half of the
datasets. For the NBA and Pet dataset, the previous experiment has already
shown that little additional information is present in wrangled features.

6 Conclusion and future work

In order to cope with data scientists spending valuable time on this tedious
process, we present the avatar algorithm for automatically wrangling features
from raw columns. We show that avatar is able to wrangle features that improve
predictive performance when compared to the original dataset. On datasets that
require heavy wrangling, it even outperforms some human wranglers.

Future work Two immediate pointers for extensions are expanding avatar to the
multi-relational setting, allowing different tables to be joined, and exploring the
unsupervised case, for example, by using multi-directional ensembles of decision
trees [16]. Unsupervised data wrangling would allow avatar to aid exploratory
data analysis, another significant time sink for data scientists. Quickly selecting
relevant features from high-dimensional data with high multicollinearity plays an
important role in avatar. Our repository contains the intermediate, wrangled
datasets to encourage further research on this topic. The main technical limitation
for avatar is that the search space quickly explodes when many columns with
long, textual values are present. Being more strict on the generators and pruning
rules can trade off speed for expressive power.
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