
SpLyCI: Integrating Spreadsheets by
Recognising and Solving Layout Constraints

Dirko Coetsee1,2,3 0000-0002-1898-1279, Steve Kroon2 0000-0001-5625-8623,
McElory Hoffmann2,3 0000-0002-8735-6282, and Luc De Raedt1

0000-0002-6860-6303

1 KU Leuven, Belgium
2 Stellenbosch University, South Africa

3 Praelexis, South Africa

Abstract. Valuable data are often spread out over different similar
spreadsheets. Consolidating this data for further analysis can take con-
siderable effort for a spreadsheet user without programming skills. We
introduce Spreadsheet Layout Constraint Integration (SpLyCI), a sys-
tem to semi-automatically merge multiple spreadsheets and lay the re-
sult out in a single output spreadsheet. SpLyCI takes advantage of the
observation that spreadsheet users lay out their spreadsheets with cer-
tain implicit constraints in mind. For example, certain cells should be in
the same rows or columns as other cells, or formulae should be repeated
over all numbers. The system therefore identifies these implicit layout
constraints, combines them, and then solves the resulting constraint sat-
isfaction problem. The solution yields a new spreadsheet that contains
the same information and the same relationships between cells as the
inputs, but with formulae that are present only in some sheets extended
to cover data from other sheets.

Keywords: Relational Learning · Constraint Learning · Spreadsheets.

1 Introduction

Semi-structured data sources often contain information that would be useful if
they could be converted into the right format. Spreadsheets, in particular, often
have their data spread over different sheets or even files, each corresponding to a
different data source or some other partitioning of the data. To work with such
spreadsheets can take considerable effort, as there is not yet any tool to help
consolidate data into a single sheet before further analysis can be done.

As part of a larger project to make data science more accessible to spreadsheet
users [6], we aim to create a tool that can semi-automatically merge multiple
spreadsheets, while handling repeated formulae correctly. A user specifies mul-
tiple input sheets and the tool (semi-)automatically transforms the input sheets
into a single output sheet that non-redundantly captures the same information
as the input sheets.

There are a few characteristics of spreadsheets that make them difficult to
integrate: First, the same challenges that occur in relational schema matching



2 D. Coetsee et al.

might occur, such as changing of the schema over time or between sheets. In ad-
dition, sheets might not be in first normal form. Users might further use idiosyn-
cratic layouts that use empty cells, text formatting, and pivoting in creative ways
to represent complicated hierarchical schemas. Important information might be
captured with implicit or explicit layout constraints over rows or columns. This
not only includes primary-key and foreign-key constraints also present in rela-
tional databases, but also sorting on one or more row or columns, or formulae
over rows or columns.

Some of these problems have been tackled in different contexts in isolation;
however, as far as we know, there is as yet no end-to-end solution. This pa-
per takes a step towards spreadsheet integration by concentrating on the last
aspect—integration of spreadsheet layout constraints. To the best of our knowl-
edge this aspect has not received any attention in the existing literature.

We propose SpLyCI—Spreadsheet Layout Constraint Integration—a frame-
work for spreadsheet integration that is based on the view that spreadsheet
integration can be represented as a constraint satisfaction problem. The lay-
out and formula constraints in each input spreadsheet are first inferred. Next
these constraints are combined, and finally the resulting constraint satisfaction
problem is solved, yielding a new spreadsheet that adheres to all of the input
constraints. The user is able to choose which constraints are active during the
process and so can help disambiguate difficult cases or choose between con-
tradictory constraints. We implement a prototype that is able to handle some
illustrative constraints, and evaluate it on real-world data available on the web.

We contribute a description of a new task, that of interactive spreadsheet
integration with formulae, a dataset and metrics to evaluate a system’s perfor-
mance on the task, a representation for spreadsheets based on layout constraints,
and a system that uses this representation to tackle the task.

2 Problem

Figure 1 illustrates some aspects of the problem. Two spreadsheets contain sim-
ilar information that the user wants to consolidate. Note the description in Cell
A1 that will frustrate a naive concatenation of rows. Also note that the user
would want the formulae in the first input sheet to be expanded to cover the
cells introduced by the second sheet.

Fig. 1. Example input spreadsheets and the desired result after merging. The formulae
in the first sheet have been expanded to cover new data from the second sheet.



Integrating Spreadsheets by Recognising and Solving Layout Constraints 3

We define layout constraints as the user-intended constraint on the relative
row or column positions between cells. In the example in Figure 1, the user
probably intends Grade 3 to be in the same column as the number 102, because
Grade 3 is (implicitly) its header. Formulae constraints are user-intended con-
straints on the extent to which the same formula is repeated in neighbouring
cells, or the ranges of their arguments. For example, =SUM(.) above is repeated
over all Grades, and sums over all schools for each Grade. Match constraints are
constraints on the row or column positions between sheets. For example, the
cells below Grade 1 in the first input sheet are probably intended to be in the
same column as the cells below Grade 1 in the second sheet.

At a high level, the problem can now be described as follows: Given mul-
tiple input spreadsheets, combine them so that the output satisfies the layout
and formulae constraints present in each input sheet, while also satisfying match
constraints between the sheets.

3 Method

There are two main parts to our proposed technique: first the constraints present
in the input sheets are recognised, and then they are combined and solved.
We distinguish between two types of constraints which can be handled in two
separate steps. In our system4, formula constraints are implemented in Pro-
log because we represent formula generalization with logical rules which fits
logic programming, and layout constraints are translated to MiniZinc5 because
the resulting constraint satisfaction problem fits the constraint programming
paradigm.

We next discuss the representation and heuristics we use to solve the two
subproblems in more detail. We first discuss the process for simple spreadsheets
without formulae, and then show how to extend the process to handle the more
interesting case where formulae are present.

Our basic notation and key concepts are defined below. Note that we will
sometimes only define the columnwise concept but the corresponding rowwise
concept is defined similarly.

Cuts Each cell is indexed by a column i and row j identifier, where i or j is a
unique identifier like 1, A, or A∗. Cells sharing an index represent the knowledge
that the user intends those cells to be in the same column or row. To ensure that
identifiers are unique across sheets, we add the sheet number as a superscript to
some of the examples below, for example A2 is a column in the second sheet.

Adjacent cells have the same column or row identifier by default, except if
separated by a cut. A cut represents the knowledge that the cells on either side
of the cut are not required to be in the same row or column of the output even

4 https://github.com/dirko/splyci
5 https://www.minizinc.org/

https://github.com/dirko/splyci
https://www.minizinc.org/


4 D. Coetsee et al.

if they are observed to be in the same row or column in one of the input sheets.
Figure 2 shows an example of a cut.

We are unsure about what cuts the user intends without further user input.
A probability distribution over cut locations could potentially be constructed,
but in this paper we recognize cuts by a heuristic. We add a cut when two cells
are separated by the border property at least one empty cell. This is intended
to separate independent tables embedded in a single spreadsheet.

Matches A match match(i, i′), where i and i′ come from two different sheets,
represent the knowledge that the user wants to align two identifiers between
sheets. They can be interpreted as fields or entities that represent the same
thing between sheets. A matching algorithm is an algorithm that takes a set
of spreadsheets as input and produces a set of matches as output. The process
of matching column identifiers is related to the mature fields of schema match-
ing [3], and matching rows is related to record linkage or entity resolution [4],
depending on the orientation of the cells in the spreadsheet.

In this paper we use a simple algorithm that matches indices when their
headers match exactly. There is work that automatically identifies header cells
in spreadsheets [7], but as a simple baseline the work in this paper takes the
topmost or leftmost cells as far as necessary to produce a unique match.

Once the matching algorithm is done, for all match(i, i′) we replace i′ with i
so that across all sheets we use a common set of identifiers.

Blocks Working on the cell level is, unfortunately, slow. The number of con-
straints (discussion below) grows quadratically in the number of cells, which
becomes impractical for large spreadsheets, even if the overall structure is sim-
ple. We therefore partition each sheet into rectangular blocks of cells. Each block
b is associated with its position and dimensions with the block(b, i, j, w, h) pred-
icate, where i is a column identifier, j a row identifier, and w and h the width
and height of the block in number of cells.

A, 1
A∗, 2

B, 1

B, 2

b1

b2 b3

Fig. 2. An example spreadsheet (below)
with a cut indicated by the red line. The
column and row identifiers are shown inside
each cell above. Note that A and A∗ are dif-
ferent. Below, blue dotted lines indicate the
partitions induced by the cut, namely (1, 2),
(A, B), and (A∗, B), and the corresponding
blocks are labelled around the figure.

Fig. 3. Two example sheets where row
2 (left) and row 1 (right) match, but
row 3 (left) and row 2 (right) do not
match. This produces a partition be-
tween the two rows, represented by the
blue dotted line, as the cells on either
side of these rows should be in different
blocks.



Integrating Spreadsheets by Recognising and Solving Layout Constraints 5

block(b11, A
1, 11, 1, 1)

b12
b13

b14 b15

b21 b22 b23

b24 b25 b26

match(A1∗, A
2) match(B1, B2)

match(C1, C2)

match(21, 12)

Fig. 4. Example of the proposed spreadsheet representation for two spreadsheets with-
out formulae. The two sheets with corresponding row and column indices are given
above, with the extracted blocks below. Note that the sheet is partitioned both by the
cut below Cell A1 in the left sheet and the matches. Of the block facts, only the b11
block is shown fully.

In general, cuts do not divide a spreadsheet into rectangular blocks, as can
be seen in the example in Figure 2. We therefore add sheet partitions, which we
define as column or row pairs, to ensure that each spreadsheet is partitioned
into blocks. The block-level representation of a spreadsheet should keep some of
the properties created by cuts and matches on the cell level. For cuts, cells on
either side of the cut have different indices. There should therefore be different
blocks on either side of a cut. We therefore add a partition along each cut,
and perpendicular to cut ends to divide the spreadsheet into four blocks, as is
illustrated in Figure 2. For matches, cells containing a matching index should be
in a block that is free to align with matching cells in another block. We therefore
also add partitions between indices where one of the indices match an index in
another sheet but the other one does not match the adjacent index in the other
sheet, as shown in Figure 3.

Constraint satisfaction problem (CSP) For each input column i or row
j we construct a decision variable xi or xj that can take values in {1, . . . ,mi}
and {1, . . . ,mj} respectively, where mi and mj are maximum dimensions for
the output spreadsheet, which we set to the sum of all block widths and heights
respectively. We avoid re-using the column and row identifiers as decision vari-
ables directly and rather create new variables to make a distinction between the
identifiers that are used to index cells, and variables with domains in the positive
integers.

A major constraint on the values of the index variables is that the blocks
should not overlap. We therefore add a disjoint rectangles(R) constraint on
the set of rectangles R = {(xi, xj , w, h) | block(b, i, j, w, h)}. Note that xi and
xj are decision variables, but w and h are constants in terms of the CSP.

Other than this non-overlapping constraint, we add match constraints and
the layout constraints present in the input spreadsheets. Our system currently



6 D. Coetsee et al.

recognises the following constraints, but more could be added: left(i, i′) if col-
umn i is to the left of i′ in an original sheet, and above(j, j′) if row j is above
j′. This defines a partial ordering of row and column identifiers.

The constraint satisfaction problem is summarised as follows:

variables X = {xi} ∪ {xj}, i, j over all input sheets,

domains xi ∈ {1 . . .mi}, xj ∈ {1 . . .mj},
subject to disjoint rectangles(R),

R = {(xi, xj , w, h) | block(b, i, j, w, h)}
∧ (above(i, i′)→ xi < xi′) ∧ (left(j, j′)→ xj < xj′) .

For example, the constraint satisfaction problem for Figure 4 is

variables X = {xA1 , xA1∗ , xB1 , xD2 , x11 , x21 , x31 , x22},
domains xi ∈ {1 . . . 15} for xi in{xA1 , xA1∗ , xB1 , xD2}

xj ∈ {1 . . . 13} for xj in{x11 , x21 , x31 , x22}
subject to disjoint rectangles(R), R = {(xi, xj , w, h) | block(b, i, j, w, h)}

∧ xA1∗ < xB1 ∧ x11 < x21 ∧ x21 < x31 ∧ xB1 < xD2 ∧ x21 < x22 .

Note that xA2 , xB2 , xC2 , and x12 are not present because they were replaced by
matching identifiers in the other sheet, and that xC1 and x41 could be removed
from the CSP as an optimisation because they occur only inside blocks.

Since the disjoint rectangles constraint is usually built-in using efficient
internal representations, standard constraint satisfaction solvers can be used to
solve this layout problem. Our implementation is in MiniZinc.

An instantiation of the decision variables represents a possible output layout.
Once we have an instantiation, the output spreadsheet is constructed by looking
up the values in the original cells and copying them to the output sheet in their
new position. Note that this scheme copies each cell in the original sheet to a
single cell in the output sheet: it only represents a reordering of cells and cannot
duplicate cells.

Formula blocks The scheme described above is able to represent and merge
simple spreadsheets without any formulae. We now turn to the problem of rep-
resenting and merging spreadsheets containing formulae.

The following steps encode formula blocks:

1. Find formula blocks. Add partitions to create blocks where all the cells have
the same R1C16 representation. When formulae are repeated over different
cells with just the row or column incrementing, the R1C1 representation will
be the same for all of them.

6 https://wiki.openoffice.org/wiki/Documentation/How Tos/Calc: R1C1 notation
Absolute column or row values are replaced with values relative to the formula cell,
for example “=SUM(R[-2]C[0]:R[-1]C[0])” instead of “=SUM(B3:B4)” in the B5

cell.

https://wiki.openoffice.org/wiki/Documentation/How_Tos/Calc:_R1C1_notation


Integrating Spreadsheets by Recognising and Solving Layout Constraints 7

block(b17, B
1, 51, 2, 1)

formula(b17)

block(b15, B
1, 31, 2, 2)

template(b17,= SUM(a1))
arg(b17, a1)
depends(a1, b

1
5)

property(b15, numerical)

orientation(a1, horizontal)

block(b25, B
2, 22, 2, 2) property(b25, numerical)

Fig. 5. Example sheets where one sheet now contains a repeated formula. The formula
block is colored green and all the blocks with the numerical property are colored
orange. Note that only one property of b15 and b25 is listed, as all the various properties
of each of the blocks would take too much space to show here.

2. Denote a block b to be a formula with the formula(b) predicate, and its
template with template(b, t), where t is a string where the formula argument
ranges are replaced by placeholders, so “=SUM(R[-2]C:R[-1]C)” becomes
“= SUM(a1)” for example.

3. Associate the formula block b with its argument identifiers with arg(b, a),
where a is a unique argument identifier, for example a1.

4. Create argument blocks by adding partitions between two cells if they are
arguments to two different formulae.

5. Associate the argument identifiers a with argument blocks ba, depends(a, ba).
6. Associate each argument with its orientation, orientation(a, r), where r is

either “vertical” or “horizontal”. This determines how block-level argu-
ments map to cell-level arguments. A horizontal argument means that ar-
gument cells increment horizontally as formula cells increment horizontally.
The left-most cell in the argument block is the argument to the left-most
cell in the corresponding formula block, the cell to the right of that is the
argument to the formula cell to the right, and so forth.

The representation is summarized in the example in Figure 6.

Properties Raw cells have properties like color, font, type, and other implicit
properties like their semantic categories. Our main assumption when generalizing
formulae is that all cells with a certain property should be the argument to a
certain formula template. Block properties, denoted property(b, p), where b is
a block and p a property, are the properties that all the cells in that block have
in common. The system currently supports cell color, cell type, and properties
for each column or row.

Formulae generalisation Now we can construct rules that generalise formulae
to new data. For each formula block, we assume that if it has arguments, the
height or width of its arguments determine its own height or width. At a high
level, we therefore search for rules of the form,

{formula block facts} ← {argument block facts}. (1)



8 D. Coetsee et al.

block(f, i, 51, w, 1)←block(b, i, j, w, h), property(b, numerical), f = bid(b17, i).

arg(f, a)←block(b, i, j, w, h), property(b, numerical), f = bid(b17, i), a = aid(a1, i).

depends(a, b)←block(b, i, j, w, h), property(b, numerical), a = aid(a1, i).

(a) Prolog rules that replace some of the facts in Figure 5. These rules add formula
blocks in the same columns as all numerical blocks. The first line states that, if there
exists a block at some location and with some width and height, and that block has
the numerical property, then a block f in the same column and with the same width,
but in row 51 should also exist, where f is an identifier that combines the original
block identifier with the column it is in so that f will be unique for each block-column
combination produced by the rule.

block(bid(b17, B
1), B1, 51, 2, 1) block(bid(b17, D

2), D2, 51, 1, 1)

arg(bid(b17, B
1), aid(a1, B

1)) arg(bid(b17, D
2), aid(a1, D

2))

depends(aid(a1, B
1), b15)

depends(aid(a1, D
2), b26)

depends(aid(a1, B
1), b25)

xA1∗
= 1

xA1 = 1 xB1 = 2 xD2 = 4

x11 = 1
x12 = x21 = 2

x31 = 3
x22 = 5
x15 = 6

(b) The facts produced by the rules above on the two spreadsheets in Figure 5, with a
solution to the accompanying CSP. Since B2 matches B1 and was therefore replaced by
it, the rule produces a block bid(b17, B

1) that depends on two blocks, namely b15 and b25.

Fig. 6. Example of the proposed representation where one sheet contains a formula.

Since the head is a conjunction with free variables which cannot directly be
implemented in Prolog, we implement these rules by splitting the conjunction
into separate rules and creating compound terms block ID bid(f, i) and argument
ID aid(a, i) to represent identifiers for the new formula blocks and arguments. f
is the original formula block, i is the column of the argument, and a the original
argument identifier. These terms are necessary because a rule can generate new
formula blocks and their corresponding arguments, and we need a unique way
to identify each block and argument. See Figure 6a for an example of a rule that
covers a single formula block and its implementation in Prolog.

Techniques from inductive logic programming [10] can be used to learn these
rules to cover the spreadsheet formulae, but since our desired rule format is fixed
we implement a custom search algorithm. The main challenge is in finding the
property of the argument blocks that “explains” each formula. For a specific
formula block, we first find all its argument blocks with the same width or
height as itself. For each of these argument blocks, which we assume are the
blocks that determine the formula’s extent, we find the set of properties that
uniquely identify it by taking the properties of the argument block that are not
properties of any other blocks.



Integrating Spreadsheets by Recognising and Solving Layout Constraints 9

The facts and rules that represent each sheet are now merged by taking their
union, before grounding and finding all blocks to pass to the constraint solving
phase. Note that rules can depend on the result of other rules, as formulae can
be arguments to other formulae.

Constraint satisfaction problem With formulae, the CSP step is the same
as previously, as the generalisation of formulae happens independently of the
assignment of values to columns and rows. The argument templates of formulae
are then filled in according to their orientations.

4 Experiments

The prototype is evaluated by comparing its output to that obtained by manually
integrating multiple spreadsheets.

The Fuse corpus7 [1] is a collection of publicly available spreadsheets scraped
from the web. Since not every spreadsheet in this corpus is mergeable with every
other spreadsheet (because of different domains and contents), we manually con-
structed a set of 15 mergeable spreadsheet pairs. We draw a random sample of
spreadsheets, split suitable sheets horizontally or vertically to create two merge-
able sheets, and remove formulae from the second sheet. The smallest sheet in
the sample is 8 × 17 = 136 cells and the largest 12 × 512 = 6144. The exper-
imental process is illustrated with an actual sheet from the evaluation set in
Figure 7.

Fig. 7. The experimental process illustrated with a spreadsheet from the evaluation
set. A sheet is manually split, then the two sheets are manually annotated as necessary
to merge with the system.

We annotate the sheets with the necessary information if the default heuris-
tics fail and note the number of annotations that is necessary as a measure of
the manual effort that can be saved in the future with better property, cut,
and constraint recognisers. Cut annotations, implemented as comments in the
spreadsheet file, are added between multiple tables embedded in a single sheet,

7 http://static.barik.net/fuse/

http://static.barik.net/fuse/


10 D. Coetsee et al.

Total Correct Avg. %

Cuts 15 8 30%
Possible matches 3588 3498 73%
Properties 169 1 1%
Blocks correctly laid out 1155 870 90%
Sheets layout 15 7 47%
Sheets layout (ignoring order) 15 10 67%

(a) Integration results. The average column is the mi-
cro average, in other words the average percentage cor-
rect per sheet. Note that the match heuristic is much
more successful than the cut or property heuristics at
avoiding user input.

# annotations # sheets

None 4
1 to 5 5
6 to 15 2
More than 15 4

(b) A frequency table of
the number of annota-
tions necessary to solve
each spreadsheet pair.

Table 1. Result summary

and between descriptive cells and headers. Matches are annotated by adding
matching column or row identifiers as comments when the match heuristic fails,
while cells are colored manually when there is no other default property that
uniquely covers a formula argument. We count a contiguous rectangle of cells
that had to be colored as one annotation.

The results are summarised in Table 1. Over half of the sheets were solvable
with 5 or fewer annotations. We distinguish between two types of correct lay-
out results: fully correct layout and correct when ignoring the ordering of some
blocks. In some cases, like in Figure 7, the system produced a layout that had the
correct meaning but not exactly the same column or row order as the original.
A human would put the year-total to the right of all the months, but the system
added the total in the middle. Such cases could be handled within the current
framework by allowing more specific layout constraints such as that a formula
is to the right, or below, its arguments.

On average, it took 22 seconds to process a sheet pair, with most pairs
correctly merged within a few seconds, which means that a system like this has
the potential to be useful in an interactive setting where it takes longer to add
annotations or manually merge sheets than the system takes to compute merge
proposals.

5 Related work

Chen et al. [5] were the first to undertake automatic spreadsheet integration.
They separate the problem into extraction and integration phases. They concen-
trate on the extraction of relational data from spreadsheets and use off-the-shelf
database integration tools for the integration phase. To extract relational data
from spreadsheets, they identify pivoted tabular data with machine learning
techniques. They do not, however, address the integration of formulae or other
constraints that we address in this work, and do not present the result as a
spreadsheet again for the end-user.



Integrating Spreadsheets by Recognising and Solving Layout Constraints 11

Other approaches for extracting relations from spreadsheets include FlashRe-
late [2], which allows a user to visually specify transformations, Foofah [8],
which learns transformations by example, and the predictive program synthe-
sis approach in [12], which searches for type-consistent relations with a zero-
information-loss constraint. None of these extraction techniques take formulae
into account, in contrast with our work.

Kolb et al. [9] developed a system that is able to automatically extract
constraints from spreadsheets where the formula information is not present. It
searches for possible constraints over blocks of cells, limiting the search space
to only sub-blocks of the correct shape. Their view that spreadsheets can con-
tain constraints inspired the current work, although we take the idea further by
including layout constraints.

There is a vast literature on schema matching and mapping for relational
data [3]. A recent take on the problem is in the context of data science, where
Sutton et al. [11] created a tool to synthesise executable summaries of changes
between tables. In contrast to our work, they do not take spreadsheet formulae
into account, consider layouts other than relational data that are already in first
normal form, or do the merge after calculating the changes.

6 Conclusions and future work

We have introduced the spreadsheet integration problem as the problem of merg-
ing multiple spreadsheets to obtain a new spreadsheet while generalising formu-
lae so that they take data from the other sheets into account. We proposed a
layout constraint representation in which merging sheets is achieved by solv-
ing the resulting constraint satisfaction problem. We present results of a system
prototype that uses baseline heuristics to solve some of the sub-problems and
show that it is able to correctly recover artificially split spreadsheets. We use the
number of manual annotations that had to be added as a measure of user effort.

Going forward, the validation framework should be extended to include nat-
urally occurring spreadsheet pairs, and the measure should be refined to better
reflect saved user effort. We also made some strong assumptions such as identi-
cal column or row headers, and the system could be extended in a natural way
allowing for soft matches between headers and determining their effects. This is
a challenge that is shared with database integration.

In the future, the performance of the system can be improved by using bet-
ter heuristics or machine learning approaches to lower the number of manual
annotations required. The use of soft constraints can be investigated to handle
duplicate or contradictory data gracefully, and under-specified constraints can
be disambiguated by using a cost function to rank solutions.

Seeing spreadsheets as user-intended layout constraints opens up the pos-
sibility of investigating exactly which layout constraints are used in typical
spreadsheets. So far, we have identified only simple same-column and same-
row constraints together with some ordering on the columns and rows. But a
more complete understanding of the constraints users typically use in spread-



12 D. Coetsee et al.

sheets will enable better integration of sheets and might enable other automated
applications on spreadsheets.

Acknowledgements This work was funded by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] SYNTH: Synthesising Inductive Data
Models). LDR is also funded by the Flemish Government (AI Research Pro-
gram).

References

1. Barik, T., Lubick, K., Smith, J., Slankas, J., Murphy-Hill, E.: Fuse: A reproducible,
extendable, internet-scale corpus of spreadsheets. In: 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories. pp. 486–489 (2015)

2. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: FlashRelate: Extracting relational
data from semi-structured spreadsheets using examples. SIGPLAN Notices 50(6),
218–228 (Jun 2015)

3. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years
later. Proceedings of the VLDB Endowment 4(11), 695–701 (2011)

4. Brizan, D.G., Tansel, A.: A survey of entity resolution and record linkage method-
ologies. In: Communications of the International Information Management Asso-
ciation. vol. 6 (Jan 2006)

5. Chen, Z., Cafarella, M.: Integrating spreadsheet data via accurate and low-effort
extraction. In: Proceedings of the 20th ACM SIGKDD. pp. 1126–1135. KDD ’14,
ACM, New York, NY, USA (2014)

6. De Raedt, L., Blockeel, H., Kolb, S., Teso, S., Verbruggen, G.: In: 17th International
Symposium, Advances in Intelligent Data Analysis XVII (2018)

7. Doush, I.A., Pontelli, E.: Detecting and recognizing tables in spreadsheets. In: Pro-
ceedings of the 9th IAPR International Workshop on Document Analysis Systems.
p. 471–478. DAS ’10, ACM, New York, NY, USA (2010)

8. Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.V.: Foofah: Transforming data
by example. In: Proceedings of the 2017 ACM SIGMOD. pp. 683–698. SIGMOD
’17, ACM, New York, NY, USA (2017)

9. Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spread-
sheets and tabular data. Machine Learning 106(9-10), 1441–1468 (Oct 2017)

10. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
The Journal of Logic Programming 19-20, 629 – 679 (1994)

11. Sutton, C., Hobson, T., Geddes, J., Caruana, R.: Data Diff: Interpretable, exe-
cutable summaries of changes in distributions for data wrangling. In: Proceedings
of the 24th ACM SIGKDD. pp. 2279–2288. KDD ’18, ACM, New York, NY, USA
(2018)

12. Verbruggen, G., De Raedt, L.: Towards automated relational data wrangling. In:
Proceedings of AutoML@PKDD/ECML 2017, Skopje, Macedonia, September 22,
2017. pp. 12–20 (2017)


	SpLyCI: Integrating Spreadsheets by Recognising and Solving Layout Constraints

