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Abstract

This dissertation consists of four essays which advance our understanding of the
pharmaceutical industry and how to effectively regulate this sector. Each chapter
aims to provide new insights, which are relevant for policymakers, based on rigorous
economic analysis of real-world data. The chapters in this dissertation focus on the
US pharmaceutical industry; the largest market for pharmaceutical products in the
world in terms of value. The first essay in this dissertation studies voting behavior
in the FDA’s advisory committees which vote on questions related to the approval
of new drugs. The second essay investigates the determinants of the market entry
decisions of pharmaceutical firms that produce generic medicines. In particular, it
investigates whether ownership links between generic manufacturers and the orig-
inator (or brand) firm created by “common investors” (investors that own shares
in both the brand and generic firm) affect the likelihood that a generic drug will
be launched on the market. The third essay investigates the presence of ownership
links created by large shareholders in the pharmaceutical industry more broadly,
using tools from network analysis, and discusses how common ownership may af-
fect product market outcomes in the sector. The final essay studies the extent to
which promotional gifts and other transfers made to physicians by pharmaceutical
companies influences the prescription decisions of physicians and how this affects
healthcare costs.
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Chapter 1

Introduction

The pharmaceutical industry makes a significant contribution to global health and
economic welfare through the development and production of innovative medical
treatments. The COVID-19 pandemic has showcased the ability of the industry
(with the support of governments) to conduct research and deliver vital medical
treatments and vaccines to fight the virus within record time. However, while the
industry is responsible for many breakthrough treatments, the conduct of phar-
maceutical firms often causes controversy. For example, firms sometimes provide
misleading information concerning the side-effects of drugs, and there is frequent
debate over whether drug prices are set too high. A well-functioning pharmaceuti-
cal industry is a priority for governments and regulation plays a crucial role in this
industry. Almost every activity in the industry is regulated from product develop-
ment through to manufacturing and marketing.

This dissertation comprises four essays which contribute towards our understand-
ing of the pharmaceutical industry and how to effectively regulate this sector. Each
chapter aims to provide new insights, based on rigorous economic analysis of real-
world data, that are relevant for policymakers. The chapters in this dissertation
focus on the US pharmaceutical industry. The focus on the US is motivated by
the fact that the US pharmaceutical industry is the largest in the world. The US
accounts for approximately half of global pharmaceutical sales, and 65% of the
sales of new medicines launched between 2013-2018 were made in the US. The US
pharmaceutical industry also leads in terms of research and development (R&D)
expenditures (EFPIA, 2019).

This introduction is split into two sections. The first section aims to provide the
reader with a high-level overview of how the pharmaceutical industry works, with an
emphasis on the US market, and positions each chapter within this bigger picture.
The second section provides a summary of each chapter in this dissertation.

1



1.1. OVERVIEW OF THE PHARMACEUTICAL INDUSTRY

1.1 Overview of the pharmaceutical industry

Figure 1.1 provides a simplified schematic of the typical “life-cycle” of a pharmaceu-
tical product. The first stage in a drug’s life-cycle is the research and development
stage. Each drug begins with discovery and development in a laboratory. Once a
drug candidate has been identified, researchers undertake preclinical studies using
laboratory experiments and testing in animal subjects. If the preclinical results are
sufficiently promising, the drug candidate progresses to testing in humans. There
are three phases of human clinical trials. In Phase I, the safety of the drug is tested
with a small sample (ca. 20-100) of healthy individuals. In Phase II, the effect of the
drug is tested in a larger group of people (ca. 50-300). Phase III trials involve large
groups of subjects (ca. 300-3,000 or more) and aim to provide a definitive assess-
ment of how effective the drug is. The process of developing and testing a new drug
is lengthy, expensive and unpredictable. Among the largest pharmaceutical firms,
roughly 20-30% of drugs that begin Phase I clinical trials end up being approved for
use (Adams and Brantner, 2006).

Figure 1.1: Schematic of the life-cycle of a pharmaceutical drug

Pharmaceutical companies typically patent newly designed molecules early in the
process. Patent protection ensures that if the drug reaches the market it will enjoy a
monopoly for a period of time (“market exclusivity”). Patent protection is important
in the pharmaceutical industry because the costs of imitation are quite low: once a
product is known to be safe and effective, it can be backward-engineered with little
difficulty. Patents and other forms of market exclusivity created by regulation allow
firms to earn high profits on new drugs which compensate for R&D expenditures
and incentivize innovation.

If a drug is successful in the final stage of clinical trials (Phase III), the innovator
applies for approval from the relevant regulatory body. In the US, the Food and
Drug Administration (FDA) is responsible for approving new drugs. In Europe, it
is the European Medicines Agency. Regulators evaluate the results of clinical trials

2



1.1. OVERVIEW OF THE PHARMACEUTICAL INDUSTRY

and weigh this against the known safety risks and existing treatment options. In
this way, regulatory agencies serve an important function. In the pharmaceutical
industry, there is asymmetric information between the user and the producer: a
consumer cannot tell simply by looking at a drug (or even by taking it) if it is a
good product. The regulator provides certification of drug quality. Regulation is
also important because the social costs of a bad drug can be very high. Approved
drugs are then launched on the market and marketed under a “brand-name” for
example Aspirin. Once on the market, the safety of drugs is further monitored, and
pharmaceutical firms are subject to detailed post-marketing reporting requirements
which include the reporting of adverse events.

In the US, firms that wish to market a new drug must file a New Drug Appli-
cation (NDA) or a Biologics License Application (BLA) with the FDA. To assist
in making difficult approval decisions, the FDA makes use of advisory committees.
These committees consist of around a dozen medical experts who vote on yes/no
questions related to drug approvals. Chapter 2 in this dissertation investigates how
the organization of these advisory committees affects how the committee members
vote and, in turn, how this affects the final assessment made by the committee. The
findings of Chapter 2 are relevant not just for the FDA’s expert committees, but
also have broader implications for how voting procedures should be set up in other
expert committees.

The approval process for generic drugs is slightly different. A generic drug is a
medication created to be the same as an already marketed brand-name drug in all
aspects; dosage form, safety, strength, route of administration, quality, performance
characteristics, and intended use. Firms that produce generic drugs can enter the
market once the regulatory protections afforded to the brand product have expired
or have been successfully challenged in court. To apply for the approval of a generic
drug, firms must submit an Abbreviated New Drug Application (ANDA) to the
FDA. Approval is fairly straightforward as the firm needs only to show that the
drug is bioequivalent to the original product and is safely manufactured. Thus,
the costs associated with bringing a generic drug to market are far lower than for
new drugs. Typically, firms in the pharmaceutical industry specialize either in the
development and production of new drugs, or in the production of generic drugs.
Thus, one can speak of “generic firms” that primarily develop and launch generic
drugs and “brand firms” that have R&D capabilities and launch new drugs.

Once on the market, drugs are sold for a specific price. The pharmaceutical
industry is particular in that it is often not the end-user of the product that pays
(fully) for it. In the US, private and public health insurers account for about 80% of
prescription drug spending (Cubanski et al., 2019). New prescription drugs in the
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US tend to have very high prices, higher than in other high-income countries. This
is because, unlike in other countries, the US government does not directly regulate
or negotiate the price of drugs. Firms can set high prices because, in the case of vital
medical treatment, demand is very inelastic. Moreover, while the drug is protected
by a patent it faces competition only from non-identical drugs that treat the same
underlying condition, which may be poor substitutes. Several studies find that this
“brand-brand” competition does not effectively lower list prices (Sarpatwari et al.,
2019).

High prescription drug prices are a concern for governments. In the US, the
entry of generic drugs is crucial for lowering prices. For products with a single
generic producer, the generic average market price is 39% lower than the brand
average market price before generic competition. With six or more competitors,
generic prices show price reductions of more than 95% compared to brand prices.1

Accordingly, promoting generic entry is an important policy goal for the FDA.2

Generic entry marks the end of the brand firm’s monopoly on the drug and,
because generic drugs are available at a lower price, it leads to a massive decline in
revenues from the brand drug. Consequently, brand firms employ several strategies
to delay or deter generic entry. Chapter 3 investigates one way in which generic
entry may be deterred. In particular, Chapter 3 tests whether ownership links
between generic firms and brand firms created by “common investors” (investors
that have shares in both the brand and generic firm) reduce the likelihood of generic
entry. Numerous pharmaceutical firms are owned by the same set of investors. This
phenomenon is known as “common ownership”. Chapter 4 documents the evolution
and extent of common ownership in the pharmaceutical industry and discusses the
implications thereof for firms’ strategies and product market outcomes. The topic
of common ownership and its effect on product market outcomes is a major concern
for policymakers, particularly in antitrust. It has been described as “the major new
antitrust challenge of our time” (Posner et al., 2017). While Chapters 3 and 4 focus
on common ownership in the pharmaceutical industry, the findings also contribute to
the broader, ongoing debate about the effect of common ownership on competition.

After a new drug is launched on the market, pharmaceutical firms devote enor-
mous resources to marketing and promoting their drug – just as much as they do on

1See FDA website, New Evidence Linking Greater Generic Competition and Lower Generic
Drug Prices. Available at: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-
cder/generic-competition-and-drug-prices

2See FDA website, Statement from FDA Commissioner Scott Gottlieb, M.D., on new policy
to improve access and foster price competition for drugs that face inadequate generic competition
[Press release]. 19 February 2019. Available at: https://www.fda.gov/news-events/press-
announcements/statement-fda-commissioner-scott-gottlieb-md-new-policy-improve-access-and-
foster-price-competition
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research and development (Gagnon and Lexchin, 2008). While healthcare payers and
consumers pay for prescription drugs, physicians control access. Thus, the largest
share of promotional expenditure is spent on “detailing” which is the promotion of
prescription drugs directly to physicians. In the US, it is not uncommon for phar-
maceutical firms to promote their drugs by making transfers of value to physicians.
These transfers can take various forms, for example, gifts, free meals, consulting
and speaker fees, funding for further education and research grants. This practice
is controversial and has been subject to growing public and academic debate. Some
states in the US ban certain types of payments to physicians while in other states
the practice is left unregulated. Understanding whether and how detailing affects
healthcare costs and outcomes is useful information for regulators seeking to design
effective policies or implement bans. To this end, Chapter 5 investigates whether
payments from pharmaceutical companies cause physicians to prescribe more ex-
pensive medicines, and which factors affect the relationship between payments and
prescribing choices.

1.2 Outline of the dissertation

Chapter 2 (“Do Expert Panelists Herd? Evidence from FDA Committees” co-
authored with Rune Midjord) studies voting behavior in the FDA’s advisory com-
mittees. This chapter addresses the question whether, and to what extent, expert
panelists engage in herd behavior when voting on questions related to the approval of
new drugs, and how this affects the quality of the final assessment made by the com-
mittee. This research contributes to the literature by being the first to empirically
investigate herd behavior in voting in expert committees and assess its consequences
for information aggregation. Herding occurs when panellist are swayed by the votes
of members who voted before them. Herd behavior is notoriously difficult to mea-
sure empirically. In many contexts, decisions may be clustered for reasons other
than herding. Our approach solves this problem in two ways. Firstly, we develop a
structural model to quantify herd behavior. The structural approach allows us to
separate confounding factors (including expertise, cautiousness and the strength of
the common prior) from members’ inclination to herd. Secondly, we exploit a change
in the voting procedure for FDA committees from sequential to simultaneous voting
in 2007. Access to simultaneous data allows us to get a grip on key parameters of
the model, like members’ expertise, when there is no herding at play.

For our analysis, we construct a database using the verbatim transcripts of FDA
committee meetings. We find that experts are indeed susceptible to herd behavior:
around half of the panelists are willing to vote against their own assessment if votes
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from previous experts indicate otherwise. We find that there is heterogeneity in herd
behavior; temporary committee members are more prone to herding than regular
(standing) members. Additionally, we show that herd behavior has detrimental
consequences for information aggregation. This research has implications for how
to optimally structure voting procedures in advisory committees. The main policy
implication of this research is that expert committees with similar features to the
FDA committees should substitute sequential voting with simultaneous (electronic)
voting.
Chapter 3 (“Common Ownership and Market Entry: Evidence from the Phar-

maceutical Industry” co-authored with Jo Seldeslachts and Albert Banal-Estañol)
addresses the question whether and to what extent common ownership affects the
market entry decisions of pharmaceutical firms that produce generic drugs. Re-
search on the topic of common ownership (where two firms are partially owned by
the same investor) and its effect on product market outcomes has recently gained the
attention of policymakers, the media and academics. Firms that are largely owned
by shareholders who also have sizeable stakes in competitors might just simply act
in these shareholders’ interest, which leads them - rather than maximizing their
own profits - to maximize the return of their shareholders’ portfolios. This research
contributes to the literature by being one of the first papers to directly investigate
the effect of common ownership on entry.

In the pharmaceutical industry, maintaining monopolized markets is crucial for
firms that sell brand-name drugs. With the event of generic entry, the revenues
derived from the brand drug can decline by as much as 90%. Moreover, brand losses
typically outweigh what generics stand to gain from market entry on average. Thus,
entry decisions may crucially depend on whether owners of generic firms also have
an interest in brand firms.

To empirically analyze the effect of common ownership on entry decisions, we use
data on patent expiration and drug approvals in the US from the FDA Orange Book
combined with data on the ownership structure of pharmaceutical companies from
Thomson Reuters Global Ownership Database. We find that brand-name drugs
that are produced by firms that have significant shareholder overlap with firms
that produce generic drugs, face less competition from generic drugs. The effect
is large: a one-standard-deviation increase in common ownership with the brand
decreases the probability of entry by that generic firm by 15-18%. We also find
that common ownership has an economically significant effect on the total number
of generic firms in a specific drug market. Our research provides evidence that
common shareholders indeed influence strategic decisions of companies. This has
implications for competition policy and antitrust. Given the importance of generic
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entry in terms of reducing drug prices, common ownership in the pharmaceutical
industry has the potential to raise healthcare costs.
Chapter 4 (“Common Ownership in the US Pharmaceutical Industry: A Net-

work Analysis” co-authored with Jo Seldeslachts and Albert Banal-Estañol) applies
tools from network analysis to study how common ownership has evolved in the
US pharmaceutical sector. Further, we discuss the implications of our findings for
competition policy. Given that common investors are both influential and, as we
show, have substantial ownership stakes in multiple pharmaceutical firms, common
ownership links may affect competition and innovation in the industry. There are
surprisingly few papers that make use of network analysis to study and visualize com-
mon ownership patterns. This research contributes to the literature by analyzing the
structure and characteristics of common ownership networks in the pharmaceutical
industry.

Our data comprises of publicly owned pharmaceutical firms that were active in
the US pharmaceutical market between 2004 and 2014. The data sources are the
same as in Chapter 3. Our empirical analysis yields three main findings. Firstly, we
find that brand firms are strongly linked to each other by large institutional investors
and that the network created by ownership links has become increasingly dense over
time. Secondly, in contrast to this, the network of generic firms is much sparser
and stays this way over the time span of our sample. Finally, when considering the
common ownership links between brands firms, on the one hand, and generic firms,
on the other, we find that brand firms have become more connected to generic firms
over time.

Overall, our analysis indicates that common ownership is widespread and increas-
ing for the brand firm and brand-generic firm network. Seen in combination with
the results in Chapter 3, the increase in brand-generic connectivity appears to have
led to a decrease in generic entry. The increase in connectivity between brand firms
may also have led to higher drug prices as commonly owned firms have less incentive
to compete. Common ownership may also affect innovation in the industry – both
in positive and negative ways. Common ownership between brand companies may,
on the one hand, enhance information sharing, generate synergies, and increase the
incentives to invest in R&D. On the other hand, common ownership may also incen-
tivize firms to innovate in a way that avoids head-on competition between each other
in the innovation space. Given the importance of R&D and effective competition in
the pharmaceutical industry, this chapter provides ample reason for policymakers
to pay closer attention to common ownership in the pharmaceutical industry.
Chapter 5 (“The Interaction between Industry Payments to Physicians, Insur-

ance and Drug Costs: Evidence from Medicare Part D”) analyzes the impact of
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payments to physicians from pharmaceutical companies. To promote their drugs,
pharmaceutical firms often make transfers of value to physicians e.g., free meals, con-
sulting fees, research grants. The extent to which these payments influence physi-
cians’ behaviour and healthcare outcomes is unclear. This research investigates
whether, and to what extent, such payments lead to the prescription of costlier
drugs. Further, it tests whether physicians who have patients with lower out-of-
pocket expenditures prescribe relatively more expensive medications in response to
industry payments. Research shows that physicians consider how much a drug will
cost a patient (out-of-pocket costs) when prescribing (Carrera et al. 2018; Lundin,
2000). If patients have very low (or zero) out-pocket-costs, there may be little push
back if the physician prescribes a more expensive drug. Hence, when patients have
lower out-of-pocket costs, physicians may be more likely to prescribe costlier med-
ication as a consequence of payments. This research contributes to the existing
literature by providing an estimate of the causal effect of industry payments on the
cost of treatment for diabetes and by showing that this effect varies with a measure
of patients’ out-of-pocket costs. Moreover, this research develops a novel empirical
strategy to identify the aforementioned effects.

In the analysis, data from a federal database on the universe of payments to
physicians in the US between 2014 and 2017 is linked to prescribing behavior in
Medicare Part D. To identify the effect of industry payments, the analysis uses data
on the prescribing patterns of physicians in Vermont, where a strict ban on industry
payments to physicians is in place, combined with machine learning techniques to
construct the counterfactual outcome for physicians who receive payments in the
nearby states of New Hampshire and Maine.

The empirical analysis focuses on the prescription of anti-diabetic medications.
The main findings are that receipt of payments related to anti-diabetic medication
increases the average brand prescription rate by 5 percentage points and the average
drug cost per dose by 21 USD. Physicians with a higher share of patients with a low-
income subsidy, and who therefore face lower out-of-pocket expenditures, prescribe
relatively more expensive medication in response to receiving a payment. Back-
of-the-envelope calculations based on our estimates suggest that banning industry
payments would result in a 3% decline in total prescription costs for diabetes. Given
that existing research does not point to strong informational benefits of payments
to physicians, the main policy implication of this research is that a ban on indus-
try payments is likely to be an effective way to contribute towards healthcare cost
containment in the US.
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Chapter 2

Do Expert Panelists Herd?
Evidence from FDA Committees1

Chapter Abstract

This chapter develops a structural model to address the question whether, and to
what extent, expert panelists engage in herd behavior when voting on important pol-
icy questions. The data comes from FDA advisory committees voting on questions
concerning the approval of new drug applications. The analysis utilizes a change in
the FDA’s voting procedure from sequential to simultaneous voting to identify herd-
ing. Estimates suggest that around half of the panelists are willing to vote against
their private assessment if votes from previous experts indicate otherwise and, on
average, 9 percent of the sequential votes are actual herd-votes. Temporary commit-
tee members are more prone to herding than regular (standing) members. We find
that simultaneous voting improves information aggregation given our estimates.

2.1 Introduction

Many important decisions within public and private organizations are based on
recommendations from expert committees. Advisory boards give strategic advice to
the management of corporations and expert committees recommend on issues such
as climate, national security, education, and medical drugs.2 The main advantage of
expert committees is their ability to aggregate multiple sources of information and
hence allow for more informed decisions. A common way to gauge the information

1This chapter is published in the DIW Discussion Paper Series as: Newham, M. and Midjord,
R. (2020). Do Expert Panelists Herd? Evidence from FDA Committees. DIW Berlin Discussion
Paper No. 1825.

2In 2006 the United States government maintained 916 federal advisory committees composed
of 67,346 members (Brown, 2009).
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held by individual committee members is to have a sequential vote (by roll call
or going stepwise around the committee table). For example, roll call voting is
used by committees of the European Parliament and it is one of the official voting
procedures for advisory committees under the United Nations. In the United States,
roll call voting is often used by advisory committees under city and town councils and
occasionally by committees at the federal level.3 When committee members vote
sequentially, the information contained in the vote will be affected, and possibly
diluted, if members engage in herd behavior (i.e. if they are swayed by observing
the preceding votes). To this end, it is crucial to know whether, and to what
extent, expert panelists engage in herd behavior and how this affects information
aggregation.

In this paper, we develop a structural model to estimate the prevalence of infor-
mational herding (see Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992;
Welch, 1992; Smith and Sørensen, 2000) and investigate its consequences for in-
formation aggregation in the U.S. Food and Drug Administration’s (FDA) advisory
committees. While other papers have studied herding in different empirical settings4

and laboratory experiments,5 this is the first paper to estimate a model of herd be-
havior in advisory committees. Moreover a change in the voting procedure for FDA
committtees from sequential to simultaneous voting in 2007 provides a remarkably
“clean” natural experiment which we take advantage of to identify herd behavior.

The drug approval decisions made by FDA affect millions of users; if beneficial
drugs do not win approval patients miss the opportunity of improved medication and
if bad drugs are approved the consequences can be fatal.6 To assist in making difficult
approval decisions, the FDA makes use of advisory committees. The committees
consist of around a dozen medical experts who vote in a fixed order on yes/no
questions related to drug approvals, for example, “Should omapatrilat be approved
for the treatment of hypertension?” In 2007 the FDA changed the voting procedure
for their advisory committees from sequential to simultaneous voting citing concerns
of “momentum” effects in sequential voting. The concern was that some sequential
voters may be influenced by the preceding votes, especially if those votes signal a

3For example, the advisory committees under the Federal Communications Commission and
the Health Resources and Services Administration.

4To mention a few: presidential primaries (Knight and Schiff, 2010), restaurant dining (Cai,
Chen, and Fang , 2009), investment recommendations (Graham, 1999), stock market trading
(Cipriani and Guarino, 2014), financial decisions (Bursztyn et al., 2014), movie sales (Moretti,
2011), and movie reviews (Camara and Dupuis, 2014).

5See Anderson and Holt (1997) for an early reference and Weizsäcker (2010) for a meta analysis.
6One of the most debated FDA decisions is the approval of the painkiller Vio

(nytimes.com/topic/subject/vioxx-drug). According to Graham et al. (2005) Vioxx caused an
estimated 88.000 to 140.000 excess cases of serious heart disease in the U.S. over its market life.
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clear trend.7

Our data is gathered from verbatim transcripts of FDA committee meetings held
between 1996 and 2014. In our dataset there are 813 voting questions for which
1,378 unique panelists cast a combined total of 10,466 votes. Roughly half of the
voting questions take place under sequential voting. Data on individual experts
includes their educational background, gender and “voter category.” FDA commit-
tees operate with four categories of voting members. Regular (standing) members
serve four-year terms and have recognized expertise in a relevant field. Additional
experts are usually added as temporary voting members. Like regular members,
temporary members have expertise in a relevant field. Each committee also has a
qualified consumer and a patient representative as voting members. We make use
of this information to study heterogeneity in herd behavior across different types of
committee members.

In our model, committee members vote on independent yes/no questions e.g.
whether the benefits of a new drug outweigh the risks. For each voting question,
there is a common prior on the correct answer (the state) being “yes.” The prior
contains relevant public information on the question at hand including committee
discussions and presentations leading up to the voting stage. On top of this, each
expert receives a private signal about the state which depends on the precision of
private information and the true state. In this respect, each panelist draws on his/her
unique experience, intuition, and analytical skills. In the empirical implementation,
we allow for the general precision of the continuous signals to vary across committee
members with certain observable characteristics (e.g. educational background and
voter category) and recover estimates for members’ ability.

There are two types of committee members in our model. The herd type uses
public information, his/her private signal, and the vote-history to update beliefs
about the state and votes “yes” if, and only if, the updated beliefs exceed his/her
standard of proof for voting yes. Intuitively, if the vote history is dominated by
“yes” votes the herd type updates in a way that favors the “yes” state. However,
the order in which the votes are placed matters for the belief updating and if a few
“no” votes are the most recent ones and come from members with high expertise
then the belief updating may favor the “no” state. By contrast, the expressive type
considers only public information and his/her private signal (ignoring any preceding

7“There has been much discussion inside and outside FDA regarding sequential versus simul-
taneous voting...scholars and social scientists have studied the risk of “momentum” in sequential
voting, exploring whether some voters may be influenced, perhaps even subconsciously, by the votes
that precede theirs, especially if those votes are nearly identical or signal a clear trend. [foot-
note reference to Banerjee (1992) and Callander (2007)].” In Draft Guidance for FDA Advisory
Committee Members and FDA Staff: Voting Procedures for Advisory Committee Meetings (2007).
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votes) when casting his/her vote.8 A member’s type is private information. In
one version of the model we assume herd types are fully Bayesian and take into
consideration the probability that committee members before them are also herd
types, in another version we assume that they are “naïve” and believe that all
preceding votes come from expressive types (following Eyster and Rabin, 2010). We
estimate the proportion of herd types and members’ standards of proof, allowing
these parameters to vary with observable characteristics.

The problem empiricists face when seeking to measure herd behavior is that pri-
vate information is not observable so it is difficult to tell when agents have altered
their behavior due to observing the actions of others. In many contexts, decisions
may be clustered for reasons other than herding. For example, in our context, if
a drug is clearly a good drug then we expect many experts will vote in favor of
the drug. The structural approach allows us to separate the confounding effects
of members’ inclination to herd, their level of expertise, their degree of cautious-
ness (standard of proof required to vote in favor of a drug) and the strength of the
common prior.

To identify the model’s parameters we rely on the fact that we observe committee
members voting across multiple voting questions and make use of information on the
exact sequence of votes under sequential voting to identify herd voting. Importantly,
the natural experiment allows us to observe voting outcomes when herd behavior
can be ruled out. Intuitively, herding tends to make committee members follow the
vote-trend under sequential polling which makes, all else equal, unanimous outcomes
more frequent than absent any herding. However, high precision of the committee
members private information also makes unanimous vote outcomes more common.
Having access to simultaneous data allows us to get a grip on key parameters of the
model, like the precision of members’ private information, when there is no herding
at play.

Our results suggest that experts voting on important questions relating to drug
approvals are indeed susceptible to herd behavior. On average, the proportion of
herd types is close to one half (48% in the Bayesian updating version and 52% in the
naïve updating version) i.e. around half of the expert panelists take into account,
and are potentially swayed by, the votes that precede theirs. Interestingly, the
share of herd types is considerably larger among temporary members than regular
members.

The presence of herd types gives rise to the possibility of “herd votes.” A herd
8Our model is a model of statistical herding with expressive types added. A closely related

concept is reputational herding where agents are motivated by appearing to be well informed
about the state i.e. having strong private signals (see Ottaviani and Sørensen (2001) for a model
of reputational concerns in committees).
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vote occurs when a herd type is swayed by the vote history. For example, when
he/she votes “yes” in a sequential set-up whereas he/she would have voted “no”
under simultaneous voting. Using our model to simulate voting under the two
regimes, we find that on average around 9% of the sequential votes are herd votes
i.e. cases where members actually change their vote from what it would have been
if they had ignored the vote history. This level of herding in the simulated data
generates patterns in line with what we see in the real data, namely that the share
of unanimous vote outcomes increases markedly under sequential voting.

Our estimates on the accuracy of the committee members private information are
relatively high; on average private signals go in the wrong direction only around
20 percent of the time. Regular members have the most accurate private informa-
tion whereas the signals of consumer and patient representatives are less precise. In
general, the committee members are slightly cautious, meaning that it takes more
than the preponderance of evidence for a committee member to vote “yes.” Con-
sumer representatives are particularly cautious and at the other end of the spectrum
patient representatives are neither cautious or incautious.

We next consider the consequences of herding on information aggregation. Al-
though simultaneous voting is not informationally efficient for all parameter values
of our model, we find that switching to simultaneous voting improves the probability
that the committee’s assessment matches the state; where the effect is larger if we
assume committee members apply naïve updating. Additionally, we use our model
to demonstrate that the detrimental consequences of herding are exacerbated when
information is less precise. Our main policy implication is therefore to follow the ex-
ample of the FDA and substitute sequential “go-around” voting with simultaneous
(electronic) voting.

Our model and estimation approach is inspired by the methodology in Cipriani
and Guarino (2014) which serves as the first paper to estimate herd behavior with a
structural model. In their application they estimate herd behavior in financial mar-
kets using transaction data from a publicly traded stock. Herding can occur over
the course of a day due to uncertainty about whether an informational event has
occurred and whether the fundamental value of the stock has increased or decreased.
In their model, a market maker interacts with the sequence of traders and sets the
price of the asset. Our model simplifies this framework by dispensing with the mar-
ket maker and price mechanism. On the other hand, we incorporate heterogeneity
regarding priors, signals and preferences, and develop a version of the model with
naïve updating. Furthermore, we make use of data generated through simultaneous
voting whereas in Cipriani and Guarino (2014) all transaction data is assumed to
be generated sequentially.
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By using a structural model to explain individual committee members’ behavior,
this paper also draws on the framework put forward in Iaryczower and Shum (2012).
They explain decision-making in the U.S. Supreme Court by taking into account
differences in the bias or ideology of justices, the information available to the justices
and their ability to apply the law to the specifics of the case. Further research in
this tradition includes Hansen, McMahon, and Rivera (2014) who explain individual
voting behavior on the Bank of England’s Monetary Policy Committee and Camara
and Kyle (2016) who estimate a voting model to recover FDA committee members’
skill and bias associated with financial ties. Iaryczower, Shi, and Shum (2018) use
a structural model to quantify the effect of deliberation on the decisions of US
appellate courts. Whereas Iaryczower, Shi, and Shum (2018) study the effect of
deliberation before voting, we consider voting after collective discussions have taken
place.

The FDA’s reform of voting procedure in 2007 has been examined in a case study
by Urfalino and Costa (2015). They collect data from six committees (202 vot-
ing questions) from 2003 to 2010 and report the proportion of unanimous, strong
majority, and majority outcomes. Urfalino and Costa (2015) show that under simul-
taneous voting the proportion of unanimous outcomes is lower while the proportion
of strong majority outcomes is higher. The authors suggest that these changes are
due to reduced expert conformity following the shift to simultaneous voting. We
extend this analysis in our descriptive and reduced-form section.

The rest of the paper is organized as follows. In Section 2.2 we introduce the the-
oretical model. Section 2.3 describes the data. Section 2.4 undertakes a descriptive
and reduced-form (regression) analysis. In Section 2.5 we describe the estimation
procedure and Section 2.6 discusses the main results. Section 2.7 considers informa-
tion aggregation. Section 2.8 concludes.

2.2 Model

We consider advisory committees voting on various yes/no questions. As in the case
with FDA committees, we can think of expert panelists polling on issues regarding
a specific application, proposal, or scientific question. There are J voting questions
and a generic voting question is denoted by j ∈ {1, ..., J}. For each voting question,
j, there is a common unobserved state θj ∈ {0, 1} that equals 1 if the correct answer
to question j is “yes” and 0 if the correct answer to question j is “no.” The state
is independently drawn across the J voting questions. Let µj0 ∈ (0, 1) indicate
the common prior belief that θj = 1. The common prior contains relevant public
information including committee discussions leading up to the voting stage. The
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number of voting members on question j is N j ≥ 2 and we denote the vote from
committee member ij ∈ {1j, ..., N j} by vji ∈ {1, 0}, where v

j
i = 1 is a “yes” vote and

vji = 0 is a “no” vote.
Voting procedure. The voting procedure on question j can be either sequential

or simultaneous. If voting on question j is sequential, then the panelists vote se-
quentially and openly in an exogenously given order. The voting order is such that
committee member ij votes as the i’th person (i.e. member 1j votes first, then mem-
ber 2j, etc.). Let hji ≡ vj1, ..., v

j
i−1 denote the voting history observable for member

ij where hj1 = {∅}. If voting is simultaneous then the vote-history is empty for all
committee members. We indicate by ξj ∈ {simultaneous, sequential} the voting
procedure for question j.
Signals. For every voting question j, each committee member ij receives a private

signal about the state. The signals are i.i.d. conditional on the state. The private
signal Sji has the following linear state-contingent densities (following Cipriani and
Guarino (2014)):

f 1(sji |θj = 1) = 1 + τ(2sji − 1)

f 0(sji |θj = 0) = 1− τ(2sji − 1)

where τ ∈ (0,∞). (See Figure 2.1)

The parameter τ is a measure of the level of strength in the experts’ signals,
where a larger τ means higher precision. In the case of the FDA’s advisory boards,
member ij’s signal realization can be thought of as a process whereby member ij

considers the results and design of the clinical trials and draws on his/her personal
experience, intuition, and analytical skills within a particular field (also allowing for
randomness and misconceptions).

When τ ≤ 1 the support of the densities is [0, 1]. For τ > 1, the support shrinks
to [ τ−1

2τ ,
τ−1+2

√
τ

2τ ] for f 1 and [ τ+1−2
√
τ

2τ , τ+1
2τ ] for f 0.9 The signals satisfy the mono-

tone likelihood ratio property. For committee member ij, the likelihood ratio after
receiving signal sji ,

P (θj=1)|hji ,s
j
i )

P (θj=0)|hji ,s
j
i )

= f1(sji |θ
j=1)

f0(sji |θj=0)
P (θj=1)|hji )
P (θj=0)|hji )

, is higher than the likelihood
ratio before receiving the signal if sji > 1

2 and lower if sji < 1
2 . In this way, a signal

larger than one half is affirmative news and a signal lower than one half is negative
news regarding the yes/no question at hand.10

9The intervals ensure that the density functions integrate to one.
10As explained in Cipriani and Guarino (2014), when τ ≥ 1 there are some signal realizations,

sji , that are only possible when the state is 1 (or 0), which then reveal the true state with certainty
to member ij . In fact, when τ ≥ 1 signal realizations higher than or equal to τ+1

2τ are only possible
when the state is 1 and signal realizations lower than or equal to τ−1

2τ are only possible when the
state is 0.
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Figure 2.1: Probability density function of private signals |θ = 1
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Types and payoffs. Committee members want their vote to match the state
and may require a higher or lower standard of proof (π) in order to vote yes. We
define the payoffs for member ij as follows:

Payoff =


0, if vji = θ

−π, if vji = 1 and θj = 0

−(1− π), if vji = 0 and θj = 1

where π ∈ (0, 1).

Voters can be of two types depending on the information they use to infer the
state: Herd types (t = H) are Bayesian members who condition their vote on the
common prior about the state, their private information, as well as on the history
of votes of previous members along the sequence. In a variant of the model, we
also consider herd types who follow a naïve updating rule (as in Eyster and Rabin,
2010). Expressive types (t = E) are myopic voters who disregard the information
contained in previous votes and only condition on the common prior and their
private information. In effect, the expressive type always stays true to his/her own
assessment based solely on the prior and the private signal. Instead of assuming
that the expressive type (myopically) ignores any information from the vote history
we could provide the expressive type with an additional negative payoff when voting
against his/her own judgment that is based solely on the common prior and the
private signal. This additional payoff would correspond to a psychological cost from
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not following one’s own gut feeling (see e.g. Brennan and Pettit, 2000). These
versions are equivalent in our setup and we have chosen the “myopic version” for
simplicity.11

Types are distributed independently across voters and voting questions and the
probability that a committee member is the herd type is λ. A member’s type is
private information. When π > 0.5 (π < 0.5) we say that the experts are cautious
(incautious) and it requires relatively more (less) affirmative evidence to vote “yes”
(“no”). The parameters λ, π and τ are common knowledge. In the empirical analysis
we consider heterogeneity in τ , λ and π across committee members with differing
observable characteristics.

The motivation behind the structure of payoffs is the assumption that experts
want to answer the FDA’s questions correctly and to the best of their abilities.12

Furthermore committing type 1 or type 2 voting errors may not weight the same,
giving rise to a threshold of doubt that is different from one half.

We can formally characterize the voting behavior of member ij when he/she is the
expressive type. Let s̄ji,t=E indicate the cut-off signal such that P (θj = 1|s̄ji,t=E) =
π.13 Using Bayes’ rule and the law of total probability:

P (θj = 1|s̄ji,t=E) = π ⇐⇒ s̄ji,t=E = µj0 − π
2τ(2µj0π − π − µj0)

+ 1
2 (2.1)

The cutoff signal from equation (1) characterizes voting behavior of the expressive
type: vote yes if sji > s̄ji,t=E and vote no if sji < s̄ji,t=E.14

11While anecdotal, discussions with experts who have previously served on an FDA Advisory
Committee during the era of sequential voting indicate that some experts made a point of deciding
on their vote before the voting starts, while others were open to adjusting their vote during the
voting procedure. One expert stated that her vote was determined before voting (S. Caprio,
personal communication, February 10, 2020). Another expert explained that most of the time his
mind was made up before casting his vote, but after hearing the potentially novel perspectives
earlier on in the voting sequence there would be a 10% chance that he would change his vote based
on these discussions, however any change in vote was just as likely to move against the “herd” as
with it (T. Carpenter, personal communication, February 12, 2020).

12Discussions with experts indicate that experts are motivated to partake in committee meetings
to gain insight into the drug review process, learn how to critique an application and to “give back”
to the government or “be a good citizen”. Financial compensation is not an incentive to partake
in meetings. With their vote, experts communicate what they believe is the correct answer to the
question to the best of their abilities (S. Caprio, personal communication, February 10, 2020).

13Recall that the signals satisfy the monotone likelihood ratio property, see Duggan and Mar-
tinelli (2001) for how this translates into a voting rule characterized by a threshold crossing con-
dition.

14Note that the cut-off signal from (1) is outside its support when τ < 1 and µj0 /∈
( 1−τ

1
π+ τ

π−2τ ,
τ+1

1
π−

τ
π+2τ ). If µj0 ≤ 1−τ

1
π+ τ

π−2τ it is optimal for member ijt=E to vote no for any signal
realization and when µj0 ≥ τ+1

1
π−

τ
π+2τ it is optimal for member ijt=E to vote yes for any signal

realization.
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The herd type uses the history of votes to update his/her beliefs about θj. Let
µji ≡ P (θj = 1|hji ) indicate member ij’s beliefs about the state after observing the
preceding votes (not yet taking his/her own signal into account) and updating using
Bayes’ rule (or naïve updating). Optimal voting behavior for the herd type can be
characterized by the cut-off signal, s̄ji,t=H :

P (θj = 1|s̄ji,t=H , h
j
i ) = π ⇐⇒ s̄ji,t=H = µji − π

2τ(2µjiπ − π − µ
j
i )

+ 1
2 (2.2)

Member ijt=H votes yes if sji > s̄ji,t=H and no if sji < s̄ji,t=H .15 Under simultaneous
voting s̄ji,t=E = s̄ji,t=H .

Note that increases in τ makes the value of the cut-off signal move towards one half
(from below when µ > π and from above when µ < π). Moreover, the cut-off signal
becomes less sensitive to changes in µ and π when τ increases. As illustrated in
Figure 2.2 the cut-off is decreasing in µ. In particular, the cut-off value is decreasing
at an increasing (decreasing) rate when π > 0.5 (π < 0.5). In comparison to a
committee member following the preponderance of evidence (π = 0.5), there is a
larger range of signals for which an incautious expert will vote yes, and a smaller
range of signals for which a cautious expert votes yes. This difference in the signal
required to vote yes is most pronounced when the common prior is close to 0.5.

Figure 2.2: Cut-off signals (illustration with τ = 1)
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15The cut-off signal from (2) is outside its support when τ < 1 and µji /∈ ( 1−τ
1
π+ τ

π−2τ ,
τ+1

1
π−

τ
π+2τ ).

When µji ≤ 1−τ
1
π+ τ

π−2τ it is optimal for member ijt=H to vote no for any signal realization and when
µji ≥ τ+1

1
π−

τ
π+2τ it is optimal for member ijt=H to vote yes for any signal realization.
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2.2.1 Herd voting

We refer to the notion of local herd voting whenever a herd type is swayed by the
history of votes.16 That is, when the herd type, following the cutoff rule, votes yes
(no), whereas had he/she ignored the vote-history and followed the cutoff rule in
(1), like the expressive type, he/she would have voted no (yes). In addition, we term
it local cascade voting if it is optimal for committee member ijt=H to vote, say yes,
for any possible private signal realization and, at the same time, had member ijt=H
ignored the vote-history he/she would have voted no after observing sji,t=H . Cascade
voting is only possible when τ < 1. The formal definitions are:

DEFINITION 1 (herd-voting): Provided that τ ≥ 1 or τ < 1 and µji ∈ ( 1−τ
1
π

+ τ
π
−2τ ,

τ+1
1
π
− τ
π

+2τ ),
committee member ijt=H engages in herd-yes-voting if s̄ji,t=E > sji,t=H > s̄ji,t=H and
herd-no-voting if s̄ji,t=E < sji,t=H < s̄ji,t=H .

DEFINITION 2 (cascade-voting): Given τ < 1, committee member ijt=H engages
in cascade-yes-voting if µji ≥ τ+1

1
π
− τ
π

+2τ and sji,t=H < s̄ji,t=E and cascade-no-voting if
µji ≤ 1−τ

1
π

+ τ
π
−2τ and sji,t=H > s̄ji,t=E.

Unless τ < 1 and µj0 /∈ ( 1−τ
1
π

+ τ
π
−2τ ,

τ+1
1
π
− τ
π

+2τ ) or µj0 = µji (which is the case for si-
multaneous voting and the first voter under sequential voting) there will always
be some private signal realizations whereby member ijt=H engages in herd- or cas-
cade voting.17 Cascade voting is not possible when τ ≥ 1, as there will always be
some possible private signal realization that shifts the beliefs across the herd type’s
threshold and thus herd types never ignore their signal when τ ≥ 1. Even if τ and
N are large the updated prior cannot hit 1 or 0. When µj0 < µji the probability that
member ijt=H engages in herd-yes-voting can be computed as the probability that
sji,t=H lands in the interval [s̄ji,t=H , s̄

j
i,t=E] (NB the linearity of the state contingent

signals allow for analytical solutions). Similarly when µj0 > µji and herd-no-voting
is possible. Thus, a larger discrepancy between µj0 and µji implies that the proba-
bility of a herd vote increases. However, for τ < 1 and a sufficiently extreme µji the
herd type will ignore his/her signal and cascade vote. This does not imply that all
subsequent herd-types will cascade, as votes from expressive types may reverse the
beliefs about θj. Even for τ < 1 a positive measure of expressive types ensures that

16This definition of herd voting is similar to herd-buying and herd-selling in Cipriani and Guar-
ino (2014).

17Note that when τ < 1 and µj0 /∈ ( 1−τ
1
π+ τ

π−2τ ,
τ+1

1
π−

τ
π+2τ ) there is no private signal realization that

can overcome the prior and expressive- and herd types always vote the same. In this case, learning
is stuck from the beginning.
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learning never ceases and is unbounded.

2.2.2 The likelihood function

The likelihood function under Bayesian updating. To estimate our voting
model we have to specify its likelihood function. Recall that the state is inde-
pendently drawn across the voting questions j = 1, ..., J and the private signals
{sj1, ..., s

j
Nj} are independent and identically distributed conditional on θj. There-

fore, the events vj = vj1, ..., v
j
Nj and vk 6=j = vk 6=j1 , ..., vk 6=jNk 6=j are independent and the

likelihood of a sequence of votes over the set of voting questions can be written as

P ({vj}Jj=1|Φ) =
J∏
j=1

P (vj|Φ) (2.3)

Where Φ is the vector of parameters {µ0, τ, λ, π, ξ}. To demonstrate how to derive
P (vj|Φ) we consider sequential voting and any voting sequence vj = vj1, ..., v

j
Nj .

P (vj|Φ) = µj0

NJ∏
i=1

P (vji = 1|Φ, hji , θj = 1)v
j
iP (vji = 0|Φ, hji , θj = 1)1−vji

+(1− µj0)
NJ∏
i=1

P (vji = 1|Φ, hji , θj = 0)v
j
iP (vji = 0|Φ, hji , θj = 0)1−vji (2.4)

Conditional on the state and the voting history hji , the individual votes are in-
dependent across the members. Thus, the vector of votes follows a mixture dis-
tribution, with mixing probability µj0. The state specific voting probabilities are
calculated as follows:18

P1,i ≡ P (vji = 1|Φ, hji , θ = 1) =λP (sji > s̄ji,t=H |Φ, h
j
i , θ = 1)

+ (1− λ)P (sji > s̄ji,t=E|Φ, θ = 1)

18By the monotone likelihood ratio property of the signals it is ensured that P1,i ≥ P0,i and
we can identify the state-specific voting probabilities. Identification in this setting is proven in
a number of papers dealing with identification of mixture models such as Allman, Matias, and
Rhodes (2009).
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P0,i ≡ P (vji = 1|Φ, hji , θ = 0) =λP (sji > s̄ji,t=H |Φ, h
j
i , θ = 0)

+ (1− λ)P (sji > s̄ji,t=E|Φ, θ = 0)

To solve for s̄ji,t=H we need member i’s updated probability that the state is good,
given the history of votes. We do this recursively, whereby using Bayes rule

µji ≡ P (θj = 1|hji ) = µji−1P
vi−1
1,i−1(1−P1,i−1)1−vi−1

µji−1P
vi−1
1,i−1(1−P1,i−1)1−vi−1 +(1−µji−1)P vi−1

0,i−1(1−P0,i−1)1−vi−1

for i ≥ 2 and our base is µj1 = µj0. If voting is simultaneous we can compute
P (vj|Φ) in the same manner, with the important difference that all the committee
members vote with an empty vote-history.
The likelihood function under naïve updating. If herd types are “naïve”, as

in Eyster and Rabin (2010), they (incorrectly) believe that each previous person’s
action reflects solely that person’s private information. In our model this translates
into herd types believing that everyone before them is an expressive type. This
assumption requires an adjustment to the way we calculate the updated prior. We
denote the updated prior under the assumption of naïve updating as µjN,i.

µjN,i ≡ P (θj = 1|hji ) = µjN,i−1P
vi−1
N,1,i−1(1−PN,1,i−1)1−vi−1

µjN,i−1P
vi−1
N,1,i−1(1−PN,1,i−1)1−vi−1 +(1−µjN,i−1)P vi−1

N,0,i−1(1−PN,0,i−1)1−vi−1

where,
PN,1,i ≡ P (vji = 1|Φ, hji , θ = 1) = P (sji > s̄ji,t=E|Φ, θ = 1)

PN,0,i ≡ P (vji = 1|Φ, hji , θ = 0) = P (sji > s̄ji,t=E|Φ, θ = 0)

2.3 Data

2.3.1 FDA advisory committees

In the United States the producers of new drugs are required to win approval from
the FDA in order to market their products. The review process gives the FDA
the option to refer a matter of drug approval to one of its advisory committees.
Around half of the drugs that the FDA reviews goes to a committee - typically those
where the available data renders decision making particularly difficult or the drug or
disease involved is controversial (Moffitt, 2010). Advisory committees are intended
to provide the FDA with independent opinions and recommendations from outside
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experts. Although the expert committees provide recommendations to the FDA, the
FDA makes the final decisions and usually obtains additional clinical data and has
discussions internally and with the sponsor company after the committee meetings
are held.19 At the beginning of a meeting the FDA and the sponsor company present
data from clinical trials and results regarding the risks and benefits of the drug
or product under consideration. After the presentations the committee members
deliberate and usually, after lengthy discussions, vote on one or more questions put
forth by the FDA. These questions are generally scientific in nature and can involve a
range of subjects, including the assessment of a drug or biological product’s efficacy,
safety, or overall approvability.

There are currently 18 different advisory committees under the Center for Drug
Evaluation and Research. The committees are specialized on a particular disease or
topic e.g. the Cardiovascular and Renal Drugs Advisory Committee or the Onco-
logic Drugs Advisory Committee. Each committee typically meets 1 to 4 times per
year at the request of the FDA. On average a committee comprises around a dozen
members. Each committee has a chair, who leads the meetings, several regular sci-
entific members (serving 4-year terms), plus a qualified consumer and sometimes a
patient representative.20 Additional experts are usually added as temporary voting
members. Like regular members, the invited temporary members have recognized
expertise in the relevant field.21 Temporary members can be invited outside experts,
members of the center’s consultancy pool, or members of other advisory commit-
tees. Before each meeting all the committee members receive briefing material for
preparation.

Following the Draft Guidance for FDA Advisory Committees of 2007 the voting
procedure changed from sequential to simultaneous (electronic) voting.22 Under
sequential voting the polling starts at one end of the committee table, at the chair’s
discretion, and continues in a stepwise fashion according to the seating plan of the

19As explained by the clinical FDA team leader at the meeting of the approval of Olodaterol:
“Before I close, I just wanted to mention the legal framework that gives the FDA the ability to
hold advisory committees to ask for scientific advice and recommendations from experts in the
field. As I noted previously, the FDA takes very seriously the advice of the committee. However,
the Commissioner has sole discretion on actions taken with regard to drug approval, especially
since there may be other issues, such as manufacturing, not discussed at the meeting, that impact
approval decisions.”

20As stated by the FDA, the role of the consumer representative is to represent the consumer
perspective and serve as a liaison between the committee and interested consumers and consumer
organizations. The consumer representatives are usually experts in the field like the regular com-
mittee members. Patient representatives have experience with the disease either as a patient or
primary caregiver.

21Guidance for Industry, Advisory Committees: Implementing Section 120 of the Food and
Drug Administration Modernization Act of 1997.

22In the transition from sequential to electronic voting some committee meetings used voting
by a show of hands. We exclude these meetings from our analysis.
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meeting. The seating plan is jointly decided by the committee’s executive secretary
and the chair. In Appendix 2.9.1 we provide evidence that, based on observable
member characteristics, there are no clear patterns in the way that the committee
members are seated (except for the chairperson). When a meeting has several voting
questions, which is often the case, the chair usually alternates so that voting starts
at each end of the committee table at every other voting question (on few occasions
also starting from the middle and going clockwise or counter-clockwise around the
table). The chair also votes and is seated in a central position. Often members are
allowed to accompany their votes with comments, motivation, or provisos. Under
simultaneous voting the members place their votes with electronic voting pads and
after the votes have been locked in they sequentially go on the record and state what
they voted and give comments. The order of announcements follows the seating plan
of the meeting and the chair decides at which end of the table to begin. As with
sequential voting, the chair usually alternates so that the announcements starts at
each end of the committee table at every other voting question.

Around the same time the voting procedure changed, the FDA Amendments Act
of 2007 was passed by Congress. Notably, the law established a limit on the number
of committee members with financial conflicts.23 Under USC Section 208, the FDA
has authority to grant waivers to committee members who have potential financial
conflicts when it is determined that the need for a particular individual’s services
outweighs his or her potential financial conflict of interest.24 One concern is whether
the decline in conflict of interest (COI) waivers occurring around the time of the
shift in voting procedure could have caused the changes in voting patterns that we
see in the data. In our analysis we control for COI waivers and we are able to rule
out that this change is driving our results.

2.3.2 Data collection and variables

Our data source is the full set of meeting transcripts that can be downloaded via
www.fda.gov. The public records start in 1996 and we have data until June 2014.
We consider committee meetings with one or more binary voting questions on the
agenda and where the overall topic concerns approval of a drug or biological product.
For sequential voting, this gives us 138 committee meetings and 375 binary voting
questions with the full sequence of votes and for simultaneous voting it is 189 com-

23The law also extended the authority to levy fees on companies applying for drug approvals,
expanded clinical trial guidelines for pediatric drugs and enhanced the authorities to require post-
approval studies.

24Potential financial conflicts include investments, consulting, expert witness testimony, grants,
patents and royalties, and primary employment in the sponsor company or its competitors.
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mittee meetings and 438 voting questions. In total the data consists of 10,466 yes
or no votes.25 A “yes” vote is always associated with a favorable assessment of the
relevant drug or biological product. This means that on a few occasions (negated
questions) we reverse the votes. On average a committee comprises of 13 members,
with a minimum of 5 members and a maximum of 28 members.

For each committee meeting, we indicate whether voting is simultaneous or se-
quential, the name of the advisory committee, type of application, and proposed
trade name.26 Our data covers 15 different topical committees. Applications can be
a New Drug Application, a Biologic License Application, a supplemental New Drug
Application, or a supplemental Biologic License Application.27 Drug applications
can be under “priority review”; a mechanism which seeks to expedite the review
process for drugs that are expected to have a large impact on the treatment of a
disease. Information on which applications are under priority review is obtained
from the Drugs@FDA database.

We record the wording of the voting question and classify it depending on whether
the question is about efficacy, safety, approval, or other (e.g. questions about
methodology, dose, or labeling). We also report a score on the FDA reviewer(s)
assessment of efficacy, safety, and approval. The FDA reviewer score is based on
the FDA presentations and introductory remarks. Before each committee meeting
the FDA’s review team analyses the efficacy and safety studies in question and pre-
pares presentations to be held in front of the committee. These presentations take
place before the voting stage and the reviewers are not members of the committee
and do not vote. The FDA reviewer score on efficacy (1, 0,−1) reflects the review
team’s conclusions regarding efficacy of the proposed drug or biological product.
This revolves around the primary endpoints of the efficacy studies.28 If the FDA
reviewer(s) state that all the primary endpoints were met (usually with respect to
p-values less than 0.05) in all the efficacy studies we code the efficacy score as 1. If
the efficacy results are mixed or the FDA reviewer has major methodology concerns
we code the efficacy score as 0. If the FDA reviewer concludes that the drug or
product has no effect we code the efficacy score as -1.

25The voting members also have the option to abstain, although they rarely do so. In our data,
1.2 percent of the sequential votes are abstentions and 2.7 percent of the simultaneous votes are
abstentions. For simplicity we ignore abstentions in our analysis (the individual abstentions drop
out as if they had not been placed).

26In some cases, multiple drugs or products are considered on the same day and meetings are
then split between morning and afternoon sessions.

27Companies are allowed to make changes to drugs and biological products or their labels after
they have been approved. To change a label, market a new dosage or strength, or change the way
the treatment is manufacturing, a company must submit a supplemental application.

28These studies are often placebo controlled trials, but can also be non-inferiority or superiority
studies with respect to an already approved comparator.
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The FDA reviewer score on safety (1, 0,−1) reflects the review team’s conclusions
regarding safety issues and adverse events. If the reviewer concludes that the safety
profile is not worse than already approved products, or if the reviewer states that the
safety studies reveal no significant safety concerns, we record a score of +1. On the
other hand, if the FDA reviewer expresses serious safety concerns, also with respect
to what is the standard for the relevant indication, we code the safety score as -1.
If neither explicit positive or negative conclusions are drawn from the safety review
we code the safety score as 0. Finally, the approval score simply adds the efficacy
score to the safety score. Where the total score is 1 or higher, the FDA reviewer
score for approval questions will be 1, similarly when it is -1 or lower, the score will
be -1. In cases where there is no FDA reviewer assessment, we assign a score of 0.29

Table 2.1 indicates the frequency of voting questions in each group.
At the voting question level we record the individual votes. For meetings with

simultaneous voting, we order the votes in the way that the committee members
announce them as they go on the record after the votes have been locked in. For
sequential voting, the votes are entered according the order in which they are cast.30

For each vote, we register the name of the voter, gender, educational background,
whether he/she was granted a COI waiver for the given committee meeting, and
whether the voter is a consumer representative, patient representative, regular or
temporary member. All this information, except for gender, appears in the meeting
transcripts or the summary minutes. In total, we observe the votes made by 1,378
unique voters. 12% of these voters (which account for 25% of votes) are present under
both voting procedures. Table 2.2 indicates the frequency of voter characteristics,
split by voting regime. A clear difference in committee composition after 2007 is the
reduction in the number of members with a conflict of interest owing to the FDA
Amendments Act. Another difference is the increased use of temporary committee
members, as opposed to regular members, under simultaneous voting.

29Questions that are classified as ‘other’ receive a score of 0. Meetings at the Cardiovascular
and Renal Drugs Advisory Committee do not use FDA presentations until the end of 2005. For
these meetings we insert reviewer scores of 0.

30Under sequential voting, we have 20 voting questions with low data quality in the sense that
the voting order was interrupted during voting (11), the voting question was modified after the
first vote was given (5), or members did not precisely specify their vote (4). In the latter case,
we include a yes or no vote depending on whether the member expressed himself/herself positively
or negatively on the voting question. These voting questions are all included in our empirical
analysis. None of our results or estimates significantly change depending on whether we include
these observations or not.
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Table 2.1: Voting question characteristics

Sequential Simultaneous All
FDA reviewer score
-1 37 26 63
0 287 293 580
1 51 119 170

Priority review
Yes 123 71 194
No 252 367 619

Question type
Efficacy 75 83 158
Other 153 120 273
Risk v. Benefit 126 179 305
Safety 21 56 77

Application type
Non-supplementary 298 325 623
Supplementary 77 113 190

Product category
Drug 349 336 685
Biologic 26 102 128

Committee
Anesthetic and Life Support 1 13 14
Anti Infective 25 37 62
Anti Viral 16 16 32
Arthritis 13 31 44
Cardiovascular and Renal 76 31 107
Dermatologic and Ophthalmic 11 17 28
Endocrinologic and Metabolic 61 43 104
Gastrointestinal 24 44 68
Medical Imaging 2 3 5
Nonprescription 5 7 12
Oncologic 70 36 106
Peripheral and Central Nervous System 20 42 62
Psychopharmacologic 14 42 56
Pulmonary Allergy 16 49 65
Reproductive Health 21 27 48

Total 375 438 813
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Table 2.2: Voter characteristics

Sequential Simultaneous All
Type
Regular member 2839 (66%) 2878 (47%) 5717 (54%)
Temporary member 1080 (25%) 2549 (41%) 3629 (35%)
Consumer representative 251 (6%) 372 (6%) 623 (6%)
Patient representative 128 (3%) 369 (6%) 497 (5%)

Degree
Medical 2579 (60%) 3581 (58%) 6160 (59%)
PhD 1352 (31%) 1808 (29%) 3160 (30%)
Other degree 259 (6%) 395 (7%) 654 (6%)
No degree 108 (3%) 384 (6%) 492 (5%)

Conflict of Interest
Yes 1011 (24%) 82 (1%) 1093 (10%)
No 3287 (76%) 6086 (99%) 9373 (90%)

Gender
Male 2782 (65%) 4081 (66%) 6863 (66%)
Female 1516 (35%) 2087 (34%) 3603 (34%)

Total 4298 6168 10466

2.4 Descriptive analysis

In this section, we construct descriptive statistics and use reduced-form techniques
to investigate changes in vote outcomes and voting behavior following the switch
to simultaneous voting. Our findings are consistent with herd behavior: The main
insights are that the probability of a unanimous vote outcome and the probability of
a committee member voting the same as the person seated before him/her are signif-
icantly higher under sequential voting. We also find significant differences in voting
behavior across committee members with differing observable characteristics. This
further warrants the estimation of our model which allows for sequential learning
and heterogeneity in the behavior of committee members.

2.4.1 Vote outcomes

To obtain precursory insights into voting outcomes under sequential and simultane-
ous voting, we construct the following variables at the voting-question level; 1) an
indicator variable that takes the value 1 if the outcome of the vote is unanimous, 2)
the size of the majority (as a percentage) and 3) the percentage of yes votes. De-

27



2.4. DESCRIPTIVE ANALYSIS

scriptive statistics for these variables are presented in Table 2.3. Under sequential
voting 48% of vote outcomes are unanimous, this figure is 29% under simultaneous
voting. Figure 2.3 shows the distribution of the percentage of yes votes for a given
voting question. Clearly, there appears to be more agreement in votes under the
sequential procedure.

Table 2.3: Descriptive statistics for vote outcomes

Mean by Voting Rule
Variable Obs. Mean Std. Dev. Min Max Sequential Simultaneous Difference
Unamimous 813 0.375 0.484 0 1 0.477 0.288 -0.19***
Majority size 813 0.853 0.154 0.5 1 0.871 0.838 -0.033***
Percent yes 813 0.637 0.36 0 1 0.664 0.614 -0.05*
Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Figure 2.3: Agreement of votes
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2.4.2 Voting behavior

In this subsection we run several regressions that model voting behavior at the
individual level. The aim of this analysis is to convince the reader that there is a
change in voting behavior following the switch to simultaneous voting, and that this
change is in line with herd behavior under sequential voting. Furthermore, we use
regression analysis to explore differences in voting behavior across different types of
committee members.
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In our analysis we focus on three outcome variables; 1) an indicator variable taking
the value 1 if member i’s vote matches the preceding vote: I(vji = vji−1)31, 2) an
indicator variable taking the value 1 if a member votes in line with the majority up
until that point: I(WithMajority), and 3) an indicator variable taking the value 1
if a member votes “yes”: I(vji = yes). The first two measures aim to (crudely) reflect
how individuals are influenced by previous votes. The regression specifications take
the following form:

Pr[Iij = 1] = γ0 + γ1Sequentialj +Xijδ + εij,

where Iij is one of three binary dependent variables outlined above, Sequentialj
is an indicator variable for a sequential voting procedure and Xij is a vector of
individual-level and question-level covariates.

At the question-level we control for committee size, FDA reviewer score, whether
or not the drug is under priority review, if the application pertains to a biological
product, if the application is a supplementary application, and the share of members
in the committee with a conflict of interest waiver (as a percentage). We include
fixed effects for the 15 topical committee categories and four question types (efficacy,
risk vs. benefit, safety, other). At the individual-level we control for the member’s
position in the voting order (“seat”), voter type (i.e. temporary, regular, consumer
representative and patient representative), level of education, gender and whether
or not the committee member has a conflict of interest waiver. In order to provide
an initial indication of heterogeneity in behavior across different types of commit-
tee members, we estimate specifications with interaction terms between individual
characteristics and sequential voting.

Table 2.4 provides summary statistics for the three outcome variables and the
non-categorical explanatory variables. There is substantial variation in the share of
members with a COI waiver, both under sequential and simultaneous voting, which
we use to separate the effect of a change in voting procedure from the effect of new
regulations introduced around the same time which limited the number of members
with a COI waiver.32

31For simultaneous and sequential voting the order we use follows the order in which votes are
announced.

32The share of members with a COI waiver under sequential voting ranges from a minimum of
0 to a maximum of 1, with a standard deviation of 0.19 and a mean of 0.23. The share of members
with a COI waiver under sequential voting ranges from a minimum of 0 to a maximum of 0.3, with
a standard deviation of 0.04 and a mean of 0.013.
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Table 2.4: Summary statistics

Variable Frequency Mean Std. dev. Min Max
I(vji = vji−1) 9653 0.787 0.41 0 1
I(WithMajority) 9231 0.83 0.376 0 1
I(vji = yes) 10466 0.633 0.482 0 1
Seat 10466 7.54 4.766 1 28
Size 10466 14.08 4.34 5 28
Share COI 10466 0.104 0.171 0 1

Table 2.5 presents the regression results using ordinary least squares.33 Note that
we exclude the first vote when using I(vji = vji−1) and I(WithMajority) as the
dependent variable. We also exclude votes that follow a 50/50 outcome from regres-
sions where I(WithMajority) is the dependent variable. Controlling for observable
vote and voter characteristics, on average, the probability that a member’s vote is
the same as the previous vote is 6.3 percentage points higher under sequential vot-
ing (column 1). Further, a committee member is almost 5 percentage points more
likely to vote with the present majority under sequential voting (column 3). The
probability to vote yes is higher for sequential voting (column 5). These findings are
consistent with earlier votes influencing later votes under sequential voting.

A number of additional results are worth pointing out. We find that regular mem-
bers are significantly less likely to vote with the present majority under sequential
voting. Patient representatives are also less likely to vote with present majority
under sequential voting (column 4). Furthermore, we find that both variables which
control for the change in COI waivers (Share COI and COI waiver) do not signif-
icantly affect the probability that a member’s vote matches the preceding vote or
the probability of voting in line with the present majority. The positive sign on the
interaction between Seat and Sequential in columns 2 and 4 provides some (weak)
evidence that a committee member is more likely to be influenced by previous votes
the later on in the sequence they vote.

In columns 5 and 6 we report which variables are correlated with a member’s
probability to vote “yes”. An FDA reviewer score of -1 is negatively and signifi-
cantly correlated with voting yes, whereas a score of 1 is positively and significantly
correlated with voting yes. Priority drugs are also more likely to receive yes votes
on average, as well as biological medications.34 As might be expected, we find that
consumer representatives are less likely to vote in favor of a drug all else constant,
whereas patient representatives are more likely to vote “yes”.

33Our results are robust to probit and logit specifications.
34Later, we will use these features of vote questions to characterize the prior in our structural

model.
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The share of members in the committee with a conflict of interest waiver does not
have a significant impact on the probability to vote in favor of the drug. There is
some (weak) evidence that members with a conflict of interest may be more likely
to vote in favor of a drug under simultaneous voting, but are relatively less likely to
do so under sequential voting. It is not surprising that we do not find a strong effect
of COI waivers on voting behavior. Previous studies using voting data from the
FDA’s advisory committees have produced mixed results concerning the connection
between voting and industry ties.35

Overall, a descriptive analysis of the data suggests that there is a change in voting
behavior following the switch to simultaneous voting and provides evidence consis-
tent with earlier votes influencing later votes under sequential voting. However, we
cannot rule out the possibility that voting outcomes may be driven by more ex-
treme priors for the voting questions under the sequential procedure, which would
lead to more agreement (regardless of the voting procedure). This is something that
our reduced form model cannot directly control for. Moreover, even if we believe
that, on average, the priors are similar for the sequential and simultaneous voting
questions, a reduced-form model cannot speak to the mechanism that causes more
agreement in the case of sequential voting or quantify the extent of “herd votes”.
A structural approach is invaluable in this situation to explicitly incorporate the
unobserved prior for each voting question, experts’ private information and differ-
ences in the cautiousness of experts in order to provide estimates that have a clear
interpretation in the context of a model of herd behavior. Ultimately, using our
model and the estimated parameters, we can also say something about which voting
procedure leads to more efficient information aggregation.

35Lurie and Zieve (2006) find a weak positive relationship between members’ votes for approval
and financial ties. Ackerley et al. (2009) expand the data-set used in Lurie and Zieve (2006) and
show a tendency for committee members to vote against their financial interests. Pham-Kanter
(2014) finds that individuals with financial interests solely in the sponsoring firm are more likely to
vote in favor of the sponsor than members with no financial ties. Cooper and Golec (2017) find that
conflicts of interests are not significantly related to votes in FDA committees. Using a structural
model, Camara and Kyle (2016) estimate each member’s skill and bias associated with financial
ties to a drug’s sponsor or its competitors. Their results suggest that members with financial ties
are more likely to vote in favor of both “good” and “bad” drugs. However, members with financial
ties also have somewhat higher estimated ability, and hence are more favorable towards good drugs.
Notably, these studies do not distinguish between sequential and simultaneous voting.
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Table 2.5: Reduced-form results

Dependent variable
(1) (2) (3) (4) (5) (6)

I(vji = vji−1) I(vji = vji−1) I(WithMajority) I(WithMajority) I(vji = yes) I(vji = yes)

Sequential 0.0633*** 0.0492* 0.0451*** 0.0652** 0.0572*** 0.0459
(0.0121) (0.0276) (0.0114) (0.0258) (0.0138) (0.0296)

Size/10 0.00657 0.00436 0.00198 -0.000915 -0.00444 -0.00330
(0.0134) (0.0134) (0.0125) (0.0125) (0.0144) (0.0144)

FDA Reviewer Score = -1 -0.0971*** -0.0976*** -0.0649*** -0.0671*** -0.144*** -0.144***
(0.0190) (0.0190) (0.0182) (0.0182) (0.0199) (0.0199)

FDA Reviewer Score = 1 0.0710*** 0.0711*** 0.0717*** 0.0718*** 0.183*** 0.183***
(0.0113) (0.0113) (0.0104) (0.0104) (0.0122) (0.0122)

Priority -0.00421 -0.00534 -0.00926 -0.0109 0.119*** 0.121***
(0.0107) (0.0107) (0.0101) (0.0101) (0.0114) (0.0114)

Share COI 0.0302 0.0318 0.0564* 0.0535* 0.0633 0.0655
(0.0334) (0.0337) (0.0308) (0.0311) (0.0419) (0.0420)

Supplementary 0.0144 0.0138 0.0144 0.0152 -0.00811 -0.00929
(0.0107) (0.0108) (0.0101) (0.0101) (0.0120) (0.0120)

Biologic 0.0192 0.0186 0.0188 0.0179 0.0432*** 0.0434***
(0.0137) (0.0137) (0.0130) (0.0130) (0.0156) (0.0156)

Seat -0.000200 -0.00146 0.000738 -0.000155 -0.000447 0.000198
(0.00104) (0.00129) (0.000991) (0.00124) (0.00107) (0.00128)

Regular -0.00792 -0.00158 0.00651 0.0305*** -0.0251** -0.0267**
(0.00942) (0.0121) (0.00886) (0.0115) (0.0104) (0.0129)

Patient Rep. -0.0572*** -0.0487* -0.0312 -0.0113 0.0547** 0.0476*
(0.0220) (0.0261) (0.0204) (0.0242) (0.0221) (0.0264)

Consumer Rep. -0.0333* -0.0481* -0.0489*** -0.0506** -0.0859*** -0.129***
(0.0190) (0.0250) (0.0186) (0.0246) (0.0211) (0.0268)

PhD -0.00736 -0.0156 -0.0129 -0.0193 -0.0146 -0.0232*
(0.00929) (0.0125) (0.00878) (0.0118) (0.0102) (0.0133)

Male 0.00266 0.0108 -0.0107 -0.00795 -0.00286 -0.00802
(0.00911) (0.0123) (0.00850) (0.0115) (0.0100) (0.0131)

COI Waiver 0.0220 0.0293 0.0128 0.0166 0.00230 0.0849*
(0.0155) (0.0436) (0.0144) (0.0419) (0.0175) (0.0498)

Seat X Seq. 0.00367* 0.00285 -0.00200
(0.00192) (0.00180) (0.00208)

Regular X Seq. -0.0160 -0.0675*** 0.0105
(0.0189) (0.0174) (0.0214)

Patient Rep. X Seq. -0.0328 -0.0763* 0.0222
(0.0489) (0.0451) (0.0490)

Consumer Rep. X Seq. 0.0314 -0.0106 0.115***
(0.0381) (0.0372) (0.0433)

PhD X Seq. 0.0220 0.0186 0.0175
(0.0185) (0.0175) (0.0208)

Male X Seq. -0.0195 -0.00704 0.0137
(0.0182) (0.0170) (0.0203)

COI X Seq -0.00590 -0.00007 -0.0920*
(0.0459) (0.0439) (0.0524)

Question Type yes yes yes yes yes yes
Topical Committee yes yes yes yes yes yes
Constant 0.634*** 0.642*** 0.713*** 0.713*** 0.341*** 0.346***

(0.0418) (0.0431) (0.0394) (0.0408) (0.0420) (0.0432)

Observations 9,653 9,653 9,231 9,231 10,466 10,466
R-squared 0.032 0.032 0.026 0.028 0.082 0.083
Notes: OLS regression. Standard errors in parentheses are robust. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p <
0.1.

2.5 Estimation and identification

In this section, we describe the specification of the prior and the estimation of our
model. We then provide some intuition on which variation in the data allows us to
identify the parameters of the model.

To make the model tractable, we place a parametric restriction on the prior.36 We

36This is in line with previous literature e.g. Iaryczower and Shum (2012) and Camara and

32



2.5. ESTIMATION AND IDENTIFICATION

allow the prior µj0, the common belief that the correct answer to the voting question
is yes, to depend parametrically on characteristics of the voting question captured
by Xj (e.g. FDA reviewer score) via the following logit formulation:

µj0(Xj; β) = exp(Xj
′β)

1 + exp(Xj
′β) ∈ (0, 1) (2.5)

This specification implies that there are certain observable vote characteristics that
have an effect on the probability of the state being “yes” or “no”. The state for
each voting question j is determined by these characteristics and a question-specific
unobserved shock term drawn from a standard logistic distribution. In Appendix
2.9.2 we elaborate on how this specification can accommodate correlation in the true
state for voting questions that are part of the same meeting.

To incorporate heterogeneity in herd behavior, caution and expertise we specify
λ, π and τ as a function of categorical voter characteristics including category of
committee member (Regular, Temporary, Consumer Representative or Patient Rep-
resentative), gender, whether or not the committee member has a PhD and whether
or not the member has a conflict of interest. Specifically,

λi = γreg. + γtemp. + γcons. + γpat. + γphd + γCOI + γmale (2.6)

πi = αreg. + αtemp. + αcons. + αpat. + αphd + αCOI + αmale (2.7)

τi = ηreg. + ηtemp. + ηcons. + ηpat. + ηphd + ηCOI + ηmale (2.8)

Note that this specification defines four different intercepts for regular members,
temporary members, patient and consumer representatives which can shift depend-
ing on gender, education and COI status. The parameters to be estimated are the
vectors β, γ, α and η. To recover the parameter estimates, we maximize the likeli-
hood function (3) directly using the full dataset of 10,466 individual votes. To find
the parameters that minimize the negative log-likelihood function, we used both the
quasi-Newton algorithm for unconstrained optimization and the Nelder-Mead sim-
plex direct search algorithm.37 Standard errors are calculated by taking the square
root of the diagonal elements of the inverse estimated Hessian of the likelihood
function at the solution.

Dupius (2014).
37Both methods converge to the same parameter estimates. We do not need to impose con-

straints on our parameters to obtain reasonable estimates. Results are robust to different starting
values. We conducted a Monte Carlo exercise using a simulated dataset and verified that our
procedure yields reasonably precise, unbiased estimates of the parameters of the model.
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Regarding the model’s identification, the degree of agreement in votes, the pro-
portion of yes votes, the exact order of votes under sequential voting, and differences
in how certain voters behave across questions are important. The prior, µ0, is iden-
tified by the proportion of yes votes at the vote question level. All experts tend to
receive higher private signals when the state is “yes” and thereby a high prior will
induce many yes votes. The level of cautiousness, π, is identified by variation in how
many “yes” vs. “no” votes are cast across questions with different priors. A voter’s
π follows them across questions with different priors. Intuitively, if a committee
member (or group of committee members) is particularly cautious there will be less
variation in their votes and they will vote “no” more often.

The identification of τ is characterized by the degree of agreement in votes. An
increase in τ is distinguishable from an increase in µ0, or a decrease in π, as the
increase in τ may cause a higher concentration of both yes and no votes across
multiple voting questions. At the individual level, a committee member with high
expertise will be more likely to receive a signal that squares with the true state.
Thus, members whose votes are typically in line with the majority, particularly under
simultaneous voting, will be estimated as having a high expertise. The probability
that a committee member is a herd type, λ, is identified by the sequence of votes and
differences in how voters with certain characteristics react to the history of votes
that they observe. Given µ0, π, and τ we can identify how likely it is that a voter
is a herd type based on how they vote in response to previous voters. Intuitively, if
we see a long sequence of yes votes, and thereafter a voter who votes no, this voter
is more likely to be an expressive type.

While in theory, all parameters can be identified on the basis of sequential data
alone, in practice, with a limited sample of voting questions under sequential vot-
ing and a limited number of committee members voting on each question, access
to simultaneous data is crucial. Intuitively, both an increase in the precision of
information and the share of herd types will create more agreement in votes, hence
without access to simultaneous data identification of λ hinges on the exact order of
votes under non-unanimous outcomes. Simultaneous data is used to get a grip on
τ (as well as µ0 and π) when there are no herd effects at play, which allows us to
better separate the effect of these parameters from λ.38 Effectively, the results are
similar to what would be obtained if we applied a two-step procedure whereby first
simultaneous data is used to estimate τ , π and the determinants of the common
prior, and then plugging these estimates into the model, sequential data is used to

38This is confirmed by simulations where, with a limited number of voting questions, the accu-
racy of all parameter estimates is improved by using both simulated sequential and simultaneous
data. Increasing committee size (the length of the sequence) also improves the estimates the
parameters.
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recover λ.

2.6 Estimation results

In this section, we present our results for the voting model introduced in Section
2.2. We first present the estimates of the model parameters and then discuss the
frequency of herd voting.

2.6.1 Estimates

Table 2.6 presents the estimates and the standard deviations for the parameters
of the model. In the baseline model we do not include voter characteristics. We
find that on average the probability that any given committee member is a herd
type is close to one half (48% for Bayesian version and 52% for naïve version). Put
differently, on average half of committee members take into consideration the vote
history when placing their vote under sequential voting. We should bear in mind
that this does not mean that half of the committee members actually herd, that is,
change their vote from what it would have been if ignoring the vote history. Herd
types will only change their vote if the information inferred from the previous votes
is sufficiently strong and opposite to their private information. It’s not hard to find
examples from the FDA transcripts where panelists are open about paying attention
to the previous votes, without necessarily being swayed by them.39 We discuss our
approach to quantifying herd votes in the following subsection.

We estimate the model allowing for heterogeneity across voters with different
characteristics. We present the estimates for both the model which assumes standard
Bayesian updating and the model which assumes naïve updating. The results are
qualitatively similar, and hence we will focus our discussion on the model which
assumes herd types are fully Bayesian.

The average proportion of herd types masks differences in λ across voters with
certain characteristics. The results indicate that temporary committee members are
the most susceptible to herd behavior. Regular committee members and patients
representatives are less likely to be herd types. Members with a conflict of interest
are more likely to be herd types. Finally, the results suggest that gender and whether
or not an expert has a PhD has little impact on λ.

The low proportion of herd types among regular members compared to tempo-
rary members could be due to the fact that these members regularly participate

39For example, voting after one “yes" and four “no" votes it’s Dr. Martino’s turn: “Having
struggled and heard all of you struggles, my answer is going to be no." From the meeting of the
Oncologic Drugs Advisory Committee in March 2006 on the drug Gemzar.
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in advisory meetings. This process would make their self-esteem and esteem as
expert panelists fairly settled and potentially turn some regular “herd” members
into expressive voters (see See Brennan and Pettit (2000) on the economics of es-
teem). Another explanation may be career concerns which are typically thought to
be higher for less experienced members (see Hansen, McMahon, and Prat, 2018).
Scharfstein and Stein (1990) show that agents with career concerns unsure of their
expertise tend to herd on the same action, thereby avoiding being the only one to
take an incorrect decision. Hong, Kubik, Solomon (2000) compare the behavior
of inexperienced and experienced equity analysts and find that inexperienced an-
alysts deviate less from consensus forecasts. They interpret this finding as being
consistent with career-concern-motivated herding theories. With respect to social
conformity,40 some experiments demonstrate that subjects are more likely to con-
form when grouped with strangers as opposed to friends (McKelvey and Kerr, 1988).
In Appendix 2.9.4 we expand on our finding in Section 2.4.2 that regular members
are less likely to vote with the present majority under sequential voting. We find
that members who are attending a meeting for the first time are significantly more
likely to vote with the majority under sequential voting. We are also able to rule
out that a committee member’s age is driving the result. This lends support to
the conjecture that more frequent attendance of meetings can reduce the extent to
which committee members are influenced by previous votes.

Our results indicate that gender does not impact the likelihood to be influenced
by previous votes in the context of FDA Advisory Committees. This result is in
contrast to previous findings from the social conformity literature. The results are
mixed, however, Eagly and Carli (1981) performed a meta-analysis of 148 studies
of influenceability and find that women are more persuadable and more conforming
than men in group pressure situations that involve surveillance.

On average, we find that committee members are cautious and would prefer to
incorrectly vote to reject a good drug than incorrectly vote to approve a bad drug.
On average, members vote yes if they believe that the probability that the true
state is “yes”, given all information, is at least 58%. We also find heterogeneity
in the cautiousness of members. Consumer representatives are the most cautious
as one might expect. On the other hand, patient representatives vote yes if the
probability that the state is 1 is greater than 49%. Unlike with the tendency to

40In a social conformity framework, individuals are influenced by observing others’ actions, not
because of information revealed about an underlying state, but due to social dynamics, see Asch
(1951). For discussions on the distinction between informational and social influence see Deutsch
and Gerard (1955), Shiller (1995), and Bernheim and Exley (2015). In a field experiment conducted
with a financial brokerage, Bursztyn et al. (2014) implement a novel design to separately identify
these two channels of influence.
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herd, the standard of proof required to vote in favor of a drug does not differ between
temporary and regular committee members.

On average the precision of information for the FDA advisory committees is quite
high (τ = 1.26). This implies that the probability that a member gets an incorrect
signal (i.e. a signal < 0.5 when the state is 1, or a signal > 0.5 when the state is 0) is
20%. Precision of information varies across committee members. Regular members
have the most accurate private information whereas the signals of consumer and
patient representatives are less likely to align with the true state.

We use information on the FDA reviewer score, whether the medication is a drug
or biological product and whether the drug is under priority review to characterize
the prior. The inclusion of these characteristics is motivated by which variables are
significant in the reduced-form analysis. We find that our estimates are robust to the
inclusion of more vote characteristics in the specification of the prior, e.g. inclusion
of voting question type. We select this specification as it is parsimonious, while at
same time providing a good sense of the range of µ0. In Appendix 2.9.3 results
are presented for a model where we estimate a common prior for each committee
meeting.

Estimates of the average common prior µ0 for categories of voting questions can
be computed using β. For example, the average prior for voting questions relating
to a drug under priority review with an FDA reviewer score of 1 can be computed
as exp(1.67)

1+exp(1.67) = 0.84. Estimated average priors range from 0.44 to 0.84.
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Table 2.6: Estimation results

Baseline Heterogeneity
Bayesian Naïve Bayesian Naïve

Parameter Estimate SE Estimate SE Parameter Estimate SE Estimate SE
λ 0.48 0.04 0.52 0.04 γreg. 0.38 0.06 0.46 0.06

γtemp. 0.55 0.07 0.67 0.07
γcons. 0.45 0.10 0.51 0.09
γpat. 0.32 0.15 0.35 0.14
γphd 0.06 0.06 -0.01 0.06
γCOI 0.16 0.06 0.11 0.06
γmale 0.00 0.06 -0.04 0.05

π 0.58 0.02 0.59 0.03 αreg. 0.58 0.03 0.58 0.03
αtemp. 0.56 0.03 0.57 0.03
αcons. 0.67 0.03 0.69 0.03
αpat. 0.49 0.03 0.50 0.03
αphd 0.04 0.01 0.03 0.01
αCOI -0.01 0.02 -0.01 0.02
αmale 0.00 0.01 -0.01 0.01

τ 1.26 0.03 1.28 0.03 ηreg. 1.38 0.07 1.36 0.07
ηtemp. 1.24 0.07 1.24 0.07
ηcons. 1.09 0.10 1.14 0.11
ηpat. 1.12 0.10 1.12 0.10
ηphd -0.09 0.06 -0.08 0.06
ηCOI -0.10 0.11 -0.06 0.10
ηmale 0.03 0.06 0.06 0.06

βscore=1,priority,drug 1.64 0.17 1.61 0.17 βscore=1,priority,drug 1.67 0.17 1.58 0.17
βscore=0,priority,drug 0.75 0.11 0.65 0.13 βscore=0,priority,drug 0.73 0.11 0.63 0.12
βscore=−1,priority,drug -0.26 0.22 -0.24 0.22 βscore=−1,priority,drug -0.25 0.22 -0.24 0.23
βscore=1,drug 1.09 0.12 1.12 0.12 βscore=1,drug 1.10 0.12 1.13 0.12
βscore=0,drug 0.42 0.09 0.48 0.09 βscore=0,drug 0.43 0.09 0.48 0.09
βscore=−1,drug 0.00 0.15 0.05 0.15 βscore=−1,drug 0.06 0.15 0.11 0.15
βscore=1,biologic 0.22 0.17 0.24 0.17 βscore=1,biologic 0.24 0.17 0.26 0.17
βscore=0,biologic 0.46 0.11 0.51 0.11 βscore=0,biologic 0.47 0.11 0.52 0.11
βscore=−1,biologic 0.33 0.25 0.35 0.25 βscore=−1,biologic 0.34 0.25 0.35 0.25

2.6.2 Herd votes

We now investigate the frequency of actual herd votes. Using our structural model
and the estimated parameters we are able to construct a simulated dataset of votes
under sequential and simultaneous voting. By comparing an individual’s simulated
vote under sequential and simultaneous voting we can directly observe which votes
are herd votes.

We simulate a dataset of 1,000 vote questions which are voted on by a committee of
13 members (the average committee size) under both a sequential and simultaneous
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procedure. We use parameter values in line with our baseline estimates and repeat
the procedure for three different values of the common prior; 0.5, 0.65 and 0.8.41

Specifically, the procedure is as follows:

1. For each voting question draw an error term εj from the standard logistic
distribution

2. Assign each voting question a state as follows: θj = 1 if y∗j > 0 and 0 otherwise,
where y∗j = β + εj

3. Given θj and τ , draw private signals for each voter, for each voting question
4. With probability λ assign each voter to be a herd type
5. Given the assigned signals, µ0, τ and π simulate voting under the simultaneous

voting rule
6. Given the assigned signals, µ0, τ , π, types and λ simulate voting under the

sequential voting rule

Thus, we have the same voters voting on the same voting question, once under
simultaneous rule, and once under the sequential rule. If an individual votes differ-
ently under sequential voting, this is counted as a herd vote. We also compare the
proportion of unanimous outcomes and the average size of the majority across the
simulated datasets.

Table 2.7 presents key statistics calculated using the simulated data based on the
Bayesian model. For a balanced prior, we find that 18.4% of herd types actually
herd and thus 8.9% of all sequential votes are “herd votes”. Across all three common
priors, the proportion of herd votes is fairly stable at around 8.5%. In each case
the proportion of unanimous vote outcomes increases under sequential voting. The
number of unanimous outcomes also increases as the common prior moves away
from 0.5 and there is less uncertainty. With a prior of 0.8, we find that 42.6% of
vote outcome are unanimous under sequential voting, in comparison to 28.5% under
simultaneous voting. Thus, voting data simulated according to our model is able to
re-produce patterns similar to those appearing in the real data.42

Table 2.8 presents the same statistics for the case of naïve updating. Here, we find
that roughly 9% of all sequential votes are herd votes and that unanimous outcomes
occur more frequently. This is in part driven by a higher estimate of τ in the naïve
model, which explains why the share of unanimous outcomes is also higher under
simultaneous voting. In general, the patterns are similar to those observed under
the assumption of Bayesian updating.

41The corresponding β’s are 0, 0.62 and 1.39.
42Although not directly comparable to the simulated dataset, recall that in the actual data,

47.7% of vote outcomes under sequential voting are unanimous and 28.8% under simultaneous
voting.
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Table 2.7: Simulated outcomes with Bayesian updating

µ0=0.5 µ0=0.65 µ0=0.8
Seq. Sim. Seq. Sim. Seq. Sim

Proportion of herd votes 8.9% NA 8.2% NA 8.4% NA
Proportion of unanimous outcomes 25% 9% 28.7% 10.1% 42.6% 28.5%
Average size of the majority 0.88 0.8 0.89 0.82 0.88 0.82
Notes: τ = 1.26, π = 0.58, λ = 0.48, N=13

Table 2.8: Simulated outcomes with naïve updating

µ0=0.5 µ0=0.65 µ0=0.8
Seq. Sim. Seq. Sim. Seq. Sim

Proportion of herd votes 9.8% NA 9.4% NA 6.7% NA
Proportion of unanimous outcomes 27.5% 10.6% 31.3% 10.1% 54.6% 37.4%
Average size of the majority 0.88 0.8 0.89 0.82 0.91 0.87
Notes: τ = 1.28, π = 0.59, λ = 0.52, N=13

2.7 Information aggregation

In this section, we consider information aggregation through voting and how a switch
to simultaneous voting affects the quality of the committee’s overall assessment. We
first do this by calculating the probability that the committee makes the correct
assessment about a medication under each voting procedure. Thereafter, we match
our sample of voting questions with final FDA approval decisions. On the basis
of our model and estimates we find that the committee is more likely to make the
correct assessment under simultaneous voting. Furthermore, we find that the FDA’s
final approval decisions are more likely to be in alignment with the committee’s
assessment under simultaneous voting.

2.7.1 Probability of a correct assessment

In this subsection, we calculate the probability that a committee of a given size
makes the correct assessment about a medication under each voting procedure. We
define the committee’s overall assessment as being favorable when the updated be-
liefs about the state being “yes” after everyone has voted is greater than one half.
Beliefs about the state being “yes” after everyone has voted are computed in the
same way that committee members update beliefs about the state (taking all the
parameter values of the model into consideration). We consider both Bayesian and
naïve updating.
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Let Aj ∈ {0, 1} represent the committee’s overall assessment for voting question j
where Aj = 1 represents a favorable assessment of the drug. For each committee size
N we can calculate the probability that the assessment is correct (i.e. a favorable
assessment of a good drug or a negative assessment of a bad drug) by calculating the
number of instances where Aj = θj across all possible voting profiles and weighting
appropriately by the probability of the state and the voting profile conditional on
the state.

Let vjN be a specific sequence of votes with N voters. The set V j comprises of
all possible voting sequences with N voters. We denote the updated beliefs about
the state after N experts have voted by µjN+1(vjN) ≡ P (θj = 1|vjN). We assume
Aj(vjN) = 1 ⇐⇒ µjN+1(vjN) > 0.5. Let I(µjN+1(vjN) > 0.5) be an indicator variable
that takes on the value one if µjN+1(vjN) > 0.5. The probability that the committee’s
overall assessment is correct can be computed as follows:

Pr(Aj(vjN) = θj) = µj0
∑
vj∈V j

Pr(vjN |Φ, θ = 1)× I(µjN+1(vjN) > 0.5)

+ (1− µj0)
∑
vj∈V j

Pr(vjN |Φ, θ = 0)× (1− I(µjN+1(vjN) > 0.5))

Figure 2.4 illustrates how the total probability of making the correct assessment
changes with committee size.43 For both sequential and simultaneous voting, the
committee is more likely to make the correct assessment as more members are added.
The informational gain of adding more committee members displays diminishing
returns. After around 12 committee members, there are only small gains from ex-
panding committee size.

Figure 2.4: Information aggregation
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(b) Naïve updating

43As in the previous section, we set the parameters to their average values and use a common
prior of 0.5.
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In all but one case (where N=5 and updating is Bayesian), simultaneous voting
outperforms sequential. Committee members can herd in both the correct and in-
correct direction. Occasional incorrect local herds under sequential voting drive our
result that simultaneous voting outperforms sequential voting on average. Incorrect
local herds tend to occur in the event that voters with incorrect signals vote early
on, causing subsequent herd types to get the wrong idea about the state. This can
take the updated beliefs about the state being “yes” above (below) 0.5 when the
true state is actually “no” (“yes”). Clearly, local herds also form in the correct
direction. In such cases updated beliefs can exceed (fall below) 0.5 faster under
sequential voting when the true state is “yes” (“no”). When a local herd forms
in the correct direction, as committee size increases, updated beliefs after everyone
has voted under simultaneous voting “catch up” with those under sequential voting.
However, updated beliefs formed by incorrect local herds, tend to remain divergent
from beliefs under simultaneous voting for a wider range of committee sizes and may
not be overturned even for very large committees, leading to incorrect assessments.

The deleterious informational consequences of herding are more prominent if belief
updating is naïve. In the naïve version, herd types take the preceding votes at face
value, thus belief updating may accelerate faster and it is also harder to overturn
beliefs that get off on the wrong foot. In the Bayesian version herd types take into
account that a preceding vote which breaks a trend (e.g. a no vote after four yes
votes) may come from another herd type, which signals that this voter had a very
strong signal against the trend. This positive effect is absent in the naïve version
where the herd type believes that the “breaking” vote comes from an expressive
type with an “average” signal against the trend. In Appendix 2.9.5 we present the
results of a counterfactual scenario in which we assume that all members are herd
types.

To assess the effect of a counterfactual decrease in information precision we set τ
equal to 1 and hold all other parameters constant. This corresponds to a situation
in which experts receive incorrect signals 25% of the time. As illustrated in Figure
2.5, the effect of a decrease in information precision is to exacerbate the negative
consequences of herd behavior regardless of which type of updating is applied. Fi-
nally, we should mention that there are possible parameter values of our model for
which sequential voting outperforms simultaneous voting. This stands in contrast
to most of the herding literature building on a binary signal structure.44

44An exception is Wiedman (2014) who shows that sequential voting may increase information
transmission compared to simultaneous voting in a model with binary signals and competent versus
incompetent experts.

42



2.7. INFORMATION AGGREGATION

Figure 2.5: Information aggregation with a lower precision of information
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(b) Naïve updating

2.7.2 Votes and FDA approvals

In this subsection we match our sample of voting questions with FDA approval
decisions. The observations are matched on the basis of application number. The
sample is restricted to risk vs. benefit questions relating to non-supplementary
applications as this is most reflective of the committee’s opinion on whether or not
a new medication should be approved. Information on drug approvals is taken from
the FDA Orange Book and information on biological product approvals comes from
the FDA CDER List of Licensed Biological Products, both of which are publicly
available online. In total our sample comprises of 241 voting questions. As previously
mentioned, the FDA committees do not operate under a majority rule and one
should bear in mind that the agency often conducts additional investigations after
the committee meetings have taken place and before a final decision is made.

We show simple but powerful descriptive statistics on the link between the com-
mittee vote and final approval decisions under the different voting regimes. Table
2.9 illustrates how often FDA approval decisions are in line with the committee’s
recommendation when the committee’s vote is unanimous. We find that the FDA is
more likely to go against the committee’s unanimous recommendation when voting
is sequential. In 71% of cases where the committee unanimously votes yes, the FDA
approves the medication under sequential voting. This is in comparison to 94% of
cases where the committee unanimously votes yes under simultaneous voting. The
difference is significant. There is also suggestive evidence that the FDA is more
likely to a reject a drug conditional on a unanimous no under simultaneous voting.
However owing to the small number of observations, this difference is not significant.

The pattern we observe could be driven by the FDA placing more weight on
committee votes under simultaneous voting, or individual votes being more aligned
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with the true state, which the FDA is more accurately able to assess at the point
in time when the final decision is made, or a combination. Both mechanisms are in
line with the our main finding that the assessment of the committee is more likely
to match the true state under simultaneous voting.

Table 2.9: Alignment of FDA decisions and unanimous voting outcomes

Mean by Voting Rule
Variable Obs. Mean Std. Dev Sequential Simultaneous Difference
Pr(Approval | Unaminous yes) 69 0.83 0.05 0.71 0.94 -0.23***
Pr(Rejection | Unaminous no) 24 0.79 0.08 0.77 0.82 -0.05
Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

2.8 Conclusion

In this paper, we use data from FDA committees to estimate the extent and im-
portance of herd behavior under sequential polling of expert recommendations. We
find that around half of the committee members are susceptible to herd behavior
and might go against their private assessment if the votes from previous experts
indicate otherwise. On average, around 9 percent of the sequential votes are actual
herd-votes. Temporary committee members invited on an ad hoc basis are more apt
towards herding than regular (standing) members.

Considering the consequences of herding on information aggregation we find that
simultaneous voting lowers the probability that the committee’s overall assessment
is misaligned with the state. Further, we find that simultaneous voting performs
substantially better than sequential voting if information is imprecise and/or when
members do not take into consideration that preceding members may have herded
(i.e. members are “naïve”). We bolster these findings with descriptive evidence
that indicates that committee votes are more aligned with the FDA’s final approval
decisions under simultaneous voting.

We believe that our analysis and results are relevant beyond scientific advisory
committees: In situations where people are assembled to give their advice or vote on
certain questions; from corporate advisory boards and hiring committees to roll call
voting by elected representatives in community councils and commissions. The main
policy implication of this study is to follow the example of the FDA and substitute
sequential voting with simultaneous (electronic) voting.

In future work we intend to explore the mechanisms behind our main findings in
more depth. In this regard, diving into the comments and pre-vote discussions from
the FDA meeting transcripts using sentiment analysis and text mining could be
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fruitful (see e.g. the method and techniques applied in Hansen, McMahon, and Prat
(2018) concerning policy makers’ deliberations in the FOMC). Directly incorporating
and testing for reputational or career concerns would be another way in which to
extend the present research.

Another array of future research that we plan to undertake is to study the FDA’s
decision making process, taking into account both the advisory committees and the
clinical study by the sponsor company, and the quality of drug approval decisions.
To this end, Li and Agha (2015) study the success of peer-review NIH panels and
are able to track the merits of NIH funded research (likewise for unfunded NIH
applications in Li (2017)). The quality of FDA decisions may be gauged by e.g.
considering drug withdrawals, market reactions, or decisions made by other agencies
like the European Medicines Agency.
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2.9 Appendix

2.9.1 Seating order
In this appendix we present descriptive statistics concerning the order in which votes are announced
(“seating order”) under sequential voting. In Table 2.10 we split the sample of votes by voter char-
acteristics and calculate summary statistics on seat number for each category. It is evident that
different types of committee members, e.g. those with a PhD or male members, are very spread
out in terms of where they sit in the sequence. The average seat position for all groups is between
6 and 7 with a standard deviation of around 4.5. There are no clear clusters of certain types of
committee members at start or end of the voting sequence. In Table 2.11, we focus on the ten most
frequent voters. It is evident that even individual committee members are spread out in terms of
where they sit and do not always get placed in the same position.

Table 2.10: Summary statistics for seat no. by voter characteristics

Voter Characteristic Frequency Mean Seat Std. dev. Min Max
Regular 2839 6.78 4.38 1 28
Temporary 1080 6.91 4.80 1 21
Consumer rep. 251 7.11 4.25 1 22
Patient rep. 128 7.40 4.73 1 21
PhD 1352 6.37 4.10 1 25
Male 2782 6.63 4.47 1 28
COI waiver 1011 6.48 3.69 1 24
All Sequential Votes 4298 6.85 4.50 1 28

Table 2.11: Summary statistics for seat no. for 10 most frequent voters

Voter ID Frequency Mean Seat Std. dev. Min Max
570 62 5.10 2.29 1 11
985 46 8.91 3.44 2 15
1284 46 5.67 3.10 1 11
539 44 5.93 3.01 1 11
1141 43 7.28 5.01 1 18
1051 42 5.79 3.90 1 14
791 40 6.00 3.75 2 15
813 40 7.30 2.74 3 13
981 40 6.95 4.01 2 17
848 38 4.87 3.08 1 11
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2.9.2 Correlation in vote questions part of the same meeting

In our empirical implementation, we assume that there is an underlying (latent) variable y∗j that
determines the true state for a voting question j. We specify y∗j = X ′jβ + εj such that:

θj =

1 for y∗j > 0

0 for y∗j ≤ 0

We further assume εj has a standard logistic distribution which implies Pr(θj = 1|X) =
exp(Xj ′β)

1+exp(Xj ′β) .

Given that we can have multiple voting questions taking place on the same day and relating
to the same drug (on average 2-3 voting questions per meeting), we may expect correlation in the
true state across voting questions that are part of the same meeting.

We can allow for such correlation by introducing an error term at the meeting level εm. We now
specify the underlying (latent) variable as y∗j = X ′jβ+((1−σ)εj+σεm). If σ is 0 this collapses to the
previous specification, as σ increases there is more correlation in the true state for voting questions
that are part of the same meeting. Given that private signals are state dependent, there will also
be more correlation in private signals within a meeting. Assuming εm follows the standard logistic
distribution, the new error term ((1 − σ)εj + σεm) also follows the standard logistic distribution.
Hence we still have Pr(θj = 1|X) = exp(Xj ′β)

1+exp(Xj ′β) .
In our simulations we implement such an error structure by grouping questions into sets of four

and drawing the same εm for the set. We use a σ of 0.7. We find that our estimates of β, λ, and τ
are unbiased and very similar to what they were before introducing the correlation.
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2.9.3 Alternative specification of the prior
In order to illustrate the robustness of our results to different specifications of the prior, we imple-
ment a model where we estimate a prior for each committee meeting i.e. we estimate 327 priors
corresponding to the 327 committee meetings in our dataset. In order to ease estimation of a model
with so many parameters, we use constrained minimization. We constrain λ, π and all elements in
the vector of common priors µ0 to be between 0 and 1. We constrain τ to be between 0 and 5.

Table 2.12 provides the main parameter estimates of this model for both the Bayesian and naïve
version. As one might expect, estimating a prior for each meetings allows the prior to vary much
more across voting questions and so reduces our estimates of τ and λ, but not by too much. We
now find that 32-39% of members are herd types.

Table 2.12: Estimation results

Baseline
Bayesian Naïve

Parameter Estimate SE Estimate SE
λ 0.32 0.04 0.39 0.05
π 0.6 0.02 0.6 0.02
τ 1.17 0.04 1.15 0.04
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2.9.4 Additional regressions
In this appendix we perform additional regressions to shed light on the finding that regular com-
mittee members are less likely to vote with present majority under sequential voting. In column 1
we include an indicator variable that takes the value 1 when a committee member is attending a
meeting for the first time. We find that first timers are 3 percentage points more likely to vote with
the present majority under sequential voting. In column 2 we include the count of meetings that
a member has attended and its interaction with Sequential, the effect has the expected sign, the
more meetings a member attends the less likely he/she is to vote with majority under sequential
voting, however the coefficient is not significant. We collect information on the age of members
from Healthgrades.com. We are not able to find the age for all committee members in our sample.
In column 3, we re-run the regression in Table 2.13 column 3 controlling for age where possible.
Our result that regular members are less likely to vote with present majority persists when we
control for age.

Table 2.13: Additional reduced-form results

I(WithMajority) I(WithMajority) I(WithMajority)

Sequential 0.0312** 0.0559*** 0.0690***
(0.0130) (0.0138) (0.0193)

First Meeting -0.0116
(0.0122)

First Meeting X Seq. 0.0328**
(0.0162)

No. of Meetings 0.00111
(0.00144)

No. of Meetings X Seq. -0.00391
(0.00270)

Regular 0.00662 0.00670 0.0149
(0.00955) (0.00906) (0.0139)

Regular X Seq. -0.0446**
(0.0203)

Age 0.00003
(0.000572)

Consumer Rep. -0.0495*** -0.0491*** -0.144***
(0.0188) (0.0186) (0.0434)

Patient Rep. -0.0319 -0.0313 -0.319***
(0.0204) (0.0204) (0.106)

Seat 0.000738 0.000750 0.00135
(0.000991) (0.000991) (0.00121)

PhD -0.0128 -0.0129 -0.00368
(0.00879) (0.00888) (0.0120)

Male -0.0112 -0.0117 -0.00250
(0.00851) (0.00856) (0.0105)

COI Waiver 0.0135 0.0143 0.0228
(0.0144) (0.0144) (0.0170)

All question-level controls yes yes yes
Constant 0.719*** 0.711*** 0.751***

(0.0399) (0.0395) (0.0600)

Observations 9,231 9,231 6,046
R-squared 0.027 0.027 0.030
Notes: OLS regression. Standard errors in parentheses are robust. ∗ ∗ ∗p <

0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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2.9.5 Counterfactual with 100% herd types
In this appendix we present the results of a counterfactual scenario in which we assume that
all committee members are herd types. Interestingly when all members are Bayesian updaters
and information precision is high, see Figure 2.6 (a), sequential voting marginally outperforms
simultaneous voting for committees that are smaller than 12. On the other hand, if all members
are naïve updaters, sequential voting performs very poorly in comparison to simultaneous voting
(Figure 2.6 (b)). If information is less precise, a higher proportion of herd types is detrimental for
information aggregation as shown by Figure 2.7.

0 5 10 15 20

Committee size

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

m
m

it
te

e
 p

ro
b

a
b

ili
ty

o
f 

m
a

k
in

g
 t

h
e

 c
o

rr
e

c
t 

a
s
s
e

s
s
m

e
n

t

Simultaneous

Sequential

(a) Bayesian updating

0 5 10 15 20

Committee size

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

m
m

it
te

e
 p

ro
b

a
b

ili
ty

o
f 

m
a

k
in

g
 t

h
e

 c
o

rr
e

c
t 

a
s
s
e

s
s
m

e
n

t

Simultaneous

Sequential

(b) Naïve updating
Figure 2.6: Information aggregation with τ = 1.26 and λ=1
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Figure 2.7: Information aggregation with τ = 1 and λ=1
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Chapter 3

Common Ownership and Market
Entry: Evidence from the
Pharmaceutical Industry1

Chapter Abstract

Common ownership - where two firms are partially owned by the same investor - and
its impact on product markets has recently drawn attention. This chapter focuses on
implications for entry. We consider the entry decisions of generic pharmaceutical
firms into drug markets opened up by the end of regulatory protection in the US. We
find robust evidence that common ownership affects entry: a one-standard-deviation
increase in common ownership decreases the probability of individual entry by 15-
18%, whereas a one-standard-deviation increase in market-level common ownership
decreases the total number of entrants by as much as 15% in that market.

3.1 Introduction

Johnson & Johnson, Pfizer, Abbott Laboratories, Perrigo and Allergan, some of
the largest brand and generic companies in US pharmaceutical markets, had the
same top two shareholders in 2005: BlackRock and Vanguard (Thomson Reuters
Global Ownership Database, 2015). BlackRock and Vanguard are amongst the
world’s largest institutional investors.2 Investors’ holdings in multiple firms give

1An earlier version of this chapter is published in the DIW Discussion Paper Series as: Newham,
M., Seldeslachts, J. and Banal-Estañol, A. Common Ownership and Market Entry: Evidence from
the Pharmaceutical Industry. DIW Berlin Discussion Paper No. 1738. We thank Hendrik Meder
and Manuel Gigena for sharing data with us; and Anna Sama and especially Julian Hidalgo for
their excellent research assistance.

2Institutional investors such as Blackrock and Vanguard manage other people’s money by
buying and controlling equity in companies.
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3.1. INTRODUCTION

rise to what is known as “common ownership.” A controversial question is if, and
if so in which way, firms’ strategic decisions are altered by the presence of common
ownership.3

This article investigates the effect of common ownership on one of the most impor-
tant strategic decisions firms make: market entry. Specifically, we analyze generic
firms’ entry decisions into pharmaceutical markets opened up by the end of regula-
tory protection. Monopolized markets are a vital source of revenue for brand firms.
Brand revenues can decline by as much as 90% following generic entry (Branstetter
et al., 2016). Moreover, losses to the brand and gains to the generics are highly
asymmetric. According to one estimate, brand firms value deterring entry at about
$4.3 billion on average (Jacobo-Rubio et al., 2020). In contrast, generic firms value
the right to enter at about $204.3 million. This asymmetry in brand losses and
generic gains is confirmed in our sample too, as we will later show: with the event
of generic entry, not only brand revenues but also total market revenues decrease
as compared to the case of no generic entry. Thus, generic entry decisions may
crucially depend on whether the owners of generic firms also have an interest in the
brand firms.

We investigate whether a higher level of common ownership between potential
generic entrants and the market’s incumbent brand reduces the likelihood of entry,
both at the level of an individual potential entrant and at the market level for all
potential entrants. To do so we combine patent and drug approval data from the US
Food and Drug Administration’s (FDA) Orange Book with ownership data of pub-
licly listed pharmaceutical companies from the Thomson Reuters Global Ownership
Database. The US pharmaceutical industry is an attractive industry for studying
entry because; (i) pharmaceutical markets are well defined, (ii) one can identify
clear entry windows and (iii) US health care expenditure as a percentage of GDP is
among the highest in the world and generic medicines are crucial to keeping down
healthcare costs. Indeed, promoting generic entry has become an important goal
for the FDA in recent years, and there are still several hundred off-patent branded
drugs which do not face any generic competition (FDA, 2019).

We first present a theoretical framework to understand the effects of common
ownership between an incumbent and the potential entrants. We model, in par-
ticular, the simultaneous entry decisions of a set of generic firms, where we take
into consideration both individual profits and levels of common ownership with the
incumbent brand firm. We find that, in response to a higher level of common own-

3Rather than maximizing their own value, commonly-owned firms may maximize shareholders’
portfolio values. See Backus et al. (2019) and Schmalz (2018) for reviews of the available academic
evidence.
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ership with the brand, an individual generic should find entry less profitable, for
any belief concerning the entry decisions of the other generics. We then solve for
equilibrium and show that there will be fewer entrants in markets characterized by
higher levels of common ownership with the brand.

Thereafter we empirically test and corroborate the proposition that higher com-
mon ownership reduces individual generic entry. This result is robust to several
measures of common ownership, different econometric methods, different definitions
of the set of potential entrants, different time-horizons for the decision-making pro-
cess and different fixed effects. Our regressions include the controls used in previous
literature including pre-entry market size, molecular substitutes, entrant experience
and the presence of an authorized generic. The average effect is large: a one-
standard-deviation increase in common ownership decreases the probability of entry
by that generic firm by 15-18%. Furthermore, our results indicate a non-linear im-
pact of common ownership on entry, where high levels have a much stronger impact
than low levels. Our results hold if we instrument common ownership with stock
market index membership.

Going to the market level, we find that a one-standard-deviation increase in overall
common ownership between the brand and all potential entrants decreases the total
number of generics in that market by 13-15%. We find that common ownership
also delays generic entry and increases the probability that the brand will face zero
competition from generic entrants.

Common ownership is a pervasive feature not only of pharmaceutical compa-
nies, but of many industries in the US as well as in Europe (Fichtner et al., 2017;
Seldeslachts et al., 2017). Although large institutional investors may own 5-8% of a
single company, this is often enough to position them as a top investor with privi-
leged access to the firms’ management (Malenko and Shen, 2016). There is growing
evidence that institutional investors engage in active discussions with companies’
board and management with a view to influence the companies’ strategies (e.g.,
McCahery, 2016; Fichtner and Garcia-Bernardo, 2017).4 However, institutional in-
vestors need not actively influence companies to have an impact on firm strategies.
They may employ “selective omission”; encouraging actions that increase both firm
value and portfolio profits and remaining silent when this is not the case (Hemphill
and Kahan, 2019). They may have an effect by crowding out and occasionally voting
against other investors (Antón et al., 2020). Moreover, firms that are largely owned
by shareholders who also have sizeable stakes in competitors might just simply act
in these shareholders’ interest, which leads them –rather than maximizing their own

4We present some anecdotal evidence in Appendix 3.8.1 that investors confirm this view, both
in general and for pharmaceutical markets.
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profits– to maximize the return of their shareholders’ portfolios (Azar, 2017). In
our theoretical framework, we present different measures of common ownership that
reflect these different channels on how common ownership might influence firms’
behavior.

The ongoing concentration of ownership in the hands of a few large investors and
the corresponding escalation in common ownership is unprecedented. Dubbed “an
economic blockbuster” and “the major new antitrust challenge of our time,” com-
mon ownership is undoubtedly an important, new topic in competition economics
(Elhauge, 2016; Posner et al., 2017).5 But empirical research on the topic is still in
its infancy. For a large sample of US public firms, He and Huang (2017) find that
common ownership by institutional investors facilitates explicit forms of product
market coordination which in turn improves innovation productivity and operating
profitability. Azar et al. (2018) provide empirical evidence that common ownership
in the airline industry is linked to higher prices. The results of these studies have
been subject to ongoing debate (see e.g., O’Brien and Waehrer, 2017). There is,
however, a resounding agreement that more research is required to understand the
implications of common ownership (Patel, 2017; OECD, 2017).

This article is the first to directly consider the influence of common ownership
on market entry. Whereas pricing decisions are typically made on a regular ba-
sis by specialized pricing teams, market entry is a one-off decision with substantial
consequences for the firm. Another advantage of the current article over previous
empirical studies is the fact that we do not only look at market-level common own-
ership, but also at ownership links at the pair level; between individual generics and
the incumbent brand.

The rest of the article is organized as follows. Section 3.2 provides a literature
overview of entry in pharmaceutical markets and common ownership. Section 3.3
introduces the theoretical framework. Section 3.4 presents the data. Section 3.5
shows the empirical analysis and results of the effect of common ownership on in-
dividual entry. Section 3.6 deals with the effect of common ownership on market
outcomes. Section 3.7 concludes. We include appendices on (i) anecdotal evidence
on how institutional investors influence firms’ decisions, (ii) data construction, (iii)
empirical robustness checks and (iv) mathematical proofs.

5The issue has also received significant media attention and instigated public debate; see e.g.
The Economist (2015), The New York Times (2016), Handelsblatt Global (2016) and OECD (2017).

54



3.2. LITERATURE

3.2 Literature

We separately discuss the most relevant articles on the entry decisions of generic
firms in pharmaceutical markets and common ownership.

Generic entry. Several articles have considered the determinants of generic entry
decisions in off-patent drug markets, i.e., markets where the patent of the brand
company has expired. A common finding from this literature is that generic entry
increases with the size of the branded drug’s market prior to the loss of patent
protection, where market size is commonly measured as brand-generated revenues
(Scott Morton, 1999, 2000; Hudson, 2000; Saha et al., 2006; Moreno-Torres et al.,
2008; Appelt, 2015).

Scott Morton (1999) considers other aspects of generic entry decisions in US phar-
maceutical markets. She finds that generic firms are more likely to enter markets in
which they have previous experience in drug form, therapy class or ingredient. Kyle
(2006) and Appelt (2015) similarly confirm the importance of generic firm charac-
teristics. Scott Morton (1999, 2000) also highlights the role of the characteristics
of the drugs. Appelt (2015) examines the impact of authorized generics, i.e., the
distribution and marketing of the brand product under a generic label through an
authorized generic distributor (typically just before the loss of the patent). She
finds that authorized generic entry has no significant effect on the likelihood of
‘independent’ generic entry.

Scott Morton (2002) reviews how direct ownership links between the brand firm
and a generic firm influences the likelihood of generic entry. She finds that generics
owned by the original innovator (i.e., the brand company) are less likely to enter
the market. Helland and Seabury (2016) investigate the link between Paragraph IV
challenges, settlements and entry. They find that a Paragraph IV challenge increases
generic entry, although a settlement effectively reverses the effect. Hovenkamp and
Lemus, finally, (2017) confirm that settlements after Paragraph IV challenges cause
generics to stay out of the market.

Common ownership. In terms of theoretical work, beginning with Rubinstein
and Yaari (1983) and Rotemberg (1984), a number of authors have remarked that
shareholder diversification can lead firms to internalize the externalities they impose
on rivals; see Schmalz (2018) for a full overview. These models show that common
ownership of competitors reduces incentives to compete as the gains of aggressive
competition to one firm come at the expense of other firms in the investors’ portfolio.
Consequently, common ownership is predicted to lead to higher prices and boost
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industry profits. On the other hand, Lopez and Vives (2019) find that cost-reducing
R&D investment with spillovers in a Cournot oligopoly may lead to higher welfare
when there is higher common ownership.

Previous empirical studies on common ownership have mainly focused on price
effects. In an empirical study focusing on the US airline industry, Azar et al. (2018)
use the modified Herfindahl-Hirschman index (MHHI), developed by O’Brien and
Salop (2000), which provides a measure of the extent of common ownership at the
market level. They find that ticket prices are about 3-12% higher than would be
the case under separate ownership. Azar et al. (2016) focus on the US banking
industry, extending the MHHI to take into account cross-ownership –the degree of
which banks own shares in each other– and find that common and cross-ownership
are positively correlated with banking fees. Further studies that look at the effect of
common ownership on prices in airlines (Kennedy et al, 2017) and banking (Gramlich
and Grundl, 2017), using different methodologies, measures and samples, find mixed
effects. Scott Morton and Boller (2020) study the effect of common ownership on
future expected profits as captured by stock prices. They find that increases in
common ownership cause increases in stock returns, consistent with a hypothesis
that common ownership raises profit.

Xie and Genakos (2019) find that institutional investors’ common holdings be-
tween US generic and brand companies increase the likelihood of settlement agree-
ments after generic companies have disputed the brand’s patent validity through a
Paragraph IV challenge, which is the section of the Hatch-Waxman act under which
generic entrants dispute pharmaceutical patents. Additionally, through positive
brands’ abnormal stock market returns around the settlement date, they conclude
that these settlements have facilitated collusion between brand and generics. Their
study, thus, is complementary to this article as it showcases a plausible channel of
how entry can be deterred.

Some recent empirical studies highlight the positive effects that common owner-
ship can have on innovation and vertical relations. Antón et al. (2017) examine
how common ownership affects R&D investments and innovation output. Geng et
al. (2017) find that vertical common-ownership links can mitigate hold-up problems
arising from patent complementarities, which in turn is correlated with more inno-
vation. Cici et al. (2015) and Freeman (2019) find that common ownership between
vertically connected firms can help strengthen business relationships.

Finally, there is a small but growing body of literature in corporate finance that
investigates channels through which institutional investors might have an impact on
governance, policies and strategic decisions of firms (e.g., Aghion et al., 2013; Brav
et al., 2018). Appel et al. (2016) find that passive mutual funds have a significant
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and positive impact on several aspects of corporate governance (board composition,
anti-takover provisions and unequal voting rights). Their evidence suggests that a
key mechanism by which theseF investors exert their influence is through their large
voting blocks.

Furthermore, institutional investors state that they have a fiduciary duty to weigh
on firms’ decisions and do so through informal meetings with management and
through voting at annual general meetings by the employment, for example, of
proxy voters such as Institutional Shareholder Services (ISS) (Malenko and Shen,
2016). Boone and White (2015) examine the effects of institutional ownership on
firm transparency and information production. They find that higher institutional
ownership is associated with greater management disclosure; resulting in lower infor-
mational asymmetries. In line with the findings of Appel et al. (2016), they discover
that indexing investors have the highest influence on information production.

3.3 Theoretical framework

We now present a simple framework to understand the effects of common ownership
on market entry. We model, in particular, the decisions of a set of symmetric generic
firms that have the possibility to produce a drug and simultaneously enter a market
currently dominated by the product of a brand firm. We first analyse how an in-
crease in the levels of common ownership between a brand and a focal generic affects
this individual generic’s entry decision, taking as given the decisions of other gener-
ics. We also determine the overall number of market entrants in equilibrium, as a
function of the level of common ownership of all the generics with the brand. Finally,
we propose several measures of common ownership between brand and generic firms.

Common ownership and market entry. Consider N (≥ 1) symmetric generic
firms that can simultaneously enter the market of a brand firm b.6 We focus first on
the decision of a focal generic g as a function of its beliefs about the entry decisions
of the other generics (i.e. the best-reply function).

Denote by pk the probability, assigned by this (risk-neutral) focal generic, to the
event that a number k of the other generic firms enter the market, where k =
0, ..., N − 1 and ∑N−1

k=0 pk = 1. Denote by πkg (> 0) the focal generic’s profits in a
market that also includes k other generic firms (and thus the market contains in

6Our main empirical specification specifies an entry window of 6 quarters, where entry decisions
should be considered as simultaneous. This is because the entire application process for generic
drugs takes about 6 quarters on average, during which period information on ANDA’s received by
the FDA is kept secret until approval.
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total k + 2 firms, when also counting the brand firm). Profits πkg may include fixed
costs of entry, and are thus net of these entry costs. Denote by ∆πkb (< 0) the loss
in profits of the brand firm b due to an increase from k to k+ 1 in the total number
of generic entrants in the market.

Let us make the following assumptions. Naturally, we assume that generic com-
petition reduces individual generic profits, i.e. πkg is decreasing in k, and that the
change in the brand firm’s profit loss decreases with the number of entrants, i.e.∣∣∣∆πkb ∣∣∣ is decreasing in k. We also posit that the gains of the generic are lower than
the losses of the brand, as generic competition reduces a brand firm’s profits sig-
nificantly (Branstetter et al., 2015). In other words, although generic firm profits
increase, πkg > 0, joint profits decrease with entry, πkg + ∆πkb < 0, independently of
the number of entrants.7

Common ownership between the generic and the brand makes the entry decision
non-trivial. Indeed, shareholders of the generic that also own shares in the brand
may care about the reduction of joint profits. As a result, the decision-makers of g
may consider the “net” gains from entry when deciding whether to enter, thereby
taking also into account the reduction of joint profits. Formally, denoting by δ the
weight the decision-makers of g place on the joint profits, rather than on individual
generic firm profits, g shall enter the market if Πg ≥ 0, i.e., the expected net gains
from entry are positive, where

Πg(p0, ..., pN−1, δ) ≡
N−1∑
k=0

pk[(1− δ)πkg + δ(πkg + ∆πkb )]. (3.1)

An increase in common ownership between g and b will naturally increase δ.8 In the
absence of common ownership between g and b, δ = 0, and therefore generic g should
place no weight on joint profits and entry will occur, as πkg > 0 for any number k of
other generic entrants. At the other extreme, in the case where common ownership
is so high that joint profits are as important as individual generic profits, δ = 1,
entry will not occur, as πkg + ∆πkb < 0 for any k. More in general, the gains from
entry of a generic g decrease in its level of common ownership with the brand, as

∂Πg(p0, ..., pN−1, δ)/∂δ =
N−1∑
k=0

pk∆πkb < 0 for any p0, ..., pN−1.

7Both assumptions are consistent with the evidence we provide in Figure 3 on the relationship
between number of entrants on the one hand, and brand and total market revenues on the other
hand. That means that the business stealing effects caused by generic entry on the brand firm
are larger than any market expansion effect. This should hold true for markets with low demand
elasticity of which pharmaceutical markets are a primary example (Duggan and Scott Morton,
2010).

8Thus, δ can be viewed as our “measure of common ownership.” We discuss possible common
ownership measures at the end of the theory section.
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The next proposition summarizes this result, on the individual decisions of a focal
generic, as well as the pure-strategy equilibrium entry decisions of all the N generics.
The characterization of the equilibrium entry decisions, as a function of symmetric
level δ of common ownership of each of the generics and the brand, can be found in
Appendix 3.8.3.

Proposition 1. An increase in the (bilateral) level of common ownership between
an individual generic and the brand reduces entry by this generic. The number of
entrants in equilibrium decreases as the symmetric (market) level of common own-
ership between all the generics and the brand increases.

Common ownership measures. We now propose several measures of common
ownership that aim to capture how common investors’ interests in the two firms
affect the weight that the generic firm places on joint rather than on individual firm
profits. We posit that shareholdings in the brand provide common investors with
incentives to steer decisions towards joint profits and shareholdings in the generic
provide investors with the ability to influence such decisions (Posner et al., 2017).
The main difference between our various measures is how incentives and ability to
influence decisions are taken into account.

We propose three approaches that to some extent cover different channels of in-
vestor influence. In broad terms, the first approach has some flavour of investors
actively engaging with decision-making, as it parametrizes the effect of shareholders’
interests into an index of decision-making influence. The second approach assumes
that the generic firm’s decision-makers are aware of and take shareholders’ portfolio
interests into account, and hence investors do not need to explicitly engage. The
third approach posits that the top common investors in generic and brand firms
(according to their rank) have the strongest incentives and ability to influence the
firm’s decisions. Whereas the first and second approach make use of the size of in-
vestors’ shareholding, the third approach constructs measures of common ownership
that rely on the ranking of common investors in terms of their holdings.

Production function approach. This approach assumes that there exists a
“production function” that transforms each common investor’s shareholdings in the
brand and generic firms (inputs) into a “joint profit steering index” (output). This
index increases with the size of the investor’s shareholdings in the brand because this
increases her concerns about the reduction of joint profits (incentives). The index
also increases with the size of the investor’s shareholdings in the generic because
larger shareholdings naturally imply a greater capacity to influence the generic firm’s
decisions (ability). For simplification, assuming perfect coordination among common
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investors, the weight that the generic firm places on joint, rather than on individual,
profits is the sum of joint profit steering indices across common investors.9 In formal
terms, there exists a function f such that

δ(g, b) = ∑
jf(γjg, γjb), (3.2)

where γjg and γjb are the shareholdings of a common shareholder j that owns shares
in the generic and brand, respectively. The marginal effect of each of the two ar-
guments of f should be positive, but there could additionally be some degree of
complementarity between the two. In other words, the marginal effect of incentives
may be larger if the ability is higher, and vice versa. We apply two extreme pro-
duction function examples (Gilje et al., 2019). First, the two shareholdings can be
“perfect substitutes,”i.e., f(γjg, γjb) = (γjg + γjb)/2, and thus:

δS(g, b) ≡ ∑j(γjg + γjb)/2. (3.3)

Second, the two shareholdings can be “perfect complements,”i.e., f(γjg, γjb) = min{γjg, γjb},
and thus:

δC(g, b) ≡ ∑j min{γjg, γjb}. (3.4)

Note that both functions are assumed to be symmetric with respect to the two
inputs. Moreover, the scale is such that both measures range between zero and one.
In both cases, the generic firm will place no weight on joint profits (δ(g, b) = 0) if
there are no common shareholders, and a necessary condition for full-weight on joint
profits (δ(g, b) = 1) is that all shareholders are common.

In terms of interpretation, perfect substitutes (equation (3.3)) assumes that the
marginal effect of an increase in incentives does not depend on ability, and vice versa.
On the other hand, perfect complements (equation (3.4)) assumes that incentives
require ability, and vice versa. This means that the perfect substitutes measure does
not penalize unequal shareholdings in the two firms whereas the perfect complements
measure does. For instance, a shareholder that owns 5% of the shares of one firm
and 15% of the other would have the same contribution to δ(g, b) as someone that
owns 10% in both firms when applying the perfect substitutes measure but only half
of it when applying the perfect complements measure. Of course, both measures are
similar if the relative holdings of all common investors in the brand and generic are
similar.

9We assume thus that common investors coordinate their collective decision making. This
assumption makes sense if common owners have similar interests. For example, a case study of a
shareholder vote at the company DuPont indicates how common investors can group together and
use the power of their large voting block to implement their objectives (Schmalz, 2015).
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Weighted sum of interests approach. This approach, following O’Brien
and Salop (2000), assumes that the decision makers of the generic firm maximize a
weighted sum of the interests of all investors in the firm, where (i) the interests of
an investor are given by her shareholdings in the two firms and (ii) the weights are
given by the investor’s degree of control of the firm. The interests of any (common
or non-common) shareholder i who has holdings γig and γib are given by γigπg+γibπb.
Assuming that control is proportional to financial interest, the degree of control of
the generic firm is given by γig. Decision-makers of the generic firm should maximize

∑
iγig [γigπg + γibπb] ,

where γig and γib are the shareholdings of any shareholder i that owns shares in
either or both of the two firms. Straightforward algebra shows that maximizing this
function is equivalent to maximizing

πg +
∑
iγigγib∑
iγ

2
ig

πb,

and thus
δL(g, b) ≡

∑
iγigγib∑
iγ

2
ig

can be thought of a measure of common ownership. This measure captures the
importance of the shareholdings in the generic (ability) and shareholdings in the
brand (incentives) taking into account the ownership concentration of the generic.
See O’Brien and Waehrer (2017) and Backus et al. (2019) for a thorough discussion
of this measure, often called “lambda.”

Rank-based approach. Another class of measures is based on investors’ rank-
ings within a company in terms of holdings. We construct two measures based on
investors’ rank. In particular, we construct counts based on the number investors
that are ranked in the top 5 or top 10, respectively, in both the brand and generic
companies.

δtop5(g, b) = Number of investors in the top 5 of both the brand and the generic
δtop10(g, b) = Number of investors in the top 10 of both the brand and the generic

3.4 Data

We explain both the pharmaceutical and common ownership data in this section.
More details on the data and construction of the dataset can be found in Appendix
3.8.2.
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Entry in the pharmaceutical industry. Broadly speaking, pharmaceutical firms
can be categorized as brand firms or generic firms.10 Brand firms undertake costly
research and development to discover new medications and bring them to market,
and must apply for FDA approval through the new drug application (NDA) proce-
dure. Once a brand has received FDA approval, it is awarded “data exclusivity” for
a period of three, five or seven years, depending on the drug type. Data exclusivity
protects the underlying clinical data and runs concurrently with patent protection.
The period that spans between the end of data exclusivity and the expiration of the
last patent, if any, is commonly referred to as “market exclusivity.”

Generic firms produce bioequivalent replications of brand drugs at a much lower
cost, after they have already been marketed as brand-name products. Generic firms
are able to enter a particular drug market once the regulatory protections afforded to
the brand product have expired. During the market exclusivity period, generics can
challenge the monopoly rights of the brand in court, for instance through Paragraph
IV certification. Generic companies can also apply for FDA approval once all patents
are expired. In both instances, an abbreviated new drug application (ANDA) must
be submitted to the FDA. The protection conferred to new drugs is illustrated in
Figure 3.1.

Figure 3.1: Exclusivities and patent protection in pharmaceuticals

Notes: This figure illustrates the two types of protection awarded to new drugs. Data
exclusivity protects the underlying clinical data and runs concurrently with patent
protection. At the end of data exclusivity, a drug is protected only by its patents
until they expire, a period termed “market exclusivity.”

We use FDA approval as an indicator of generic entry, in line with several articles
on the topic (e.g., Helland and Seabury, 2016; Hovenkamp and Lemus, 2018; Scott

10Note that we define firms as being a “brand” or a “generic” on a market basis. It is possible
that the same firm is a potential generic entrant for one market and the brand company in another
market. This can occur because some companies produce both branded drugs and generic drugs.
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Morton, 1999, 2000). We consider a market to be open for generic entry at the
earlier of either the date of first generic entry or the end of the market exclusivity
period.11 If we observe FDA approval of the first generic entrant before the end
of the market exclusivity period, then a generic successfully challenged the brand’s
patent through a Paragraph IV procedure.12 We term this point in time the “end
of exclusivity.”

We focus on entry that occurs within 6 quarters after the end of exclusivity,
as generics prefer to enter a market as early as possible (Wang et al., 2018, Scott
Morton, 1999) and it indeed captures most of the actual generic entries in our sample
(see Figure 3.2); see further below on the details of our sample. However, given the
potential sensitivity of results to our time window, we will show that results are
robust to other entry period definitions.

Figure 3.2: Histogram of entry
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Notes: This figure illustrates the entry patterns in our data after the “end of exclu-
sivity.” The dark gray area shows the probability that entry occurs within 6 quarters
after the end of exclusivity.

Pharma data sources and variables. We obtain NDA and ANDA information
11We consider a market to be open for generic entry at the earlier of either the date of first

generic entry or the date at which the last patent listed in the Orange Book for the drug expires.
To check the robustness of our results to an earlier date for the end of market exclusivity we use
information (where available in the Orange Book) on the type of patent. As a robustness check, we
take the end of market exclusivity to be the earlier of either the date at which the substance patent
expires and the date of first generic entry. We re-run our main specification with this adjustment,
and find that our results hardly change. We repeat this process by taking the earlier of either the
date at which the product patent expires and the date of first generic entry. We re-run our main
specification with this adjustment, and find that our results hardly change.

12Other generics can then enter too, although possibly with a delay of 2 quarters due to tem-
porary monopoly rights conferred to the first paragraph IV filer (see e.g., Hovenkamp and Lemus,
2018).
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from the FDA Orange Book. The FDA Orange Book provides data on all launched
pharmaceutical products in the United States since 1982. The data includes in-
formation on the launching company, type of drug (NDA or ANDA), associated
patents, list of ingredients, dosage form, strength, approval date and status (pre-
scription, over-the-counter, or discontinued). Information on the submission class
of the brand product is merged in from the “Drugs@ FDA” database using the
FDA application number; see also Helland and Seabury (2016) and Hovenkamp and
Lemus (2018) for more details on this data source. Products are linked to their
relevant therapeutic field using the ATC/DDD Index 2015 and applying exact text
matching, based on compound-name.13

We define drug markets at the ingredient-form level. For example, the drug with
the brand-name Zyrtec in syrup form with the ingredient Cetirizine Hydrochloride
5mg/5ml is considered to be in the same drug market as Zyrtec in syrup form with
the ingredient Cetirizine Hydrochloride 10mg/10ml. However, the product Zyrtec
Allergy with the ingredient Cetirizine Hydrochloride 10mg in the form of a tablet
constitutes a different market. The therapeutic field in which Zyrtec falls, at the
ATC-2 level, is “Antihistamines for systemic use.”

We match the brand product (NDA) with the full sample of potential generic
entrants to form a brand product-generic observation. The sample of potential
generic entrants includes all pharmaceutical companies that launched at least one
generic product in our drug markets and have previous experience in launching
generic drugs of the same form (i.e. oral, injection etc.) as the relevant brand drug.
Results are robust to a set of different definitions of the entrant set, as we will show
when discussing the results.

Following prior literature, we construct variables used to control for relevant drug
market and generic firm characteristics (Hurwitz and Caves, 1988; Scott Morton,
1999; Kyle, 2000; Hudson, 2000; Saha et al., 2006; Regan, 2008; Glowicka et al.,
2009; Moreno-Torres et al., 2009: Appelt, 2015). Pediatric Drug is an indicator
variable which takes on the value 1 if a drug can be used in children. Orphan Drug
is an indicator variable that takes the value 1 if a drug treats a rare disease.14 The
indicator variable Authorized Generic takes on the value 1 if the brand firm has
launched an authorized generic in that particular market.15

13The ATC/DDD Index 2015 categorizes all chemical compounds used in any therapeutic field
according to a five-level hierarchical system, called the Anatomical Therapeutic Chemical (ATC)
Classification System.

14This information is obtained by looking at the exclusivities afforded to the drug in the FDA
Orange Book. There are special exclusivity provisions for pediatric drugs and orphan drugs.

15Note that our left-hand variable is independent generic entry. Authorized generics can be
launched without FDA approval and at any point in time (typically shortly before patent expiry).
An authorized generic may be launched by a partially-owned generic or subsidiary of the brand,
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We proxy drug market size using a measure of the brand’s pre-generic-entry rev-
enues obtained from Medicaid reimbursements (available publicly from the Medicaid
website). We match the drugs in our sample with Medicaid reimbursement data us-
ing National Drugs Codes (NDC) which are unique product identifiers for drugs in
the US. The Market Size variable used in the analysis is the dollar value in billions of
total national Medicaid reimbursements for the brand drug in the two years before
the end of exclusivity.

We also use the Medicaid reimbursement data matched with our final sample of
drug markets to investigate the decline in brand revenues and total drug market
revenues after the end of exclusivity, and how this varies with the number of generic
entrants. For our sample of drugs, we find that average annual revenues for brand
before entry are $46 million in comparison to average revenues of $2 million for a
generic upon entry. Figure 3.3 shows the average percentage decline in revenues two
years after the end of exclusivity relative to two years before. Relative to the case
where no generics enter the market, on average, brand revenues decline steadily with
the number of entrants. Total revenues decline for any positive number of generic
entrants.16 Our data, thus, confirm the key assumptions of our framework: brand
revenues decline after entry, and generics’ increased revenues do not compensate for
this decline, such that total market revenues decline after entry.

and hence would not enter as an independent generic.
16Note that two outliers where total market revenues increased by over 1500% after the end of

exclusivity have been removed from the sample when creating this figure.
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Figure 3.3: Decline in brand and total revenues with number of generic
entrants
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Notes: This figure illustrates the average decline in brand revenues and total market
revenues two years after the end of exclusivity relative to two years before by the
number of generic entrants in the market. The declines reported are relative to the
average revenue change when there are no generic entrants.

We also take into account the intensity of inter-molecular competition in the ther-
apeutic field (Appelt, 2015; Regan, 2008). Substitutes on Patent provides a count of
the number of on-patent substitutive active ingredients listed in the same therapeu-
tic field at the ATC-2 level in the quarter prior to the end of exclusivity. Similarly,
Substitutes off Patent measures the number of off-patent substitutive active ingre-
dients. Further market characteristics include the therapeutic field of the drug (at
the ATC-2 level), submission class of the brand product, drug dosage form/route
and the year of the end of exclusivity.17,18

Generic firm characteristics aim to capture the prior experience of the generic in
the relevant market. Controlling for generic firm characteristics has shown to be
crucial in previous studies (Scott Morton, 1999; Scott Morton, 2002; Kyle, 2006).
Experience Route serves as a proxy for the potential entrant’s experience in the
brand drug form/route by counting the number of products with identical route of
administration previously launched by the generic one quarter prior to the end of
exclusivity. Similarly, Experience ATC2 serves as a proxy of the entrant’s expe-
rience in the relevant therapeutic field at the ATC2 level. Experience New Drug
is constructed as a count of the entrant’s previously launched new drugs. Generic

17Submission classes include Type 1 New Molecular Entity, Type 2 New Active Ingredient, Type
3 New Dosage Form, Type 4 New Combination, Type 5 New Formulation or Other Differences.

18We recode the FDA form/route variable to construct five form/route classes namely oral,
injection, topical, ophthalmic and inhalation.
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entrants that are also active in producing new drugs may hold some patents that
ease entry. Breadth of Experience accounts for the breadth of the generic entrant’s
portfolio by counting the number of distinct therapeutic fields in which the generic
has been active in one quarter prior to the end of exclusivity. The variables con-
cerning generic firm experience and substitutes are calculated using the full FDA
Orange Book. Counts start in 1994, 10 years before the start of the sample; results
are robust to other starting points.

Common ownership data. We use the Thomson Reuters Global Ownership
Database, which includes holdings by each shareholder in each publicly listed firm
for every year-quarter. For US-listed firms Thomson Reuters collects ownership in-
formation from 13F, 13D and 13G filings, and forms 3, 4, and 5. For companies
outside the US, information is sourced from stock exchange filings, trade announce-
ments, company websites, company annual reports and financial newspapers.

The advantages with regard to datasets used by other articles on common own-
ership are considerable. Most recent articles on common ownership use Thomson’s
Spectrum database (e.g., Azar et al., 2017; He and Huang, 2017; Xie and Gerakos,
2019). This database is limited to 13F filings, which contains only large investors in
US companies, whereas some pharmaceutical companies are not listed on a US stock
market. Moreover, the Thomson’s Spectrum database shows holdings assigned to
the owner that filed the 13F. This is what is commonly referred to as an “as-filed
view.” Our database utilizes a “money-manager view.” With this view, the database
combines together one or more filings to link the holdings to the actual firm that
manages the investments. In other instances, it might break apart a single filing in
order to accomplish the same. The holdings would then be assigned to one or more
of the managers listed on the file.

For each firm for each quarter in the period 2003-2014 we extracted data on the
shareholders that own at least 1% of the shares, and computed yearly ownership
averages. Table 3.1 gives an example of the top 5 investors for the brand-generic
pair Johnson & Johnson-Mylan in 2013. As shown, in this pair common shareholders
account for the lion’s share of the ownership of the top 5 investors.
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Table 3.1: Top 5 largest investors (2013)

Brand Generic
Johnson & Johnson Mylan

State Street Global 6% Vanguard Group 7%
BlackRock 6% BlackRock 6%
Vanguard Group 5% State Street Global 4%
Royal Bank of Canada 2% Wellington Mgmt. 4%
Wellington Mgmt. 2% John Paulson 4%
Source: Thomson Global Ownership Database

Our data indicates that top shareholders in the generic have a substantial interest
in brand profits. For pairs where both the brand and generic are publicly listed we
find that on average, the top 10 shareholders in the generic collectively own 51%,
valued at $3.7 billion, in the generic. They collectively own 6.5%, valued at $7.6
billion, in the brand. For 75% of brand-generic pairs the value held in the brand by
the top 10 shareholders of the generic exceeds the value held in the generic. Given
large losses to brand profits upon generic entry, even small stakes in the brand would
incentivize common owners to influence generic entry.

3.5 Individual entry

In this section, we empirically investigate the impact of pairwise common ownership
linkages between a brand and a generic firm on that particular generic’s entry deci-
sion for a variety of different empirical specifications.

Common ownership variables. We construct empirical counterparts of the five
measures introduced in the theory section: δS, δC , δL, δtop5 and δtop10. When con-
structing the empirical measure of δS, for each brand-generic pair, the denominator
comprises of the sum all shareholdings in the brand and the generic in our database.
As our database includes only investors with at least 1% ownership stake, the de-
nominator may be smaller than the theoretical 2.19

For private firms, i.e. not listed on a stock-exchange, we assume that they do
not have common investors with any other firm. For firms with a presence in the
UK, we verified that this assumption holds true using annual return filings with full

19For clarity, the formula is δS =
∑

j
(γjg+γjb)∑
i
(γig+γib)

where the denominator runs over all i investors
in our database.
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shareholder lists that are also available for private firms from the company registry
(Companies House).

We pay particular attention to the case in which the potential generic entrant is
a subsidiary of the brand firm. We create an indicator variable that takes on the
value 1 if the potential generic entrant is a subsidiary of the brand and 0 if it is not.
In the former, the common ownership variables are set to zero.20

We report results using common ownership measured in the year prior to the
end of exclusivity, as entry requires time to acquire an approved source of materials
and suitable production facilities. About one to two years before filing an ANDA
application, the generic firm starts preparing to enter (Reiffen and Ward, 2005).
However, as it is unclear at exactly what point time the final entry decision of the
generic firm is made, we also check that our results are robust to the use of common
ownership measured two and zero years prior to the end of exclusivity.

Figure 3.4 and Figure 3.5 show the evolution of the common ownership measures
over time.21 It is evident that common ownership has increased significantly from
2003 to 2014. The growth of common ownership was relatively small until the
beginning of 2010. The average level of common ownership almost doubled in the
last four years of the sample.

20We consider a firm X to be subsidiary of a firm Y if firm Y has a direct ownership stake
of more than 50% in firm X. We can also identify minority shareholdings, i.e., when one firm
has an ownership stake of less than 50% in another firm. However there are only three pairs in
the dataset where the brand has a stake-holding in the potential generic entrant and one pair
where the potential generic entrant has a stake-holding in the brand. As this ends up being too
few observations to draw meaningful statistical conclusions, we do not consider these links in the
analysis.

21We only include the company-pairs that are observed for the entire period, as this provides a
robust overview of how the degree of connectedness between brand and generic pairs has changed
over time.
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Figure 3.4: Evolution of common ownership
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Figure 3.5: Evolution of common ownership - Rank measures
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Sample and descriptive statistics. Our final sample consists of 395 drug product
markets and 34,144 drug product-brand-generic observations. We consider only drug
products that faced generic entry or patent expiry between 2004 and 2014, as this
is the range for which we have data on all relevant variables. In total there are
93 unique brand companies. Companies may enter (by incorporation) or exit the
sample (by acquisition or bankruptcy). There are 10,453 unique generic-brand pairs.
On average there are 86 potential generic entrants per market.

Table 3.2 gives an example of the structure of our data in terms of drug mar-
ket, brand firm, potential generic entrants, entry and common ownership measures.
The example relates to the drug Natrecor which is used for the treatment of heart
failure and is produced by Johnson & Johnson. The relevant market is defined by
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the ingredients (nestiritide recombinant) and dosage form (solution; intravenous).
The patent associated with Natrecor expired in 2014q2. Entry is defined within 6
quarters of the end of market exclusivity, in this case between 2014q2 and 2015q4.
According to this definition no generics have entered the market. Indeed, the drug
is currently on the FDA List of off-patent, off-exclusivity drugs without an approved
generic.22 The common ownership measures correspond to those of the year 2013.

Table 3.2: Example data structure

obs. trade name ingredients dosage form brand generic entrant entry δS δC δL

1 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON MYLAN 0 0.67 0.23 0.90
2 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON BARR 0 0.51 0.02 0.25
3 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON RANBAXY 0 0.05 0.01 0.00
4 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON SANDOZ 0 0.45 0.09 0.33
5 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON AMNEAL 0 0 0 0
6 natrecor nestiritide recombinant solution; intravenous JOHNSON & JOHNSON APOTEX 0 0 0 0
. . . . . . . . . .
. . . . . . . . . .

Table 3.3 outlines the key characteristics for the 395 drug markets. The uncondi-
tional probability of entry is 2.8%.23 In 28% of the markets the brand has launched a
generic itself, i.e. started selling an authorized generic. In terms of market size, pre-
entry brand revenues through Medicaid reimbursements average 100 million USD.
The average potential generic entrant has launched 21 generic products of the same
route/form as the brand and is active in 14 therapeutic fields.

22https://www.fda.gov/downloads/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/
UnderstandingGenericDrugs/UCM564441.pdf

23Both number of entrants and realized entry opportunities are comparable with previous stud-
ies: in Scott Morton (1999) there are 123 potential generic entrants per drug market and in Appelt
(2015) there are 100 potential entrants per drug market. Furthermore, in Scott Morton (1999)
2-7% of entry opportunities are realized, in Kyle (2006) 2.5% of entry opportunities are realized,
and in Appelt (2015) 10% of entry opportunities are realized.
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Table 3.3: Summary statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

Entry (0/1) 34,144 0.0278 0.164 0 1
δS 34,144 0.0851 0.160 0 0.946
δC 34,144 0.0249 0.0552 0 0.363
δL 34,144 0.0712 0.172 0 1.365
δtop5 34,144 0.290 0.731 0 5
δtop10 34,144 0.674 1.375 0 10
Subsidiary (0/1) 34,144 0.00246 0.0495 0 1
Market Size 34,144 0.101 0.245 0 2.143
Authorized Generic (0/1) 34,144 0.280 0.449 0 1
Orphan Drug (0/1) 34,144 0.0917 0.289 0 1
Pediatric Drug (0/1) 34,144 0.318 0.466 0 1
Substitutes on Patent (ATC2) ÷ 10 34,144 2.498 1.732 0 7.300
Substitutes off Patent (ATC2) ÷ 10 34,144 1.714 1.268 0 6.100
Experience Route ÷ 10 34,144 2.124 3.633 0.100 29.90
Experience ATC2 ÷ 10 34,144 0.0969 0.261 0 3.200
Experience New Drug ÷ 10 34,144 0.220 0.466 0 2.800
Breadth (ATC2) ÷ 10 34,144 1.373 1.243 0.100 6.100

Empirical implementation. We determine which individual generic firms are
more likely to enter a given drug market. As our main variable of interest –common
ownership between a potential generic entrant and the brand– is firm-specific, our
regressions in this section are based on the individual probability of entering, rather
than on the market-level number of entrants. However, it is important to remember
that –as in our theoretical analysis of the individual entry decision– other potential
generic entrants are part of the analysis through their inclusion in the set of potential
entrants.

The binary dependent variable thus contains the entry decision of generic firm g

in the market m of the brand b. The resulting equation to be estimated is:

Pr[Entrygm = 1] = β0 + βδgm(g, b) + ηZm + γXgm + Am + µt + εgm.

Entrygm takes on the value 1 when generic g enters marketm within 6 quarters after
the end of exclusivity. δgm is one of the measures of common ownership between
the generic firm and the brand of the market, i.e., δgm can be δS, δC , δL, δtop5 or
δtop10. Zm is a vector of market characteristics, including market size as measured
by pre-generic-entry sales, an indicator for the presence of an authorized generic,
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an indicator for pediatric drugs, an indicator for orphan drugs, and the number of
on- and off-patent inter-molecular substitutes in same therapeutic field. Xgm is a
vector of generic-market characteristics, the generic’s previous experience with drug
from/route, generic’s previous experience with the therapeutic class, generic’s previ-
ous experience with new drugs, number of therapeutic fields in which the generic has
experience and region of generic’s company headquarters. A vector of fixed effects
Am is included for drug dosage form, submission class and therapeutic field (ATC-2
level), as well as a fixed effect µt for the year of the end of exclusivity.

We estimate a linear probability model. Coefficients for the probit and logit
models are reported in Appendix 3.8.4.24 The coefficient β measures the impact of
common ownership between the brand and the generic on the generic’s entry deci-
sion.

Results. Table 3.4 presents our results. The coefficient on δgm across all measures
is negative and significant. Thus we find that common ownership between the brand
and generic indeed reduces the likelihood of generic entry. The coefficient on common
ownership should be interpreted bearing in mind the unconditional probability of
entry for the sample. The unconditional probability of entry for the sample of firms
and markets is 2.8%. An increase of one standard deviation as measured by δS

implies a 0.16× 0.027 = 0.0043 decrease in the probability of entry ceteris paribus.
This is therefore a 0.0043/0.028 = 15% reduction in the unconditional probability
of entry. Similarly, an increase of one standard deviation in δC and δL imply a 15%
and 18% decrease, respectively, in the probability of entry.

Column 4 shows that one additional top 5 common investor leads to a 0.6 per-
centage point decrease in the probability of entry. Therefore, an additional top 5
common investor leads to a 0.006/0.028 = 21% decline in the probability of entry.
The effect of having an additional top 10 common investor is also highly significant
and negative (see column 5), although the size of the effect is about half. These
findings, therefore, are consistent with the idea that higher ranked investors have
more power, and effectively use this power to reduce entry.

24There are several therapeutic fields at the ATC2 level which do not experience any entry in
our sample, thus the dummy indicators for these ATC2 fields become perfect predictors for a zero
outcome. These observations are thus dropped in the logit and probit models.
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Table 3.4: Main specification

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0273***
(0.00676)

δC -0.0776***
(0.0183)

δL -0.0287***
(0.00556)

δtop5 -0.00584***
(0.00142)

δtop10 -0.00298***
(0.000811)

Subsidiary (0/1) -0.0555*** -0.0540*** -0.0546*** -0.0275* -0.0284*
(0.0145) (0.0145) (0.0145) (0.0148) (0.0150)

Market Size 0.0344*** 0.0343*** 0.0344*** 0.0343*** 0.0344***
(0.00867) (0.00867) (0.00865) (0.00866) (0.00869)

Authorized Generic (0/1) 0.00647 0.00654 0.00652 0.00645 0.00646
(0.00409) (0.00410) (0.00409) (0.00410) (0.00410)

Orphan Drug (0/1) -0.00104 -0.000929 -0.00104 -0.000961 -0.000963
(0.00706) (0.00706) (0.00706) (0.00706) (0.00706)

Pediatric Drug (0/1) 0.0126*** 0.0125*** 0.0126*** 0.0126*** 0.0126***
(0.00477) (0.00477) (0.00477) (0.00479) (0.00479)

Substitutes on Patent (ATC2) ÷ 10 -0.00416 -0.00407 -0.00408 -0.00394 -0.00406
(0.00638) (0.00637) (0.00637) (0.00638) (0.00639)

Substitutes off Patent (ATC2) ÷ 10 -0.00620 -0.00617 -0.00622 -0.00632 -0.00624
(0.00497) (0.00498) (0.00496) (0.00498) (0.00498)

Experience Route ÷ 10 0.00837*** 0.00838*** 0.00841*** 0.00833*** 0.00837***
(0.000855) (0.000856) (0.000857) (0.000854) (0.000856)

Experience ATC2 ÷ 10 0.0609*** 0.0611*** 0.0609*** 0.0611*** 0.0611***
(0.0104) (0.0104) (0.0104) (0.0104) (0.0104)

Experience New Drug ÷ 10 0.00453 0.00408 0.00467 0.00385 0.00407
(0.00286) (0.00283) (0.00285) (0.00280) (0.00285)

Breadth (ATC2) ÷ 10 0.00101 0.00114 0.000952 0.000670 0.000891
(0.00231) (0.00231) (0.00229) (0.00230) (0.00231)

Observations 34144 34144 34144 34144 34144
R-squared 0.0855 0.0855 0.0857 0.0855 0.0854
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: OLS regression. Standard errors in parentheses are clustered at the drug market level. The de-
pendent variable is entry within 6 quarters. The constant term is estimated but not reported. ∗ ∗ ∗p <
0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

The control variables carry the expected signs; higher pre-entry brand revenues
and greater entrant experience all significantly increase the likelihood of entry. Pe-
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diatric drugs are also more likely to experience entry. On the other hand, we find
that the number of molecular substitutes on and off-patent do not have a significant
impact on generic entry.

Directly relevant for the topic of the study, the effect of common ownership is
smaller than the effect of being a subsidiary of the brand. For example, if we set
δS to 1 – that is the brand and generic share all the same common owners – then
the probability of entry falls by 2.7 percentage points. On the other hand, if the
relationship is parent-subsidiary then the probability of entry falls by 5.5 percentage
points ceteris paribus.

The fact that we find a significant effect across all measures of common ownership,
and similar effects in terms of economic magnitude implies that we cannot say much
about which measure of common ownership best captures the manner in which
common investors’ incentives and ability translate into the weight that the generic
firm places on joint profits. This is in fact no surprise as empirically we find that the
five measures of common ownership are highly correlated with each other (see Table
3.5). Thus, although in theory our measures capture quite different mechanisms
of influence, the empirical counterparts are quite similar and the variation across
brand-generic pairs is small.

Table 3.5: Cross-correlations between common ownership measures

Variables δS δC δL δtop5 δtop10
δS 1.000
δC 0.890 1.000
δL 0.894 0.890 1.000
δtop5 0.793 0.763 0.792 1.000
δtop10 0.874 0.828 0.805 0.862 1.000

In Table 3.6 we present results where common ownership is specified as a cate-
gorical variable in order to investigate whether greater levels of common ownership
have a larger impact; i.e., whether the relationship between common ownership and
entry is non-linear. We focus on the measure δS. This measure can be interpreted
as the fraction of total ownership in the pair held by common investors, and hence
presents natural thresholds. We construct three categorical variables based on the
value of δS: δS(0 < δ ≤ 0.3) takes on the value 1 if δS ∈ (0; 0.3], δS(0.3 < δ ≤ 0.5)
takes on the value 1 if δS ∈ (0.3; 0.5], and δS(0.5 < δ ≤ 1) takes on the value 1 if
δS ∈ (0.5; 1].

The results in Table 3.6 indicate that the effect of common ownership increases
the greater the level of common ownership. The coefficients on each categorical vari-
able increase in magnitude (become more negative) with higher common ownership.
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Furthermore, once δS is greater than 0.5 the coefficient is significant at the 1% level.
A change from zero common ownership to common ownership of greater than 0.5
reduces the entry probability of a generic by 1.5 percentage points on average. This
is approximately a 50% decline in the unconditional probability of entry. In our
sample, there are 552 unique brand-generic pairs with a δS of greater than 0.5 at
some point in time. This is 5% of all brand-generic pairs.

In sum, these results indicate that common ownership levels have a non-linear
impact on entry, where high levels have a much stronger impact than low levels. In
particular, common ownership has it’s strongest and most significant effect when
more than half of the total ownership in the pair is in the hands of common in-
vestors. We will use this finding later on in our market-level analysis when con-
structing market-level measures of common ownership.

Table 3.6: Categorical specification

(1)
VARIABLES

δS (0 < δ ≤ 0.3) 0.00186
(0.00315)

δS (0.3 < δ ≤ 0.5) -0.00785*
(0.00410)

δS (δ > 0.5) -0.0149***
(0.00464)

All controls Yes
Therapeutic field Yes
Drug form Yes
Submission type Yes
Generic region of origin Yes
Year end of exclusivity Yes
Drug markets 395
Observations 34144
R-squared 0.0854

Notes: OLS regression. Standard er-
rors in parentheses are clustered at the
drug market level. The dependent vari-
able is entry within 6 quarters. The
constant term is estimated but not re-
ported. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p <
0.1.
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Table 3.7: Instrumental variables regression

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0285*
(0.0147)

δC -0.0636*
(0.0328)

δL -0.0239*
(0.0124)

δtop5 -0.00648*
(0.00338)

δtop10 -0.00324*
(0.00167)

Subsidiary (0/1) -0.0557*** -0.0536*** -0.0541*** -0.0249 -0.0264
(0.0146) (0.0144) (0.0144) (0.0198) (0.0191)

Market Size 0.0345*** 0.0343*** 0.0344*** 0.0344*** 0.0344***
(0.00864) (0.00864) (0.00862) (0.00863) (0.00867)

Authorized Generic (0/1) 0.00647 0.00654 0.00653 0.00644 0.00645
(0.00408) (0.00409) (0.00409) (0.00409) (0.00409)

Orphan Drug (0/1) -0.00103 -0.000991 -0.00108 -0.000927 -0.000936
(0.00706) (0.00705) (0.00705) (0.00707) (0.00706)

Pediatric Drug (0/1) 0.0126*** 0.0125*** 0.0125*** 0.0126*** 0.0127***
(0.00474) (0.00475) (0.00475) (0.00475) (0.00476)

Substitutes on Patent (ATC2) ÷ 10 -0.00417 -0.00407 -0.00408 -0.00392 -0.00406
(0.00636) (0.00636) (0.00635) (0.00637) (0.00637)

Substitutes off Patent (ATC2) ÷ 10 -0.00619 -0.00621 -0.00625 -0.00631 -0.00622
(0.00495) (0.00496) (0.00495) (0.00497) (0.00496)

Experience Route ÷ 10 0.00837*** 0.00837*** 0.00840*** 0.00833*** 0.00837***
(0.000854) (0.000853) (0.000855) (0.000852) (0.000855)

Experience ATC2 ÷ 10 0.0609*** 0.0611*** 0.0609*** 0.0610*** 0.0611***
(0.0104) (0.0104) (0.0104) (0.0104) (0.0104)

Experience New Drug ÷ 10 0.00465 0.00363 0.00414 0.00410 0.00429
(0.00308) (0.00287) (0.00296) (0.00296) (0.00300)

Breadth (ATC2) ÷ 10 0.00105 0.000931 0.000786 0.000747 0.000971
(0.00235) (0.00234) (0.00232) (0.00232) (0.00234)

Observations 34144 34144 34144 34144 34144
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: 2SLS regression. Standard errors in parentheses are clustered at the drug market level. The de-
pendent variable is entry within 6 quarters. The constant term is estimated but not reported. The in-
strument is an indicator equal to 1 if both firms are listed on the Dow Jones US Select Pharmaceutical
Index. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Instrumental variables. If investors adjust their holdings in response to entry
opportunities, common ownership might be endogenous. The direction of the bias
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is not clear a priori. For example, if investors in the brand increase investment in
generics with entry plans, common ownership between the brand and generic will
increase before entry, causing β to be biased upwards. Alternatively, if investors
with shareholdings in generic firms reduce the size of their stakes in brand firms
with drugs that face impending generic entry, then common ownership will decrease
before entry, causing β to be biased downwards.

To address the concern of endogeneity, we therefore also perform IV estimations
and instrument for common ownership with financial index membership at the pair
level.25 We use information on the holdings included in the Dow Jones US Select
Pharmaceutical Index during the 2006-2014 period. Our data on the composition
of the Dow Jones US Select Pharmaceutical Index comes from historical data on
the composition of BlackRock’s iShares US Pharmaceutical exchange-traded fund
(ETF) which tracks the Dow Jones US Select Pharmaceutical Index.

Figure 3.6 in Appendix 3.8.1 provides a snapshot of the top 10 investments of
the fund as of November 2013. As can be seen, both brand and generic firms are
present in the fund; e.g. Johnson & Johnson is a brand company, whereas Mylan
primarily produces generic drugs. On average, the fund has been comprised of 39
holdings over time, each allocated a specific weight that changes over time; relative
weightings are computed according to their total market capitalization.26 Since May
2006, each listed company has been included in the ETF for an average of 4 years.
This evidences the pattern of entry and exit of the fund that has been marked by
various periods of high entrance and exit – for instance, more than 6 companies
dropped out and entered the fund in the last quarter of 2013 and the third quarter
of 2015, respectively – and periods of no change.

Our instrument, Index Presence is an indicator equal to 1 if both firms are listed on
the Dow Jones US Select Pharmaceutical Index at the point in time when common
ownership is measured. We expect that if both companies in the pair appear in the
Index, common ownership will increase by virtue of the fact that investors who track
the index will hold shares in both companies. The identifying assumption is that
inclusion in the pharmaceutical index, is exogenous to a particular market entry,

25A similar approach has been applied by several other articles in the literature. For example,
Aghion (2013) use the inclusion of a firm in the S&P 500 as an instrument for institutional own-
ership. Bena et al. (2017) instrument foreign institutional ownership with stock additions and
deletions to the MSCI all country world index. Schmidt and Fahlenbach (2017) instrument passive
institutional ownership with switches between the Russel 1000 and Russel 2000 indexes. Scott
Morton and Boller (2020) use instances of a stock entering the S&P 500 index to test if an increase
in common ownership changes future expected profits of the entering firm and its product market
rivals.

26A detailed description of how the Dow Jones US Select Pharmaceutical Index is constructed
can be found at: https://www.spglobal.com/spdji/en/documents/methodologies/methodology-dj-
us-select-sector-specialty.pdf
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except through its effect on common ownership. This is the case provided that the
index is not created with potential entry opportunities in mind and that, controlling
for other factors, addition to the index does not directly affect entry decisions except
through common ownership.

The results of the IV regressions are presented in Table 3.7. The IV results are very
similar to the OLS results. The first-stage results, reported in Table 3.8, indicate
that the instrument is highly relevant and positively correlated with δ (see F-stat
of excluded instruments). However, the Durbin-Wu-Hausman test shows that we
cannot reject the hypothesis that δ is exogenous for all measures of δ. This suggests
that, in this context, the endogeneity of common ownership is not a large concern.
One possible explanation for this finding is that a large share of common investors in
our dataset are passive investors and are therefore unlikely to actively adjust their
holdings in generic or brand firms due to potential entry opportunities.

Table 3.8: First-stage IV regressions

(1) (2) (3) (4) (5)
VARIABLES δS δC δL δtop5 δtop10

Index Presence 0.337*** 0.151*** 0.402*** 1.481*** 2.968***
(0.00885) (0.00444) (0.0152) (0.0637) (0.0752)

Constant 0.00990 -0.00263 0.00824 -0.136 -0.217
(0.0328) (0.0101) (0.0295) (0.137) (0.253)

Observations 34,144 34,144 34,144 34,144 34,144
R-squared 0.400 0.487 0.404 0.421 0.480
Fixed Effects Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395
F-stat excl. instruments 1454 1157 704.7 540.6 1556
Endogeneity test (p-val) 0.929 0.593 0.649 0.833 0.857

Notes: For simplicity only the coefficient associated with the excluded instrument
is reported. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Robustness checks. Our results are robust to a series of different specifications,
as can be seen from the tables in Appendix 3.8.4.

Table 3.12 shows results where we add drug product fixed effects. The significance
and magnitude of the coefficients stays virtually the same. Table 3.13 and Table 3.14
present probit and logit regressions for our main specification respectively. Results
show that our five common ownership measures negatively impact entry.

In our main specification we use Medicare reimbursements as a proxy for market
size. To check the robustness of results to this measure, in Tables 3.15 and 3.16 we
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use a different proxy for market size based on the total sales volume for the drug in
the US. Data on the sales of pharmaceutical drugs are available commercially but
are expensive to acquire. We thus use publicly available sales data from drugs.com.
Drugs.com provides the annual US sales figures for the top 200 drugs for the years
2003 - 2010 (source: Verispan/VONA) and the top 100 drugs for the years 2011 -
2013 (source: IMS Health/Midas). In Table 3.15 we substitute Medicare reimburse-
ments with an indicator variable for whether or not the drug is in the top 100 in
terms of sales. In Table 3.16 we limit the sample to drugs where we have information
on the annual US sales in the year before the market becomes open for entry. Our
results are robust to both of these alternative measures of market size.

Another issue may be the set of potential entrants. In our main specification,
the set of potential entrants is quite narrowly defined. We exclude generic firms
from the potential entrant set that have not previously launched a generic drug of
the same form as the relevant brand drug. Doing so, however, means that we drop
51 actual entry observations (5% of all actual entry observations). To check the
robustness of our results to a broader potential entrant set, we expand the set to
include generics without experience in the relevant drug form. Results in Table 3.17
show that the effects are qualitatively identical to our main results: for all common
ownership measures, the effect is negative and significant at the 1% level.

We also test the robustness of our results to different entry time windows, as entry
may be slower or faster than our chosen 6 quarter window. In Table 3.18 we alter
the dependent variable such that we consider entry within any time period. We
also consider alternative time windows such as entry within a 2 year time period.
These results are available on request and findings are qualitatively the same as in
our main specification, i.e., entry is significantly negatively influenced by common
ownership and this holds for different time windows.

3.6 Market outcomes

Up until this point, we have empirically established that a higher level of common
ownership between a brand and a particular generic reduces the entry probability
of that specific generic firm. However, it is relevant to consider if, as a result of this,
common ownership has an impact on outcomes at the market level such as the total
number of generics in a market.
Common ownership measures. To assess the effects of common ownership at
the market level, we need to construct market-level measures of common ownership.
Our first measure of common ownership at the market level is a simple average of δS
taken over all potential generic entrants for the relevant market. Our second measure
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is motivated by the fact that common ownership has non-linear effects (see results
in Table 3.6). To calculate the second measure we first define a common ownership
link between a brand and potential generic entrant as occurring when δS > 0.5. For
each market, we then count the number of common ownership links and divide this
sum by the total number of potential generic entrants. Whereas the first measure
provides an idea of the average level of common ownership in the market, the sec-
ond measure focuses on establishing the extent of “strong” common ownership links.

δS (market) ≡
∑
g∈Sm δS
Sm

(3.5)

and
Share links δS > 0.5 ≡

∑
g∈Sm I(δS > 0.5)

Sm
, (3.6)

where I(x) is an indicator function that takes value 1 if the event x occurs, and 0
otherwise and Sm is the set of potential entrants in market m.
Empirical implementation. We consider several outcomes at the market level; 1)
the number of generic entrants within 6 quarters, 2) the number of generic entrants
ever, 3) the share of generic entrants within 6 quarters27, 4) the share of generic
entrants ever28, 5) the duration of time (in quarters) until the first generic enters29

and finally 6) the probability that there is no generic entry at all.
For each outcome variable we estimate the following linear model:

Ym = β0 + βδm + ηZm + Am + µt + εgm.

where Ym is one of the outcome variables mentioned above, δm is one of the two
market-level measures of common ownership, Zm is a vector of market-level control
variables, Am is a vector of fixed effects for drug dosage form, submission class and
therapeutic field (ATC-2 level), and lastly µt is a fixed effect for the year of the end
of exclusivity.

Table 3.9 presents summary statistics for the market-level measures of common
ownership and the market outcomes. The average level of common ownership as
measured by δS at the market level is 0.09. On average the brand firm is connected

27The share is calculated as the number of actual entrants within 6 quarters divided by the
total number of potential entrants.

28The share is calculated as the number of actual entrants to ever enter the market divided by
the total number of potential entrants.

29The duration is calculated as the number of quarters from when the market becomes open for
entry until the first generic entrant. If there is no generic entry within the sample, the duration is
calculated as the time between when the market becomes open for entry and the end date of the
dataset.

81



3.6. MARKET OUTCOMES

with 4% of potential generic entrants by a common ownership link where δS > 0.5.
This measure varies from a minimum of 0 to a maximum of 32%. The average
number of generic entrants within 6 quarters for our sample of drug markets is 2.4.
This figure increases to 3.8 if we do not limit ourselves to a specific time window
and consider all occurrences of entry in the data. On average the share of generic
entrants who actually enter, out of the set of potential entrants, is 3.7%. On average,
the first generic enters 6 quarters after the market becomes open for entry. The final
row of Table 3.9 indicates that for 20% of our markets, there is no generic entry at
all.

Table 3.9: Summary statistics at the market-level

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

δS (market) 395 0.0913 0.0572 0 0.283
Share links δS > 0.5 395 0.0434 0.0558 0 0.318
No. entrants within 6 quarters 395 2.400 2.978 0 17
No. entrants 395 3.838 4.070 0 23
Entry share within 6 quarters 395 0.0365 0.0603 0 0.500
Entry share 395 0.0564 0.0757 0 0.625
Time until first entry (in quarters) 395 5.954 11.93 0 55
No entry (0/1) 395 0.197 0.399 0 1

Results. Table 3.10 presents the coefficient estimates for the first measure of com-
mon ownership and Table 3.11 presents the results for the second measure. In both
tables, the coefficients on common ownership carry the same signs: Common owner-
ship has a negative effect on the total number of entrants within 6 quarters (column
1), a negative effect on the number of entrants ever (column 2), a negative effect on
the share of entrants within 6 quarters (column 3), a negative effect on the share
of entrants ever (column 4), a positive impact on the time until the first generic
entry (column 5), and a positive impact on the probability that their is no entry
whatsoever for the market (column 6).

In Table 3.11 all the estimates of β are significant, whereas in Table 3.10 we
find that the coefficients on the share of entry ever and the duration until the first
generic entry are not significant. This result is in line with our previous finding
that common ownership displays non-linear effects, where higher levels of common
ownership have a larger and more significant impact. Thus, we find more significant
effects when we focus on “strong” common ownership links.

We now consider the economic magnitude of these effects. We first describe

82



3.6. MARKET OUTCOMES

how common ownership affects the number of generic entrants in the market. We
find that a one standard deviation increase in δS (market) leads to a decrease of
0.33 (0.057 × -5.821) entrants (see Table 3.10 column 1). This is a 14% decline
in the unconditional average number of generic entrants within 6 quarters. A one
standard deviation increase in Share links δS > 0.5 leads to a decrease of 0.36
(0.056 × -6.389) entrants (see Table 3.11 column 1). This is a 15% decline in the
unconditional average number of generic entrants within 6 quarters. The size of
the effect is similar when considering the number of entrants within any time frame
(column 2).

In columns 3 and 4 in both tables, the outcome variable of interest is what pro-
portion of potential entrants actually enter the market. We find that a one standard
deviation increase in Share links δS > 0.5 leads to a 18% decrease in the average
share of entrants within 6 quarters.

The results in column 5 indicate that common ownership has a positive impact
on the duration of time until generic entry. A one standard deviation increase in
Share links δS > 0.5 extends the time to generic entry by 1.4 quarters which is a
24% increase in the average time until generic entry. Thus, not only does common
ownership result in fewer generic entrants, but it also delays the onset of generic
competition.

Finally, an increase in common ownership also makes it more likely that a brand
firm will face zero competition from generic entrants: a one standard deviation
increase in Share links δS > 0.5 increases the probability of no generic entry by
0.056×−1.147 = 6.4 percentage points.

We can use the estimated coefficients to predict the total number of entrants for
different values of Share links δS > 0.5 using the results of column (2) in Table
3.11. We find that when going from the minimum level of Share links δS > 0.5,
i.e., having no major common ownership links at all, to the maximum market level
of 0.318, the average number of entrants in a market would go down from about
4.2 to 1.7, keeping all else constant. Thus, we find that common ownership has
an economically significant effect on total generic entry as it reduces the average
number of total entrants by 50% at its maximum.
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Table 3.10: Market outcomes - δS (market)

(1) (2) (3) (4) (5) (6)
VARIABLES N-6q N Share-6q Share Time No entry

δS (market) -5.821* -8.231** -0.0818 -0.136* 20.57 0.957**
(3.006) (3.956) (0.0605) (0.0773) (14.47) (0.470)

Market Size 3.622*** 4.762*** 0.0320** 0.0488*** -4.779** -0.114*
(0.914) (1.089) (0.0129) (0.0163) (2.197) (0.0655)

Authorized Generic (0/1) 0.471 0.789* 0.0101 0.0141 -2.223 -0.0958**
(0.380) (0.460) (0.00800) (0.00920) (1.380) (0.0426)

Orphan Drug (0/1) -0.403 -0.193 0.00649 0.0116 1.772 0.0799
(0.611) (0.808) (0.0168) (0.0207) (2.277) (0.0838)

Pediatric Drug (0/1) 0.990** 1.545*** 0.0216** 0.0308** -2.879* -0.0821
(0.442) (0.548) (0.0106) (0.0122) (1.588) (0.0523)

Substitutes on Patent (ATC2) ÷ 10 -0.414 -0.200 -0.00543 -0.00994 0.827 7.57e-05
(0.486) (0.631) (0.00900) (0.0120) (1.756) (0.0577)

Substitutes off Patent (ATC2) ÷ 10 -0.106 -0.428 -0.0112 -0.0151 -0.403 -0.0172
(0.336) (0.419) (0.0105) (0.0123) (2.086) (0.0596)

Observations 395 395 395 395 395 395
R-squared 0.391 0.467 0.381 0.446 0.326 0.348
Therapeutic field Yes Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes Yes

Notes: OLS. Standard errors in parentheses are robust. The constant term is estimated but not reported.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.11: Market outcomes - Share links δS > 0.5

(1) (2) (3) (4) (5) (6)
VARIABLES N-6q N Share-6q Share Time No entry

Share links δS > 0.5 -6.389** -8.157** -0.117* -0.164** 25.48* 1.147**
(2.641) (3.636) (0.0624) (0.0772) (13.80) (0.506)

Market Size 3.643*** 4.781*** 0.0326** 0.0495*** -4.890** -0.118*
(0.901) (1.088) (0.0129) (0.0164) (2.232) (0.0657)

Authorized Generic (0/1) 0.543 0.887* 0.0112 0.0158* -2.486* -0.108**
(0.386) (0.467) (0.00805) (0.00925) (1.376) (0.0426)

Orphan Drug (0/1) -0.408 -0.199 0.00639 0.0114 1.792 0.0808
(0.615) (0.810) (0.0167) (0.0204) (2.287) (0.0845)

Pediatric Drug (0/1) 0.932** 1.458*** 0.0209** 0.0295** -2.687* -0.0730
(0.440) (0.548) (0.0105) (0.0121) (1.540) (0.0504)

Substitutes on Patent (ATC2) ÷ 10 -0.334 -0.0923 -0.00410 -0.00794 0.520 -0.0139
(0.488) (0.635) (0.00915) (0.0123) (1.786) (0.0572)

Substitutes off Patent (ATC2) ÷ 10 -0.152 -0.490 -0.0119 -0.0162 -0.229 -0.00921
(0.333) (0.414) (0.0105) (0.0123) (2.082) (0.0593)

Observations 395 395 395 395 395 395
R-squared 0.393 0.467 0.385 0.449 0.330 0.353
Therapeutic field Yes Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes Yes

Notes: OLS. Standard errors in parentheses are robust. The constant term is estimated but not reported.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

3.7 Conclusion

Ownership linkages between firms, which typically arise due to large investors that
invest in multiple firms in an industry, are a defining feature of firm ownership
structures in the present day. Consequently the question of whether these investors
influence firm strategies and correspondingly whether common ownership between
rival firms has an effect on product markets outcomes has recently attracted signif-
icant attention.

In this article we consider the effect of common ownership on market entry deci-
sions in the pharmaceutical industry. Given that generic entry results in substantial
revenue losses for the brand firm that can be much higher than the generic’s gains
from entry, a simple theory model shows that higher common ownership reduces
generic entry as common owners have both the incentive and ability to push back
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entry. Empirical results lend robust support to this proposition. We show that
higher common ownership between a potential generic entrant and the brand firm
(incumbent) in a specific drug market has a significant negative effect on the likeli-
hood that the generic firm will enter the market. Based on a linear probability model
that relates generic entry to several measures of common ownership with the brand,
we find that a one-standard-deviation increase in common ownership decreases the
probability of generic entry by 15-18%. Moreover, we show that common ownership
has an effect on the overall number of generic firms in a market. A one-standard-
deviation increase in common ownership at the market level decreases total entry
by as much as 15%. Still, it is perhaps important to stress that, as compared to the
effect of being fully owned by the brand, the effect of any level of common ownership
between the generic and the brand is smaller.

This research contributes to the literature on the product markets effects of com-
mon ownership and informs the current debate. We provide evidence that is con-
sistent with the hypothesis that common shareholders indeed influence strategic
decisions of companies. Given the importance of generic entry in terms of reduc-
ing drug prices and therefore overall healthcare costs, common ownership in the
pharmaceutical industry may have the potential to raise the costs to consumers and
healthcare payers.

There is room for future work on the topic in several dimensions. First, to make
a clear welfare assessment on the link between common ownership and welfare, a
more structural empirical model is needed where entry, pricing and innovation de-
cisions are explicitly modelled. Further, much still needs to be done to understand
the corporate governance of common ownership, both how holdings translate into
incentive, and ability to influence on the one hand, and how preferences of diverse
investors are aggregated into firm’s decisions on the other hand. Finally, US phar-
maceutical markets are a clear example where common ownership can impact entry.
Indeed, given the large asymmetries between brand and generic profits, incentives
are high. It would be interesting to identify other markets where both incentives
and abilities are high, and to investigate whether common owners exert influence
there on entry too.
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3.8 Appendix

3.8.1 Common ownership
Anecdotal Evidence
We provide some anecdotal evidence that institutional investors are interested in influencing gov-
ernance, policies and strategic decisions of firms. Evidence in Appel et al. (2016) suggests that
informal discussions between institutions and managers, backed with the threat of voice (i.e., vot-
ing in shareholding meetings), are often used to exert influence. Glenn Booraem, controller of
Vanguard funds, notes that engagement with directors and management of companies is a key
component and that Vanguard has “found through hundreds of discussions every year” that it
is “frequently able to accomplish as much -or much more through dialogue” as through voting
(Booraem, 2014).

Furthermore, Vanguard’s chairman recently stated that Vanguard seeks active interactions with
firms they invest in: “In the past, some have mistakenly assumed that our predominantly passive
management style suggests a passive attitude with respect to corporate governance. Nothing could
be further from the truth.”30 A similar message emerges from BlackRock’s chairman Larry Fink,
“We are an active voice, we work with companies, we need to work for the long-term interest.”31

Specifically in pharmaceutical markets, institutional investors can be seen to take an active
interest in the strategic decisions of companies. In 2016, a group of representatives of major
US mutual funds (Fidelity Investments, T. Rowe Price Group Inc., Wellington Management Co.,
among others) met up with top biotechnology and pharmaceutical executives and lobbyists to
discuss the pricing conditions of the market and the possible steps that could be taken in order
to avoid future regulations. This example also illustrates that investor interactions need not be
addressed to a particular company but can be extended to a specific industry.32

30Letter sent by F. William McNabb III, Vanguard’s Chairman and CEO, to the independent
leaders of the boards of directors of the Vanguard funds’ largest portfolio holdings, dated 27
February 2015, available at https://about.vanguard.com/vanguard-proxy-voting/CEO Letter 03
02 ext.pdf.

31Wall Street Journal, ‘BlackRock’s Larry Fink: typical activists are too short-term’, dated
16 January 2014, available at http://blogs.wsj.com/moneybeat/2014/01/16/blackRocks-larry-fink-
typical-activists-are-too- short-term/

32Chen, C. (2016). Mutual fund industry to drug makers: stand up and defend yourself.
Bloomberg News. Retrieved from https://www.bostonglobe.com/business/2016/05/10/mutual-
fund-industry-drugmakers-stand-and-defend-yourself/REKxLITGDeQR2oVmUZaTIP/story.html
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Figure 3.6: iShares U.S. Pharmaceutical ETF (IHE) - Snapshot of Hold-
ings
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3.8.2 Dataset construction
This Appendix contains a detailed description of how the data used for the analysis in this article
was constructed. The Orange Book has been downloaded from the FDA website for each year
(2001q4, 2002q4,..., 2017q4) using Internet Archive. In the current version of the Orange Book
online the names of companies have been partially back-dated to display the current manufacturer
of a drug. To establish the company name and drug status at the time of approval, we merged
information from multiple versions of the FDA Orange Book.

Duplicate applications in the FDA Orange Book were identified and removed. Where duplicate
applications had different approval dates, the earlier date was taken. Thereafter the products in the
dataset were merged with historical patent data from the FDA based on the FDA drug application
number and product number. The patent data provides a complete list of which patents are
associated with the product and their corresponding expiration dates.

In the FDA Orange Book, a drug product can be identified as a unique ingredient-form-strength
combination. For example, Cetirizine Hydrochloride in syrup form with a strength of 5mg/5ml.
Initially, the FDA Orange Book reports 3964 products at the ingredient-form-strength level that
were launched from 1982q1 until 2017q2. For our purposes we restricted the data in multiple ways.
First, we consider only drug products that faced generic entry or patent expiry in the time frame
2004q1 to 2014q4 (this is the range where we have data on all variables). This results in a sample
of 1080 unique drug products. We then drop drug products which are not linked to any patent
(as this study focuses on market entry in markets that are initially protected by patents). This
results in 666 unique drug products. Thereafter we drop OTC drugs, keeping only prescription
drugs. This results in 640 unique drug products.

On the basis of information contained in the Orange Book we seek to remove drug products
where the original brand drug was withdrawn for safety reasons. We identify these products as
cases where the original brand has been discontinued, and there is no note in the Orange Book
that the discontinuation was not for safety reasons. Dropping these brand products results in 554
unique drug products. We drop two further drug products where generic applications (ANDAs)
were approved before the NDA application for the same ingredient-form-strength. This results in
552 drug products.

We then aggregate these drug products to the ingredient-form level. We take the first strength
that was approved by the FDA at the ingredient-form level as the relevant brand product. We
then identify subsequent ANDAs that were approved at the same ingredient-form level. In cases
where a generic enters with multiple strengths, we keep only the earliest entry. This results in 457
unique drug product markets, or brand products, at the ingredient-form level.

A variable is constructed that takes the earlier of either generic entry or the date of the last
expiring patent for the relevant product market at the ingredient-form level; called “end of exclu-
sivity.”

Each product is linked through exact text matching, based on compound-name, with the
ATC/DDD Index 2015.33 The ATC/DDD Index 2015 is used to identify relevant therapeutic

33The ATC/DDD Index 2015 categorizes all chemical compounds used in any therapeutic field
according to a five-level hierarchical system, called the Anatomical Therapeutic Chemical (ATC)
Classification System. The highest level (ATC1) consist of 14 anatomical main groups (e.g. Ali-
mentray Tract and Metabolism (A) or Cardiovascular System (C)). The next lower level (ATC2)
describes 88 therapeutic main groups (e.g. Drugs used in Diabetes (A10) or Diuretics (C03)).
Lower levels make even finer distinctions between products. The lowest level (ATC5) indicates
3709 chemical substances.
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markets and chemical classes for different levels of the ATC classification system. Whereas the
ATC3 level is most in line with market definition in M&A approval procedures in Europe and the
United States, through the matching process one drug may be linked with numerous therapeutic
classes at the ATC3 level. To ensure that we obtain a unique therapeutic class for each drug, we
use the broader market definition of ATC2.

For each drug product market, we identify if the brand firm has launched its own generic in
the market (an “authorized generic”) using the FDA list of authorized generics. The merge was
conducted on the basis of trade name and form. Additional information, such as submission class,
is merged in using the FDA application number.34 We recode the FDA form/route variable to
construct five form/route classes namely oral, injection, topical, ophthalmic and inhalation.

The data on firms and their product launches from the FDA Orange book is then matched
with the Thomson Reuters ownership dataset based on the name of the pharmaceutical company.
We correct for the fact that firms may change their name over the course of the sample period
and undergo mergers, on the basis of public information. We record the year-quarters in which
each firm is either publicly listed or not. For example, some companies in the sample start out
being publicly listed, and then are taken off the stock exchange (e.g., if they experience a leveraged
buyout) and then are later made public again. It can occur that a company that is known to have
been public in a specific year-quarter, has no ownership information in this year-quarter in the
Thomson Reuters dataset. Where we have a public firm in the pair that has missing ownership data
we remove this pair from the analysis. A total 6 markets are dropped due to missing ownership
data, resulting in 451 drug markets.

We then match the brand drug products in our sample with Medicaid reimbursement data,
publicly available from medicaid.gov, at the national level using National Drugs Codes (NDC)
which are unique product identifiers for drugs in the US. A drug product in our sample may be
matched with multiple NDC codes due to the fact we define drug products at the ingredient-form
level, whereas NDC codes are defined at the finest level taking drug strength and package size
into account. We aggregate information on the total amount reimbursed per year by summing
over NDC codes for a drug product. Due to that fact that some drugs cannot be matched with
Medicaid reimbursements, we are left with 395 unique drug product markets.

Subsidiary firms are assigned the ownership structure of the parent firm under the assumption
that they are fully controlled by the parent. However in recognition of the fact that the subsidiary
is a separate entity from the parent with its own previous experience, we determine all experience
variables at the subsidiary level. That is, we do not assign the experience of the parent to the
subsidiary. In the final dataset, there are 93 unique brand companies and 189 unique generic
companies operating within the relevant markets and time period. Given that the focus of the
article is on links between brand and generic companies, we then make our dataset pairwise;
creating brand-generic pairs. There are 10,453 unique pairs.

The common ownership measures are constructed at the pair level using data from Thomson
Reuters Global Ownership Database from 2003 to 2014. We calculate common ownership measures
in the year of the end of exclusivity (lag 0), one year prior (lag 1) and two years prior (lag 2).
When constructing measures of common ownership, we restrict ourselves to the investor holdings
that represent at least one percent in the equity of the firms. Investor acquisitions during this
period and ultimate owners are identified on the basis of public sources.

34The main submission classes include Type 1 New Molecular Entity, Type 2 New Active In-
gredient, Type 3 New Dosage Form, Type 4 New Combination, Type 5 New Formulation or Other
Differences (e.g., new indication, new applicant, new manufacturer).
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3.8.3 Formal model and proofs
In this Appendix, we characterize the equilibrium entry decisions of the N potential entrants, as
a function of their symmetric “market-level” common ownership with the brand, δ. To this end,
we first analyse the strategic interaction between generics’ entry decisions. All the proofs can be
found in the last subsection of this Appendix.

Strategic effects: complements or substitutes?

For ease of illustration, let us restrict ourselves in this subsection to the case of N = 2 potential
generic entrants.

We investigate if focal generic g is less (or equally) likely to enter as the probability p1 of
having a competing generic increases, and the probability p0 of having none declines (“strategic
substitutes"); or alternatively, if g is more (or equally) likely to enter as p1 increases (“strategic
complements"). Substituting p0 = 1− p1 and deriving Πg in (3.1) with respect to p1,

∂Πg(p0, p1, δ)/∂p1 = (π1
g − π0

g) + δ(∆π1
b −∆π0

b ),

we can identify two effects. The first term is negative, as π0
g > π1

g , and therefore the gains from
entry of g are lower if the other is more likely to enter. This is the traditional business stealing
effect from competition of other generics. The second term, though, is positive, as

∣∣∆π0
b

∣∣ > ∣∣∆π1
b

∣∣.
As the other generic is more likely to enter, the effect of focal generic entry on the brand firm is
less detrimental, as the reduction of brand profits in the presence of another competing generic is
smaller.

The overall effect depends on which of the two effects, proxied by the profits of generic entrant
πkg and the loss in profits of the brand

∣∣∆πkb ∣∣, decreases faster with the entry of others, and thus
how the ratio δ̄k ≡ πkg/

∣∣∆πkb ∣∣ changes with k. If the generic profits decrease faster, and thus
the ratios are such that δ̄1 < δ̄0, others entering is more detrimental and entry decisions exhibit
strategic substutabilities. Instead, if the brand losses decrease faster, and thus δ̄0 < δ̄1, others
entering is less detrimental and entry decisions exhibit strategic complementarities. The results
are summarized in the following lemma.

Lemma 2. (a) If δ̄1 < δ̄0, the generic firm g is less (or equally) likely to enter if the other generic
firm is more likely to enter (strategic substitutability).
(b) If δ̄0 < δ̄1, the generic firm g is more (or equally) likely to enter if the other generic is more
likely to enter (strategic complementarity).

Figure 3.7 depicts the combinations of g’s common ownership with the brand, δ, and probabil-
ity of the other entering, p1, for which g’s entry is profitable (marked in the darker shade in the
figure); where the left panel shows the case of strategic substitutes and the right panel the case for
strategic complements. Clearly, for a given p1, common ownership reduces entry profitability. But
the effect of the probability of the other entering, p1, for a given level of common ownership δ has
non-trivial effects on the profitability of entering. An increase in p1 may mean that entry switches
from profitable to unprofitable in the intermediate region of δ in the case of substitutes (the left-
hand panel) whereas it may switch from unprofitable to profitable in the intermediate region of δ
in the case of complements (the right-hand panel). Still, in both cases, entry is profitable for any
p1 if δ is sufficiently low, i.e. entering is a dominant strategy, whereas entry is unprofitable for any
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p1 if δ is sufficiently high, i.e. not entering is a dominant strategy.

Figure 3.7: Profitable entry of g as a function of δ and p1

Equilibrium entry decisions

Now let us consider the pure-strategy equilibrium decisions in the general case of N potential
entrants as a function of their symmetric level of common ownership with the brand, δ. Considering
and distinguishing between the two cases identified in the previous proposition, the proposition
summarizes the overall number of entrants in equilibrium.

Lemma 3. (a) In the case of strategic substitutes (δ̄N−1 < δ̄N−2 < ... < δ̄0), the number of
entrants in equilibrium is: N if δ ≤ δ̄N−1; N − k if δ̄N−k < δ ≤ δ̄N−k−1 for k = 1, ..., N − 1; and
0 if δ̄0 < δ.
(b) In the case of strategic complements (δ̄0 < δ̄1 < ... < δ̄N−1), the number of entrants in
equilibrium is: N if δ ≤ δ̄0; N or 0 if δ̄0 < δ ≤ δ̄N−1; and 0 if δ̄N−1 < δ.

Figure 3.8 depicts the number of entrants in equilibrium as a function of their symmetric level
of common ownership with the brand, δ. In both cases, there exists multiple equilibria in all the
intermediate regions. But in the case of strategic substitutes, the equilibrium difference is between
the identity of entrants and not how many of the entrants enter. In the case of complementarities,
the equilibrium number of entrants is extreme, either none or all of them shall enter. This is
because, in the case of substitutes, the entry of another generic makes generic entry less profitable,
whereas in the case of complements, it makes it more profitable.

Figure 3.8: Number of entrants in equilibrium as a function of δ

Still, in both cases, the equilibrium number of entrants decreases with the level of common
ownership, as long as we assign a fixed probability of selecting one equilibrium over another. This
is a proof of the second statement in Proposition 1 of the main text.
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Proof of Lemma 2

We determine the optimal entry decision of focal generic firm g for a given probability of entry
of the other generic, p1, i.e. the best response function.

We first note that whether profits of the focal generic increase if the other is more likely to enter
depends on the level of common ownership. Indeed, in the case where N = 2, we can write the
profits as a function of just p1,

Πg(p1, δ) = (1− p1)(π0
g + δ∆π0

b ) + p1(π1
g + δ∆π1

b )

and, as displayed in the text,

∂Πg(p1, δ)/∂p1 = (π1
g − π0

g) + δ(∆π1
b −∆π0

b ).

As this function is strictly increasing in δ (∂2Πg(p1, δ)/∂p1∂δ = ∆π1
b − ∆π0

b > 0), and it has a
negative intercept (∂Πg(p1, 0)/∂p1 = π1

g − π0
g < 0), there exists δ∗ such that, if δ ≤ δ∗, prof-

its are decreasing in p1 (∂Πg(p1, δ)/∂p1 ≤ 0) whereas, if δ > δ∗, profits are increasing in p1

(∂Πg(p1, δ)/∂p1 > 0), where
δ∗ ≡ −(π1

g − π0
g)/(∆π1

b −∆π0
b ).

Second, we determine the optimal decision in cases where the other generic uses pure-strategies:

• If p1 = 0 (i.e., it does not enter for sure), g shall it find it optimal to enter if δ ≤ δ̄0 as
Πg(0, δ) = π0

g + δ∆π0
b ≥ 0 if and only if

δ ≤ π0
g/
∣∣∆π0

b

∣∣ ≡ δ̄0.
• Similarly, if p1 = 1 (i.e., it does enter for sure), g shall it find it optimal to enter if δ ≤ δ̄1

as Πg(1, δ) = π1
g + δ∆π1

b ≥ 0 if and only if

δ ≤ π1
g/
∣∣∆π1

b

∣∣ ≡ δ̄1.
Simple algebra shows that if δ̄1 < δ̄0 then δ̄0 < δ∗ whereas if δ̄0 < δ̄1 then δ∗ < δ̄0. These two

cases affect the strategic interaction.
Let us now consider the best response function for different levels of common

ownership, δ. We first show that, if δ̄1 < δ̄0 and thus δ̄1 < δ̄0 < δ∗, focal generic g is less (or
equally) likely to enter if p1 is greater (termed “strategic substitutes”). Still, it may be that the
generic’s profits increase with the entry of the other, as long as it does not affect the decision.

• If δ ≤ δ̄1 then entering is a dominant strategy. Indeed, we have that δ < δ∗ and g is less
likely to enter if the probability of entering of the other is greater ( ∂Πg(p1, δ)/∂p1 < 0). As
δ ≤ δ̄1, g should enter for any p1 as Πg ≥ 0 even in the most adverse case, in which the
other does enter for sure, p1 = 1.

• In the case in which δ̄1 < δ ≤ δ̄0, the decision to enter depends on p1: g should enter if the
probability of the other entering is low. In formal terms, Πg > 0 if and only if p1 < p∗1 where
p∗1 is such that Πg(p∗1, δ) = 0. Notice that p∗1 is well defined, as Πg(0, δ) > 0 (as δ < δ̄0),
∂Πg(p1, δ)/∂p1 < 0 (as δ < δ∗) and Πg(1, δ) < 0 (as δ > δ̄1). In addition, note that the
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threshold level of p∗1 is decreasing in the level of common ownership,

∂p∗1/∂δ = −[∂Πg(p1, δ)/∂δ]/[∂Πg(p1, δ)/∂p1] < 0.

• If δ̄0 < δ ≤ δ∗, then not entering is a dominant strategy. Indeed, g should not
enter for any p1 as Πg < 0 even in the most favorable case, in which the other
does not enter for sure, p1 = 0.

• In case the levels of common ownership δ are such that δ > δ∗ then not entering is
dominant. In that case g is more likely to enter if the probability of entering of the other is
greater (∂Πg(p1, δ)/∂p1 > 0), but g should not enter for any p1 as Πg < 0 even in
the most favorable case, in which the other enters for sure, p1 = 1 as δ > δ̄1.

Second, we show that, if δ̄0 < δ̄1 and thus δ∗ ≤ δ̄0 < δ̄1, focal generic g is more (or equally
as) likely to enter if p1 is greater (labeled as “strategic complements”).

• In case the levels of common ownership δ are such that δ < δ∗ then entering is dominant.
In that case g is less likely to enter if the probability of entering of the other is greater
(∂Πg(p1, δ)/∂p1 < 0) but g should p1 as Πg > 0 even in the most adverse case, in which
the other enters for sure, p1 = 1 as δ < δ̄1.

• In the case in which δ∗ < δ ≤ δ̄0, entering is dominant. Indeed as δ > δ∗ g is more likely to
enter if the probability of entering of the other is greater ∂Πg(p1, δ)/∂p1 > 0). As δ < δ̄0 g

should enter for any p1 as Πg > 0 even in the most adverse case, in which the other does
not enter for sure, p1 = 0.

• In the case in which δ̄0 < δ ≤ δ̄1, the decision to enter depends on p1: g should enter if the
probability of the other entering is high. In formal terms, Πg > 0 if and only if p1 > p∗1
where p∗1 is such that Πg(p∗1, δ) = 0. Notice that p∗1 is well defined, as Πg(0, δ) < 0 (as
δ > δ̄0), ∂Πg(p1, δ)/∂p1 > 0 (as δ > δ∗) and Πg(1, δ) > 0 (as δ < δ̄1). In addition, note
that the threshold level of p∗1 is decreasing in the level of common ownership,

∂p∗1/∂δ = −[∂Πg(p1, δ)/∂δ]/[∂Πg(p1, δ)/∂p1] > 0.

• If δ∗ > δ̄1 g then not entering is dominant. Indeed g should not enter for any p1 as Πg < 0
even in the most favorable case, in which the other does enter for sure, p1 = 1.

Proof of Lemma 3

We proceed in two steps. We first determine the optimal entry decision of focal generic firm g for
each entry decision of the other N−1 generics. That is, we compute, as in the previous proposition,
the best response function (which depends again on the level of common ownership). But here,
although allowing for N generics, we concentrate on pure strategies. As we assume generics to be
symmetric, the key is how many, but not which one, of the others decide to enter. In a second
step, we compute the (pure-strategy) Nash equilibria.

As in the previous proposition, in case k of the other entrants enter (k = 0, ...N −1, pk = 1 and,
for any j 6= k, pj = 0), g shall it find it optimal to enter if and only if δ ≤ δ̄k as Πg = πkg + δ∆πkb ≥ 0
if and only if

δ ≤ πkg/
∣∣∆πkb ∣∣ ≡ δ̄k.
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In the case of a single potential entrant (N = 1 and k = 0), this is the optimal decision: enter if
δ ≤ δ̄0 and do not if δ > δ̄0. In this case, parts (a) and (b) in the statement of the proposition are
the same. From now on we consider N > 1.

Now let us consider the two cases of the statement of the proposition. Suppose first that
δ̄N−1 < δ̄N−2 < ... < δ̄0 (“strategic substitutes”). The best response function of g with respect
to the number of other entrants depends, as in the previous proposition, on the level of common
ownership.

• If δ ≤ δ̄N−1 entering is a dominant strategy for g, independent of the number of other
entrants, as δ ≤ δ̄k for any k.

• If δ̄N−k < δ ≤ δ̄N−k−1 for any k = 1, ..., N − 1, g shall enter if N − k − 1 other generics, or
less, enter, as δ ≤ δ̄N−k−1 < ... < δ̄0, but it shall not enter if N − k other generics, or more,
do enter, as δ̄N−1 < ... < δ̄N−k ≤ δ.

• Finally, if δ > δ̄0 not entering is a dominant strategy, as δ > δ̄k for any k.

For instance in the case of two potential entrants (N = 2), g should enter if δ ≤ δ̄1, enter if and
only if the other does not enter if δ̄1 < δ ≤ δ̄0 (as N = 2, k = 1, N − k − 1 = 0 and N − k = 1)
and not enter if δ > δ̄0.

The equilibrium number of entrants also depends on the (symmetric) level of common ownership
with the brand.

• If δ ≤ δ̄N−1 all should enter in equilibrium, as entering is a dominant strategy.

• If δ̄N−k < δ ≤ δ̄N−k−1 for any k = 1, ..., N − 1, N − k generics should enter in equilibrium,
as entering is optimal if N − k− 1 other generics enter and not entering is optimal if N − k
do so.

• Finally, if δ > δ̄0 none of them should enter as not entering is a dominant strategy.

For instance in the case of two potential entrants (N = 2, which implies k = 1), the two generics
should enter if δ ≤ δ̄1, one of them should enter if δ̄1 < δ ≤ δ̄0 (as N = 2, k = 1 and N − k = 1)
and none of them should enter if δ > δ̄0.

Suppose now that δ̄0 < δ̄1 < ... < δ̄N−1 (“strategic complements”). The best response function
of g with respect to the number of other entrants is now as follows:

• If δ ≤ δ̄0 entering is again a dominant strategy for g, as δ < δ̄k for any k.

• But now, if δ̄N−k−1 < δ ≤ δ̄N−k for any k = 1, ..., N−1, g shall enter if N−k other generics,
or more, enter, as δ ≤ δ̄N−k < ... < δ̄N−1, but it shall not enter if N − k− 1 other generics,
or less, do enter, as δ0 < ... < δ̄N−k−1 < δ.

• Similarly, if δ > δ̄N−1 not entering is again a dominant strategy, as δ > δ̄k for any k.

For instance in the case of two potential entrants (N = 2), g should enter if δ ≤ δ̄0, enter if and
only if the other does enter if δ̄0 < δ ≤ δ̄1 and not enter if δ > δ̄2.

The equilibrium number of entrants also depends on the (symmetric) level of common ownership
with the brand.
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• As before, if δ ≤ δ̄0 all should enter in equilibrium, as entering is a dominant strategy.

• But the equilibria in the intermediate cases δ̄0 < δ ≤ δ̄N−1 are different: either all the N
generics enter or none of them does. Indeed, if N − 1 generics enter, it is optimal to enter,
as δ ≤ δ̄N−1, and if 0 of them does, it is optimal not to enter either, as δ > δ̄0. Moreover,
there is no equilibrium within δ̄0 < δ ≤ δ̄N−1 in which k generics enter, for k is such that
0 < k < N . Indeed, if an entrant finds it profitable to enter then it should also be profitable
for those that do not enter (and if one of the non-entrants find it profitable not to enter
then it should also be non-profitable for one of the entrants).

• Finally, if δ > δ̄N−1 none of them should enter as not entering is a dominant strategy.

In the case of two potential entrants (N = 2, which implies k = 1), the two generics should enter
if δ ≤ δ̄0, the two or none of them should enter if δ̄0 < δ ≤ δ̄1 and none of them should enter if
δ > δ̄1.
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3.8.4 Robustness

Table 3.12: Robustness - Drug market fixed effects

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0220***
(0.00613)

δC -0.0649***
(0.0176)

δL -0.0240***
(0.00527)

δtop5 -0.00508***
(0.00139)

δtop10 -0.00269***
(0.000750)

Subsidiary (0/1) -0.0481*** -0.0467*** -0.0475*** -0.0240 -0.0241
(0.0142) (0.0142) (0.0142) (0.0150) (0.0150)

Experience Route ÷ 10 0.00825*** 0.00824*** 0.00827*** 0.00823*** 0.00825***
(0.000680) (0.000680) (0.000680) (0.000680) (0.000680)

Experience ATC2 ÷ 10 0.0629*** 0.0630*** 0.0628*** 0.0631*** 0.0631***
(0.00810) (0.00810) (0.00810) (0.00809) (0.00810)

Experience New Drug ÷ 10 0.00408 0.00375 0.00426 0.00373 0.00395
(0.00296) (0.00290) (0.00293) (0.00288) (0.00294)

Breadth (ATC2) ÷ 10 0.00199 0.00202 0.00191 0.00187 0.00197
(0.00150) (0.00151) (0.00150) (0.00150) (0.00150)

Observations 34144 34144 34144 34144 34144
R-squared 0.121 0.121 0.121 0.121 0.121
Generic region of origin Yes Yes Yes Yes Yes
Drug product fixed effect Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: OLS regression. Standard errors in parentheses are robust. The dependent variable is en-
try within 6 quarters. The constant term is estimated but not reported. ∗ ∗ ∗p < 0.01, ∗ ∗ p <
0.05, ∗p < 0.1.
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Table 3.13: Robustness - Probit

(1) (2) (3) (4) (5)
VARIABLES

δS -0.426***
(0.126)

δC -1.212***
(0.356)

δL -0.396***
(0.125)

δtop5 -0.0842***
(0.0291)

δtop10 -0.0462***
(0.0147)

Subsidiary (0/1) -0.918* -0.891* -0.890* -0.478 -0.459
(0.508) (0.505) (0.505) (0.512) (0.511)

Market Size 0.360*** 0.358*** 0.358*** 0.357*** 0.358***
(0.0885) (0.0886) (0.0881) (0.0881) (0.0887)

Authorized Generic (0/1) 0.117* 0.118* 0.118* 0.116* 0.116*
(0.0648) (0.0649) (0.0649) (0.0650) (0.0650)

Orphan Drug (0/1) -0.0419 -0.0390 -0.0427 -0.0422 -0.0409
(0.109) (0.109) (0.109) (0.109) (0.109)

Pediatric Drug (0/1) 0.199*** 0.199*** 0.197*** 0.198*** 0.201***
(0.0738) (0.0739) (0.0740) (0.0744) (0.0743)

Substitutes on Patent (ATC2) ÷ 10 -0.0636 -0.0624 -0.0635 -0.0602 -0.0626
(0.0879) (0.0875) (0.0875) (0.0876) (0.0876)

Substitutes off Patent (ATC2) ÷ 10 -0.0567 -0.0551 -0.0576 -0.0596 -0.0575
(0.0758) (0.0761) (0.0757) (0.0761) (0.0762)

Experience Route ÷ 10 0.0742*** 0.0744*** 0.0742*** 0.0740*** 0.0743***
(0.00586) (0.00586) (0.00589) (0.00591) (0.00586)

Experience ATC2 ÷ 10 0.386*** 0.389*** 0.386*** 0.388*** 0.390***
(0.0571) (0.0571) (0.0571) (0.0570) (0.0570)

Experience New Drug ÷ 10 -0.0874** -0.0908** -0.0902** -0.0954*** -0.0926**
(0.0376) (0.0373) (0.0370) (0.0368) (0.0374)

Breadth (ATC2) ÷ 10 0.217*** 0.221*** 0.214*** 0.211*** 0.217***
(0.0275) (0.0275) (0.0274) (0.0275) (0.0276)

Observations 32994 32994 32994 32994 32994
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: Probit regression. Standard errors in parentheses are clustered at the drug market level. The
dependent variable is entry within 6 quarters. The constant term is estimated but not reported. ∗ ∗
∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.14: Robustness - Logit

(1) (2) (3) (4) (5)
VARIABLES

δS -0.893***
(0.267)

δC -2.691***
(0.744)

δL -0.957***
(0.266)

δtop5 -0.182***
(0.0613)

δtop10 -0.0965***
(0.0308)

Subsidiary (0/1) -2.232** -2.160* -2.170* -1.270 -1.264
(1.116) (1.113) (1.113) (1.135) (1.133)

Market Size 0.778*** 0.775*** 0.778*** 0.772*** 0.773***
(0.191) (0.191) (0.190) (0.190) (0.191)

Authorized Generic (0/1) 0.251* 0.251* 0.251* 0.247* 0.246*
(0.140) (0.140) (0.140) (0.140) (0.140)

Orphan Drug (0/1) -0.0628 -0.0523 -0.0645 -0.0639 -0.0605
(0.235) (0.235) (0.236) (0.236) (0.235)

Pediatric Drug (0/1) 0.462*** 0.461*** 0.459*** 0.459*** 0.465***
(0.163) (0.163) (0.163) (0.164) (0.164)

Substitutes on Patent (ATC2) ÷ 10 -0.125 -0.121 -0.126 -0.120 -0.123
(0.192) (0.192) (0.191) (0.191) (0.191)

Substitutes off Patent (ATC2) ÷ 10 -0.146 -0.144 -0.148 -0.153 -0.148
(0.169) (0.170) (0.169) (0.170) (0.171)

Experience Route ÷ 10 0.149*** 0.150*** 0.150*** 0.149*** 0.149***
(0.0119) (0.0120) (0.0121) (0.0121) (0.0120)

Experience ATC2 ÷ 10 0.685*** 0.690*** 0.685*** 0.690*** 0.692***
(0.119) (0.119) (0.119) (0.118) (0.118)

Experience New Drug ÷ 10 -0.187** -0.190** -0.184** -0.202** -0.198**
(0.0815) (0.0810) (0.0804) (0.0802) (0.0812)

Breadth (ATC2) ÷ 10 0.528*** 0.536*** 0.522*** 0.518*** 0.527***
(0.0588) (0.0586) (0.0586) (0.0589) (0.0588)

Observations 32994 32994 32994 32994 32994
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: Logit regression. Standard errors in parentheses are clustered at the drug market level. The
dependent variable is entry within 6 quarters. The constant term is estimated but not reported.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.15: Robustness - Indicator for top 100 sales

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0276***
(0.00678)

δC -0.0789***
(0.0184)

δL -0.0286***
(0.00560)

δtop5 -0.00581***
(0.00142)

δtop10 -0.00301***
(0.000811)

Subsidiary (0/1) -0.0549*** -0.0535*** -0.0540*** -0.0271* -0.0276*
(0.0145) (0.0145) (0.0144) (0.0148) (0.0149)

Top 100 in Sales (0/1) 0.0208*** 0.0208*** 0.0207*** 0.0206*** 0.0208***
(0.00557) (0.00556) (0.00557) (0.00558) (0.00558)

Authorized Generic (0/1) 0.00260 0.00268 0.00267 0.00261 0.00260
(0.00401) (0.00402) (0.00401) (0.00402) (0.00402)

Orphan Drug (0/1) -0.00417 -0.00405 -0.00416 -0.00407 -0.00408
(0.00703) (0.00701) (0.00704) (0.00703) (0.00703)

Pediatric Drug (0/1) 0.0129*** 0.0128*** 0.0129*** 0.0129*** 0.0129***
(0.00481) (0.00481) (0.00481) (0.00483) (0.00483)

Substitutes on Patent (ATC2) ÷ 10 -0.00800 -0.00790 -0.00789 -0.00774 -0.00788
(0.00616) (0.00615) (0.00615) (0.00616) (0.00617)

Substitutes off Patent (ATC2) ÷ 10 -0.00421 -0.00418 -0.00425 -0.00436 -0.00426
(0.00498) (0.00499) (0.00498) (0.00500) (0.00500)

Experience Route ÷ 10 0.00838*** 0.00839*** 0.00842*** 0.00834*** 0.00838***
(0.000856) (0.000856) (0.000857) (0.000854) (0.000857)

Experience ATC2 ÷ 10 0.0608*** 0.0609*** 0.0608*** 0.0609*** 0.0610***
(0.0104) (0.0104) (0.0104) (0.0104) (0.0104)

Experience New Drug ÷ 10 0.00457 0.00413 0.00466 0.00384 0.00410
(0.00287) (0.00283) (0.00285) (0.00280) (0.00285)

Breadth (ATC2) ÷ 10 0.00101 0.00116 0.000948 0.000664 0.000898
(0.00231) (0.00230) (0.00229) (0.00230) (0.00230)

Observations 34144 34144 34144 34144 34144
R-squared 0.0854 0.0854 0.0855 0.0853 0.0852
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: OLS regression. Standard errors in parentheses are clustered at the drug market level. The de-
pendent variable is entry within 6 quarters. The constant term is estimated but not reported. ∗ ∗ ∗p <
0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.16: Robustness - Using total US sales for drugs in top 100

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0902***
(0.0140)

δC -0.229***
(0.0396)

δL -0.0829***
(0.0121)

δtop5 -0.0195***
(0.00331)

δtop10 -0.0112***
(0.00176)

Subsidiary (0/1) -0.121*** -0.114*** -0.117*** -0.0371 -0.0251
(0.0382) (0.0382) (0.0378) (0.0354) (0.0380)

Brand Sales USD bn. 0.0121** 0.0117** 0.0123** 0.0123** 0.0121**
(0.00562) (0.00562) (0.00565) (0.00562) (0.00565)

Authorized Generic (0/1) 0.00741 0.00682 0.00790 0.00749 0.00700
(0.00850) (0.00859) (0.00857) (0.00862) (0.00850)

Orphan Drug (0/1) 0.0110 0.0127 0.0103 0.0101 0.0110
(0.0125) (0.0126) (0.0127) (0.0128) (0.0126)

Pediatric Drug (0/1) 0.0309*** 0.0317*** 0.0310*** 0.0314*** 0.0320***
(0.0112) (0.0113) (0.0114) (0.0115) (0.0112)

Substitutes on Patent (ATC2) ÷ 10 0.00306 0.00440 0.00277 0.00303 0.00280
(0.0101) (0.0102) (0.0102) (0.0102) (0.0101)

Substitutes off Patent (ATC2) ÷ 10 0.0321 0.0319 0.0327 0.0333 0.0320
(0.0219) (0.0220) (0.0222) (0.0224) (0.0219)

Experience Route ÷ 10 0.0143*** 0.0144*** 0.0145*** 0.0143*** 0.0144***
(0.00220) (0.00221) (0.00221) (0.00220) (0.00221)

Experience ATC2 ÷ 10 0.0669** 0.0681** 0.0670** 0.0679** 0.0674**
(0.0266) (0.0266) (0.0267) (0.0267) (0.0266)

Experience New Drug ÷ 10 0.0268*** 0.0241*** 0.0259*** 0.0236*** 0.0262***
(0.00802) (0.00783) (0.00794) (0.00772) (0.00793)

Breadth (ATC2) ÷ 10 -0.00623 -0.00582 -0.00656 -0.00705 -0.00620
(0.00570) (0.00581) (0.00571) (0.00573) (0.00570)

Observations 8600 8600 8600 8600 8600
R-squared 0.152 0.152 0.152 0.152 0.153
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 93 93 93 93 93

Notes: OLS regression. Standard errors in parentheses are clustered at the drug market level. The
dependent variable is entry within 6 quarters. The constant term is estimated but not reported.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.17: Robustness - Broader entrant set

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0143***
(0.00439)

δC -0.0443***
(0.0127)

δL -0.0179***
(0.00390)

δtop5 -0.00378***
(0.000957)

δtop10 -0.00173***
(0.000552)

Subsidiary (0/1) -0.0337*** -0.0332*** -0.0336*** -0.0157* -0.0176*
(0.00885) (0.00883) (0.00884) (0.00925) (0.00955)

Market Size 0.0282*** 0.0282*** 0.0282*** 0.0282*** 0.0282***
(0.00653) (0.00652) (0.00652) (0.00652) (0.00654)

Authorized Generic (0/1) 0.00419 0.00421* 0.00421* 0.00419 0.00419
(0.00254) (0.00255) (0.00254) (0.00255) (0.00255)

Orphan Drug (0/1) -0.00263 -0.00257 -0.00262 -0.00259 -0.00260
(0.00399) (0.00399) (0.00399) (0.00399) (0.00399)

Pediatric Drug (0/1) 0.00790*** 0.00787*** 0.00792*** 0.00792*** 0.00793***
(0.00298) (0.00298) (0.00298) (0.00299) (0.00299)

Substitutes on Patent (ATC2) ÷ 10 -0.00245 -0.00242 -0.00242 -0.00235 -0.00242
(0.00346) (0.00346) (0.00346) (0.00346) (0.00346)

Substitutes off Patent (ATC2) ÷ 10 -0.00264 -0.00262 -0.00266 -0.00270 -0.00264
(0.00254) (0.00255) (0.00254) (0.00255) (0.00255)

Experience Route ÷ 10 0.00837*** 0.00838*** 0.00839*** 0.00836*** 0.00837***
(0.000791) (0.000792) (0.000792) (0.000790) (0.000792)

Experience ATC2 ÷ 10 0.0559*** 0.0560*** 0.0559*** 0.0559*** 0.0560***
(0.00950) (0.00950) (0.00950) (0.00951) (0.00951)

Experience New Drug ÷ 10 0.00447** 0.00429** 0.00474** 0.00437** 0.00439**
(0.00202) (0.00198) (0.00199) (0.00196) (0.00201)

Breadth (ATC2) ÷ 10 1.06e-05 0.000133 9.73e-05 -6.88e-05 1.74e-05
(0.00168) (0.00169) (0.00168) (0.00169) (0.00169)

Observations 55769 55769 55769 55769 55769
R-squared 0.0817 0.0818 0.0819 0.0818 0.0817
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: OLS regression. Standard errors in parentheses are clustered at the drug market level. The depen-
dent variable is entry within 6 quarters. The constant term is estimated but not reported. The sample of
potential generic entrants includes all pharmaceutical companies that launched at least one generic prod-
uct in our drug markets. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Table 3.18: Robustness - Entry ever

(1) (2) (3) (4) (5)
VARIABLES

δS -0.0407***
(0.00848)

δC -0.122***
(0.0232)

δL -0.0424***
(0.00688)

δtop5 -0.00896***
(0.00170)

δtop10 -0.00526***
(0.00101)

Subsidiary (0/1) -0.0783*** -0.0764*** -0.0770*** -0.0356** -0.0316*
(0.0163) (0.0164) (0.0163) (0.0166) (0.0168)

Market Size 0.0465*** 0.0464*** 0.0465*** 0.0464*** 0.0465***
(0.0117) (0.0117) (0.0116) (0.0116) (0.0117)

Authorized Generic (0/1) 0.0111** 0.0112** 0.0111** 0.0110** 0.0110**
(0.00500) (0.00501) (0.00501) (0.00501) (0.00501)

Orphan Drug (0/1) 0.00319 0.00339 0.00319 0.00333 0.00340
(0.00918) (0.00915) (0.00918) (0.00917) (0.00918)

Pediatric Drug (0/1) 0.0182*** 0.0181*** 0.0181*** 0.0182*** 0.0184***
(0.00598) (0.00597) (0.00598) (0.00600) (0.00600)

Substitutes on Patent (ATC2) ÷ 10 -0.00136 -0.00122 -0.00123 -0.00102 -0.00120
(0.00836) (0.00836) (0.00835) (0.00837) (0.00838)

Substitutes off Patent (ATC2) ÷ 10 -0.0143** -0.0142** -0.0143** -0.0145** -0.0143**
(0.00604) (0.00604) (0.00602) (0.00604) (0.00605)

Experience Route ÷ 10 0.00998*** 0.0100*** 0.0100*** 0.00993*** 0.00999***
(0.00101) (0.00101) (0.00101) (0.00101) (0.00101)

Experience ATC2 ÷ 10 0.0840*** 0.0842*** 0.0839*** 0.0842*** 0.0843***
(0.0119) (0.0119) (0.0118) (0.0119) (0.0119)

Experience New Drug ÷ 10 0.00768** 0.00723** 0.00785** 0.00677** 0.00770**
(0.00331) (0.00328) (0.00328) (0.00325) (0.00331)

Breadth (ATC2) ÷ 10 0.00542** 0.00572** 0.00533** 0.00495* 0.00551**
(0.00255) (0.00255) (0.00253) (0.00254) (0.00255)

Observations 34144 34144 34144 34144 34144
R-squared 0.102 0.102 0.102 0.102 0.102
Therapeutic field Yes Yes Yes Yes Yes
Drug form Yes Yes Yes Yes Yes
Submission type Yes Yes Yes Yes Yes
Generic region of origin Yes Yes Yes Yes Yes
Year end of exclusivity Yes Yes Yes Yes Yes
Drug markets 395 395 395 395 395

Notes: OLS regression. Standard errors in parentheses are clustered at the drug market level. The de-
pendent variable is entry (within any time period). The constant term is estimated but not reported.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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Chapter 4

Common Ownership in the US
Pharmaceutical Industry: A
Network Analysis1

Chapter Abstract

This chapter investigates patterns in common ownership networks between firms that
are active in the US pharmaceutical industry for the period 2004-2014. The main
findings are that “brand firms” - i.e. firms that have R&D capabilities and launch
new drugs - exhibit relatively dense common ownership networks with each other that
further increase significantly in density over time, whereas the network of “generic
firms” - i.e. firms that primarily specialize in developing and launching generic drugs
- is much sparser and stays that way over the span of our sample. Finally, when
considering the common ownership links between brands firms, on the one hand, and
generic firms, on the other, we find that brand firms have become more connected
to generic firms over time. The implications of these findings for competition in the
industry are discussed.

4.1 Introduction

Investors’ holdings in multiple firms give rise to what is known as “common own-
ership.” Common ownership is widespread in the US pharmaceutical industry. In
2014, for instance, the largest investor in the three largest pharmaceutical companies
(Johnson & Johnson, Merck & Co and Pfizer) was the same (BlackRock). This is

1This chapter is published as: Banal-Estañol, A., Newham, M. and Seldeslachts, J. (2021)
Common Ownership in the US Pharmaceutical Industry: A Network Analysis. The Antitrust
Journal, 66(1). We thank Einer Elhauge, Sumit Majumdar and Martin Schmalz for their insightful
comments. We further thank Jonas Nieto for his excellent research assistance.
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the rule, not the exception. These three pharmaceutical companies share other large
institutional investors, and are thus connected to each other, as well as to numerous
other pharmaceutical companies, through so-called “common ownership links.” 2

Common ownership links between pharmaceutical companies might have impor-
tant implications for competition and innovation in this crucial industry. By bring-
ing innovative treatments to the market, or by making treatments more widely
accessible, the pharmaceutical industry makes an important contribution to global
health and economic development. At the same time, the industry often gener-
ates controversies related to pricing and product development. A well-functioning
pharmaceutical industry in general, and the consequences of common ownership in
particular, are thus key concerns for policy making and antitrust.

In this article we study the common ownership links between firms that are active
in US pharmaceutical markets in the period 2004-2014 and discuss the implications
of our findings for innovation incentives, entry, pricing and collusion. There is both
anecdotal and empirical evidence, reported further below, showing that large insti-
tutional investors weigh in on pharmaceutical companies’ strategic decision-making.
Given that these investors are both influential and, as we will show, have ownership
stakes in multiple firms within the same market, the common ownership links be-
tween pharmaceutical companies could have important implications for competition
and innovation.

We make use of network analysis to describe the structure and characteristics of
common ownership networks and calculate how central, or influential, actors are in
the network.3 We make a distinction between “brand firms”, that have R&D capa-
bilities and launch new drugs on to the market, and “generic firms,” that produce
bioequivalent replications of brand-name drugs once these drugs come off patent.
We study the evolution of common ownership networks between brand firms and
generic firms separately, as well as the (bipartite) network of brand firms on the one
hand and generic firms on the other. We make use of two common ownership mea-
sures, which determine links on the basis of individual or joint levels of ownership by
common investors. An individual common ownership link between two companies
occurs when there is at least one investor in both companies with an ownership stake

2Institutional investors manage other people’s money by buying equity in companies (such a
pension funds, sovereign wealth funds, insurance companies and investment funds). They typi-
cally seek to build diversified portfolios by investing in multiple companies, often within the same
industry.

3There are surprisingly few papers that make use of network analysis to study common own-
ership patterns. A notable exception is Vitali et al. (2011) who use network analysis to study
investor networks in a large sample of transnational corporations. Network analysis has been ap-
plied to other settings in the academic literature e.g. networks in the venture capital industry see
Hochberg et al. (2007); interorganizational ties see Mizruchi et al. (1993); and networks between
US firms that advocate for free trade see Dreiling & Darves (2011).
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of more than 5%. A joint common ownership link occurs when investors common
to both firms collectively are the majority owners.

We find that, although brand companies are already fairly well connected at the
start of our sample, they become almost fully connected through common ownership
links at the end of the sample. This is true for both measures of common ownership,
although we observe a less dramatic change when using the joint measure, in part
because the network was already highly connected at the beginning of the sample.
If large institutional investors do exert influence, as the anecdotal evidence below
indicates, then this increasing connectivity may have a non-negligible and increasing
impact on innovation incentives. If institutional investors effectively assert their
power in pharmaceutical companies, this increasingly dense network might further
lead to a softening of competition between brand firms’ products. Furthermore,
as the evolution of the network partly depends on the ownership measure used,
the effects of common ownership might depend on whether common investors exert
individual or joint influence.

Alongside higher levels of connectivity between brand firms, the average measure
of centrality, which indicates how influential individual firms are within the common
ownership network, has risen. Interestingly, at the beginning of the sample, the most
central firms were not necessarily the largest (e.g. Biogen and Allergan). On the
contrary, the most central firms towards the end of the sample are also the largest
(e.g. Johnson & Johnson).

The network of brand companies remains, even at the end of the sample, relatively
asymmetric. Indeed, some of the largest pharmaceutical companies, such as Sanofi,
Novartis and Roche, remain without any strong links in 2014. This is in part be-
cause of the presence of large non-common investors in these companies. Although
several brand companies, such as Johnson & Johnson and Pfizer, have a large and
similar centrality value in 2014, several others have low values (or even zero). Thus,
brand firm centrality has not only increased over time, as the common ownership
network has become more connected, but it has also become more dispersed. The
combination of a rise in centrality for the most connected companies and, at the
same time, higher dispersion overall might result in these central players becoming
even more powerful.

In comparison to the brand network, the generic firm network is much sparser
and it becomes less connected over time. Further, as compared to brand companies,
the size of the shareholdings of the top common investors in generic companies -
although larger in 2004 - is smaller in 2014. Consequently, the average level of
centrality for generic firms is much lower than the average for brand firms at the
end of the sample. While this is unlikely to have an impact on innovation - generic
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companies mainly imitate brand products - it indicates that competition between
generics is less affected by common ownership.

Finally, the number of common ownership links between brand companies, on
the one hand, and generic companies, on the other, has increased substantially over
time. Most brand-generic pairs were not connected at the beginning of the sample,
and even some of the largest brands, such as Pfizer, had zero connections with
the generics. At the end of our sample there are a number of strong connections
between brands and generics. Most of the large brands, such as Johnson & Johnson
and Pfizer, have a large number of links by 2014. Similarly, some of the generics,
such as Impax and Perrigo, have a high number of connections with brand firms,
despite having limited links between each other, and with other firms within the
generic ownership network. The increased brand-generic connectivity seems to have
led to a decrease in generic entry, as common investors have both an incentive and
the ability to delay or block generics from entering the market of a brand.4

This paper is structured as follows: Section 4.2 provides a background of the
pharmaceutical industry and provides anecdotal evidence of investors’ influence in
the pharmaceutical industry. Section 4.3 presents our data and a descriptive analy-
sis. Section 4.4 undertakes a network analysis of the common ownership links in the
pharmaceutical industry. Section 4.5 lays out the antitrust implications of common
ownership in the pharmaceutical industry. Section 4.6 concludes.

4.2 Background

Before analysing common ownership patterns and their implications, this section
provides a brief overview of the typical pharmaceutical “life-cycle” which is impor-
tant for understanding how the industry, and thus how competition and innovation
therein, works.5 We then provide a definition of common ownership, and a few exam-
ples. Finally, we report anecdotal and empirical evidence illustrating that common
investors weigh in on pharma companies’ strategic decisions.

4.2.1 Pharmaceutical industry

To bring new drugs to the market pharmaceutical firms must make significant in-
vestments in research and development. In the early stages of drug development,
pharmaceutical companies engage in “drug discovery” to search for and discover
new compounds to treat a specific disease. Given the public nature of the drug

4The impact of brand-generic links through common ownership on generic entry is confirmed
in Newham et al. (2018).

5For a more detailed overview see Lakdawalla (2018).
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approval process, patents are typically issued on novel pharmacological compounds
quite early in the drug development process. They cover the active compound in a
specific formulation and for specific indications.

After many iterations, the final compound becomes a drug candidate. Thereafter,
with one or more optimized compounds in hand, researchers turn their attention to
extensive preclinical testing. In pre-clinical tests the compound is tested for toxicity
and safety. After completion of pre-clinical tests pharmaceutical firms prepare for
the next critical stage in the innovation process - drug development through clinical
trials on humans. To be considered for FDA approval a drug must pass through
three “phases” of clinical trials. This is typically a lengthy and expensive process

In general, the R&D process for each drug is centered around its intended ther-
apeutic area - the disease the drug should target (e.g. Diabetes type II) - and its
‘Mechanism of Action’ (MoA) - the biochemical process through which the drug
produces the desired effect (e.g. SGLT2 inhibitors). The combination of the MoA
within a therapeutic area has been used in practice to define “relevant markets” in
competition enforcement - both at the innovation and launched product stages - as
drugs herein can typically be substituted by general practitioners and patients.

During the process of drug research and development there is competition in the
“innovation space.” Pharmaceutical companies engage in a race with other firms
who are working on compounds to treat the same disease with a similar MoA.
As rivals are often working in parallel on similar targets, often applying the same
fundamental knowledge sourced from open science, the solutions they come up with
may be similar. Pharmaceutical companies typically want to be the first to market
with a drug that uses a new type of technology in order to profit from a first-to-
market advantage.

Companies that produce novel drugs must apply for FDA approval through the
new drug application (NDA) procedure. Drugs that are declared safe and effective,
and are successfully approved by the FDA, are then launched on the market. Novel
“brand-name” drugs are afforded a number of regulatory protections, including the
patent on the key compound or active ingredient, which provide the company with
a monopoly for their specific drug for a period of time. Nevertheless, once in the
market, the drug will compete with other treatments that are substitutable from a
therapeutic perspective, although not identical (“brand-brand” and/or “intermolec-
ular” competition).

Once the regulatory protections afforded to the drug have expired, the market is
open for generic entry. Generic firms produce bioequivalent copies of brand drugs
and are typically much lower in price. The process by which generic manufacturers
can seek approval from the FDA is set out in the Hatch-Waxman Act. The act
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allows the generic applicant to apply for FDA approval by filing an abbreviated new
drug application (ANDA) whereby the generic applicant can rely on the efficacy
and safety data generated by the original innovator. The Hatch–Waxman Act also
provides incentives for generic manufacturers to challenge patents in court, under
“Paragraph IV.” Once launched on the market, generic drugs compete directly with
the brand drug as they are essentially the same product (“intramolecular” compe-
tition) (Regan, 2008). In our analysis we distinguish between “brand firms” that
have R&D capabilities and launch new drugs, and “generic firms” that primarily
specialize in generic drugs.

In the US, drug prices are negotiated on between individual health insurance
plans and the pharmaceutical company. While consumers may face some out-of-
pocket expenditures for drugs, the cost of medical treatments is primarily paid by
health insurance companies. High prescription drug prices are a concern for policy
makers.6 A number studies do not find that “brand-brand” competition effectively
lowers list prices (Sarpatwari et al., 2019) Generic competition, on the other hand is
crucial for lowering prices. For products with a single generic producer, the generic
average market price is 39% lower than the brand average market price before generic
competition. With six or more competitors, generic prices show price reductions of
more than 95% compared to brand prices7 Accordingly, promoting generic entry is
an important policy goal for the FDA.8

4.2.2 Institutional investors and common ownership

Common ownership exists when an investor has a stake in two or more firms. Table
4.1 shows the top five investors in the three largest pharmaceutical companies -
which are all brand firms - that operate in US markets in the period 2004-2014
(see the data section below for more details on our sample). From this table it is
clear that there are a number of institutional investors, such as Vanguard and State
Street, that are common owners with shareholdings in all three firms in both 2004
and 2014. BlackRock holds the number one position, with a stake of 5-7%, in all

6E.g. see Kuchler, H. Why prescription drugs cost so much more in America, September
19, 2019. Financial Times. Available at: https://www.ft.com/content/e92dbf94-d9a2-11e9-8f9b-
77216ebe1f17

7See FDA website, New Evidence Linking Greater Generic Competition and Lower Generic
Drug Prices. Available at: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-
cder/generic-competition-and-drug-prices

8See FDA website, Statement from FDA Commissioner Scott Gottlieb, M.D., on new policy
to improve access and foster price competition for drugs that face inadequate generic competition
[Press release]. 19 February 2019. Available at: https://www.fda.gov/news-events/press-
announcements/statement-fda-commissioner-scott-gottlieb-md-new-policy-improve-access-and-
foster-price-competition
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three companies in 2014 (in 2004 Barclays Global Investors, which was taken over
by Blackrock in 2009, was number one or two in all three companies). A comparison
between 2014 with 2004 also shows the growth of Vanguard, both in terms of the
size of its shareholdings and position.

Table 4.1: Top five investors in top brand firms

Johnson & Johnson
2004 2014

State Street Global 5% BlackRock 6%
Barclays Global Investors 4% Vanguard Group 6%
Fidelity Investments 3% State Street Global 5%
Robert Wood Johnson Foundation 2% Royal Bank of Canada 2%
Vanguard Group 2% Fidelity Investments 2%

Merck & Co
2004 2014

Barclays Global Investors 4% BlackRock 6%
State Street Global 3% Capital World Investors 6%
Fidelity Investments 3% Wellington Management 5%
Vanguard Group 2% Vanguard Group 5%
Capital Group 2% State Street Global 4%

Pfizer
2004 2014

Fidelity Investments 4% BlackRock 7%
Barclays Global Investors 4% Vanguard Group 5%
State Street Global 3% State Street Global 4%
Vanguard Group 2% Capital World Investors 2%
Wellington Management 2% Wellington Management 2%

Table 4.2 shows the top five investors in the three largest generic firms that oper-
ate in US markets in 2004 and 2014. Here too we see that BlackRock is an important
common owner with shareholdings in Endo International and Perrigo in 2014. How-
ever, in comparison to the relatively stable ownership structure of brand companies
in Table 4.1, we see more changes in the identity and size of the shareholdings of
the top shareholders in generic firms. We further note that, especially in 2004,
the largest investor in each company has a sizeable stake. For instance, Kelso &
Company has a stake of 66% in Endo in 2004, and J.P. Morgan Chase has a stake
of 27% in Sun Pharmaceutical in 2004. The largest shareholders in brand firms
have much smaller stakes (around 5-6%). Furthermore, the identity of these top
investors is different to the top investors in the largest brand firms, especially for
Sun Pharmaceutical.
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Table 4.2: Top five investors in top generic firms

Endo International
2004 2014

Kelso & Company 66% Capital Group 10%
Black Diamond Capital 8% Janus Capital Group 9%
Royce & Associates 6% BlackRock 7%
Barclays Global Investors 4% Vanguard Group 6%
Fidelity Investments 3% Blue Ridge Capital 4%

Perrigo
2004 2014

Wellington Management 13% BlackRock 7%
Royce & Associates 10% Vanguard Group 6%
Jandernoa (Michael J) 9% Fidelity Investments 5%
Barclays Global Investors 7% State Street Global 4%
Perkins Investment 6% Wellington Managment 3%

Sun Pharmaceutical
2004 2014

J.P. Morgan Chase 27% Shanghvi (Dilip Shantilal) 11%
ABF Espana Gestion 14% Viditi Investment 10%
Arisaig Partners (Asia) 14% Tejaskiran Pharmachem Industries 9%
Aberdeen Asset Management 14% Family Investment 9%
HDFC Asset Management 4% Quality Investment 9%

4.2.3 Institutional investors’ influence in pharma

Despite having shareholdings of “only” 5-7%, there is growing evidence that institu-
tional investors such as BlackRock and Vanguard engage in active discussions with
company management and boards with a view to influence companies’ long-term
strategies (McCahery et al., 2016). Specifically, in pharmaceutical markets, institu-
tional investors with common holdings can be seen to take an active interest in the
strategic decisions of companies. We now provide some anecdotal evidence of this.

In 2016, a group of representatives of major US institutional investors including
Fidelity Investments, T. Rowe Price. and Wellington Management called a meeting
with top biotech executives and pharma lobbyists to demand firm leaders do a better
job defending their pricing.9 The meeting took place at a hotel conference room in
Boston.

In 2019, BlackRock stated in their annual stewardship report that they engaged
with a number of pharmaceutical companies including Abbott, Abbvie, Bristol-
Myers Squibb, Pfizer, Novartis, Merck, GlaxoSmithKline, Johnson & Johnson, Sanofi,

9See Chen, C. Mutual Fund Industry to Drugmakers: Stand Up and Defend Yourself,
Bloomberg News, 2016. Available at https://www.bloomberg.com/news/articles/2016-05-09/ top-
funds-said-to-tell-pharma-leaders-to-defend-drug-pricing.
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Biogen, Allergan, Teva Pharmaceutical and Takeda.10

Similarly, State Street reported in their 2019 annual stewardship report that they
engaged with 64 pharmaceutical companies.11 The head of corporate governance
at State Street Global Advisors stated that “Our size, experience, and long term
outlook provide us with corporate access and allow us to establish and maintain an
open and constructive dialogue with company management and boards.”12

More recently, in relation to the COVID-19 crisis, institutional investors have
openly pushed for firms to collaborate with rivals and share information. In April
2020, a number of asset managers, including BlackRock and Fidelity, announced
that “they want drug companies to put aside any qualms about collaborating with
rivals.”13 BlackRock held talks with pharmaceutical companies to discuss ways to
develop and deploy treatments by “working with industry competitors.” Separately,
a group of 50 investors with over $2.5 trillion in assets requested that companies
share their findings related to the vaccine and agree not to enforce the relevant
patents. Since then a number of alliances have formed to collaborate on treatments
and vaccines for COVID-19.

Institutional investors have also been involved in merger decisions in the phar-
maceutical industry. BlackRock is reported to have actively pushed for a merger
between the pharmaceutical firms AstraZeneca and Pfizer. BlackRock, the largest
institutional shareholder in AstraZeneca and also a top five shareholder in Pfizer at
the time, “urged the British pharma giant’s board to eventually re-engage in talks
with Pfizer Inc. over a possible deal.”14

10See BlackRock Investment Stewardship Annual Report 2019. Available at
https://www.blackrock.com/corporate/literature/publication/blk-annual-stewardship-report-
2019.pdf.

11See State Street Stewardship Report 2019. Available at https://www.ssga.com/library-
content/products/esg/annual-asset-stewardship-report-2018-19.pdf

12See Kumar, R. Passive investment, active ownership, State Street, 2014. Available at
https://www.ft.com/content/7c5f8d60-ba91-11e3-b391-00144feabdc0.

13See Attracta Mooney, A. and Mancini, D. Drugmakers urged to collaborate on coronavirus
vaccine, Financial Times, April, 2020, available at https://www.ft.com/content/ b452ceb9-765a-
4c25-9876-fb73d736f92a; Levine, M. Investors Want a Cure, Not a Winner, Bloomberg, April, 2020,
available at https: //www.bloomberg.com/opinion/articles/2020-04-24/investors-want-a-cure-not-
a-winner

14See Plumridge, H., AstraZeneca Shareholder Backs Board Rejection of Pfizer
Bid, Wall Street Journal, 2014, available at https://www.wsj.com/articles/ astrazeneca-
shareholder-blackrock-sides-with-board-on-rejecting-pfizer-bid-1400791061; Serafin, P. & Childs,
M. BlackRock Is Said to Encourage Pfizer-AstraZeneca Talks, Bloomberg, 2014, avail-
able at https://www.bloomberg.com/news/articles/2014-05-22/blackrock-is-said-to-encourage-
pfizer-astrazeneca-talks
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4.3 Data and descriptive statistics

Our data comprises of publicly owned pharmaceutical firms (of any country of ori-
gin) that were active in the US pharmaceutical market between 2004 and 2014.15

Information on which firms are active in the US pharma market is obtained from
the FDA Orange Book.16 We obtain the ownership structure of the companies in
our sample from the Thomson Global Ownership Database. This database includes
holdings of each shareholder in publicly listed firms for every year-quarter. For US-
listed firms Thomson Reuters collects ownership information from 13F, 13D and 13G
filings, and forms 3, 4, and 5. For companies listed outside the US, information is
sourced from stock exchange filings, trade announcements, company websites, com-
pany annual reports and financial newspapers. For each firm, for each quarter, in
the period 2004-2014 we extracted data on the shareholders that own at least 1% of
the shares of the firm, and computed yearly ownership averages of each shareholder
in each firm.

This dataset has considerable advantages over to Thomson’s Spectrum database
used by most other papers on US common ownership. The Thomson’s Spectrum
database is limited to 13F filings, which contains only large investors in US compa-
nies, whereas some pharma companies are not listed on a US stock market. More-
over, the Thomson’s Spectrum database shows holdings assigned to the owner that
filed the 13F. This is what is commonly referred to as an “as-filed view.” Our
database utilizes a “money-manager view.” With this view, the database combines
together one or more filings to link the holdings to the actual firm that manages
the investments. In other instances, it might break apart a single filing in order to
accomplish the same. The holdings would then be assigned to one or more of the
managers listed on the file.17

We use data from the FDA Orange Book to classify firms as “brand” or “generic”
firms based on the type of drug that they have launched in the past. For each com-
pany and each year, we calculate the firm’s share of successful NDA applications
(launched brands) relative to successful ANDA applications (launched generics).
If a company operates subsidiaries, we aggregate drug counts at the parent com-

15This is the same database as used in the paper of Newham et al. (2018). Available at:
http://ssrn.com/abstract=3194394. The data ends in 2014 due to the workload of dynamically
assigning ultimate owners to subsidiaries; see also footnote 23 and references therein.

16The FDA Orange Book provides data on all launched pharmaceutical products in the United
States. We drop conglomerates such as GE and Procter & Gamble from the sample as these firms
focus on multiple markets and have launched relatively few pharmaceutical products given their
large size. In total the sample consists of 157 distinct pharmaceutical firms.

17For a detailed explanation of our data and dynamic assignment of ultimate owners, see
data repository: https://www.openicpsr.org/openicpsr/project/120781/version/V1/view attached
to the paper Albert Banal-Estanol et al. (2020).
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pany level. For each year we calculate the share of generic drugs out of all drugs
launched by each company. Thereafter, we calculate the average generic share of
each company during the years in which the company was active, within the time
span 2004-2014. We categorize companies based on this measure. Firms with an
average generic share of 90% or more are classified as “generic firms.” Remaining
firms are classified as “brand firms.”18. Our dataset also contains information on the
total market value of the firm.

Table 4.3 presents the ten largest common shareholders for our sample of brand
firms at the start of our sample (2004) and at the end of our sample (2014). Firstly,
it is clear that the largest common investor in 2004 is Barclays. Barclays has a stake
of at least 1% in 48 brand companies in 2004. In our sample there are 85 brand
firms in total in 2004, thus Barclays holds a stake of at least 1% in more than half
of all brand firms in 2004. In 2009 BlackRock and Barclays merged which had an
impact on BlackRock’s size. BlackRock moves from being number 6 in 2004 to being
number 1 in 2014 with a stake in 68 brand companies in 2014.

18Our categorization aims to label “generic firms” as those firms that have limited R&D capa-
bilities and focus almost entirely on producing generic drugs. A number of firms engage in the
production of both brand and generic drugs, and may do so within the same company or may sep-
arate the activities in different subsidiaries. For example, while the company Novartis is primarily
focused on developing brand drugs, its subsidiary Sandoz produces generic medications. Hybrid
firms, such as Novartis, that have strong R&D capabilities and have an average generic share of
less than 90%, are classified as brand firms in our analysis. Our data shows that these hybrid
companies show very similar common ownership patterns to the pure brand companies, which is
why we classify them together
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Table 4.3: Top 10 common investors in brand firms

No. of No. of Average size No. of companies where
Investor shareholdings >1% shareholdings >5% of shareholding investor is the largest

2004
Barclays Global Investors 48 4 3% 1
Fidelity Investments 41 16 5% 11
State Street Global 41 2 2% 2
Vanguard Group 39 0 2% 0
Wellington Management 31 11 5% 6
BlackRock 25 0 2% 1
Capital Group 24 11 6% 5
Northern Trust Global 23 0 1% 0
HarbourVest Partners 23 3 4% 2
Deutsche Bank 21 0 2% 0

2014
BlackRock 68 46 6% 14
Vanguard Group 65 32 4% 2
Fidelity Investments 53 26 5% 9
State Street Global 48 4 4% 1
Wellington Management 32 13 5% 3
Northern Trust Global 29 0 1% 0
Invesco 23 4 4% 1
T. Rowe Price 23 9 5% 3
Mellon Financial Corp. 21 0 1% 0
Royal Bank of Canada 19 1 2% 0

In our sample there are 86 brand firms in total in 2014, thus BlackRock holds a
stake of at least 1% in 79% of all brand firms in 2014. In the firms where BlackRock
has an ownership stake of at least 1%, the size of their stake is 2% on average
in 2004, and increases to 6% in 2014. This is enough to place BlackRock as the
largest shareholder in 14 companies in 2014 (up from 1 company in 2004). It is also
evident that there has been very little change in the identity of the top five largest
common owners for brand firms (apart from Barclays changing into Blackrock due
to its merger). The top owners are BlackRock (Barclays), Fidelity Investments,
State Street Global, Vanguard Group and Wellington Management.

Table 4.4 presents the ten largest common shareholders for our sample of generic
firms at the start of our sample (2004) and at the end of our sample (2014). Com-
paring Table 4.4 to Table 4.3, we can see some clear differences in terms of the
identity and size of the holdings of the common investors. Among the top common
investors in 2004 is Franklin Templeton (with an average shareholding of 9%), UTI
Asset Management (with an average shareholding of 24%) and HSBC Holdings (with
an average shareholding of 12%). Thus, in 2004 we find that common investors in
generic firms have large shareholdings in a selective set of firms. In 2014, these
common investors with large stakes disappear or take a cut in the average size of
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their shareholding. For example, in 2014, the average shareholding size of Franklin
Templeton declines to 5%. Common investors have less coverage of generic firms in
comparison to brand firms. In our sample there are a total of 29 generic firms in
2004, and 35 generic firms in 2014. Vanguard and BlackRock — the two largest com-
mon investors in generic firms in 2014 — have stakes in 11 generic pharmaceutical
firms (31% of all generic companies).

Table 4.4: Top 10 common investors in generic firms

No. of No. of Average size No. of companies where
Investor shareholdings >1% shareholdings >5% of shareholding investor is the largest

2004
Franklin Templeton 14 4 9% 2
UTI Asset Management 12 9 24% 6
Fidelity Investments 8 1 3% 1
Vanguard Group 8 0 2% 0
HSBC Holdings 8 5 12% 1
Barclays Global Investors 8 2 5% 0
State Street Global 7 0 2% 0
Invesco 6 0 2% 0
Reliance Capital 6 3 8% 0
J.P. Morgan Chase 6 3 10% 1

2014
Vanguard Group 11 4 4% 0
BlackRock 11 7 5% 2
Fidelity Investments 9 1 3% 0
State Street Global 7 0 3% 0
Dimensional Fund Advisors 7 0 2% 0
Life Insurance Corp. of India 6 2 4% 0
Franklin Templeton 6 1 5% 0
Norges Bank Investment 6 0 2% 0
HDFC Asset Management 5 1 3% 0
Capital Group 5 2 5% 2

4.4 Network analysis

In this section, we provide an analysis of the evolution of the common ownership
links in the pharmaceutical industry. We make use of network analysis, which uses
graph theory to describe the structure and characteristics of networks of actors by
focusing on the links that exist between them. Graphs are made up of “nodes”
which are connected by “edges” or “links”. In our setup, the nodes represent the
firms whereas the edges represent the common ownership links that exist between
pairs of firms.

We proceed in three steps. We first provide a graphical analysis of the com-
mon ownership links that exist within and between the top brand and top generic

116



4.4. NETWORK ANALYSIS

firms. Subsequently, we investigate the determinants of such links by analysing
the “investor networks” created by the top three investors in the industry. Finally,
we analyse which brand and generic firms are the most influential (i.e. the most
“central”) in the common ownership networks of the pharmaceutical industry.

4.4.1 Common ownership links between top firms

We first depict the evolution of the common ownership links amongst (i) the top 20
brand firms, (ii) the top 20 generic firms, and (iii) between the top 20 brand firms on
the one hand and top 20 generic firms on the other hand. In all our graphs, the size
of the nodes represent the value of the company, relative to the other companies in
the same network, whereas the weight of the edges represent how strong the common
ownership connections are. We make use of two common ownership measures, which
determine links on the basis of (i) individual levels or (ii) joint levels of ownership.19

4.4.1.1 Common ownership networks among brand firms

Figure 4.1 provides a comparison of the network structure of the 20 most valuable
(“top 20”) brand firms, which are also the 20 most valuable firms overall, at the
beginning and end of the sample period, i.e. in 2004 and 2014 (Panels A and B,
respectively). To ease the comparison, we depict the firms that were in the top
20 in both years in the same position (in green circles). We also include the top
20 companies in 2004 that drop from the top 20 by 2014 (in blue diamonds) and,
vice-versa, those that appear in the top 20 in 2014 but were not in the top 20 in
2004 (in purple diamonds). As a measure of the common ownership link between
two firms, we compute the number of individual investors whose ownership stake is
larger than 5% in both firms, i.e. the number of common investors with more than
5% in both firms.

A link between two firms exists if they have at least one such common investor.
The weight of the link between two firms depends on the number of such common
investors that the two firms share.20

Figure 4.1 shows that the top brand firms have become more connected over time,
according to this measure of common ownership. As shown by Panel A, several pairs
of firms already had common investors, i.e. with more than 5% in both firms, in 2004.

19All network plots are made using “nwcommands” See Thomas U. Grund, nwcommands:
Software Tools for the Statistical Modeling of Network Data in Stata (2014). Available at:
http://nwcommands.org.

20In formal terms, and denoting by si,j the ownership share of an investor i in firm j, the
“weight” of the link between any pair of firms j and j’ is given by

∑
i I(min(si,j , si,j′) > 0.05)

where I(x) is the indicator function that takes a value of 1 if the condition x is satisfied and a
value of 0 if it is not. If the weight is 0 the link between the pair of firms does not exist.
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But the links that existed in 2004 had relatively low weight, i.e. the firms have few
investors in common. Some of the largest firms, such as Pfizer or GlaxoSmithKline,
had no connections at all. There are, however, some firms that are highly connected.
Perhaps surprisingly, the most connected firms, such as Baxter or Cardinal, or the
ones with stronger links, such as Biogen and Forest, are relatively small within the
set of top-20 companies. Similarly, if anything, most of the (smaller) firms that drop
from the top 20 by 2014 are more connected than those that remain.21 In sum, the
network in 2004 is not only sparser as compared to 2014, but also more asymmetric.

As shown by Panel B, the network becomes almost fully connected by 2014.
Some firms, such as Pfizer, go from having no connection in 2004 to being almost
fully connected with all the other firms in 2014. The connections between firms
also become stronger. For example, in 2014 Johnson & Johnson and 3M have
three common investors with more than 5% in both firms. Interestingly though,
some firms, such as Sanofi, Novartis and Roche, remain without any links in 2014.
Although to some extent present, the institutional investors in these firms have
ownership stakes that do not reach the 5% threshold, in part because of the presence
of large non-common investors such as L’Oreal in Sanofi, the Sandoz Family and
the Novartis foundation in Novartis, and Novartis itself as a shareholder in Roche.
In sum, top brand firms become, according to the individual measure of ownership,
more connected over time with a few notable exceptions.

21The majority of companies that exit the top 20 in 2014 were acquired. Schering Plough was
acquired by Merck in 2009. Genentech was acquired by Roche in 2009. Forest was acquired by
Actavis (now Allergan) in 2014. Novartis acquired a majority stake in Alcon in 2010. Wyeth was
acquired by Pfizer in 2009. Abbott, Cardinal and Baxter still exist as independent companies.
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(a) 2004

(b) 2014
Figure 4.1: Common ownership network of the top 20 brand firms -
Individual ownership

Notes: The size of the nodes indicates the value of the firm. The weight (thickness)
of the edges represents the strength of the connections. A link between two firms
exists if they have at least one common investor with more than 5% in both firms.
The weight of the link between two firms depends on the number of such common
investors that the two firms share.
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Figure 4.2 shows the network for a measure of joint ownership of the common
investors. This measure compares the ownership stakes of all the common investors
in relation to the ownership stakes of all the investors in our database. We consider
two companies linked if the common investors (>1% in the two firms) own, on
average, in the two firms, more shares than the non-common investors (>1% in just
one of the two firms); that is, if the sum of the ownership stakes of all the common
investors is greater than 50%. Note that there is no measure of the strength of the
links in this network; the link just exists or not (in this sense, it is an example of
an “unweighted network”). We make use of the same set of top 20 most valuable
brand firms in 2004 and 2014, as in Figure 4.1.22

Figure 4.2 shows that the common investors own more than half of all the (large)
shareholders in many pairs of firms, both in 2004 (Panel A) and 2014 (Panel B).
The network becomes even more connected over time. Novartis, for instance, had
no connections in 2004. But, in 2014, the common investors of Novartis and Bayer,
for instance, have more than 50% of the shares in both firms; the two firms become
thus connected according to our joint measure. This is true despite the fact that
Novartis and Bayer do not share any single individual investor holding more than
5% in both firms (as shown in Figure 4.1 Panel B). In general, though, we observe a
less dramatic change when using the joint measure of common ownership than the
individual one. Thus, the effects of the evolution of common ownership may depend
on whether common investors have individual influence or if they do (or can) exert
joint influence. For both measures, some firms, such as Sanofi and Roche, remain
without any links in 2014.

22In formal terms, and denoting by si,j the ownership share of an investor i in firm j, a link
between any pair of firms j and j’ exists if (

∑
i∈C(si,j + si,j′)/2) > 0.5 where C is the set of

“common investors” in that pair of firms j and j′, i.e. those investors i with min(si.j , si,j′) > 0.01.
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(a) 2004

(b) 2014
Figure 4.2: Common ownership network of the top 20 brand firms - Joint
ownership

Notes: The size of the nodes indicates the value of the firm. A link between two firms
exists if the common investors (>1% in the two firms) own, on average, in the two
firms, more shares than the non-common investors (>1% in just one of the two firms).
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4.4.1.2 Common ownership networks among generic firms

Figure 4.3 replicates the network analysis of Figure 4.1 for the 20 most valuable
generic firms. First, we again use the number of common investors whose ownership
stake is larger than 5% in both firms as our measure of a common ownership link.

Figure 4.3 shows that the generic firms, contrary to the brand firms in Figure
4.1, became less connected in 2014 relative to 2004. Sun Pharma, for instance, lost
all the connections it had in 2004, despite the fact that it became relatively larger.
Overall, the level of connectivity of the generic firms is substantially lower than the
brands in both years. Whereas the top brands are almost fully connected in 2014,
the network of the generic firms is sparse. Very few firms have connections with
other firms, and even fewer have connections with more than one investor. Only
Perrigo, Impax and Endo have relatively strong links with each other.

Figure 4.4 shows the generic network of common ownership using the joint share-
holding measure. We again take into account the ownership stakes of all the common
investors in relation to the ownership stakes of all the investors in our database. We
consider two companies linked if the sum of the ownership stakes of all the common
investors in the two firms is, on average, greater than 50%.

Figure 4.4 shows that the generic firms became less connected in 2014 relative to
2004, when applying our joint measure of common ownership. This is also what we
found when using the individual measure. Sun Pharma lost all of the connections
that it had in 2004 despite the fact that it became relatively larger. Overall, the
level of connectivity is even lower when using the joint measure as opposed to the
individual measure of common ownership. Very few firms have connections in 2004,
and even fewer have connections in 2014. The exception is Perrigo, which slightly
increased its number of connections.
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(a) 2004

(b) 2014
Figure 4.3: Common ownership network of the top 20 generic firms -
Individual ownership

Notes: The size of the nodes indicates the value of the firm. The weight (thickness)
of the edges represents the strength of the connections. A link between two firms
exists if they have at least one common investor with more than 5% in both firms.
The weight of the link between two firms depends on the number of such common
investors that the two firms share.
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(a) 2004

(b) 2014
Figure 4.4: Common ownership network of the top 20 generic firms -
Joint ownership

Notes: The size of the nodes indicates the value of the firm. A link between two firms
exists if the common investors (>1% in the two firms) own, on average, in the two
firms, more shares than the non-common investors (>1% in just one of the two firms).
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4.4.1.3 Common ownership networks between brand and generic firms

We now provide an analysis of the bipartite network of brands and generics. Bi-
partite networks are a particular class of networks, whose nodes are divided into
two sets, and only connections between two nodes in different sets are allowed. As
in the previous analysis, we use two measures of common ownership: (i) individual
ownership, where the links reflect the number of investors whose ownership stake
is larger than 5% in both firms, and (ii) joint ownership, where a link exists if the
sum of the ownership stakes of all the common investors is greater than 50%. Note
again that the size of the nodes represents the value of the firm relative to the firms
in the same network.

Figure 4.5 shows that the brands and the generics became significantly more
connected over time when looking at individual levels of ownership. As shown by
Panel A, most brand-generic pairs were not connected in 2004, and in case they
were, they only had one investor in common. Even the largest brands, such as
Pfizer, had zero connections with the generics. Instead, as shown by Panel B, the
number and the strength of the connections between brands and generics increased
in 2014. Most of the large brands, such as Johnson & Johnson and Pfizer, have
a large number of links. Some generics, such as Impax and Perrigo, have a high
number of connections too.

Figure 4.6 shows that, when considering common ownership networks based on
the joint measure, the same pattern emerges. Whereas in 2004 there were very few
links between brand and generic companies, in 2014, these links were much more
numerous (although fewer when compared to the common ownership network based
on individual ownership).
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(a) 2004

(b) 2014
Figure 4.5: Bipartite network of brands and generics - Individual owner-
ship

Notes: The size of the nodes indicates the value of the firm. The weight (thickness)
of the edges represents the strength of the connections. A link between two firms
exists if they have at least one common investor with more than 5% in both firms.
The weight of the link between two firms depends on the number of such common
investors that the two firms share.
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(a) 2004

(b) 2014
Figure 4.6: Bipartite network of brands and generics - Joint ownership

Notes: The size of the nodes indicates the value of the firm. A link between two firms
exists if the common investors (>1% in the two firms) own, on average, in the two
firms, more shares than the non-common investors (>1% in just one of the two firms).
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4.4.2 Investor networks

This section investigates the determinants of the common ownership links identified
in the previous section. We analyse in particular the evolution of the “investor
networks” created by the shareholdings of the top three individual institutional
investors of 2014 (Blackrock, Vanguard and Fidelity; see tables 4.3 and 4.4) in both
brand and generic firms.

4.4.2.1 Brand firms’ investor network

Figure 4.7 represents the investor networks of Blackrock, Vanguard and Fidelity
in the top 20 brand firms, in the beginning (2004) and end of our sample (2014),
respectively. Each figure shows a “radar plot” of the ownership stakes. The axis
tick marks represent the levels of 2.5%, 5%, 7.5% and 10%.23

A comparison of Panel A with Panel B shows the significant growth of Blackrock
and Vanguard over time. Blackrock’s growth is partly due to the merger with Bar-
clays Global Investors in 2009. In 2004, Blackrock only had ownership stakes below
5%. In 2014 Blackrock owns significant stakes in many of the top pharmaceutical
companies, usually in the range of 5-7.5%, but in some cases even close to 10%. In
2004, Vanguard’s stakes are all below 2.5%. In 2014, Vanguard’s ownership stakes
are consistently around 5%.

Fidelity owns a much lower number of blocks than Vanguard and BlackRock,
although they tend to be of a larger size in 2004. The holdings of Fidelity appear
more stable over time and have not experienced the same growth as Vanguard
and BlackRock, which have surpassed Fidelity in both number and average size
of holdings.

4.4.2.2 Generic firms’ investor network

Figure 4.8 represents the investor networks of the top three investors in the top 20
generic firms in 2004 and 2014, respectively. Comparing Figure 4.8 with Figure 4.7
shows much smaller investor networks in the generics than in the brands. While
increasing over time, in 2014 Blackrock and Vanguard own significant stakes in just
five of the top 20 generic firms. Fidelity owns even fewer and smaller blocks in 2014
than it did in 2004.

23All radar plots are made using RADAR’: Adrian Mander, 2007. RADAR: Stata module to
draw radar (spider) plots, Statistical Software Components S456829, Boston College Department
of Economics, revised 02 Sep 2018.
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(a) 2004

(b) 2014
Figure 4.7: Investor networks in brand firms

Notes: The axis tick marks for each circle represent shareholding levels of 2.5%, 5%,
7.5% and 10pct.
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(a) 2004

(b) 2014
Figure 4.8: Investor networks in generic firms

Notes: The axis tick marks for each circle represent shareholding levels of 2.5%, 5%,
7.5% and 10%.
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4.4.3 Centrality in the brand and generic networks

We now analyse which are the most influential brand and generic firms in their
respective common ownership networks. In network analysis, influence is measured
by how “central” an individual node’s position is in the network, based on the
existence and strength of its links with other nodes (Freeman, 1977; Freeman, 1978).

We proceed as follows. We first provide a definition of two standard measures of
centrality: degree and closeness centrality. As both of them depend on network size,
throughout this section, we consider the network of the 85 most valuable brands and
the network of the 25 most valuable generics in each year. Although the identity of
the firms in each network changes over time, the number (and thus the size of the
network) remains constant throughout the sample period.

We then provide a description of the centrality measures of the top 20 brand and
top 20 generic firms within each of their networks, both at the beginning and end
of the sample. Finally, we show the evolution of the mean and dispersion of the
measure of degree centrality for the whole set of firms in each of the two networks.

4.4.3.1 Definitions

We construct two centrality measures based on the concepts of degree and closeness
centrality. These concepts capture slightly different aspects of the firms’ roles in the
common ownership network. We provide a definition of each:

• Degree centrality measures the number of relationships an actor in the net-
work has. The more ties, the more opportunities to interact and so the more
influential, or central, the actor is. Firms that have ties to many other firms
may be in an advantaged position. Since they have many ties, they are less
dependent on any other firm for information, for instance. Formally, degree
centrality counts the number of unique ties each firm has; that is, the number
of unique firms with which a firm has a link with. Naturally, as networks
become more connected, the average degree centrality across firms increases.

• Closeness centrality is a measure based on the distance between nodes.24

Nodes with high closeness centrality are close to all other nodes, that is, they
can reach all other nodes in only a few steps. In contrast, nodes with low
closeness centrality are far away from all other nodes. For unconnected nodes,
we set the distance to all the other nodes as the maximum distance in the
network plus 10.

24For a formal definition see Section 13.2 in Thomas U. Grund (2014). nwcommands: Software
Tools for the Statistical Modeling of Network Data in Stata.
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4.4.3.2 Firm-level and mean centrality measures

Table 4.5 shows the average degree and closeness centrality for each top 20 brand
company (calculated within the sample of 85 firms in the brand network), as com-
pared to the levels in 2004. The average value at the bottom of the table is the
average amongst the top 20 brand companies. We order firms by their size (mar-
ket value) in 2014. We again make use of the two measures of common ownership:
individual and joint ownership.

As we can see in Table 4.5, the average degree centrality for both ownership
measures has more than doubled between 2004 and 2014. There are differences in
which firms are the most central depending on the measure used. If we focus on the
individual ownership measure, in 2004, Biogen and Allergan have the highest levels
of degree centrality with values of 25 and 24 respectively. These two firms also have
high closeness values in 2004 when using the individual ownership measure. In 2014,
the most central firm is Biogen with a value of 51 for degree centrality using the
individual measure.

When using the joint ownership measure, in 2004, Pfizer and 3M have the highest
levels of degree centrality with values of 23 and 21 respectively. In 2014, the most
central firm is Johnson & Johnson with a value of 40 for degree centrality using the
joint measure. This indicates that how common ownership links are measured plays
an important role in determining which actors are the most central.

Table 4.5 also shows that many of the top 20 brand firms have a similar number
of connections in 2014 based on the measure degree centrality for the individual
measure i.e. levels of degree centrality lie between 46 and 51. Still, some others,
including large firms such as Novartis and Roche, are not connected at all and thus
have a level of degree centrality of 0, both in 2004 and in 2014. The levels of
degree centrality in 2004 were substantially lower than in 2014: Johnson & Johnson
had one connection whereas Pfizer had none. The differences across firms in terms
of closeness centrality for both measures are lower than for degree centrality. In
addition, the differences between 2004 and 2014 are smaller in the case of closeness
than in the case of degree centrality.
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Table 4.5: Levels of centrality for the 20 brand companies

Individual Ownership Measure Joint Ownership Measure
Degree centrality Closeness Degree centrality Closeness

Firm 2004 2014 2004 2014 2004 2014 2004 2014
Johnson & Johnson 1 46 0.12 0.22 16 40 0.11 0.15
Pfizer 0 46 0.07 0.22 23 31 0.11 0.15
Merck 0 49 0.07 0.22 19 30 0.11 0.15
Gilead 0 49 0.07 0.22 20 33 0.11 0.15
Novartis 0 0 0.07 0.07 0 3 0.07 0.14
Amgen 49 0.22 27 0.15
Roche 0 0 0.07 0.07 0 0 0.07 0.07
Astrazeneca 10 46 0.12 0.22 7 21 0.11 0.15
Biogen 25 51 0.13 0.22 14 25 0.11 0.15
Glaxosmithkline 0 45 0.07 0.22 1 8 0.10 0.14
Bayer 1 47 0.07 0.22 0 14 0.07 0.14
Abbvie 46 0.22 31 0.15
Bristol-Myers Squibb 10 48 0.12 0.22 15 33 0.11 0.15
3M 16 46 0.13 0.22 21 40 0.11 0.15
Sanofi 10 0 0.12 0.07 0 0 0.07 0.07
Eli Lilly 10 47 0.12 0.22 10 15 0.11 0.14
Celgene 15 46 0.13 0.22 3 33 0.10 0.15
Valeant 0 4 0.07 0.19 0 5 0.07 0.14
Novo Nordisk 11 8 0.13 0.19 0 0 0.07 0.07
Allergan 24 48 0.13 0.22 13 14 0.11 0.14
Average 7.39 36.05 0.10 0.19 9.00 20.15 0.10 0.14

Table 4.6 shows the degree and closeness centrality of the top 20 generic firms
within the 25-generic firm network in 2014, as compared to the levels of 2004. We
again order firms by 2014 market value, and include the averages at the bottom of
the table.

The levels of degree centrality for the generics are substantially lower than for
the brand firms. For both measures, many generics have a degree of zero in 2014,
including the largest generic firm in our sample, Sun Pharma. The generic firm with
most connections in 2014, Endo, has 7 when using the individual measure, i.e. 29%
of the maximum number of connections possible in the generic network (24). By
comparison, 15 out of the top 20 brand firms have more than 45 connections, i.e.
54% of the maximum number of connections possible in the brand network (84).
Moreover, the average degree of centrality of generics is lower in 2014 than it was
in 2004.
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Table 4.6: Levels of centrality for the 20 generic companies

Individual Ownership Measure Joint Ownership Measure
Degree centrality Closeness Degree centrality Closeness

Firm 2004 2014 2004 2014 2004 2014 2004 2014
Sun Pharma 3 0 0.10 0.08 4 0 0.11 0.08
Perrigo 3 6 0.08 0.11 0 2 0.08 0.09
Endo 1 7 0.08 0.11 0 0 0.08 0.08
Lupin 6 0 0.10 0.08 5 0 0.11 0.08
Dr. Reddy’s 0 0 0.07 0.08 0 0 0.08 0.08
Teva 0 1 0.07 0.11 0 0 0.08 0.08
Cipla 6 1 0.10 0.09 6 0 0.11 0.08
Hikma 0 0.08 0 0.08
Taro Pharma 1 0 0.08 0.08 0 0 0.08 0.08
Ranbaxy 6 1 0.10 0.09 6 0 0.11 0.08
Aurobindo 5 0 0.10 0.08 4 0 0.11 0.08
Akorn 0 6 0.07 0.11 0 0 0.08 0.08
Glenmark 0 0.08 0 0.08
Torrent 6 0 0.10 0.08 6 0 0.11 0.08
Haemonetics 2 6 0.08 0.11 0 1 0.08 0.09
Impax 0 6 0.07 0.11 0 1 0.08 0.09
Wockhardt 6 0 0.10 0.08 5 0 0.11 0.08
Zhejiang Huahai 0 0 0.07 0.08 0 0 0.08 0.08
Alembic 0 0.08 0 0.08
Ajanta Pharma 0 0.08 0 0.08
Average 2.81 1.70 0.09 0.09 2.25 0.20 0.09 0.08

In sum, the measures of centrality are substantially higher in 2014 as compared
to 2004 for the brand firms. For the generic firms, the opposite is true. Degree
centrality is not only much lower than for the brand firms in both years, but it is
also lower in 2014 than it was in 2004. In the following subsection, we investigate
more systematically the evolution, over time, of average degree centrality for both
measures of ownership.

4.4.3.3 Evolution of the mean and dispersion of the centrality measures
over time

We now investigate the evolution of the mean and dispersion of centrality over time
in the brand and generic networks. We again make use of the two measures of
common ownership: individual and joint ownership. For simplicity, we focus on one
of the measures of centrality, degree centrality (the pattern is similar for closeness
centrality).

Figure 4.9 shows the average degree centrality for the 85 brand and the 25 generic
companies over the 2004-2014 period (brand on the right axis, and generics on the
left), for the two measures of common ownership: (individual in Panel A and joint
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in Panel B).
Note that there are important differences between the two sets of firms. Whereas

the average degree of the brand firms has increased substantially, the average degree
centrality of the generic firms has decreased over time. This is true for the individual
measure of ownership but it is especially the case for the joint measure of ownership.

(a) Individual ownership measure

(b) Joint ownership measure
Figure 4.9: Average degree centrality of brand and generic firms over
time (2004-2014)
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Figures 4.10 and 4.11 display the histograms of the measure of degree centrality
in both 2004 and 2014 for the brand firms and generic firms respectively. Panel
A shows the individual ownership measure and Panel B shows the joint ownership
measure.

Figure 4.10 shows that the dispersion of degree centrality across the brand firms
has increased in 2014 as compared to 2004, in both measures of ownership. A rela-
tively large number of firms still have zero connections and thus a degree centrality
of zero in 2014. But the highest levels of degree centrality become higher by 2014
relative to 2004.

As can be seen from Figure 4.11, the conclusions that can be drawn about the
dispersion of the generic firm network are sensitive to the measure of common own-
ership used. If we use the individual common ownership measure, it appears that
the dispersion of degree centrality across the generic firms has increased slightly in
2014 as compared to 2004. A larger number of firms have zero connections and
thus a degree centrality of zero. The most connected generics have a slightly higher
number of connections in 2014 as compared to 2004. However, if we use the joint
measure, we find that centrality is limited to the range of 0-2 in 2014, whereas in
2004 some generics had centrality measures in the range of 4-6. These differences are
explained by the fact that for generics, in 2004, there are common owners present
with large stakes (see Table 4.4) which create linkages in 2004 when we use the
joint ownership measure. With the absence of these investors in 2014, the common
ownership network for generic firms on the basis of the joint ownership measure is
much sparser (see Figure 4.4 Panel B).
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(a) Individual ownership measure

(b) Joint ownership measure
Figure 4.10: Histogram of degree centrality for brands within the 85-
brand firm network in 2004 and 2014
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(a) Individual ownership measure

(b) Joint ownership measure
Figure 4.11: Histogram of degree centrality for generics within the 25-
generic firm network in 2004 and 2014

4.5 Antitrust implications

Our empirical analysis shows, generally, that the common ownership network among
brand companies has become denser and more complete over time, whereas that of
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the generics is much sparser and becomes sparser over time. Finally, the bipartite
network between brand companies, on the one hand, and generic companies, on the
other, has become denser. This section discusses the antitrust implications of these
patterns.25

We first discuss the implications of the dynamics of the brand firm network for
innovation, as brand companies engage in innovation investments with the aim to
patent new drugs –and enjoy rents from the resulting temporary monopoly. We then
analyze the consequences of the evolution of the bipartite network between brand
and generic companies on generic entry in markets where the brand no longer enjoys
regulatory protection. Thirdly, we discuss the implication of common ownership for
prices in the pharmaceutical industry. High drug prices are a major concern for
policy makers in the US: prescription drugs, responsible for 10% of all healthcare
costs, represent one of the fastest-growing areas of healthcare spending (Martin et
al., 2017). Finally, we briefly discuss implications for collusion.

4.5.1 Innovation

R&D is crucial for bringing new drugs to the market. Thus, whether common
ownership positively or negatively affects innovation in the pharmaceutical industry
is a key concern for policy makers. Common ownership between brand companies
may, on the one hand, enhance information sharing, generate synergies, and increase
the incentives to invest in R&D. On the other hand, common ownership may also
incentivize firms to innovate in a way that avoids head-on competition between each
other in the innovation space. We briefly discuss each of these possibilities in turn.

The increasingly dense common ownership network that we observe among brand
companies may be good for innovation for the following reasons. First, the common
ownership links may facilitate information sharing between connected firms. This
can bring in substantial benefits. Indeed, in the early stages of development, firms
select which R&D projects to bring into their R&D portfolio and test numerous lead
molecules. At this stage, connections with other firms may provide an opportunity
for brand firms to share each other’s knowledge bases. Indeed, Kostovetsky and
Manconi (2020) find a higher intensity of patent citations among firms that share
institutional owners, suggesting that common institutional investors can facilitate
the diffusion of information among their portfolio firms. In a similar vein, Ghosh
and Morita (2017) show that cross-ownership, which has elements in common with
common ownership (see also below in the section on pricing), can induce knowledge
transfer between connected firms, thereby increasing consumer surplus and/or total

25For a full discussion of legal theories to tackle common ownership see Elhauge (2020).
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surplus under certain conditions.
Common ownership links may also lead to more informal or formal innovation col-

laborations, with the associated benefits. Indeed, sharing scientific personnel and/or
research labs that result in a combination of complementary assets may lead to syn-
ergies. Similarly, collaboration may lead to the reduction of wasteful innovation
duplication. He and Huang, for instance, find evidence suggesting that institutional
cross-ownership facilitates explicit forms of collaboration, such as within-industry
joint ventures and strategic alliances, and that this improves innovation productiv-
ity (He and Huang, 2017).26 Geng et al. (2017) find furthermore that shareholder
ownership overlap across firms with patent complementarities correlates significantly
with higher investment in innovation and more success with patents.

Further, common ownership links between innovating pharma companies can in-
crease innovation by mitigating technology spillover problems. Indeed, companies
often hold back on costly innovation efforts since competitors may be able to imitate
and free ride on these efforts. If companies are commonly owned, then innovation
spills over to companies within the same network and may thus benefit the same own-
ers. Supporting this line of reasoning, Lopez and Vives (2019) show theoretically
that horizontal common-ownership links can mitigate firms’ well-known disincen-
tives to innovate that can arise because of the technological spillovers. Anton et
al. (2018) confirm theoretically and empirically that common ownership may in-
centivize firms to engage in more R&D. In particular, common ownership increases
R&D when technological spillovers are large relative to product market spillovers.
If the reverse occurs, i.e., when product market spillovers are larger, then common
ownership reduces R&D.

Common ownership may also reduce competition in innovation. For example,
common ownership might negatively affect the number and/or the selection of R&D
projects pursued. As drugs pass through clinical trials, firms may re-optimize their
portfolio and decide which drugs to submit for FDA approval. Many development
projects are terminated, not due to safety or efficacy concerns, but due to commercial
considerations. Large pharmaceutical firms often invest in 10-15 distinct research
programs that run simultaneously. In an effort to reduce competition, firms with
common investors may jointly pursue a similar line of research or terminate com-
peting projects. This is potentially to the detriment of consumers if it means that
fewer drug variants are available.

Recent research indicates that one of the motives for pharmaceutical firms to en-
gage in M&As is to neutralize potential competition. The idea is that an incumbent

26Although there is evidence that research joint ventures, in turn, may facilitate collusion in
product markets see Duso et al. (2014) and Helland and Sovinsky (2019).
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-i.e., a company that has already launched a drug- has an incentive to acquire and
terminate projects in the development process if these projects have “overlap” with
its launched product (where overlap is defined as the same mechanism of action
within a therapeutic class). These acquisitions, where the incumbent acquires a
nascent or potential competitor in order to neutralize the competition have been
termed “killer acquisitions.” Cunningham et al. (2019) find that projects acquired
by firms that have an overlapping drug are 23.4% less likely to have continued de-
velopment activity.

The presence of common ownership between two firms with overlapping drugs
may mitigate the need for a merger to achieve a similar effect. A recent paper that
looks at common ownership links in pharmaceutical start-ups by venture capital
(VC) companies finds precisely this effect (Li et al., 2020). In particular, the paper
examines how a start-up responds after seeing a competitor make progress on a
related drug project. If the two start-ups share a common VC, the lagging start-up
is less likely to advance its own project, which reduces competition between the
start-ups. The authors find that these anticompetitive effects are mostly present for
technologically similar projects, early-stage projects, and with VCs involved that
have larger equity stakes and less-diversified portfolios.

In sum, high common ownership among brand companies can have both positive
and negative effects on innovation in the pharmaceutical sector. Current theoretical
and empirical research highlights both sides. Research in this dimension is a promis-
ing avenue for future research, especially in terms of identifying whether and under
which circumstances common ownership of firms with projects that have overlap-
ping mechanisms of action and similar therapeutic classes leads to better or worse
innovation outcomes.

4.5.2 Entry

Patented markets are the main source of revenue for brand companies. When the
patent expires - or when it is challenged in court27 - and generic companies enter,
revenues for the brand decline dramatically (by as much as 90%). Therefore, brand
companies have a strong incentive to deter generic entry, or at least to delay generic
entry as long as possible. Entry induces losses to the brands and gains to the
generics that are highly asymmetric: a brand company loses much more after entry
than a generic profits after entry. Therefore, the joint payoff for brand and generic
in holding off entry is clearly positive.

27A brand’s patent validity can be brought to court through a Paragraph IV challenge, which is
the section of the Hatch-Waxman act under which generic entrants dispute pharmaceutical patents
e.g see Helland and Seabury (2016).
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Scott Morton (2002) reviews how direct ownership links between brand and generic
firms influences the likelihood of generic entry. She finds that generics owned by the
original innovator (i.e., the brand company) are less likely to enter the market. This
hints that an investor with shares in both the brand and generic may benefit from
steering the generic away from entering. Therefore, entry decisions of generics may
crucially depend on the joint ownership of generic and brand firms. Shareholdings
in the brand provide common investors with incentives to steer decisions towards
joint profits and shareholdings in the generic provide investors with the ability to
influence such decisions.28

Newham et al. (2018) find that this is indeed the case. They analyze generic firms’
entry decisions into pharmaceutical markets opened up by the end of regulatory
protection. They find that a higher level of common ownership between a brand
firm and a potential generic entrant is robustly linked with a lower probability of
generic entry, and that this effect is economically significant in the sense that overall
common ownership at the market level decreases the total number of generics in that
market.29 This means that the increasingly dense bipartite network between brand
companies, identified in the previous section, is likely to lead to less generic entry.30

4.5.3 Pricing

4.5.3.1 Unilateral effects

Commonly owned brand firms that commercialize drugs that are therapeutically
similar might have less incentives to unilaterally compete31 due to various mecha-
nisms.32 Indeed, as O’Brien and Salop (2000) note, the anticompetitive effects of
common ownership are similar to that of cross ownership in that common ownership
can be understood to be ownership in one firm, coupled with cross ownership in the
others

First, firms that are largely owned by shareholders who also have sizeable stakes in
competitors might just simply act in these shareholders’ interest, which leads them

28Also, see Posner et al. (2017).
29Related, Xie and Gerakos (2017) find that common ownership between brand and generic is

positively associated with the two parties entering into a settlement agreement where the generic
manufacturer stays out of the market. Hovenkamp and Lemus (2017) further confirm that settle-
ments after Paragraph IV challenges cause generics to stay out of the market.

30There is also evidence from other industries that ownership structures affect entry. Majumdar
(2017) documents the relationship between horizontal ownership and entry in the local telecommu-
nication exchange segment in the US, and finds that dominant ownership controllers experienced
lower entry in their territories.

31Previous research in the airline and banking industries has pointed towards a positive rela-
tionship between common ownership and prices see Azar et al.(2019) and Azar et al. (2018).

32For an overview of the mechanisms by which large horizontal shareholdings are likely to
influence corporate management see Elhauge (2021).
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- rather than maximizing their own profits - to maximize the return of their share-
holders’ portfolios, in whose interest it might be to soften price competition (Azar,
2017). Further, while there is evidence that institutional investors engage in active
discussions with companies’ management (see McCahery et al., 2016), investors do
not need to actively intervene to have an impact on the firms’ decisions. They may
apply “selective omission” by encouraging actions that increase both firm value and
portfolio profits and remaining silent when this is not the case (Hemphill and Ka-
han, 2020). Further, they may design payment schemes for the top management
to shape their incentives in a way that leads to softer product market competition.
Anton et al. (2020) find that higher firm-level common ownership is linked to less
performance-sensitive incentives for CEOs and other top managers, which in turn
may lead to softer competition.

Increases in common ownership links between brand and generic companies, as we
show in the bipartite network in the previous section, may also indirectly raise drug
prices. Indeed, common ownership should reduce generic entry and, as shown by
previous research, the reduction of generic companies in the market increases prices.
In sum, both the increasingly linked brand network and brand-generic bipartite
graph suggest that price competition might have softened. This is an interesting
area for future research: to study how the link between common ownership affects
prices through the channel of entry; see e.g., Grabowski and Vernon (1992) for a
study that links generic entry to drug prices and Suzuki (2013) for a study that looks
at the impact of differences in market conditions (regulation) on prices through the
channel of entry.

4.5.3.2 Coordinated effects

Our empirical results indicate that common networks among generics are sparse
and, if anything, have become sparser over time. While managers of commonly
owned firms may unilaterally engage in anti-competitive behavior, common owner-
ship might also induce coordinated action. Economic theory predicts that commu-
nication can facilitate both coordination and monitoring defection from a common
strategy. While many forms of private communication are illegal, public information
disclosure could serve as an alternative coordinating and monitoring mechanism to
achieve tacit collusion, as suggested by e.g. OECD (2012). Indeed, Pawliczek et
al. (2019) find that higher horizontal shareholding levels increase firm disclosures of
information that can help firms to coordinate.

Rock and Rubinfeld (2020) provide a summary of how common ownership has
an impact on coordinated effects; we provide some elements of that discussion here.
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A key issue is how ownership structure can affect the likelihood that a coordinated
outcome will be achieved, i.e., the relevant question is how common shareholders
can have an influence in coordinating outcomes. The article discusses a variety of
ways in which a common owner will be more conducive to collusion, by being, for
example, a better “cartel ringmaster” or “cartel initiator.” On the other hand, there
are also a variety of ways in which a common owner can be a poorer cartel organizer
than a non-common owner.

Among generics, where we find sparse networks of common ownership, a large car-
tel operating between the years of 2006 and 2016 is currently being investigated.33 It
may thus be that, in the pharmaceutical industry, common ownership and explicit
collusion are substitutes. However, we should be very careful when making this
connection: the generic pharmaceutical industry has a number of other characteris-
tics that make cartels more likely, for example homogenous products, and frequent
interaction at industry trade fairs.

4.6 Conclusion

This paper documents the common ownership networks between companies that
operate in US pharma markets during the period 2004-2014. We show that common
ownership networks between brand companies are rather dense and complete, espe-
cially at the end of our sample. Furthermore, the common ownership links between
brand and generic companies have become notably stronger.

While there is little direct evidence yet how these common ownership networks
might impact competition and innovation in pharmaceutical markets (with the no-
table exception of the impact on generic entry), the presence of large institutional
investors in the industry is so wide-spread that it would be hard to believe that they
have no material impact. The further investigation of their influence in pharma
markets is an exciting topic for future research.

33Rowland, C. Investigation of generic ‘cartel’ expands to 300 drugs, The Washington Post,
December 10, 2018.
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Chapter 5

The Interaction between Industry
Payments to Physicians, Insurance
and Drug Costs: Evidence from
Medicare Part D

Chapter Abstract

High and growing prescription drug costs in the United States are a major concern
for policy makers. This chapter focuses on the extent to which promotional gifts and
other transfers made to physicians by pharmaceutical companies causes physicians
to prescribe more expensive medicines. In the analysis data from a federal database
on the universe of industry payments between 2014 and 2017 is linked to prescribing
behavior in Medicare Part D. We develop a novel empirical strategy that uses data on
the prescription behavior of physicians in Vermont, where a strict ban on industry
payments to physicians is in place, combined with machine learning techniques to
construct the counterfactual outcome for physicians who receive payments in the
nearby states of New Hampshire and Maine. We find that a gift ban, such as the
one implemented in Vermont in 2009, has the potential to result in a 3% decline
in the total cost to treat diabetes. We investigate heterogeneity in the treatment
effect and find that physicians who have a high share of patients with a low-income
subsidy, and thus lower out-of-pocket expenditures, prescribe relatively more brand
drugs and expensive drugs in response to industry payments. Our findings illustrate
how industry payments interact with insurance to drive up health care costs.
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5.1 Introduction

Health care cost containment is an important policy goal in the US. In 2018, US
health care spending grew 4.6 percent, reaching USD 3.6 trillion.1 One of the fastest
growing areas of health care spending is prescription drugs (Martin et al., 2016).
Prescription drug costs per patient for diabetes, the market of interest in this study,
have doubled from 2013 to 2017. While consumers and healthcare payors pay for
drugs, physicians control access. Consequently, pharmaceutical companies invest
heavily in marketing drugs to physicians with the aim to influence physicians’ pre-
scribing decisions and increase drug sales.2 In the United States, the promotion of
drugs to physicians, includes not only the provision of information related to the
product, but also entails free meals, gifts, fees for consulting and speaker events,
travel and lodging, and payments for education and training. If such transfers re-
sult in the prescription of costlier medications, banning payments to physicians may
be a helpful means to reduce health expenditure. This paper quantifies the ex-
tent to which payments to physicians leads to the prescription of costlier drugs and
tests whether physicians who have patients with lower out-of-pocket expenditures,
prescribe relatively more expensive medications in response to industry payments.

We make use of a publicly available federal database on industry payments to
physicians. With the enactment of the Physician Payments Sunshine Act, healthcare
product manufacturers are required to fully disclose payments more than USD 10 to
physicians. In September 2014, the first batch of payment data was made available
to the public via the online “Open Payments” portal. The data indicates that
payments to physicians are substantial: In 2017, industry payments totaling USD
8.31 billion were made to more than 600,000 physicians and 1000 teaching hospitals
(openpaymentsdata.cms.gov).

Physicians act as (imperfect) agents for their patients. When a physician is de-
ciding between two substitutable drugs of differing prices, for example an expensive
brand drug and a cheaper generic alternative, a personal reward in the form of a
gift or an expensive dinner if he/she prescribes the brand may shift the physician’s
preference towards the costlier medication. If physicians, in addition to caring about
their patients’ clinical health, care about their patients’ financial health, a trade-
off arises between the cost of the medication to the patient and the physician’s
expected reward. If, on the other hand, the patient is fully insured against pre-

1CMS National Health Expenditure Data. Available online:
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/NationalHealthExpendData/NationalHealthAccountsHistorical

2Even accounting for direct-to-consumer advertising 90% of promotional expenditures are di-
rected towards physicians (Donohue et al., 2007).
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scription drug costs, this trade-off does not exist. Thus one might expect that as
patients’ out-of-pocket expenditures decline, physicians are more likely to prescribe
costlier medication as a consequence of industry payments. We test this hypothesis.

In our analysis we combine four years of data (2014-2017) from Open Payments
matched with data on prescribing behavior from Medicare Part D at the physi-
cian level. We focus on prescriptions and payments related to treatments for dia-
betes. The data allows us to observe the rate at which physicians prescribe brand
vs. generic anti-diabetics and the average cost of a dose (30-day supply) at the
physician level. Variation in out-of-pocket expenditures is driven by the share of a
physician’s patients that have a low-income subsidy. In contrast to regular Medicare
beneficiaries, beneficiaries with a low-income subsidy (LIS) face substantially lower
out-of-pocket expenses for prescription drugs (Yala et al., 2014).

There are a number of challenges that arise when aiming to identify the causal ef-
fect of industry payments on prescribing decisions and the manner in which payments
interact with patients’ out-of-pocket expenditures. Firstly, payments to physicians
are not random. Pharmaceutical firms typically monitor physicians’ prescriptions
and specifically target high-volume or high-cost prescribers for payments (Fugh-
Berman and Ahari, 2007). This strategic behavior by firms tends to make the
correlation between a prescriber’s payments and prescriptions positive even if pay-
ments have no effect on prescribers’ choices (Carey et al., 2020). Finally, patients
with low out-of-pocket expenditures as a result of the low-income-subsidy may have
specific characteristics, such as more severe medical conditions, which could cause
higher treatment costs independently of insurance coverage or payments to physi-
cians. Finally, industry payments may have spillover effects to physicians who do
not receive payments through peer networks (Agha and Zeltzer, 2019).

To combat these challenges, this paper proposes a novel identification strategy.
We make use of data on the prescription behavior of physicians in Vermont, where a
strict ban on industry payments to physicians is in place, combined with supervised
machine learning techniques (specifically, regularized regression) to construct the
counterfactual outcome for physicians who receive payments in the nearby states of
New Hampshire and Maine. This approach allows us to control for the manner in
which prescribing costs change with key explanatory variables in the complete ab-
sence of industry payments. To determine the average treatment effect we compare
predicted prescribing behavior with actual prescribing behavior at the physician
level, and test how this effect varies with observable characteristics, including the
share a physician’s patients’ that have a low-income subsidy.

Identification of the causal treatment effect relies on the assumption of ‘uncon-
foudedness’ i.e. that we can control for all relevant confounders that affect both the
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treatment and outcome variable (Rubin, 1990). The application of machine learning
is crucial in this regard as it allows us to flexibly control for a very large number of
covariates. Identification also relies on the standard assumptions of ‘common sup-
port’ and ‘no spillovers.’ For these reasons we train the machine learning algorithm
using data from physicians in Vermont where industry payments are banned.

We find that physicians who receive payments prescribe a significantly higher
share of brand drugs and have higher average drug costs per dose. Receipt of an
industry payment, on average, causes the brand prescription rate of a physician
to increase by 5 percentage points in the year in which the payment is received,
corresponding to a 20% increase in the unconditional average brand prescription
rate. The drug cost for a 30-day dose is USD 21 higher for physicians who receive
industry payments, corresponding to a 22% increase in the unconditional average
drug cost. The effect of a payment increases significantly with the share of patients
who have a low-income subsidy (and thus out-of-pocket costs). The average increase
in the brand prescription rate for physicians who have a high share of patients with
a low-income subsidy (>75%) is 9 percentage points and the average increase in the
drug cost per dose is 29 USD. This suggests that greater insurance coverage makes
it easier for physicians to appease pharmaceutical companies.

During the time period of the sample (2014-2017) a total of just under USD
900,000 was spent by the pharmaceutical industry on payments related to anti-
diabetics to 245 physicians in the states of New Hampshire and Maine. Back-of-the-
envelope calculations indicate that holding prices and prescribing volumes constant,
the elimination of payments would have resulted in savings of just under USD 10
million during this period as a result of substitution towards cheaper medication.
This represents a 3% decline in the total prescription costs for diabetes in New
Hampshire and Maine. The increase in drug costs is more than 10 times what the
industry spent on payments during this time period which clearly indicates that
payments to physicians are very profitable for the pharmaceutical industry as a
whole.

To the extent that payments may affect the quantity of a specific drug that physi-
cians prescribe, this is a conservative estimate of the savings to healthcare payors
from the elimination of industry payments to physicians. This financial cost needs
to be traded-off against the possible benefits of industry payments to physicians,
for example, as industry claims, payments may be associated with information that
helps physicians to make better prescription decisions.

This paper is structured as follows: Section 5.2 outlines the contribution of this
paper to the literature; Section 5.3 explains the data sources, dataset construction
and undertakes a descriptive analysis of the data; Section 5.4 lays out our empir-
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ical strategy; Section 5.5 contains the estimation results; Section 5.6 provides a
discussion of the results; and Section 5.7 concludes.

5.2 Contribution to the literature

This paper contributes to the literature on insurance coverage and drug expenditure,
and the literature on the impact of industry payments on physicians’ prescription
choices. While a number of papers have sought to quantify the effect of payments
on physicians’ prescribing behavior, to the best of our knowledge this paper is the
first to study heterogeneity in the effect of industry payments to physicians with
respect to a measure of patients’ out-of-pocket costs. To identify the causal effect of
industry payments we make use of machine learning techniques. Thus, this paper
also contributes to the emerging body of work that applies machine learning to aid
causal inference.

Several papers document a positive relationship between expansion in insurance
coverage and increasing drug utilization and expenditures (see for example Ghosh
et al., 2019; Duggan and Scott Morton, 2006; Danzon & Pauly, 2002). This is in
line with standard theories of insurance and moral hazard (Pauly, 1968; Zweifel and
Breyer, 1997). Higher insurance may reduce an individual’s motive to prevent illness,
leading to greater medical expenditures. More importantly, once an individual has
fallen ill, individuals with insurance face lower effective prices, which might lead
them - or their physicians - to elect for greater levels of treatment and/or more
expensive treatment than they would have received if they were uninsured.

Relatedly, previous studies have investigated the extent to which physicians take
patients’ out-of-pocket expenditure and price sensitivity into consideration when
prescribing drugs. Using data on physician prescription decisions in Sweden during
the years 1992 and 1993, Lundin (2000) finds that physicians are more likely to
prescribe brand-name versions of a drug (where a generic is available) to patients
with lower out-of-pocket expenditures. Carrera et al. (2018) find that physicians
take the price sensitivity of patients into consideration in their prescription decisions;
this is evidenced by a greater increase in the prescriptions of cholesterol-lowering
statins to low-income patients following the release of generic statins.

Physicians’ prescription choices can also be influenced by rent-seeking motives.
In Taiwan, where physicians prescribe and dispense drugs, Liu et al. (2009) find
that profit incentives affect physicians’ prescribing decisions. Iizuka (2012) shows
that Japanese doctors respond to drug prices when choosing between brand-name
drugs and generic drugs (only) if they expect to pocket some share of drug expen-
diture. Making use of a controlled field experiment in China, Lu (2014) finds that
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when doctors are provided with an incentive to promote drug sales, prescriptions
for insured patients cost more than those for uninsured patients.

Using US data, several papers study the effect of gifts and payments from pharma-
ceutical firms to physicians on prescription patterns. For example in a cross-sectional
study using industry payment data from the Open Payments Program from 2013,
DeJong et al. (2016) find that receipt of an industry-sponsored meals is correlated
with an increased rate of prescribing the brand name medication being promoted.
Physicians who receive payments from industry are also found to have higher average
prescribing costs per patient and a larger share of brand drug prescriptions (Perlis &
Perlis, 2016; Qian et al., 2017). The problem with studies of this nature is that they
do not show evidence of a causal relationship between payments and prescription
choices. Fugh-Berman and Ahari (2007) discuss how drug firms commonly monitor
physicians’ prescribing and specifically target high-volume prescribers for payments.
This strategic behavior by pharmaceutical firms tends to make the correlation be-
tween a prescriber’s payments and prescriptions positive even if payments have no
effect on prescribers’ choices.

One approach to correct for selection in the literature has been to use instrumental
variables. This approach relies crucially on the validity of the instrument. There
is no clear “good” instrument for payments to physicians and a number of different
instruments have been used in the literature. Fernandez & Zejcirovic (2018) and
Engelberg et al. (2014) use the distance between the county where the physician is
located and the pharmaceutical company headquarters as an instrument for industry
payments. This instrument is limited by the fact that it is only relevant for counties
and physicians that that are within a reasonable distance from the headquarters,
and company headquarters are few.3 Grennan et al. (2018) use regional variation
in the strictness of conflict of interest policies at academic medical centers as an
instrument for industry payments. The instrument is only relevant for physicians
that are within a reasonable distance from an academic medical center, and given
that the strictness of academic medical center policies may directly affect physicians
prescription behavior, the instrument is only exogenous conditional on a rich set
of controls. Payments received by a physician’s colleagues has also be used as an
instrument for industry payments (Aramal-Gracia, 2020; Agha and Zeltzer, 2019).
A concern with this instrument is that changes in colleagues’ prescription behavior,
as a result of industry payments, may have a direct impact on the focal physician’s
prescription behavior making it plausible that the assumption of strict exogeniety
is violated (Agha and Zeltzer, 2019).

3The mean distance to the closest headquarters of a physician is about 800km (Fernandez &
Zejcirovic, 2018).

150



5.3. DATA

Another approach has been to include physician fixed effects to take out persis-
tent unobserved differences across physicians (as in Carey et al., 2020 and Datta
and Dave, 2016). The limitation with this approach is that in cases where the
physician-firm relationship pre-dates the payments data, the estimates using a fixed
effects strategy only measure the incremental effect of an additional payment. Since
physician-firm relationships typically involve repeated interaction, the fixed effect
approach is not able to capture the full effect of the relationship. A further identi-
fication strategy that has been used in the literature is matching.4

Our identification strategy differs from the existing literature on industry pay-
ments. We make use of data from the state of Vermont to construct the counter-
factual outcome for physicians who receive industry payments. Machine learning is
applied in order to specify a rich model that uses the data on the prescribing behav-
ior of (unpaid) physicians in Vermont to predict the outcomes for paid physicians in
neighboring states. The use of machine-learning to aid causal inference is a growing
field in economics (see e.g. McCaffrey et al., 2004; Hansen & Kozbur 2014; Wager &
Athey, 2017; Chernozhukov et al., 2017; Athey & Imbens, 2019; Abrell et al., 2019).
Abrell et al. (2019) use machine learning to analyze the emissions and cost impacts
of the UK Carbon tax. Our approach bears similarities with the method developed
by Abrell et al. (2019) in that we use ML to predict the outcome in the absence of
treatment. However, whereas Abrell et al. (2019) use machine-learning to construct
the counterfactual in a situation where there is no control group, in our case, we
data from the state of Vermont, where industry payments are banned, serves as the
control. Abrell et al. (2019) predict the outcome for a counterfactual value of the
treatment using an ML-trained model in which one can control the treatment vari-
able. Our strategy, on the other hand, uses ML to predict prescribing choices in the
complete absence of the treatment variable. The treatment effect is estimated as the
difference between the actual outcome with treatment, and the predicted outcome
without treatment.

5.3 Data

This section introduces the two main datasets used in the empirical analysis, Medi-
care Part D and Open Payments, and provides a brief overview of the anti-diabetics
market. Thereafter we explain the construction of the final dataset and present
some descriptive statistics.

4For example, see the robustness check in Agha and Zeltzer (2019). In the methodology section
of this paper we discuss the advantages of our approach over matching (see Section 5.4.4).
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5.3.1 Medicare Part D

Medicare is a US public health insurance program for the elderly (over the age of
65) and disabled that covers over 50 million beneficiaries (Cubanski et al., 2018).
Medicare Part D, introduced in 2006, is a voluntary program that provides insurance
for prescription drugs. A large share of Medicare beneficiaries are enrolled in Part D.
In 2018, 43.4 million beneficiaries (74% of all Medicare beneficiaries) were enrolled
in Part D (Cubanski et al., 2018).

Utilization of drugs in the Part D program is a function of physicians’ prescribing
decisions. Data on the prescriptions dispensed under the Medicare Part D Program
is available online from The Centers for Medicare and Medicaid Services (CMS).5

The Medicare Part D Detailed Prescriber Public Use File (PUF) provides data on
prescriptions at the physician-drug-year level. A further database, the Medicare
Part D Prescriber Summary PUF contains additional information at the physician-
year level. In both datasets, physicians can be identified by their National Provider
Identifier (NPI) and so the two datasets can be easily combined.6 In the Detailed
Prescriber file each drug is identified by its brand name and generic name.

The Detailed Prescriber file provides information on the volume and total cost of
physician’s prescriptions of a specific drug in a given year. Measures of prescription
volume include the total number of unique beneficiaries with at least one claim for
the drug, the total number of claims and the total number of standardized 30-day
fills. The total drug cost consists of “the ingredient cost of the medication, dispensing
fees, sales tax, and any applicable administration fees and is based on the amount
paid by the Part D plan, Medicare beneficiary, government subsidies, and any other
third-party payers” (Centers for Medicare and Medicaid Services, 2019). To protect
the privacy of Medicare beneficiaries, any aggregated records which are derived from
10 or fewer claims are excluded.

The out-of-pocket costs Medicare beneficiaries are the drug copays which are
stipulated by their plan. For patients covered by insurance, typical drug copay costs
for diabetes range from $10 to $50, depending on the drug. If the patient has a
multi-drug regimen, copays are estimated to total around $200 a month or more.7

In particular, out-of-pocket costs for insulin can be very high. Among insulin users
without Part D low-income subsidies (LIS), average annual per capita out-of-pocket
spending on insulin was $580 in 2017.8

5https://data.cms.gov/part-d-prescriber/archived-data
6A NPI is a unique 10-digit identification number issued to health care providers in the US by

the Centers for Medicare and Medicaid Services. An NPI is permanently associated with a specific
individual regardless of any changes in practice location or additional speciality training.

7This estimate is obtained from https://health.costhelper.com/diabetes-medication.html.
8This figure is taken from https://www.kff.org/medicare/issue-brief/insulin-costs-and-
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Enrollees with sufficiently low income and assets receive a low-income-subsidy
(LIS). In 2018, more than 12 million Part D enrollees (29%) received low-income
subsidies (Cubanski et al., 2018). Patients with a LIS benefit from zero or much
lower out-of-pocket expenditures for premiums, deductibles and medication costs
(Yala et al., 2014).9 The share of beneficiaries with a LIS at the physician-year
level is provided in the Prescriber Summary file. This variable provides important
variation in patients’ out-of-pocket costs across physicians.

Additional variables in the Prescriber Summary file include the prescriber’s full
name, address (street address, 9-digit zip code and state), speciality and gender. It
also provides aggregate prescription measures for all drugs, the number of claims
for beneficiaries covered by Medicare Advantage (MAPD) plans10, the average age
of beneficiaries, the number of female and male beneficiaries and the beneficiary
average Hierarchical Condition Category (HCC) risk score. The HCC risk score is
determined by CMS using demographic information and diagnoses on Medicare fee-
for-service claims to measure each enrollee’s medical risk status, with higher scores
going to enrollees with more (or more severe) health conditions or demographic risk
factors. Thus, risk scores provide a proxy for patients’ health status.

5.3.2 Diabetes

We focus on prescriptions for anti-diabetic drugs. This market is of particular in-
terest because diabetes is becoming increasingly prevalent in the US, as well as
globally, and costs to treat Medicare beneficiaries with diabetes have risen steadily
overtime (see Figure 5.1). To the extent that payments to physicians may lead to
higher drug costs, the potential savings in this market could be large. Moreover,
since diabetes disproportionately affects older people, the sample of prescriptions to
Medicare beneficiaries is likely to cover a substantial portion of prescriptions in the
US diabetes market.

Diabetes is a chronic disease in which the body’s ability to produce or respond to
the hormone insulin is impaired, resulting in abnormal metabolism of carbohydrates
and elevated levels of glucose in the blood. Diabetes is a prevalent public health
concern in the US as well as worldwide. As of 2015, 30.3 million Americans - 9.4%
of the US population - had diabetes (Centers for Disease Control and Prevention,
2017). Diabetes is on the rise; among people with Medicare, one third (33%) had

coverage-in-medicare-part-d/
9Yala et al. (2014) find that the average out-of-pocket costs for LIS beneficiaries are 74% lower

than of the out-of-pocket costs for non-LIS beneficiaries with gap coverage ($148 vs. $570).
10Medicare-eligible individuals can acquire coverage for prescription drugs either through stan-

dalone Part D plans or bundled with medical and hospital coverage in the form of “Medicare
Advantage” plans.
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diabetes in 2016, up from 18% in 2000 (Cubanski et al., 2019). The risk of diabetes
increases with age and of the estimated 30.3m Americans with diabetes in 2015, just
under half are 65 or above.

Anti-diabetic medication has seen substantial price rises in recent years, which is
a major focus for policy-makers. In particular, high insulin prices have attracted
attention from the policy makers and the media.11 Based on the full Medicare Part D
dataset for the US, Figure 5.1 shows how both total Medicare expenditures on anti-
diabetic treatments and average treatment costs per beneficiary have increased over
time. Total Medicare expenditures on both brand and generic treatments amounted
to USD 17.6 billion in 2017. Brand name drugs are responsible for the lion’s share
of costs making up for 95% of total drug costs, despite only accounting for 30% of
30-day supply prescriptions for anti-diabetics in 2017.

Figure 5.1: Costs to treat diabetes
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Current therapy for diabetes is almost entirely drug-based in combination with
lifestyle intervention (weight-loss, appropriate diet, exercise). Type 1 diabetes re-
quires insulin therapy. In the case of type 2 diabetes, which accounts for 90-95%
of all diabetes cases, the first line treatment is Metformin (which is available as a
generic) and thereafter no single drug is highlighted according to the Standards of
Medical Care in Diabetes (Centers for Disease Control and Prevention, 2017; Amer-
ican Diabetes Association 2015).12 Thus, manufacturers are motivated to influence
physician prescription decisions through providing monetary incentives.

11For example see Prasad (2019) for BBC News “The human cost of insulin in America.”
12Appendix Section 5.8.2 provides a detailed overview of the available treatments for diabetes

and lists all the treatments in the final dataset.
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5.3.3 Payments to physicians

Data on industry payments to physicians related to anti-diabetic treatments is ob-
tained from the CMS Open Payments website. Open Payments is a national dis-
closure program created by the Affordable Care Act (ACA) and managed by the
CMS that collects and publishes information about financial relationships between
the healthcare industry and providers. The creation of Open Payments follows the
passing of Section 6002 of the ACA of 2010, also known as Physician Payments
Sunshine Act. The Act aims to promote transparency and accountability by pro-
viding information on gifts, payments and other transfers of value on the publicly
accessible Open Payments website.

Each year, during a submission period, manufacturers fully-disclose payments of
$10 or more in value made to physicians and teaching hospitals. These transfers
are categorized into three payment types: 1) general payments (food and beverage,
speaker fees, consulting, travel and lodging, and gifts and entertainment); 2) pay-
ments for research purposes and 3) physician ownership and investment interests.
After submission, there is a 45-day period during which payment recipients can
review and dispute errors before public release. Thereafter the data are corrected
and then uploaded online. The published data include the identities of the pay-
ment recipients and the paying firms, date of payment, associated product, payment
amount, and nature of payment. The first batch of data became publicly available
in September 2014. The 2013 program year includes only data collected from the
second half of year, whereas all subsequent program year publications contain data
from the full year.

The Sunshine Act came on top of an existing regulatory environment to prevent
undue influence of the medical industry at the state level. While Open Payments
provides the first national disclosure program, prior to its implementation six states
had enacted similar disclosure programes (Gorlach and Pham-Kanter, 2013).13 A
handful of states also have laws that ban certain types of industry gifts and payments
or place restrictions on the value of such transfers.14 One of the most comprehensive
statutory gift bans was implemented by Vermont in 2009. Vermont’s gift ban (18
V.S.A §4631a) prohibits most gifts, including free meals, to physicians who regularly

13These states include: Maine (2006), West Virginia (2004), Minnesota (1994), Massachusetts
(2009), Vermont (2002), and District of Columbia (2004).

14States statutory gift bans payments prior to the Sunshine Act include Vermont (2009), Col-
orado (2007), Minnesota (1994) and Massachusetts (2009) (Gorlach and Pham-Kanter, 2013).
Maine enacted a ban of certain types of pharmaceutical payments at the end of our sample,
in mid-2017. However clear rules only came into effect in June 2020. In our data we do not
see a decline in the value or number of payments to physicians in Maine in 2017 vs. 2016 and
2015. (See: https://www.policymed.com/2020/06/maine-finalizes-its-physician-gift-ban-rules-to-
exclude-pharmacists-speaker-fees-expenses-accredited-education-and-market-research.html)
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practice in Vermont. The law is actively enforced and violators have been made to
pay penalties in the past.15 While certain types of payments are still “allowable”
under the ban, the law severely limits payments to physicians.

The empirical analysis will make use of the payment ban in Vermont to construct
a counterfactual of how physicians who receive payments would have prescribed in
the absence of payments. For identification, we require that the physicians operate
in states that are broadly similar to Vermont, aside from not banning payments,
thus we focus on identifying the effect of payments on the prescription choices of
physicians in the states of New Hampshire and Maine.

5.3.4 Dataset construction

The final dataset comprises of physicians in the states of Vermont, New Hampshire
or Maine, who prescribe anti-diabetic medication to Part D beneficiaries, matched
with payments data for the years 2014 to 2017. The construction of the dataset
follows four main steps. First, the set of all anti-diabetic drugs is established. Next,
we isolate prescription data from Medicare Part D on physicians that prescribe anti-
diabetic drugs in the states of Vermont, New Hampshire or Maine. In a third step,
Part D prescriptions are matched with the payments data at the physician-drug-year
level. Finally, the dataset is aggregated to the physician-year level. This subsection
describes each of these steps in detail and provides information on the final sample.

The set of all approved treatments for diabetes (both brand and generic) is iden-
tified using the FDA Orange Book matched with Anatomical Therapeutic Chemical
(ATC) codes.16 We select drugs with the ATC code “A10 - Drugs used in diabetes”.
The complete list of anti-diabetic treatments is matched with the drug names in
Part D and Open Payments using string-matching algorithms, and a cross-walk file
is created with standardized drug names.

Information on the prescriptions of anti-diabetic drugs, including the name and
address of the prescribing physician, is extracted from the Medicare Part D database.
This sample provides the universe of anti-diabetic medications prescribed to patients
enrolled in Medicare Part D during this time span.17 The sample is restricted to
physicians located in Vermont, New Hampshire or Maine.

Part D prescriptions are matched with the Open Payments data contained in the

15In 2013, Novartis was reported to have paid $36,000.00 in civil penalties to settle a total of six
gift-ban violations; each violation consisted of providing a meal to a health care provider (Hams
& Wilkinson, 2013).

16The FDA Orange Book provides data on all launched pharmaceutical products in the US
since 1982.

17Note that physicians may prescribe anti-diabetic medication to other patients that are not
enrolled in Part D. This information is not publicly available and is not included in the dataset.
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general payments file at the physician-drug-year level for the years 2014 to 2017.18

The dataset is aggregated to the physician-drug-year level such that payment values
reflect the sum of all payments associated with a specific brand drug in a given
year. The data is matched with Part D on the basis of drug name and physician
name. Since there is no common physician ID that connects Part D and Open
payments19, the datasets are matched on the basis of full name and 9-digit zip code.
This is complemented by a manual check in cases where physicians in Part D did
not directly match to the Open Payments database.

On the basis of this intermediate dataset, where information on payments is visible
at the drug-level, a few stylized facts concerning payments to physicians can be
established. Firstly, all payments are made in connection with a brand drug. There
are no payments related to the promotion of a generic drug. A list of pharmaceutical
companies and associated brand drugs with positive transfers to physicians in the
sample is presented in Table 5.8 in the Appendix. Secondly, payments to physicians
involve repeat interaction. During the years 2014 to 2017, for the subset of physicians
receiving payments, the average number of payments that relate to the same brand
drug is 9 and the average number of payments from the same company is 12. Thirdly,
the average value of payments tends to increase with the total cost of the drug. As
illustrated by Table 5.1, drugs in the lowest cost tercile have significantly lower
average payment values than those in the top cost tercile (USD 295 vs. USD 1,119),
although there is substantial variability in the size of payments across all cost levels.

Table 5.1: Payment value (USD) by drug cost

mean sd observations
Lowest cost tercile of diabetes drugs 295.57 2,732.04 509
Middle cost tercile of diabetes drugs 499.45 2,718.09 459
Top cost tercile of diabetes drugs 1,199.40 5,030.51 421
Total 636.89 3,601.67 1,389

Lastly, the dataset at the physician-drug-year is aggregated to the physician-year
level. The dataset is supplemented with information on yearly median household
income and population density at the 5-digit zip code level from the United States
Census Bureau’s American Community Survey, and information on diagnosed dia-
betes rates and obesity at the county and year level from the Centers for Disease

18Each payment in Open Payments is linked to a specific drug, in cases where multiple drugs
are listed the payment value is split equally amongst all listed drugs.

19The Part D data uses as its unique ID each provider’s NPI number. The Open Payments
system uses a randomly generated unique ID. By law, the government could not release NPI
numbers with the Open Payments data, but it could, and did, release their name and address.
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Control and Prevention.20 A list of all relevant variables in the dataset, a descrip-
tion and their source is provided in the Appendix. The final sample is restricted to
physicians. Nurses and physician assistants are dropped due to the fact that they
never receive payments from pharmaceutical companies. Observations with missing
information for any variable are dropped. Since the information provided in Part D
is limited for cases where a drug is prescribed to 10 or fewer unique beneficiaries,
physicians who prescribe anti-diabetic medication to a total of 10 or fewer bene-
ficiaries per year end up being dropped. These physicians account for only 8% of
all claims in the data, thus the final dataset covers the majority of prescriptions by
physicians for diabetes treatments. The final sample consists of 5,704 observations
and 1,862 physicians.

5.3.5 Descriptive analysis

In this section we present summary statistics and descriptive analysis using the
final sample of physicians. Approximately 17% of physicians in New Hampshire
and Maine receive a payment at some point in time during the time span 2014 to
2017. Not all physicians receive a payment every year. In total, 543 physician-
year observations are associated with a positive payment value. Table 5.2 presents
summary statistics for the sample split by physicians in New Hampshire and Maine
who receive a payment in a given year (column 1), physicians in New Hampshire and
Maine who do not receive any payments in a given year (column 2) and physicians in
Vermont who do not receive any payments.21 On average paid physicians prescribe
brand drugs for 33% of 30-day supply prescriptions. This is in contrast to unpaid
physicians who prescribe brand drugs in 23% of cases. The average for physicians
in Vermont, where many payments are banned, lies between these value at 27%. A
comparison of means also indicates that physicians who receive payments are more
likely to be male than those who do not.

Table 5.3 provides summary statistics on the payment variables. On average, a
paid physician receives a total of 14 separate payments per year in connection with
anti-diabetic treatments. The majority of these transfers are in-kind (such as free
meals, travel and accommodation). The average total value of payments received
for anti-diabetic treatments in a year is USD 1,610. There is significant variance in
the size of yearly payments; with the maximum earnings for an observation in the
sample totalling USD 98,443 per year. Cash payments tend be much higher in value
than in-kind transfers.

20Available online: https://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html
21Despite the ban, a small fraction (4%) of physicians in Vermont received a positive payment

at some point in the time span 2014 to 2017. These observations are excluded from the analysis.
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Table 5.2: Summary statistics for physician characteristics (2014-2017)

Received Payment No Payment Vermont
mean sd mean sd mean sd

Brand prescription rate, anti-diabetics 0.33 0.16 0.23 0.17 0.27 0.14
Total 30-day supply, anti-diabetics 871.32 976.07 501.78 364.36 514.34 354.07
Drug cost ’000 USD, anti-diabetics 155.23 351.64 53.43 85.55 62.95 94.36
Specialist in diabetes (0/1) 0.37 0.48 0.33 0.47 0.35 0.48
Family practice (0/1) 0.62 0.49 0.62 0.49 0.61 0.49
New practitioner (0/1) 0.10 0.30 0.15 0.35 0.11 0.31
Male practitioner (0/1) 0.84 0.37 0.59 0.49 0.62 0.49
Beneficiary count for anti-diabetics 78.93 137.81 40.37 39.62 38.34 39.87
Anti-diabetics claim share 0.09 0.11 0.06 0.07 0.06 0.06
Insulin claim share of anti-diabetics 0.24 0.15 0.21 0.17 0.27 0.15
Beneficiaries over 65 for anti-diabetics 0.15 0.24 0.12 0.26 0.12 0.27
Share of male beneficiaries 0.45 0.08 0.41 0.11 0.43 0.11
Total beneficiary count 372.57 176.78 328.63 141.29 321.66 124.92
MAPD claim share 0.21 0.14 0.20 0.14 0.09 0.07
LIS claim share 0.52 0.21 0.46 0.22 0.46 0.17
Average age of beneficiaries 70.19 4.18 70.78 4.25 71.29 3.34
Average risk score of beneficiaries 1.18 0.21 1.19 0.26 1.13 0.21
Median household income ’000 USD 53.50 17.20 57.59 19.13 54.81 12.69
Population density ’000 0.76 1.43 0.93 1.52 0.64 1.36
Percent diagnosed with diabetes 8.48 1.14 8.11 1.05 6.88 0.89
No. diagnosed with diabetes ’000 12.69 8.22 13.32 8.24 4.19 2.12
Percent obese 29.38 3.62 28.53 3.32 25.09 4.07
No. obese ’000 37.20 24.42 39.62 24.81 13.31 7.17
No. other physicians in same county 74.15 45.49 81.18 46.62 30.48 18.89
No. other physicians in same ZIP 9.71 8.34 12.69 10.72 7.23 6.07
Observations 543 4,162 999

Table 5.3: Summary statistics for payments related to anti-diabetic drugs

mean sd min max observations
No. payments per year 13.91 29.94 1 340 543
No. cash payments per year 1.07 6.06 0 59 543
No. in-kind payments per year 12.84 25.77 0 281 543
Value (USD) payments per year 1,610.28 8,471.34 1 98,443 543
Value (USD) cash payments per year 1,291.62 7,057.26 0 77,956 543
Value (USD) in-kind payments per year 318.67 1,531.51 0 20,487 543
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The two key outcome variables of interest are the physician’s brand prescription
rate which measures the share of 30-day prescriptions attributable to brand drugs,
and the physician’s average cost for a 30-day prescription which is calculated by
dividing total cost by total 30-day supply. Figure 5.2 compares how average brand
prescription rates (a) and drug cost per 30-day supply (b) vary across physicians
in Vermont and paid physicians for different levels of LIS claim share. Firstly, it
is evident that for both a low (≤ 0.5) and a high (>0.5) share of LIS claims, paid
physicians prescribe more brand drugs and more expensive drugs. Secondly, the
difference is greater for physicians with a high LIS share than it is for physicians
with a low LIS share. This provides an indication that there may be an interaction
between patient’s out-pocket costs and the effect of industry payments.
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Figure 5.2: Comparison of physicians’ prescription outcomes

5.4 Empirical strategy

In this section we explain the empirical methodology and identification strategy.
First, we draw on the Rubin causal framework to characterize the causal ‘target’ or
‘treatment’ parameter of interest (Rubin, 1974). The target parameter is distinct
from ‘nuisance’ parameters which are not of interest per se, but need to be modelled
to identify the treatment effect. We then explain how we apply machine learning
(ML) tools to model the nuisance parameters and thereby uncover the causal effect
of payments to physicians.

5.4.1 Causal model

We model the prescription outcome Yit of a physician i in period t as being generated
according to
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Yit = f(Xit, Hit) + θDit + Uit

where Dit ∈ {0, 1} is a binary treatment variable equal to 1 if physician i receives
an industry payment in period t and zero otherwise, Xit is a vector of observable
characteristics, referred to as covariates, and Hit is a vector of unobserved covari-
ates. Uit is a random error term with mean zero, E[Uit] = 0. Uit is independent of
the covariates and treatment:

Uit ⊥ (Xit, Hit, Dit) ∀ i, t

The covariates affect the outcome variable via the function f(Xit, Hit). The func-
tion f is invariant to the treatment. Given E[Uit|Xit, Hit, Dit] = 0, θ has the inter-
pretation of the treatment effect parameter. For purposes of illustration θ is assumed
to be constant for all physicians and across time. In our application we will model θ
as a function of the observable characteristics i.e. θ = g(Xit) where Xit will include
the LIS claim share amongst other variables.

Let Y1it denote the outcome for physician i with treatment (Dit =1) and Y0it de-
note the outcome without treatment (Dit =0). The effect of an industry payment
on the outcome Yit can then can be calculated as:

θ = Y1it − Y0it

The fundamental problem of causal inference (Holland, 1986), often also referred
to as the missing data problem (Rubin, 1974) is that we can never observe both
outcomes for an individual at the same time. Here, we observe the prescription out-
comes for physicians that have received payments from pharmaceutical companies
but we do not observe these same physicians’ prescription outcomes in the absence
of payments. We propose to overcome the missing data problem by predicting the
outcome without treatment for an individual using supervised machine learning.
Given the possibility to predict f(Xit, Hit) we can re-write the treatment effect as:

θ = Y1it − f(Xit, Hit)− Uit

In order to calculate counterfactual outcomes, the following two assumptions con-
cerning the interaction between the covariates and treatment have to be satisfied:

ASSUMPTION 1: Observed covariates are independent of changes in the treatment
variable: Xit ⊥ Dit.
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ASSUMPTION 2: Unobserved covariates are conditionally independent of the treat-
ment variable given the observed controls: Hit ⊥ Dit|Xit.

Assumption 1 rules out an effect of the treatment variable on observed covariates.
If D influences X, there would be an indirect effect on the outcome, which would bias
our estimate of the treatment effect. Assumption 2 rules out effects of the treatment
variable on unobserved variables after controlling for the observed variables. Again,
if D would influence H, there would be an indirect effect on the outcome. It is
important to note that assumption 2 does not rule out an effect of unobserved
controls. It only implies that once we include all observed covariates into the model,
the impact of unobserved variables is independent of the treatment (Abrell et al.,
2019). It is worth highlighting that for assumption 2 to hold we need to be able to
include all relevant confounders in X which affect both the treatment and outcome
variable. The application of ML is instrumental in this regard as it allows us to
flexibly control for a large number of covariates.

5.4.2 Using machine learning for prediction

To construct the counterfactual outcome we need an estimator f̂ for the function
f that produces reliable out-of-sample predictions. To do so, we will make use of
modern prediction methods and the fact that we observe outcomes in a state where
payments are banned. Further details on the specific ML algorithms that will be
used are provided in the following subsection.

ML algorithms seek to maximize predictive performance by minimizing the test
mean squared prediction error (MSPE) which is defined as the average squared pre-
diction error among observations not previously seen (Varian, 2014). Superior pre-
dictive performance is typically achieved by a combination of flexibility and simplic-
ity, often described as the ‘bias-variance trade off’. Standard econometric techniques
such as ordinary least squares (OLS) aim at minimizing the bias while allowing for
high variance which can lead to ‘over-fitting’: The model represents the sample
data very well, however it is unlikely to explain out-of-sample observations equally
well. ML methods solve a bias-variance trade-off by introducing hyper- or tuning
parameters in the estimation function. Given the optimal set of tuning parame-
ters λ∗ that minimizes the test MSPE, the true outcome for an untreated physician
can be written as the sum of the predicted value and the prediction error ξ(Xit, Hit):

Y0it = f̂λ∗(Xit) + f(Xit, Hit)− f̂λ∗(Xit)︸ ︷︷ ︸
=:ξ(Xit,Hit)

+Uit
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To estimate f̂λ∗ data is required on how the outcome variable relates to the ob-
servable covariates in the absence of treatment. The data we have comprises of the
state of Vermont, that has a ban on all payments to physicians and other states
that permit payments. For simplicity, let us just consider two states: state A that
allows payments and state B that bans all payments. If we make the assumption
that the function f(Xit, Hit) is invariant across the two states, we can write the
corresponding population models for the state A and state B follows:

Y A
it = γAt + f(XA

it , H
A
it ) + θDit + UA

it

Y B
it = f(XB

it , H
B
it ) + UB

it

where γAt is a state-year constant for the state without a ban to control for state-
specific time-invariant characteristics and state-year-specific shocks.

ASSUMPTION 3: The function f(Xit, Hit) is invariant across the state that allows
payments to physicians and the state that bans payments to physicians.

With this set-up, it is clear that we can use data from the state with a payment
ban to estimate f̂λ∗ in absence of D. An alternative option would be to use (or in-
clude) data on untreated physicians in state A to estimate the prediction function.
However, untreated physicians that share a peer network with treated physicians
may experience spillover effects (Agha and Zeltzer, 2019). If untreated physicians in
state A are indirectly affected by payments we cannot cleanly predict how Yit relates
to Xit in the complete absence of industry payments. Another concern when using
only data from untreated physicians from state A to estimate f̂λ∗ is that unpaid
physicians may have very different X values due to selection, resulting in poor out-
of-sample predictions for treated physicians due to “insufficient covariate overlap”
(Samii, Paler and Daly, 2016). We thus estimate f̂λ∗ using only data from state B.
Correspondingly, there should be sufficient covariate overlap between state A and
state B.

ASSUMPTION 4: The range of observed covariates X is similar across the state
that allows payments to physicians and the state that bans payments to physicians.

Taken together, assumptions 3 and 4 imply that states A and B should be similar,
apart from the fact that payments are banned in state B. For this reason, in the
application, we focus on estimating the treatment effect for physicians in the nearby
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states of New Hampshire and Maine. We do not consider New York in the analysis
because it is a far larger state than Vermont and therefore less comparable. We also
exclude Massachusetts since this state has its own particular regulation of payments
to physicians.

The final step towards uncovering the treatment effect θ is to compare the ob-
served outcomes for the physicians in state A with their predicted outcomes in the
absence of industry payments, where the difference can be specified as follows:

Y A
it − f̂λ∗(XA

it ) = γAt + θDit + εit

where εit := ξ(XA
it , H

A
it ) + UA

it . The error term εit comprises of the unobserved
prediction error for physician i in state A, and the random noise term UA

it . Given
that f is the same for both treated and untreated physicians and assumption 2
holds, the prediction f̂λ∗(XA

it ) and the prediction error ξ(XA
it , H

A
it ) do not depend

on whether the physician is treated or not.22 To obtain an unbiased estimate of θ
we only require the further assumption that the prediction error has mean zero:

ASSUMPTION 5: The prediction error has mean zero, E[ξ(XA
it , H

A
it )] = E[ξ(XB

it , H
B
it )] =

0.

Hence, using OLS, we can estimate:

Yi − f̂λ∗(Xi) = γ̂At + θ̂Di (1)

where θ̂ provides an estimate of the treatment effect. One final concern is that
if there are spillovers from paid to unpaid doctors in the state where payments are
permitted, then this would be incorporated into the state-year constant term and
thus would affect the estimate of θ̂. In order to avoid this, when we estimate (1),
we drop unpaid physicians that practice close (in same zip code at the 5-digit level)
to paid physicians.

5.4.3 Estimators

Machine learning is suited to prediction problems, which have been traditionally
been viewed as distinct from causal questions (Mullainathan and Spiess, 2017).
However, recently a number of approaches have been developed that apply machine

22In the empirical analysis, we will show that after controlling for the treatment, the mean
of the error term is not significantly different from zero for physicians in the ban state, treated
physicians and untreated physicians.

164



5.4. EMPIRICAL STRATEGY

learning to aid in the identification of causal treatment effects (see e.g. McCaffrey
et al., 2004; Hansen & Kozbur 2014; Wager & Athey, 2017; Chernozhukov et al.,
2017; Athey & Imbens, 2019; Abrell et al., 2019). In problems of causal inference, a
distinction can be made between the causal estimand of interest or target parameter,
and nuisance parameters, which are not of interest per se, but are modelled in order
to estimate the target parameter. Estimation of complex nuisance parameters can
be thought of as a prediction problem for which ML methods are particularly well-
suited (Chernozhukov et al., 2017).

In our application, θ is the target parameter and f(Xit, Hit) is the nuisance model.
To predict physicians’ prescription outcomes in the absence of payments we will use
supervised machine learning. Supervised machine learning tools map an input to
an output based on example input-output pairs in a ‘training’ dataset. In our ap-
plication, data on physicians’ characteristics and prescription outcomes in Vermont
where payments are banned are used to train the ML algorithm.

The class of prediction models that we will apply are regularized linear regression
models, also known as shrinkage or penalized regression methods. While regularized
linear regression is only one of many methods in the toolbox of machine learning,
it has some properties that make it attractive for empirical research. For one, it is
a straightforward extension of linear regression. Similarly to ordinary least squares
(OLS), regularized linear regression minimizes the sum of squared deviations be-
tween observed and model predicted values, but imposes a regularization penalty
aimed at limiting model complexity. By reducing model complexity, regularized
regression methods tend to outperform OLS in terms of out-of-sample prediction
performance. The degree and type of penalization is determined by tuning param-
eters. The tuning parameters are typically chosen using K-fold cross-validation in
order to optimize out-of-sample prediction performance.23

By introducing tuning parameters we are allowing the data to determine which
model provides the best prediction. This is different to standard econometric prac-
tice where we assume a data generating process and focus on estimating the model.
Machine learning methods combine model selection with estimation. Economic intu-
ition nevertheless plays an important role when determining which covariates make
sense to include in the model.

23The aim of cross-validation is to directly assess the performance of a model on unseen data.
To this end, the data is repeatedly divided into a training and a test data set. The models are fit
to the training data and the test data is used to assess the predictive performance. With K-fold
cross-validation the data is divided into K equally sized folds. Each fold is used as a test set
once while the remaining folds are used to fit the model. A summary measure of the model’s
performance across all test sets is used to select the best model. Thus, cross-validation can be used
compare models with different tuning parameters and select the select the tuning parameters that
yield the best performance, e.g., the smallest out-of-sample mean squared prediction error.
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We now provide a short overview of the three main regularized regression methods
that will be applied in this paper.
Ridge regression (Tikhonov, 1963; Hoerl and Kennard, 1970) shrinks the re-

gression coeffcients, so that variables, with minor contribution to the outcome, have
their coeffcients close to zero. The shrinkage of the coeffcients is achieved by penal-
izing the regression model with a penalty term called L2-norm, which is the sum of
the squared coefficients. The tuning parameter λ > 0 controls the relative impact
of the penalty. When λ = 0, the penalty term has no effect, and Ridge regression
will produce the same coefficients as OLS. Given p regressors and n observations,
Ridge regression minimizes the following loss function:

β̂ridge(λ) = arg min
β∈Rp

{ 1
n

∑n
i=1(yi − x′iβ)2 + λ

∑p
j=1 β

2
j }

LASSO stands for Least Absolute Shrinkage and Selection Operator (Tibshirani,
1996). It shrinks the regression coefficients toward zero by penalizing the regression
model with a penalty term called L1-norm, which is the sum of the absolute coef-
ficients. The penalty has the effect of forcing some of the coefficient estimates to
be exactly equal to zero, thus LASSO performs variable selection. It minimizes the
following loss function:

β̂lasso(λ) = arg min
β∈Rp

{ 1
n

∑n
i=1(yi − x′iβ)2 + λ

∑p
j=1 |βj|}

Elastic Net (Zou and Hastie, 2005) produces a regression model that is penal-
ized by a linear combination of the LASSO and Ridge penalties, where λ1 and λ2

determine the relative weights. Elastic Net minimizes the following loss function:

β̂elastic(λ1, λ2) = arg min
β∈Rp

{ 1
n

∑n
i=1(yi − x′iβ)2 + λ1

∑p
j=1 |βj|+ λ2

∑p
j=1 β

2
j }

5.4.4 Comparison with matching

In this section we discuss how our methodology compares with matching and high-
light the advantages of our approach. Our methodology uses data on the prescribing
behavior of physicians in Vermont to predict individual counterfactuals for each ob-
servation in Maine and New Hampshire. An alternative methodology would be to
use a matching approach. The goal of matching is to pair treated units with non-
treated units that have similar observable characteristics. The outcome values of
these matched observations are then used to compute the counterfactual outcome
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without treatment for the observation at hand.
With high dimensional data and many covariates finding a good match becomes

increasingly difficult. In this context, matching is typically performed using propen-
sity scores which are defined as the probability of receiving the treatment given
the observed covariates (Rosenbaum and Rubin, 1983). Given the data at hand,
it would be possible to match paid physicians in New Hampshire and Maine with
physicians in Vermont based on their propensity score. The propensity score func-
tion can be estimated using the sample of physicians in New Hampshire and Maine
where payments are possible.

Relative to such a matching approach, our methodology displays a number of
advantages that make it better suited to the data and research question at hand.
Propensity score matching results in matched pairs that are not necessarily similar
across all of their covariates; rather, the goal of propensity score matching is that
the sub-sampled treatment and control groups are similar to each other on aver-
age across all covariates. Further, misspecification of the propensity score model
can lead to bad matches (King and Nielsen, 2019). Bad matches are particularly
likely to be a concern with our data given that we have multiple treatments - some
physicians receive in-kind payments, some receive cash and the size and number of
transfers varies. Modelling the propensity score becomes complicated when there
are multiple treatment levels. Our approach focuses on modelling the outcome vari-
able rather than selection into the treatment. This provides us with a more precise
counterfactual at the individual level, which is turn enables us to more accurately
study how the treatment effect varies with different treatment levels and physician
characteristics.

Propensity score matching also requires the researcher to make a number of mod-
elling decisions, such as which variables to include when estimating the propensity
score and which matching algorithm to apply. As there is no matching algorithm
which dominates in all data situations, this decision needs to made by the researcher
and the final results will be sensitive to this choice (Caliendo and Kopeinig, 2005).
With our approach, the choice of model is systematic and transparent as we include
all possible confounders and choose the model that best fits the data. This prevents
cherry-picking the model that gives the most appealing results and model selection
can be easily replicated.

5.5 Estimation and results

This section describes the estimation process and compares the out-of-sample per-
formance of all three penalized regression models, Ridge, LASSO and Elastic Net.
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Thereafter we present the final estimates of the treatment effect.

5.5.1 Estimation and out-of-sample performance of the ML
models

We model f for the two outcome variables of interest: 1) the brand prescription
rate and 2) the average cost per 30-day prescription. Xit includes the full set of
explanatory variables in the dataset (variables 12 - 33 in Table A2), indicators
for each year and indicators for which quartile the physician falls into in terms of
total 30-day prescriptions of anti-diabetics at the state-level, as well interactions
between all variables. In total Xit contains 406 variables. If we included the full set
of variables in a standard OLS regression model, the parameters would be poorly
estimated. Additionally, many of the regressors will be multi-collinear resulting
in poor out of sample predictions using OLS. The ML-estimators outlined above
avoid this problem by shrinking the regression coefficients and performing variable
selection.
Xit includes variables that affect both the treatment and outcome variable. As

explained in Section 5.4, it is important that the included covariates are not affected
by the receipt of an industry payment. If this was the case there would be an indirect
effect on the outcome variable. The set of covariates contains fixed characteristics
about the physician including their gender, specialization and whether or not he/she
is a new practitioner. We include the share of anti-diabetic claims out of all claims
as a further measure of the physician’s specialization in diabetes drugs. Xit includes
information about the region where the physician practices including the median
household income, the population density, the percentage of adults diagnosed with
diabetes, the number of adults diagnosed with diabetes, the percentage of obese
adults, the number of obese adults, the number of other physicians practising in
the same county and same 5-digit ZIP code. It includes detailed information about
the patients of the physician including the share of male beneficiaries, the share
of beneficiaries over the age of 65, average age of beneficiaries, the share with a
MAPD, the share with a LIS and the average risk score (HCC) of beneficiaries. We
include aggregate measures of the physician’s prescribing behavior that are arguably
unaffected by industry payments. We include the physician’s total number of unique
beneficiaries and the number of unique beneficiaries with a prescription for an anti-
diabetic treatment. By including a count of the number of unique beneficiaries we
are making the assumption that industry payments do not affect the decision to
prescribe or not, but rather influence the decision of which drug to prescribe. We
include the share of prescriptions that are for insulin. Given that insulin is the
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only treatment option for diabetes type 1, it is reasonable to assume that payments
would not affect the decision to prescribe insulin vs. another type of drug (but
could affect which brand of insulin to prescribe). Finally we include the quartile
that the physician falls into in terms of total 30-day prescriptions of anti-diabetics
at the state-level. Prescription volumes affect selection in the treatment. Under the
assumption that payments affect the drug selected and not aggregate volumes, this
measure should not be affected by receiving a payment. A full description of these
variables can be found in the Appendix Table 5.9.

To estimate the models, the Vermont dataset is randomly split into a ‘training’
and ‘test’ set. 80 percent of observations (N = 800) are used for the training set and
20 percent (N=199) are retained in the test or ‘hold-out’ set. The models are fit to
the training set. For each method (LASSO, Ridge and Elastic Net) we use 5-fold
cross-validation to select the optimal tuning parameters out of a grid of possible
values.24 For each method, the final model (with the optimal tuning parameters) is
used to predict the outcome variable for the unseen test data. On the basis of these
predictions the test MSPE is calculated to evaluate the out-of-sample predictive
performance of each model.

Table 5.4 and Table 5.5 present the out-of-sample performance for the brand
prescription rate and the drug cost per 30-day supply respectively. Lower MSPE
and higher R-squared values are indicative of good predictive performance. The R-
squared across all models and for both outcome variables is relatively high indicating
that the included covariates are able to explain a high proportion of the variability
in the outcome variable. The models are able to predict the brand prescription
rate more accurately than the drug cost per 30-day supply. The best model, that
minimizes the test MSPE, for the brand prescription rate is LASSO. Ridge is best
able to predict the drug cost per 30-day supply. For each outcome variable the final
model is used to calculate f̂λ∗(Xi) for all observations, including those in Maine and
New Hampshire.

MSPE S.E. for MSPE R-squared
LASSO 0.00364 0.00041 0.84259
Ridge 0.00369 0.00042 0.84019
Elastic Net 0.00370 0.00042 0.84007

Table 5.4: Out-of-sample performance - Brand prescription rate

24This is implemented in R using the caret package. For more information see https://cran.r-
project.org/web/packages/caret/caret.pdf
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MSPE S.E. for MSPE R-squared
LASSO 1127.11116 149.57987 0.78206
Ridge 1077.74990 115.58213 0.79267
Elastic Net 1086.94209 120.77792 0.79237

Table 5.5: Out-of-sample performance - Drug cost per 30-day supply

5.5.2 Effect of industry payments

Equipped with the predicted outcome values for all physicians we estimate equation
(1) using OLS for both outcome variables. The results are presented in Table 5.6
and Table 5.7. To account for the fact that predicted values have been used in the
regression we present the bootstrapped standard errors.

First, we regress the difference between the true and predicted brand prescription
rate for each observation on state-year dummies and a treatment indicator variable
which takes the value 1 if physician i receives any positive payment in year t. Column
(1) in Table 5.6 presents the result. Receipt of an industry payment, on average,
causes the brand prescription rate of a physician to increase by 5 percentage points
in the year in which the payment is received. This corresponds to a 20% increase
in the unconditional average brand prescription rate in the states where payments
are permitted. In Table 5.7 column (1) we do the same for the drug cost per 30-day
supply. We find that the drug cost per dose is USD 21 higher for physicians who
receive industry payments, corresponding to a 22% increase in the unconditional
average drug cost.

Next, we investigate heterogeneity in the average treatment effect. We find that
for physicians with a low LIS claim share (less than 25%) the average size of the
effect of a payment is a 2 percentage point increase in the brand prescription rate,
whereas for physicians with a high LIS claim share the effect is an 8.8 percentage
point increase (see Table 5.6 column 2). The average drug cost per 30-day supply
is also higher for physicians with a high LIS claim share (see Table 5.7 column 2).

A potential concern is that there may be variables that are correlated with having
a high LIS share that may affect responsiveness to the treatment. For example, if
pharmaceutical companies actively target doctors with a high LIS claim share and
pay them more frequently, the variability in the treatment effect with LIS claim
share may be driven by the fact that physicians with a high LIS claim share receive
more payments. Another potential confounding factor is median income in the area
where the physician works. If physicians with a high share of patients with a low
income subsidy also operate in impoverished areas, the physicians themselves may
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earn less and this may affect how they respond to payments from pharmaceutical
companies.

In column (3) in Table 5.6 and Table 5.7 we control for potential confounding
factors. After including potential confounders, the coefficient on the share of benefi-
ciaries with a LIS remains positive and significant. A 10 percentage point increase in
the share of LIS patients increases the brand prescription rate by 1 percentage point,
all else held constant. A 10 percentage point increase in the share of LIS patients
increases the drug cost per 30-day supply by 1.7 USD. Additionally, we find that
male physicians are more likely to prescribe more expensive drugs and brand drugs
in response to receiving payments from pharmaceutical companies. Specialists (in
the treatment of diabetes), by contrast, react less strongly. An increase in the num-
ber of in-kind payments is significantly and positively associated with an increase in
the average cost per 30-day supply. In sum, our analysis corroborates the hypothesis
that physicians with a higher share of patients that have lower out-of-pocket costs
are more likely to prescribe more expensive drugs and brand drugs in response to
receiving a payment.

In order to test the validity of our approach and provide support for assumption
5 made in section 5.2, we compare the residuals of the regression in column (3) for
physicians in Vermont, paid physicians and unpaid physicians. After controlling
for the treatment, we find that the average error εit for all three groups is not
significantly different from zero. Figure 5.3 and 5.4 in the Appendix show the
distribution for the error term for paid and unpaid physicians in the states where
payments are permitted. In the Appendix Section 5.8.3 we provide an illustrative
model which produces insights on the interaction between drug costs, insurance
coverage and payments to physicians that are in line with our findings.

Finally, we use our estimates to provide a rough estimate of the potential cost
savings from a policy to eliminate payments to physicians. During the time period
of the sample (2014-2017) a total of just under USD 900,000 was spent by the
pharmaceutical industry on payments related to anti-diabetics to 245 physicians
in the states of New Hampshire and Maine. These physicians account for 18%
of prescription volumes. Multiplying the average increase in the cost per 30-day
prescription by the total number of 30-day prescription by paid physicians indicates
that, holding prices and prescribing volumes constant, the elimination of payments
would result in savings of just under USD 10 million during the sample period.
The total cost of all prescriptions for diabetes medication in New Hamsphire and
Maine during the sample period amounts to USD 306 million. Thus by eliminating
payments, total prescription costs could be reduced by approximately 3%. Higher
savings come from physicians with a higher share of patients receiving a low-income
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subsidy. Specifically, breaking down where this cost increase comes from, we find
that 72% of the cost increase is driven by physicians who have an LIS claim share of
above 50%, 19% of the cost increase is driven by physicians who have an LIS claim
share between 25% and 50% and the remaining 9% is attributable to physicians
with a low share of LIS patients between 0 and 25%. On the basis of our analysis,
it also clear that payments to physicians are very profitable for the pharmaceutical
industry as a whole - the increase in drug costs is more than 10 times what the
industry spent on payments. In the following section we discuss our findings.

172



5.5. ESTIMATION AND RESULTS

Table 5.6: Results - Brand prescription rate

(1) (2) (3)

D - I(Payment>0) 0.0514***
(0.00456)

D X (LIS claim share ≤ 0.25) 0.0205*
(0.0106)

D X (0.25 < LIS claim share ≤ 0.5) 0.0334***
(0.00928)

D X (0.5 < LIS claim share ≤ 0.75) 0.0602***
(0.00755)

D X (0.75 < LIS claim share ≤ 1) 0.0878***
(0.0216)

D X LIS claim share 0.100***
(0.0154)

D X Median household income -0.120***
(0.0239)

D X Male 0.0810***
(0.0124)

D X Specialist -0.0317**
(0.0124)

D X No. in-kind payments 0.000399
(0.000302)

D X No. cash payments -0.00137
(0.00115)

Observations 3775 3775 3775
R-squared 0.173 0.180 0.199
State-year FE Yes Yes Yes
Notes: Bootstrap standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p <
0.1.
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Table 5.7: Results - Drug cost per 30-day supply

(1) (2) (3)

D - I(Payment>0) 21.12***
(2.083)

D X (LIS claim share ≤ 0.25) 20.91***
(4.794)

D X (0.25 < LIS claim share ≤ 0.5) 13.38***
(3.608)

D X (0.5 < LIS claim share ≤ 0.75) 23.83***
(3.371)

D X (0.75 < LIS claim share ≤ 1) 28.60***
(6.536)

D X LIS claim share 17.09*
(8.996)

D X Median household income -12.40
(10.85)

D X Male 26.40***
(7.104)

D X Specialist -14.18***
(4.277)

D X No. in-kind payments 0.216**
(0.101)

D X No. cash payments -1.466***
(0.457)

Observations 3775 3775 3775
R-squared 0.0889 0.0915 0.105
State-year FE Yes Yes Yes
Notes: Bootstrap standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p <
0.1.
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5.6 Discussion

In this section we discuss our findings in relation to other studies, we state some lim-
itations of this research, and outline implications for policy makers. Our results are
not directly comparable to the literature. Previous studies have focused on different
drugs, time spans and outcomes measures. Although not directly comparable, our
findings are within the range of previous results. Using the full sample of all pre-
scribed drugs in Medicare Part D for the year 2013, Qian et al. (2017) find that on
average receipt of industry payments of less than USD 100 is associated with a 2%
reduction in annual generic drug prescribing rate and receipt of payments of more
than USD 500 is associated with a 5% reduction in annual generic drug prescribing
rate. Perlis and Perlis (2016) find that being in the top quintile of payment receipt
is associated with an incremental prescribing cost per patient ranging from USD 27
(general surgery) to USD 2931 (neurology). Both Qian et al. (2017) and Perlis and
Perlis (2016) highlight that their results are associations, and cannot be interpreted
causally.

Carey et al. (2020) measure the effect of specific payments from companies on the
prescription of that company’s drugs. Using data on all drugs in the Open Payments
database, they find that a single payment raises expenditures on the paying drug by
USD 121 during the first year. Focusing on anticoagulants drugs, Agha and Zeltzer
(2019) estimate the effect of a payment for a specific drug on the volume prescribed of
that drug and find that small payments for food 8 percent increase over the average
prescription volume. Using data on payments from medical device companies to
physicians combined with hospital discharge datasets, Amaral-Garcia (2020) assesses
the impact of payments on treatment provided to heart attack patients arriving at
the Emergency Room in Florida hospitals. She finds that patients treated by doctors
who interact with the industry are more likely to have higher medical device costs (up
to 16% increase) and total hospital costs (up to 3% increase). Thus, our findings are
in line with the general conclusion of other studies; namely that industry payments
influence the prescription decisions of physicians and can lead physicians to choose
more expensive treatments.

We contribute to the existing literature by providing an estimate of the causal ef-
fect of payments on the cost of treatment for diabetes and show that this effect varies
with insurance coverage. Our estimates suggest that, holding prices and prescribing
volumes constant, issuing a payment ban similar to Vermont’s can result in a 3%
decline in total prescription costs for diabetes. These savings arise due to physi-
cians substituting towards cheaper anti-diabetic drugs. In the absence of industry
payments, physicians are motivated to choose the best and cheapest treatment for
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their patient because the patient will face some out-of-pocket expenditures. Thus,
our estimate of the potential savings from a payment ban also assumes that current
levels of insurance coverage are held constant. If out-of-pocket costs are reduced,
drug costs will increase.

If physicians alter the quantity they prescribe in reaction to industry payments
e.g. if a physician prescribes two of a specific type of pill instead of one, or if he/she
prescribes a treatment for two months instead of one, then our estimate provides a
lower bound on the savings from a payment ban. Often specific drugs are associated
with a set recommended dosage, thus it is reasonable to assume that savings due to
a payment ban will be driven largely by reductions in the cost per 30-day dose as
opposed to a reduction in the aggregate number of doses prescribed.

Further savings would be possible if drug prices fell in response to a payment ban,
however addressing this effect is outside of the scope of this paper. To investigate
price changes would require a structural model approach that takes into account
how the pricing decisions of firms is influenced by payments to physicians. Pricing
decisions in the pharmaceutical industry are determined by a number of features and
are bargained between insurance plans and pharmaceutical suppliers, thus this would
be not be a straightforward exercise. Moreover, prices are typically set nationally
and so incorporating price effects would be more important when assessing a nation-
wide ban on payments as opposed to a state-level ban. A further limitation of this
study is that we focus on diabetes treatments, thus we cannot comment on the exact
magnitude of cost declines for other therapeutic fields.

The financial cost to the public health care system needs to be traded-off against
the possible benefits of industry payments to physicians, for example, as industry
claims, payments may be associated with information that helps physicians to make
better prescription decisions. In fact, there is little evidence that payments help
physicians to make better prescribing decisions. Focusing on three major therapeutic
classes, Carey et al. (2020) find that physicians who receive payments tend to
prescribe lower quality drugs after the payment, but that the effect is very small.
Amaral-Garcia (2020) finds no significant impact of industry interactions on the
healthcare outcomes of patients in relation to treatment provided to heart attack
patients. To credibly assess whether paid physicians in our dataset make better
prescribing decisions would require access to data at the patient level which is not
publicly available.
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5.7 Concluding remarks

In this paper we quantify the extent to which industry payments to physicians lead
to higher drug costs using a novel identification strategy. Furthermore, we test the
hypothesis that physicians with patients who have lower out-of-pocket expenditures
are likely to prescribe relatively more costly drugs in reaction to industry payments.
If physicians care about their patients’ financial health, in addition to their physical
health, then we expect that physicians will trade off the drug cost faced by the
patient with the personal reward associated with the prescription of more expensive
brand medications. We focus on the prescription of anti-diabetic medication, and
find that receipt of payments related to anti-diabetic medication increases the aver-
age brand prescription rate by 5 percentage points, and the average drug cost per
dose by 21 USD. Physicians with a higher share of patients with a low income sub-
sidy, and who therefore face lower out-of-pocket expenditures, prescribe relatively
more expensive medication in response to receiving a payments. This effect remains
after controlling for other potential confounders that could drive heterogeneity in
the treatment effect.

Back-of-the-envelope calculations based on our estimates suggest that, holding
prices and prescribing volumes constant, issuing a payment ban similar to Vermont’s
can result in a 3% decline in total prescription costs for diabetes. These savings arise
due to physicians substituting towards cheaper anti-diabetic drugs. In the absence
of industry payments, physicians are motivated to choose the best and cheapest
treatment for their patient because of the fact that patients face some out-of-pocket
expenditures. Given that existing research does not point to strong informational
benefits of payments to physicians, a ban on industry payments is likely to be an
effective way to contribute towards health care cost containment in the US.
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5.8 Appendix

5.8.1 Tables and figures

Firm Brand
ASTRAZENECA BYDUREON
ASTRAZENECA FARXIGA
ASTRAZENECA ONGLYZA
BOEHRINGER INGELHEIM GLYXAMBI
BOEHRINGER INGELHEIM JARDIANCE
BOEHRINGER INGELHEIM JENTADUETO
BOEHRINGER INGELHEIM TRADJENTA
ELI LILLY BASAGLAR
ELI LILLY HUMALOG
ELI LILLY HUMULIN
ELI LILLY TRULICITY
GLAXOSMITHKLINE TANZEUM
JANSSEN (SUBSIDIARY OF PFIZER) INVOKAMET
JANSSEN (SUBSIDIARY OF PFIZER) INVOKANA
MERCK JANUMET
MERCK JANUVIA
NOVO NORDISK LEVEMIR
NOVO NORDISK NOVOLOG
NOVO NORDISK TRESIBA
NOVO NORDISK VICTOZA
SANOFI LANTUS
SANOFI TOUJEO SOLOSTAR
SANTARUS GLUMETZA
TAKEDA KAZANO

Table 5.8: Firms and brands with payments to physicians in the sample
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No. Variable Description Source
1 No. payments per year Total number of payments

for physician i in year t
Open Payments

2 No. in-kind payments per
year

Total number of in-kind
payments for physician i in
year t

Open Payments

3 No. cash payments per year Total number of cash pay-
ments for physician i in year
t

Open Payments

4 Value (USD) payments per
year

Value (USD) of payments
for physician i in year t

Open Payments

5 Value (USD) in-kind pay-
ments per year

Value (USD) of in-kind pay-
ments for physician i in year
t

Open Payments

6 Value (USD) cash payments
per year

Value (USD) of cash pay-
ments for physician i in year
t

Open Payments

7 State State where the physician is
located: NH, ME, VT

Part D Prescriber Summary
Table, Open Payments

8 Year Years: 2013, 2014, 2014,
2016, 2017

Part D Detailed Data File,
Open Payments

9 Brand prescription rate,
anti-diabetics

Share of 30-day supply
brand anti-diabetic drugs
out of total 30-day supply
of anti-diabetic drugs for
physician i in year t

Part D Detailed Data File

10 Total 30-day supply, anti-
diabetics

Total 30-day supply pre-
scriptions for anti-diabetic
drugs for physician i in year
t

Part D Detailed Data File

11 Drug cost ’000, anti-
diabetics

Total drug cost in 1000s
for anti-diabetic drugs for
physician i in year t. The
drug cost is based on the
amount paid by the Part D
plan, the beneficiary, gov-
ernment subsidies, and any
other third-party payers.

Part D Detailed Data File

12 Specialist in diabetes (0/1) Indicator taking the value
1 if speciality is recorded
as Endocrinology, Diabetes,
Internal Medicine and/or
Specialist

Part D Prescriber Summary
Table, Open Payments

13 Family practice (0/1) Indicator taking the value
1 if speciality is recorded
as Family Practice, Fam-
ily Medicine and/or General
Practice

Part D Prescriber Summary
Table, Open Payments

14 New practitioner (0/1) Physicians with a provider
enumeration year (date of
NPI assignment) later than
or equal to 2008

NPPES NPI Registry

15 Male practitioner (0/1) Indicator taking the value 1
if physician gender is male

Part D Detailed Data File

Table 5.9: Variable definitions

179



5.8. APPENDIX

No. Variable Description Source
16 Beneficiary count for anti-

diabetics
Number of unique Medi-
care Part D beneficiaries
prescribed an anti-diabetic
drug by physician i in year
t

Part D Detailed Data File

17 Anti-diabetics claim share Share of claims for anti-
diabetic drugs out of all
claims for physician i in year
t

Part D Detailed Data File

18 Insulin claim share of anti-
diabetics

Share of claims for insulin
out of all claims for anti-
diabetic drugs for physician
i in year t

Part D Detailed Data File

19 Beneficiaries over 65 for
anti-diabetics

Share of beneficiaries age 65
and older with at least one
claim for an anti-diabetic
drug for physician i in year
t

Part D Detailed Data File

20 Share of male beneficiaries Share of male beneficiaries
for physician i in year t

Part D Prescriber Summary
Table

21 Total beneficiary count Number of unique Medicare
Part D beneficiaries pre-
scribed any drug by physi-
cian i in year t

Part D Prescriber Summary
Table

22 MAPD claim share Share of total claims at-
tributable to beneficiaries
covered by MAPD plans for
physician i in year t

Part D Prescriber Summary
Table

23 LIS claim share Share of total claims at-
tributable to beneficiaries
with a Part D low-income
subsidy for physician i in
year t

Part D Prescriber Summary
Table

24 Average age of beneficiaries Average age of beneficiaries
for physician i in year t
(Beneficiary age is calcu-
lated at the end of the cal-
endar year or at the time of
death)

Part D Prescriber Summary
Table

25 Average risk score of benefi-
ciaries

Beneficiary average Hierar-
chical Condition Category
(HCC) risk score for physi-
cian i in year t. The risk
score is based on disease and
demographic risk factors.

Part D Prescriber Summary
Table

26 Median household income
’000

Median household income
in the past 12 months in dol-
lars for the area (5-digit ZIP
code) in which physician i is
located in year t

American Community Sur-
vey

27 Population density ’000 Total population divided by
area in square miles for the
area (5-digit ZIP code) in
which physician i is located
in year t

American Community Sur-
vey
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No. Variable Description Source
28 Percent diagnosed with dia-

betes
Diagnosed Diabetes, Adults
(20+) with Diabetes, Age-
Adjusted Percentage for the
county in which physician i
is located in year t-1

Centers for Disease Control
and Prevention

29 No. diagnosed with dia-
betes ’000

Diagnosed Diabetes, Adults
Aged 20+ Years, Crude
Number for the county in
which physician i is located
in year t-1

Centers for Disease Control
and Prevention

30 Percent obese Obesity, Adults Aged 20+
Years, Age-Adjusted Per-
centage for the county in
which physician i is located
in year t-1

Centers for Disease Control
and Prevention

31 No. obese ’000 Obesity, Adults Aged 20+
Years, Crude Number for
the county in which physi-
cian i is located in year t-1

Centers for Disease Control
and Prevention

32 No. other physicians in
same county

Number of other physicians
in sample in same county for
physician i in year t

Part D Detailed Data File

33 No. other physicians in
same ZIP

Number of other physicians
in sample in same 5-digit
ZIP code area for physician
i in year t

Part D Detailed Data File
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Figure 5.3: Distribution of error term - Brand prescription rate
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Figure 5.4: Distribution of error term - Drug cost per 30-day Supply
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5.8.2 Treatments for diabetes
This Appendix provides an overview of the different treatments for diabetes and provides more
information on how physicians prescribe treatments for diabetes.

Type 1 patients are treated exclusively with insulin. Typically the treatment involves several
insulins simultaneously. A patient can be treated with “rapid”, “long” or “intermediate” insulin.
An interview with a diabetologist revealed that physicians may change the type of insulin prescribed
to a patient within these groups due to reasons such as side effects, patient intolerance, insurance
reimbursement, and due to the introduction of new insulin that is generally perceived as a better
product by the physician.

Type 2 patients are treated in a more complex way. The first line treatment is Metformin which
is used for as long as the body tolerates it, thereafter different drugs are added to the treatment
regimen. After Metformin no single drug is highlighted according to the Standards of Medical
Care in Diabetes (Centers for Disease Control and Prevention, 2017; American Diabetes Associ-
ation 2015). Thus, physicians can choose between prescribing drugs from different drug classes
for example DPP-4 inhibitors or SGLT-2 inhibitors. Therapy often combines several drugs from
different classes. Type 2 patients with a severe condition are treated with insulin therapy.

Diabetes drugs can be grouped in several classes:

• Sensitizers

Insulin sensitizers improve sensitivity to insulin so that glucose can be absorbed.

Biguanides/Metformin: Glucophage (1995q1)25, Riomet (2003q3), Fortamet (2004q2), Glumetza
(2005q2), Actoplus Met (2005q3)

TZDs (Thiazolidinediones): Avandia (1999q2), Actos (1999q3), Avandamet (2002q4), Avandaryl
(2005q4), Duetact (2006q3)

• Insulins

Insulin treatment is used to keep blood sugar levels within the target range. Insulin must
be used for patients with Type 1 diabetes. Insulin is usually administered via injection.

Rapid and intermediate acting insulins: Humulin (1982q4), Novolin (1991q2), Humalog
(1996q2), Novolog (2000q2), Apidra (2004q2), Afrezza (2014q2)

Long acting insulins: Lantus (2000q2), Levemir (2005q2), Toujeo (2015q1), Tresiba (2015q3),
Basaglar (2015q4), Xultophy (2016q4), Soliqua (2016q4)

• GLP-1 receptor agonists

GLP-1 receptor agonists bind to the membrane GLP-1 receptor, preventing uptake of GLP-
1 from the blood. This raises the level of blood GLP-1, stimulating insulin secretion and
suppressing glucagon secretion.

Drugs: Byetta (2005q2), Victoza (2010q1), Bydureon (2012q1), Tanzeum (2014q2), Trulicity
(2014q3), Adlyxin (2016q3)

• DPP-4 inhibitors

DPP-4 inhibitors block the action of the DPP-4, an enzyme that inactivates the incretin
GLP-1 that helps the body produce more insulin.

25Date of FDA approval in parentheses
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Drugs: Januvia (2006q4), Janumet (2007q1), Onglyza (2009q3), Kombiglyze XR (2010q4),
Tradjenta (2011q2), Jentadueto (2012q1), Nesina (2013q1), Oseni (2013q1), Kazano (2013q1),

• SGLT-2 inhibitors

SGLT-2 inhibitors are a new group of oral medications used for treating type 2 diabetes,
approved in 2013. They inhibit the sodiumglucose transport proteins (SGLT-2) that help
re-absorb glucose into the blood, and pass out the excess glucose as urine.

Drugs: Invokana (2013q1), Farxiga (2014q1), Invokamet (2014q3), Jardiance (2014q3), Xig-
duo (2014q4), Glyxambi (2015q1), Synjardy (2015q3)

• Alpha-glucosidase inhibitors

These agents do not have a direct effect on insulin secretion or sensitivity, but rather slow
the digestion of starch so that glucose enters the bloodstream more slowly.

Drugs: Precose (1995q3), Glyset (1996q4)

• Secretagogues

Secretagogues are drugs that increase insulin output from the pancreas.

Sulfonylureas: Glucotrol (1984q2), Diabeta (1984q2), Glynase (1992q1), Glyburide Mi-
cronized (1992q2), Amaryl (1995q4), Glucovance (2000q3), Metaglip (2002q4)

Non-sulfonylurea secretagogues/Meglitinides: Prandin (1997q4), Starlix (2000q4), Prandimet
(2008q2)

• Injectable amylin analogues

Amylin agonist analogues slow gastric emptying and suppress glucagon. They have all the
incretins actions except stimulation of insulin secretion. Currently, pramlintide (trade name
Symlin) is the only clinically available amylin analogue.

Drugs: Symlin (2005q1)

Table 5.10 provides a list of all diabetes treatments that are in the final dataset and which drug
class they belong to. Figure 5.5 provides insight into which drug classes are the most frequently
prescribed. Figure 5.6 shows the break down of total drug costs by drug class. It is evident that
while the most commonly prescribed drug class is sensitizers, the prescription of insulin is what
drives total drug costs.
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Firm and drug name Drug class
PFIZER GLYSET Alpha-glucosidase
GENERIC COMPANY PRECOSE Alpha-glucosidase
ASTRAZENECA SYMLIN Amylin agonists
MERCK JANUMET DPP-4 inhibitors
BOEHRINGER INGELHEIM TRADJENTA DPP-4 inhibitors
MERCK JANUVIA DPP-4 inhibitors
TAKEDA KAZANO DPP-4 inhibitors
GENERIC COMPANY NESINA DPP-4 inhibitors
BOEHRINGER INGELHEIM JENTADUETO DPP-4 inhibitors
ASTRAZENECA ONGLYZA DPP-4 inhibitors
ASTRAZENECA KOMBIGLYZE XR DPP-4 inhibitors
TAKEDA OSENI DPP-4 inhibitors
TAKEDA NESINA DPP-4 inhibitors
GLAXOSMITHKLINE TANZEUM GLP-1 agonists
NOVO NORDISK VICTOZA GLP-1 agonists
ASTRAZENECA BYDUREON GLP-1 agonists
ASTRAZENECA BYETTA GLP-1 agonists
ELI LILLY TRULICITY GLP-1 agonists
NOVO NORDISK TRESIBA Insulins - Long
NOVO NORDISK LEVEMIR Insulins - Long
ELI LILLY BASAGLAR Insulins - Long
SANOFI TOUJEO SOLOSTAR Insulins - Long
SANOFI LANTUS Insulins - Long
ELI LILLY HUMULIN Insulins - Rapid & intermediate
NOVO NORDISK NOVOLOG Insulins - Rapid & intermediate
MANNKIND AFREZZA Insulins - Rapid & intermediate
ELI LILLY HUMALOG Insulins - Rapid & intermediate
NOVO NORDISK NOVOLIN Insulins - Rapid & intermediate
SANOFI APIDRA Insulins - Rapid & intermediate
BOEHRINGER INGELHEIM GLYXAMBI SGLT-2 inhibitors
JANSSEN (SUB. PFIZER) INVOKAMET SGLT-2 inhibitors
BOEHRINGER INGELHEIM SYNJARDY SGLT-2 inhibitors
BOEHRINGER INGELHEIM JARDIANCE SGLT-2 inhibitors
JANSSEN (SUB. PFIZER) INVOKANA SGLT-2 inhibitors
ASTRAZENECA FARXIGA SGLT-2 inhibitors
ASTRAZENECA XIGDUO SGLT-2 inhibitors
NOVARTIS STARLIX Secretagogues - Non-sulfonylureas
GEMINI LABORATORIES PRANDIN Secretagogues - Non-sulfonylureas
GENERIC COMPANY STARLIX Secretagogues - Non-sulfonylureas
GENERIC COMPANY PRANDIN Secretagogues - Non-sulfonylureas
GENERIC COMPANY GLYBURIDE (MICRONIZED) Secretagogues - Sulfonylureas
SANOFI AMARYL Secretagogues - Sulfonylureas
GENERIC COMPANY GLYBURIDE BRAND Secretagogues - Sulfonylureas
GENERIC COMPANY GLUCOTROL Secretagogues - Sulfonylureas
BRISTOL MYERS SQUIBB GLUCOVANCE Secretagogues - Sulfonylureas
PFIZER GLUCOTROL Secretagogues - Sulfonylureas
GENERIC COMPANY METAGLIP Secretagogues - Sulfonylureas
GENERIC COMPANY AMARYL Secretagogues - Sulfonylureas
GENERIC COMPANY GLUCOVANCE Secretagogues - Sulfonylureas
SANTARUS GLUMETZA Sensitzers - Metformin
TAKEDA ACTOPLUS MET Sensitzers - Metformin
ANDRX LABS FORTAMET Sensitzers - Metformin
SUN PHARMACEUTICAL RIOMET Sensitzers - Metformin
GENERIC COMPANY ACTOPLUS MET Sensitzers - Metformin
GENERIC COMPANY METFORMIN BRAND Sensitzers - Metformin
BRISTOL MYERS SQUIBB GLUCOPHAGE Sensitzers - Metformin
TAKEDA ACTOS Sensitzers - TZDs
GENERIC COMPANY ACTOS Sensitzers - TZDs

Table 5.10: Diabetes treatments in the sample
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Figure 5.5: Prescriptions by drug class
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Figure 5.6: Total drug cost by drug class
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5.8.3 Illustrative model
This Appendix provides an illustrative model which yields insights that are in line with the em-
pirical findings of this paper. The aim of this simple model is to highlight the interaction between
industry payments for brand name prescriptions and insurance coverage. The underlying assump-
tion is that physicians act on behalf of their patients, weighing up both their patient’s financial and
clinical health. However, physicians are not perfect agents, and also take into account the expected
personal benefits, in the form of gifts and other transfers from pharmaceutical companies, that are
associated with prescribing certain drugs.

We consider a physician’s decision when faced with two clinically substitutable drugs. In par-
ticular we focus on a physician’s choice between prescribing a brand or generic version of a specific
drug, since here it clear that the drugs are equally effective. However, the set-up can be equally
applied to the case of any two substitutable drugs with differing prices, where the higher priced
drug is perceived to be at least as effective as the lower priced alternative. First, we analyse how
the probability to prescribe the more expensive brand version of a drug varies with insurance cov-
erage in a context where industry payments are banned. Thereafter we extend the model to the
case where physicians receive payments for brand prescriptions.

Given that both drugs are substitutable from a treatment perspective, the physician takes into
account the patient’s preferences for the brand vs. generic version of the product, UB and UG,
and the respective prices the patient faces for each, PB and PG. We assume that brand drugs are
always at least as expensive as their generic counterparts such that PB ≥ PG and are perceived
by the patient to at least as effective as the generic UB ≥ UG. The latter assumption is in line
with survey evidence from the US that patients (and sometimes physicians too) can have negative
perceptions abut the efficacy and quality of generic medications (Shrank et al., 2011; Shrank et al.,
2007).26 One potential explanation is that brand firms with an established reputation are perceived
as producing safer and more reliable drugs.27 Prices are assumed to be determined exogenously
of the model. Patients can be partially or fully insured against drug costs. Let τ ∈ (0, 1) denote
insurance coverage such that the out-of-pocket expenditures incurred by the patient are (1− τ)P .
It follows that the physician will prescribe the brand drug if:

UB − (1− τ)PB ≥ UG + (1− τ)PG (5.1)

Without a loss of generality, we set the price of the generic PG to zero and define K =: UB−UG,
where it is clear that K ≥ 0. Thus, the physician will prescribe the brand drug when

PB ≤ P ∗ ≡ K

1− τ . (5.2)

When the patient has no insurance coverage the cut-off will be equal toK; the patient’s perceived
additional benefit from the brand vs. the generic. As the level of insurance coverage increases, the
cut-off value P ∗ increases at an increasing rate as,

26In a survey of patients by Shrank et al. (2007) over 60% of respondents stated that they
preferred brand medication to generic medication. Over 23% of physicians surveyed by Shank et
al. (2011) expressed negative perceptions about efficacy of generic drugs and almost 50% reported
negative perceptions about quality of generic medications.

27In one instance, the FDA determined that a generic anti-depressant performed less well than
its branded counterpart, likely due to differences in their “extended release” coatings (Thomas,
2012). A widely publicized recall of generic acetaminophen in 2006 resulted from the discovery
that some pills could contain metal fragments (Associated Press, 2006).
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∂P ∗

∂τ
= K

(1− τ)2 ≥ 0 (5.3)

∂2P ∗

∂τ2 = 2K
(1− τ)3 ≥ 0 (5.4)

Thus even a small perceived benefit of the brand, can lead to the prescription of a relatively
more expensive brand drug when insurance coverage is high.

We now consider what would happen if physicians receive some benefit from the brand company
if they prescribe the brand drug. The benefit is set as a fixed percentage ρ of the brand price where
0 < ρ < 1. This reward scheme is motivated by the observation in the data that more expensive
brand drugs are generally associated with higher payments (see Table 5.1 in Section 5.3). This
assumption is not crucial for the results of the model. Indeed, if we were to assume that physicians
receive a lump sum transfer for prescribing the brand drug, all predictions go through.

Underlying this set-up is an assumption that payments are regular and linked with prescription
volumes. The next section provides statistics that corroborate the claim that ‘paid’ physicians
receive multiple payments from the same pharmaceutical company, and often also in relation to
the same product. Sales representatives keenly monitor physicians prescription data and are known
to sometimes closely associate prescribing volumes with an expectation. An example provided by
Shahram Ahari, a former pharmaceutical sales representative for Eli Lilly, is “So, doc, you’ll choose
Drug X for the next 5 patients who are depressed and with low energy? Oh, and don’t forget dinner
at Nobu next month. I’d love to meet your wife” (Fugh-Berman and Ahari, 2007 p. 622).

The addition of a brand-related payment implies that the physicians now trades off the costs
and benefits that the patient faces, with their own personal gain. The physician will prescribe the
brand drug when

UB − (1− τ)PB + ρPB ≥ UG + (1− τ)PG, (5.5)

which can, employing the same notation as before, be rewritten as,

PB ≤ P
′∗ ≡ K

1− τ − ρ (5.6)

For any level of insurance coverage, for a positive value of ρ, P ′∗ > P ∗. Thus, the probability
of prescribing the brand drug is always higher for a physician who receives payments. In the case
where τ + ρ ≥ 1, the brand will always be prescribed, regardless of it’s price. Thus at high levels
of insurance coverage, even a small ρ can successfully incentivize brand prescription.

The model offers one final insight on how the probability of brand prescription differs between
physicians who receive payments and those who do not. We define ∆ := P

′∗ − P ∗. Taking the
partial derivative ∆ of with respect to τ ,

∂∆
∂τ

= K

(1− τ − ρ)2 −
K

(1− τ)2 ≥ 0, (5.7)

it is evident that as insurance coverage increases, physicians receiving payments increase their
brand prescriptions at a faster rate. Figure 5.7, where K has been set to 1 and ρ has been set to
0.1, illustrates this feature. The intuition behind this result is that as insurance coverage increases,
the patient is more willing to accept higher brand prices which in turn allows for higher benefits
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to the physician, encouraging brand prescriptions.28

Figure 5.7: Price threshold for brand prescription
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In sum, this simple model yields insights which are in line with the empirical findings in this
paper. Firstly, physicians expecting a reward are more likely to prescribe the brand drug (for
any level of insurance coverage). Secondly, as the patient’s out-of-pocket expenditures decline,
physicians receiving payments become increasingly more likely to prescribe the brand.

28To see that this is also the case if we assume physicians receive a fixed lump sum Q, let
∆ := K+Q

(1−τ) − P
∗. Thus ∂∆

∂τ = Q
(1−τ)2 ≥ 0.
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