
Attributed Data for CHR Indexing

Beata Sarna-Starosta1 and Tom Schrijvers?2

1 LogicBlox Inc., Atlanta, Georgia, USA
bss@logicblox.com

2 Department of Computer Science, K.U.Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract. The overhead of matching CHR rules is alleviated by con-
straint store indexing. Attributed variables provide an efficient means
of indexing on logical variables. Existing indexing strategies for ground
terms, based on hash tables, incur considerable performance overhead,
especially when frequently computing hash values for large terms.
In this paper we (1) propose attributed data, a new data representation for
ground terms inspired by attributed variables, that avoids the overhead
of hash-table indexing, (2) describe program analysis and transformation
techniques that make attributed data more effective, and (3) provide
experimental results that establish the usefulness of our approach.
Keywords: Constraint Handling Rules, indexing, program transforma-
tion, term representation, attributed variables

1 Introduction

Constraint Handling Rules (CHR) [3] is a high-level rule-based declarative pro-
gramming language, usually embedded in a host language such as Prolog or
Haskell. CHR features multi-headed rules, i.e., rules with multiple predicates on
the left-hand side (the head), which sets it apart from conventional declarative
languages, where a rule’s head admits only one predicate or function.

Multi-headed rules afford much of CHR’s expressive power by allowing to eas-
ily combine information from distinct constraints via matching. However, as the
matching procedure significantly affects the complexity of rule evaluation [13],
this source of expressiveness often leads to performance bottlenecks. Aware of
this problem, CHR developers have built data structures to support efficient in-
dexing on variables (attributed variables [6]) and ground data (search trees [7]).
With [11] came the realization that O(1) indexing is essential to implement CHR
algorithms with optimal complexity, leading to the use of hash tables for index-
ing ground data, and the general result that the complexity of CHR systems
equals that of RAM machines [13].

In this paper we advance the research on CHR indexing with the following
contributions. We present attributed data, an alternative to hash tables for in-
dexing ground data that does not suffer from as much overhead (Section 3); we

? Post-Doctoral Researcher of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O. - Vlaanderen)

describe a sequence of program post-processing steps that reduce the overhead
incurred by the indexing transformations (Section 4); we propose an analysis to
decide when to use the attributed data (Section 5); and we provide the experi-
mental measurements that demonstrate the performance gain and the practical
usefulness of our approach in K.U.Leuven CHR (Section 6).

Parts of this work described in Sections 3 and 4 have previously appeared at
the CICLOPS 2008 symposium [8]. The implementation of the presented trans-
formation is available at http://www.cs.kuleuven.be/~toms/CHR/Indexing/.

2 Motivation

A CHR rule is applicable when there exists a constraint substitution that matches
the rule’s head. Our experience has shown that the efficiency of CHR evaluation
is significantly affected by the procedure of selecting such matching head substi-
tutions for multi-headed rules. Indeed, in Frühwirth’s analysis [13] the number
of heads appears in the exponent of the worst-case time complexity formula.

CHR’s on-demand approach builds head substitutions incrementally, by first
matching the active constraint, and then adding stored constraints one at a time.
The purpose of indexing is to bring relief to the matching bottleneck. While the
naive approach considers all stored constraints as candidates for the substitution,
indexing aims to considerably narrow down the number of candidates to consider.

2.1 Attributed Variables

Efficient (constant-time) constraint store indexing has been traditionally imple-
mented by means of attributed variables [5]. Attributed variables [4] provide a
way to associate Prolog variables with mutable data represented as arbitrary
terms. In the context of CHR, a variable’s attribute corresponds to those stored
constraints, in which the variable is involved. The attribute term has the form:
attr(Index 1, . . . ,Indexn), where each Index i is a data structure, typically a
list, that contains all constraints on the variable with a particular constraint sym-
bol. The presence of all variable’s constraints in its attribute expedites matching
when the variable is shared among the constraints in the heads of the rules.

Example 1. Consider the rule:

a(X), b(X,Y) ==> write(Y). (2.1)

Assuming that a/1 and b/2 are the only declared constraints, the attribute
term of a constrained variable X has the form attr(Indexa,Index b), where
Indexa represents all stored constraints a(X) and Index b represents all stored
constraints b(X,Y). Figure 1(a) depicts a constraint store containing the con-
straints a(X) and b(X,Y). The single-compartment boxes denote constraints,
whereas the double-compartment boxes denote variables with attributes. The
dashed arrows and ovals represent the index lists Indexa and Index b. Using such
representation of the constraint store, given the constraint a(X) we can quickly
find the matching constraint b(X,Y) by consulting the Index b list of variable X.

2

a()

attr(,)

b(,)

X

attr(,)

Y

(a) Attributed Variables

a()

adata(f(g,h), ,)

b(,)

adata(i, ,)

(b) Attributed Data

Fig. 1. Constraints a(X) and b(X,Y) with two types of indexing.

Hashtable b/2 1st arg

f(g,h)
b(f(g,h),i)

Fig. 2. Constraint b(f(g,h),i) with hash-table indexing.

2.2 Ground Term Pattern Matching

Clearly, attributed variables are useful only when constraints involve Prolog
variables. They cannot represent ground constraints, i.e. constraints in which all
arguments are ground terms.

Example 2. The constraints a(f(g,h)) and b(f(g,h),i) match the head of
rule (2.1) under the substitution {f(g,h)/X, i/Y}. However, as these two con-
straints do not share any variables, attributed variable indexing cannot be ex-
ploited to extend the partial match a(f(g,h)). Note that even if the atom i
was a variable, attributed variable indexing could not be used.

To account for cases such as that described in Example 2, early implemen-
tations of CHR accumulated constraints in global, unordered lists. This repre-
sentation supported O(1)-time insertion of the constraints, however, constraint
lookup and deletion were—in the worst case—linear in the size of the store.
The introduction of hash tables [11] facilitated indexing on ground data with
amortized constant-time complexity for all operations.

Example 3. Figure 2 depicts the hash-table index on the first argument of the
constraint b/2. When an active constraint a(f(g,h)) is looking for a partner
constraint to apply rule (2.1), it consults this hash table; A hash value computed
for the term f(g,h) yields (modulo the array size) a position in the array; The
bucket list at this position is traversed until detection of the bucket for f(g,h),
which contains a linked list of all b/2 constraints with the first argument having
the form f(g,h) (i.e., b(f(g,h),i) in our example).

The hash table is initialized to a small size, and dynamically expanded when-
ever the number of constraints exceeds a given threshold. The expansion involves

3

replacing the current array with an array of doubled size, and re-evaluating the
hash function for all elements. Frequent evaluation of the hash function, the
traversal of the bucket lists, and the resizing operation incur constant, but po-
tentially large, overhead on processing the hash tables, which makes them, as the
means for constraint indexing, considerably slower than attributed variables: for
a benchmark with tight loops involving no more than two constraints, we have
measured a relative slow-down of about 50%.

Solution: Attributed Data In order to facilitate ground-term indexing with per-
formance characteristics of attributed variables, we propose a representation
which associates ground terms directly with their constraint store indexes. We
call this term representation attributed data. Our approach considers only vari-
able patterns; we have addressed indexing structure patterns in prior work [9].
Also, in the rest of the presentation we assume that our approach applies to only
one constraint argument at a time.

Example 4. Figure 1(b) shows attributed data indexing applied to Example 2.
Note how little it differs from the attributed variable indexing of Figure 1(a).

Even though based on the same idea as attributed variables, attributed data
cannot be implemented by a simple adaptation of the attributed variable infras-
tructure to the domain of ground terms because of the different ways ground
terms and variables are represented by Prolog systems. Every logic variable is
created exactly once, and systems, such as WAM [1], maintain its single physical
representation and update it in place. As a consequence, all occurrences of the
same variable observe the effects of any updates—in particular, changing it into
an attributed variable—through the shared representation. On the other hand,
a ground term may have multiple physical representations, created at different
times, and hence changing such a term into its attributed data representation in
place has no effect on its copies. This difference imposes the need to implement
a new way of supporting attributed data updates. Our answer to this need—a
conversion function turning any copy of a ground term into the canonical, shared
attributed data representation—is described in Section 3.2.

3 Attributed Data

The key insight underlying our new approach to pattern matching ground terms
is that the externally provided ground terms can be transformed into the internal,
attributed-variable–like representation by the CHR run time.

3.1 Attributed Data Representation

The internal representation I of a ground term E resembles an attributed variable
in that it contains the ground term itself and its associated data:

I = adata(E,Index 1, . . . ,Indexn)

4

where each Index i is a constraint store index on an argument position of the
term E in a head constraint of some program rule.

The number and form of attributed data indexes is orthogonal to the use of
attributed data, and is determined by the CHR compiler based on the form of
the rule heads and the set of constraints available when looking for a matching
partner. A detailed discussion of this issue can be found in Section 3.2 of [7].

In this paper, we assume that each Index i is a flat list of constraint suspen-
sions, with predefined operations for constraint addition and removal. The list
can be updated (e.g., to replace an old index with a new one) by the destructive
argument update predicate setarg/3 implemented in most Prolog systems.

3.2 Conversion Functions

As discussed in Section 2.2, in order to support transforming ground terms into
their attributed-data representations, we require an operation that is more in-
volved than the built-in predicate put attr/3 used to turn ordinary logic vari-
ables into attributed variables. Hence, we use a conversion function φ which
turns any copy of a ground term into the canonical, shared attributed-data rep-
resentation.

Definition 1 (Conversion Functions). The injective conversion function φ
maps a ground term tE of t onto its attributed-data representation tI:

φ(tE) =


h[tE] if h[tE] is defined
tI otherwise

such that tI = adata(tE,∅1, . . . ,∅n)
and h := h[tE → tI]

where h is a global hash table relating the ground terms to their known attributed-
data representations. Each ∅i is an empty set of constraints, one for each ar-
gument position j of each constraint symbol c that is represented by attributed
data. The injective conversion function ψ = φ−1 maps the attributed-data rep-
resentations tI back to a copy of the ground term tE:

ψ(adata(tE,Index 1, . . . ,Indexn)) = tE

Note that φ has an impure implementation, but a pure interface.

3.3 Source-to-Source Transformation

Apart from the performance aspect, the use of attributed data should be fully
transparent to the programmer. Hence, to relieve the programmers from the
need to explicitly call the conversion functions of Section 3.2, we provide a
fully-automatable program transformation that introduces the conversions at
well-chosen points in the program. The transformation serves two purposes: it
(1) makes the programmers oblivious of the attributed-data representation, and
(2) makes the attributed-data representation available for indexing to the CHR

5

compiler. The first purpose implies that a CHR constraint c/n should be callable
with ground terms as arguments, e.g. from the interactive Prolog shell. However,
this conflicts with the second purpose, which requires the arguments of c/n to
have the attributed-data form for indexing.

Our solution is to split the constraint c/n into two forms. The first form, c/n,
is used externally by the programmers, and its arguments are ground terms. The
second form, c′/n, is used internally when applying CHR rules, and its arguments
are attributed data. The external form is defined in terms of the internal form
by means of the conversion CHR rule, that applies the conversion function φ:

Definition 2 (Conversion Rule). The conversion rule Φ replaces ground term
argument ti in constraint term c/n with attributed-data representation t′i = φ(ti):

c(t1,. . .,ti,. . .,tn) <=> t′i = φ(ti), c′(t1,. . .,t
′
i,. . .,tn).

Example 5. Consider the constraint arrow/2, which in Thom Frühwirth’s merge-
sort program represents the numbers subject to the sort. The second argument
of arrow/2 is always ground. Thus, the conversion rule for this constraint has
the form:

arrow(X,Ne) <=> Ni = φ(Ne), arrow’(X,Ni).

The original CHR rules should operate on the internal constraint form c′/n
rather than c/n. For this purpose, we transform each rule into a converted rule.

Example 6. Consider the following rule on the arrow/2 constraint:

arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B). (3.2)

In order to benefit from attributed data indexing, the rule head should be ex-
pressed in terms of the internal constraint form arrow’/2:

arrow’(X,A) \ arrow’(X,B) <=> A < B | arrow(A,B).

However, the rule as formulated above does not work: both the guard A < B and
the body arrow(A,B) expect A and B to be ground terms rather than attributed
data. Hence, we need to introduce the conversion functions:

arrow’(XI,AI) \ arrow’(XI,BI) <=> A=ψ(AI), B=ψ(BI),
A < B | arrow(A,B).

More systematically:

Definition 3 (Converted Rule). The converted CHR rule is defined as:

φ(H {<=>==>} G | B) = H ′ {<=>==>} G′, G | B

where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
its converted form c′(t1, . . . , xi, . . . , tn), where xi is a fresh variable.

6

original converted

c(X) φ

,,YYYYYYYYYYYYYYY

c′(Y)ψ

rreeeeeeeeeeeeeee

c(Z) φ

,,YYYYYYYYYYYYYYY

c′(U)ψ

qqcccccccccccccccc
. . .

(a) Actual Situation

original converted

c(X)
φ

,,XXXXXXXXXXXXXXX

c′(Y)
��

c′(U)
��. . .

(b) Ideal Situation

Fig. 3. Transitions between the original and converted constraints

– the new guard G′ relates the original arguments of each constraint to the new
ones: G′ contains one ti = ψ(xi) for each converted argument.

Putting everything together:

Definition 4 (Converted Program). The converted CHR program φ(P) is
defined as the set of converted rules R comprising the original program, the
functions φ and ψ, and the encoding of Φ:

φ(P) = φ(R) ∪ φ ∪ ψ ∪ Φ

4 Post-Processing

A converted program involves repeated application of the conversion functions
to alternate between the external and internal representations of the constraints,
which may be a major source of overhead. We now describe a four-step rewriting
procedure, which statically eliminates most of this overhead. The procedure is
based on the approach taken in our prior work on partial structure indexing [9].

In a typical execution scenario (Figure 3(a)), an external value is converted
into the internal representation and matched in a head of a rule, then converted
back in the rule’s body for calling a new constraint, converted again to match
another rule, and so on. Ideally (Figure 3(b)), converted rules should operate
solely on the internal representation of the arguments, whereas the external val-
ues should be used only by the queries from outside the programs. Our rewriting
procedure aims to trigger this ideal scenario. Rewritten programs execute in two
phases: (1) conversion of arguments’ external value to the internal representa-
tions, and (2) processing of the internal representations. For all but the most
trivial programs, we expect the run-time cost of (1) to be marginal with respect
to the cost of (2). This conjecture is born out by the benchmarks in Section 6.

We outline the rewriting steps by applying them to an example rule.

Example 7. Consider normalized version of Rule (3.2), which after conversion
has the form:

7

arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow(A,B).

Step 1: Make conversion explicit unfolds constraint calls according to the
conversion rules:

arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(φ(A),φ(B)).

Step 2: Eliminate identity conversion applies, from left to right, the equiv-
alence ∀t : φ ◦ ψ(t) = t:

arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 3: Convert external matching values to the internal representations
applies from left to right the equivalence ∀t1, t2 : ψ(t1) = ψ(t2)⇔ t1 = t2:

arrow’(I,AI) \ arrow’(I,BI) <=> X = ψ(I), A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 4: Clean up drops unused conversion guards:

arrow’(I,AI) \ arrow’(I,BI) <=> A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

The proposed rewriting steps are not sufficient to enforce the ideal scenario of
Figure 3(b). However, as shown in Section 6, they have good practical effects.

5 Analysis

The attributed data framework offers an attractive alternative to hash tables.
Should our approach replace hash-table indexing for ground programs? It turns
out that the overhead of setting up attributed data—with the help of a hash
table—may be larger than the resulting run-time gain. Our experimental evalu-
ation3 indicates that, for overall performance improvement, each attributed data
index should be used more than once. In this section we consider two strategies
for deciding when to represent constraint arguments as attributed data.

3 See the fib and fib2 benchmarks in Section 6.

8

5.1 Manual Attributed Data Declaration

For some programs, the best decision as to when to use attributed data can
be made by the programmer. Thus, we introduce the attr data modifier to
annotate individual arguments of a constraint in the constraint’s declaration.
The modifier is used in combination with a ground mode declaration +, and,
optionally, a type declaration such as int.

Example 8. We indicate that attributed data shall be used for both integer-typed
arguments of the merge-sort constraint arrow/2 by means of the declaration:
:- chr constraint arrow(+int attr data,+int attr data).

5.2 Automatic Attributed Data Index Selection

Although easy to implement, selecting the attributed data indices by hand may
be challenging, and hence is prone to performance errors. Preferably, this task
should be delegated to the CHR system, which has the advantage over the pro-
grammer in that it determines on which constraint arguments to index during
matching. We propose an analysis that facilitates automatic selection of index-
ing arguments. The analysis, based on the abstract interpretation framework for
CHR [12], approximates the number of times an argument is used for indexing.
Based on our experimentally determined heuristic, we then select the arguments
found to be used for indexing more than once.

In order to capture argument lookup information, we need to extend CHR’s
operational semantics. We assume that the built-in store is of the form

∧
Xi =

ti/li and the constraints in the queries are of the form c(X1, . . . , Xn). Here Xi

are possibly identical variables, ti are ground terms, and li are lookup counts.
Informally, a lookup count for a term t is a natural number denoting how often t
has been used to look up partner constraints. We omit the formal definition due
to lack of space. Additionally, we assume that all stored constraints are ground.

Our analysis framework comprises an abstract domain of execution states,
a function defining the conversion between the concrete and abstract execution
states, and the abstraction of CHR’s operational semantics.

Abstract Domain Σa An abstract execution state has two components: (1) the
program point information present in the goal in order to determine applica-
ble abstract semantic step, and (2) the abstraction of the lookup counts li. A
concrete state is reduced to the corresponding abstract state by the abstraction
function αad :

Definition 5 (Abstraction Function).

αad(〈A,S,B, T 〉n) = 〈αad−c(A), αad−b(B)〉

where the auxiliary functions αad−c and αad−b respectively determine the ab-
stract goal and abstract indexing count components.

9

The abstraction functions for the two components are defined as:

αad−c(c(Xi, . . . , Xn)) = c(Xi, . . . , Xn)
αad−c(c#i :o) = αad−c(c) :o

αad−c(c) = builtin (c built-in)
αad−c([c1, . . . , cn]) = [αad−c(c1), . . . , αad−c(cn)]

and αad−b(∧iXi = ti/li) = {Xi : αl(li)} where the abstraction of lookups is

defined as αl(n) =
{
n if n ≤ 1
∗ if n > 1

That is, we reduce the lookup counts to 0, 1 or many (denoted by ∗).
The partial order ≺ and least upper bound operator t for abstract states

both assume that the program point component is identical. They are defined
in terms of the point-wise application of the natural abstractions of < and max
over the lookup counts.

Definition 6 (Partial Ordering).

〈A1, B1〉 � 〈A2, B2〉 = A1 ≡ A2 ∧B1 � B2

where B1 � B2 = ∀(X : l1) ∈ B1∃(X : l2) ∈ B2 : l1 � l2, and 0 ≺ 1 ≺ ∗.

Definition 7 (Least Upper Bound).

〈A,B1〉 t 〈A,B2〉 = 〈A,B1 tB2〉

where B1 tB2 = {(X : l1 t l2) | (X : l1) ∈ B1, (X : l2) ∈ B2},

and l1 t l2 =
{
l2 if l1 ≺ l2
l1 otherwise

Abstract Semantic Function The abstract semantic function AS[[P]] is the ab-
straction of the operational semantics of CHR. The abstract semantic function
exploits two pieces of information derived during the program analysis phase by
the CHR compiler: which arguments of a constraint are used for indexing, and
which occurrences of a constraint are passive.

The latter datum—passiveness of an occurrence o of a constraint c/n—means
that the occurrence o does not fire a rule. We denote the conservative approxi-
mation derived by the CHR compiler as passive(c/n, o). Since the CHR compiler
does not generate code for passive occurrences, it is not necessary to increase
lookup counts in this case, as no lookups are performed.

The former datum—which constraint arguments are used for indexing—is
determined based on the rule head patterns and active occurrences of the con-
straints. We capture this information as B′ = indexing(c,B, j, r) meaning that,
after the attempt to fire rule r with active abstract constraint c at occurrence j,
the abstract lookup counts change from B to B′.

Definition 8 (Abstract Semantic Function).

10

1. AbstractSolve

AS[[P]](〈builtin, B〉) = 〈�, B〉

As we have assumed that all constraints are ground, this transition does not
reactivate any CHR constraints, and does not affect lookup counts.

2/3. AbstractActivate Let c be a CHR constraint.

AS[[P]](〈c,B〉) = AS[[P]](〈c :1, B〉)

This transition stores the new constraint. It does not affect lookup counts.

4. AbstractDrop Let c be a CHR constraint with no occurrence c :j

AS[[P]](〈c :j, B〉) = 〈�, B〉

This transition deactivates the active constraint. It does not affect lookup counts.

5a. AbstractSimplify Let d be the jth occurrence of c in a (renamed apart)
rule r ∈ P with ¬passive(c, j):

r @ H ′1 \ H ′2, d[j], H
′
3 ⇐⇒ g | C

then AS[[P]](〈c :j, B〉) = AS[[P]](s1) t AS[[P]](s2)

where B′ = indexing(c,B, j, r)
s1 = 〈αad−c(C), B′〉
s2 = 〈c :j + 1, B′〉

6a. AbstractPropagate Let d be the jth occurrence of c in a (renamed
apart) rule r ∈ P with ¬passive(c, j):

r @ H ′1, d[j], H
′
2 \ H ′3 ⇐⇒ g | C

then AS[[P]](〈c :j, B〉) = AS[[P]](〈c :j + 1, B′〉)

where B′ = lfp(f, 〈B〉).

The auxiliary function f is defined as:

f(B0) = B2

where {
B1 = indexing(c,B0, j, r)

〈�, B2〉 = AS[[P]](〈αad−c(C), B1〉)

5b/6b. AbstractPassive Let d be the jth occurrence of c in a (renamed
apart) rule r ∈ P with passive(c, j), then

AS[[P]](〈c :j, B〉) = AS[[P]](〈c :j + 1, B〉)

11

f(N) \ f(N) <=> true. f(N), f(N) <=> f(N).

f(0) <=> true. f(0) <=> true.

f(N) ==> M is N - 1, f(M). f(N) ==> M is N - 1, f(M).

(a) (b)

Fig. 4. Programs showing worse (a) and better (b) performance with attributed data

7. AbstractGoal

AS[[P]](〈[c1, . . . , cn], B0〉) = 〈�, Bn〉

where for i ∈ 1..n
AS[[P]](〈ci, proj (Bi−1, ci)〉) = 〈�, B′i〉

and
proj (B, c(X1, . . . , Xn)) = {(Xi : li) ∈ B | i ∈ 1..n}

ext(Bx, By) = Bx ∪ {(X : l) ∈ By | ¬∃l′ : (X � l′) ∈ Bx}
Bi = ext(B′i, Bi−1) (i ∈ 1..n)

This transition sequences a list (conjunction) of goals.

Example Consider the two programs in Fig. 4. The use of attributed data slows
down the program in Fig. 4(a), but improves the performance of the program
in Fig 4(b). The reason for this difference is that in the program in Fig. 4(a)
each argument is used for indexed lookup only once, whereas in the program in
Fig. 4(b) some arguments are used multiple times.

Consider now the analysis for the program in Fig. 4(a):

AS[[P]](〈f(N), {N : 0}〉)
= AS[[P]](〈f(N) : 1, {N : 0}〉)
= AS[[P]](〈f(N) : 2, {N : 1}〉) t AS[[P]](〈builtin, {N : 1}〉)
= 〈�, {N : 1}〉 t 〈�, {N : 1}〉
= 〈�, {N : 1}

where (since the second occurrence is passive)

AS[[P]](〈f(N) : 2, {N : 1}〉)
= AS[[P]](〈f(N) : 3, {N : 1}〉)
= AS[[P]](〈f(N) : 4, {N : 1}〉) t AS[[P]](〈builtin, {N : 1}〉)
= 〈�, {N : 1}〉 t 〈�, {N : 1}〉
= 〈�, {N : 1}

and

AS[[P]](〈f(N) : 4, {N : 1}〉)
= AS[[P]](〈f(N) : 5, {N : 1}〉) t AS[[P]](〈[builtin, f(M)], {N : 1}〉)
= 〈�, {N : 1}〉 t 〈�, {N : 1}〉
= 〈�, {N : 1}

12

Hence, the lookup count never exceeds 1, and thus our heuristic indicates that
attributed data should not be used. If, instead, we consider the program in
Fig. 4(b), the main derivation becomes:

AS[[P]](〈f(N), {N : 0}〉)
= AS[[P]](〈f(N) : 1, {N : 0}〉)
= AS[[P]](〈f(N) : 2, {N : 1}〉) t AS[[P]](〈f(N), {N : 1}〉)
= 〈�, {N : 1}〉 t 〈�, {N : ∗}〉
= 〈�, {N : ∗}

because the first rule now involves a recursive call. Now the lookup count is ∗
and using attributed data is recommended.

6 Evaluation

We implemented our approach in K.U.Leuven CHR [10] on SWI-Prolog [14],
and tested it on several benchmarks4. All run times, given in seconds, as well as
relative to the original for the transformed versions, were measured on an Intel
Pentium 4, 2.00 GHz, with 512 MB RAM.

Our implementation of attributed data consists of two components: (1) a
pre-processor, which transforms a CHR program with key annotations into its
converted form, and (2) the actual code generator of the CHR compiler, which
generates attributed data indexing instructions and emits definitions for the
conversion functions. The function φ is implemented in terms of the hash tables
used for hash-table indexing. The function ψ is always called as B = ψ(A); we
inline it as A = adata(B, ,...,) at each call site.

Table 1 lists the run-time results of exploiting attributed data in K.U.Leuven
CHR, measured for plain hash tables, plain attributed data instead of the hash
table indexes, and attributed data with post-processed rule bodies.

The block of the first seven benchmarks clearly demonstrates the positive
effects of our approach. Although, the attributed data used on its own causes
a slow-down (up to almost 50% for mergesort), when augmented with post-
processing, it improves the run time by 20% to 50%.

The block of the last four benchmarks shows two programs for which the use
of attributed data impairs the performance. The first program, fib, involves one
hash-table lookup per new constraint. Hence, the attributed data manipulation
is pure overhead (25%). For this reason, our analysis from Section 5 flags the
program as unsuitable for attributed data; it does not flag any of the other
benchmarks.

The second benchmark, fib2, replaces the simpagation rule of fib:

fib(N,F1) \ fib(N,F2) <=> F1 = F2.

with the simplification rule:

fib(N,F1), fib(N,F2) <=> F1 = F2, fib(N,F1).

4 available at http://www.cs.kuleuven.ac.be/~toms/CHR/Indexing/

13

index representation
benchmark hash table attr. data relative post-processed relative

chrg 2.17 2.10 96.8% 1.58 72.8 %
flat ram 4.69 4.31 91.9% 2.50 53.3%
mergesort 3.33 4.89 146.8% 1.85 55.6 %
reverse 2.55 3.25 127.4% 1.92 75.3%
uf opt 0.34 0.38 111.8% 0.25 73.5%
turing 1.50 1.31 87.3% 1.19 79.3%
wfs 1.32 0.88 66.7% 0.85 64.4%

fib 1.24 1.53 123.4% 1.52 122.6%
fib2 1.61 1.30 80.7% 1.05 65.2%

dijkstra 2.26 4.52 200.0% 3.53 156.2%
dijkstra2 1.54 2.20 142.9% 1.25 81.2 %

Table 1. K.U.Leuven CHR run times (in sec.) for attributed data benchmarks

This modification causes the parameter N to be reused in the new call in
the rule’s body5. As a consequence, attributed data requires only one hash-table
lookup for every two new constraints, which results in a noticable speed-up.

The second slow-down, in dijkstra, results form a limitation of our cur-
rent implementation, which does not allow multi-argument indices involving at-
tributed data arguments. Thus, we were required to replace a two-argument
hash table index by a single-argument attributed data index. For this bench-
mark, the two-argument index turns out to be more selective and more efficient.
However, the use of symbol specialization [9] allowed to entirely eliminate the
second matching argument from this benchmark, and thus obtain a speed-up in
the resulting program dijkstra2.

7 Discussion and Related Work

We have presented attributed data—a new term representation that improves the
efficiency of CHR indexing at a high level—and a complementary post-processing
procedure that reduces the overhead of conversions between the new representa-
tion and the standard representation of Prolog terms. We have implemented our
approach for the K.U.Leuven CHR system on SWI-Prolog. The evaluation on a
set of benchmarks shows that attributed data enables performance improvement,
and that post-processing is critical to fully realize this potential.

Several programming languages define features that resemble the concept of
attributed data. The conversion function φ relates to hash consing—a technique,
originated in Lisp, for mapping terms to, and representing them by, unique
(hash) values. Although the main aim of hash consing is to reduce memory
consumption by increased sharing, it is also used to speed up equality tests.

Like attributed data, Mercury’s solver types [2] impose a dual view of con-
straint arguments. The internal representation type is defined by the library
5 Note that fib and fib2 implement different algorithms for computing fibonacci num-

bers, and should be only compared w.r.t the relative impact of our transformation.

14

programmer, rather than generated automatically. Externally, the solver type is
abstract, but coercion functions should be provided for external representations.
Finally, a folklore6 optimization technique in C/C++ adds (pointer) fields to
structures to concisely represent lists (and other data types) that contain them.

Acknowledgements The authors thank the ICLP reviewers, Leslie De Kon-
inck, Bart Demoen and Jon Sneyers for their helpful comments on the paper.

References

1. Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT
Press, 1991.

2. Ralph Becket et al. Adding constraint solving to Mercury. In 8th International
Symposium on Practical Aspects of Declarative Languages (PADL), 2006.

3. Thom Frühwirth. Theory and practice of Constraint Handling Rules. Journal of
Logic Programming, 37(1–3):95–138, 1998.

4. Christian Holzbaur. Metastructures vs. Attributed Variables in the Context of
Extensible Unification. Technical Report TR-92-23, Austrian Research Institute
for Artificial Intelligence, Vienna, Austria, 1992.

5. Christian Holzbaur and Thom Frühwirth. Compiling Constraint Handling Rules
into Prolog with attributed variables. In G. Nadathur, editor, PPDP ’99, volume
1702 of LNCS, pages 117–133, Paris, France, 1999. Springer.

6. Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules
Compiler and Runtime System. Special Issue Journal of Applied Artificial Intelli-
gence on Constraint Handling Rules, 14(4), April 2000.

7. Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J.
Duck. Optimizing Compilation of Constraint Handling Rules in HAL. Theory and
Practice of Logic Programming, 5(Issue 4 & 5):503–531, 2005.

8. Beata Sarna-Starosta and Tom Schrijvers. An efficient term representation for
CHR indexing. In M. Carro and B. Demoen, editors, Proceedings of CICLOPS
2008, pages 172–186, 2008.

9. Beata Sarna-Starosta and Tom Schrijvers. Transformation-based indexing tech-
niques for constraint handling rules. In T. Schrijvers, F. Raiser, and T. Frühwirth,
editors, CHR ’08, RISC Report Series 08-10, University of Linz, Austria, pages
3–18, Hagenberg, Austria, July 2008.

10. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementa-
tion and application. In 1st Workshop on Constraint Handling Rules: Selected
Contributions, pages 1–5, 2004.

11. Tom Schrijvers and Thom Frühwirth. Optimal Union-Find in Constraint Handling
Rules. Theory and Practice of Logic Programming, 6(1&2), 2006.

12. Tom Schrijvers, Peter J. Stuckey, and Gregory J. Duck. Abstract interpretation
for Constraint Handling Rules. In P. Barahona and A.P. Felty, editors, PPDP ’05,
pages 218–229, Lisbon, Portugal, July 2005. ACM Press.

13. Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and
complexity of Constraint Handling Rules. ACM Transactions on Programming
Languages and Systems (TOPLAS), 31(12), 2009.

14. Jan Wielemaker. SWI-Prolog release 5.6.0, 2006. http://www.swi-prolog.org/.

6 e.g. the Linux kernel linked list: http://isis.poly.edu/kulesh/stuff/src/klist/

15

