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Abstract

We present a statistical test for the hypothesis of rational utility maximiza-

tion on the basis of nonparametric revealed preference conditions. Our test is

conservative for the utility maximization hypothesis. We take as null hypothesis

that the consumer behaves randomly, and as alternative hypothesis that she is

approximately utility maximizing. Our statistical test uses a permutation method

to operationalize the principle of random consumer behavior. We show that the

test has an asymptotic power of one against the alternative hypothesis of approxi-

mately utility maximizing behavior. We also provide simulated power results and

two empirical applications, to experimental and observational data, respectively.

Keywords: utility maximization, revealed preferences, random behavior, permu-

tation test.

1 Introduction

Do consumers act as rational utility maximizers? Despite the huge surge in behav-

ioral economics, the assumption of utility maximization remains a cornerstone of most
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models in economics. Given its importance, it is crucial to check whether actual con-

sumer behavior is at least close to rationality. Revealed preference theory provides an

attractive framework to do so. In his seminal contribution, Afriat (1967) showed that a

finite data set on observed prices and consumed bundles is rationalizable by the model

of utility maximization if and only if it satisfies the Generalized Axiom of Revealed

Preference (GARP).1 A most attractive conceptual feature of the revealed preference

approach is that it is intrinsically nonparametric, meaning that it abstains from impos-

ing any, typically nonverifiable, functional structure on the consumer’s utility function.

From a practical perspective, it has the additional advantage that it can be meaning-

fully applied even to small data sets. For example, GARP can be rejected with only

two observed consumption bundles. These two features motivate the frequent use of re-

vealed preference methods for testing the hypothesis of utility maximizing consumption

behavior.

In applications, revealed preference tests usually start from a finite set of observed

consumption decisions (prices and quantities) for a given individual, and then verify

whether these observations satisfy some combinatorial condition (like GARP). The result

of these deterministic tests is either a ‘yes’ or a ‘no’. A ‘yes’ means that there exists

a utility function that exactly rationalizes all observed consumption choices as utility

maximizing, while a ‘no’ indicates the opposite. However, as argued by Varian (1991),

exact utility maximization might not be a very interesting hypothesis. What we really

want to know is whether consumers exhibit nearly optimizing behavior, meaning that the

rationality hypothesis provides a useful approximation of their observed behavior. As a

response to the sharp nature of the deterministic revealed preference tests, it is nowadays

customary to complement the tests with a goodness-of-fit measure that quantifies how

close the observed behavior is to passing the strict revealed preference conditions. The

most popular measure in the applied literature is Afriat’s Critical Cost Efficiency Index

(CCEI). This CCEI takes values between 0 and 1, with higher values indicating that

behavior is closer to exact utility maximization (see Section 3 for a formal definition).

Intuitively, one minus the CCEI equals the fraction that the consumer is allowed to

waste in each observed consumption decision while still being labelled as approximately

utility maximizing.2

1To be precise, Afriat (1967) originally derived the empirical equivalence between utility maximiza-
tion and a “cyclical consistency” condition. Varian (1982) has shown the equivalence between GARP
and Afriat’s cyclical consistency condition. Afriat (1967) built on earlier work of Samuelson (1938) and
Houthakker (1950). See also Diewert (1973) insightful discussions of Afriat’s pioneering article, and
Chambers and Echenique (2016) for a recent review of the literature.

2See Choi, Kariv, Müller, and Silverman (2014) and Dziewulski (2020) for more discussion.
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Our contribution. Despite the popularity of the CCEI in applied work, there does

not exist a method that determines at which CCEI value we can reasonably conclude

that the model of (approximate) utility maximization provides a good description of the

observed behavior. The current paper aims to fill this gap, by providing a statistical

test of individual utility maximization. More specifically, we propose to use the CCEI

as a statistic for testing the null hypothesis of irrational, random consumption behavior

against the alternative hypothesis of approximate utility maximization.3 As a conse-

quence, our testing method allows for calculating critical CCEI values to determine the

statistical support for the rationality hypothesis.

Our method shifts the burden of proof for the utility maximization hypothesis: we

only reject irrational/random consumer behavior if there is substantially strong evidence

favoring approximate utility maximization. Our default hypothesis is not that the con-

sumer is utility maximizing but, instead, that she is irrational. To be more precise, the

null hypothesis of our test specifies that the consumer’s purchasing decisions cannot be

distinguished from random behavior. As we motivate in more detail in Section 4, we

model irrational behavior by assuming that the consumer randomly draws consump-

tion rays from some distribution that is independent from the budget (i.e. prices and

income). Our alternative hypothesis is that the consumer is approximately utility max-

imizing (as characterized by a specific CCEI value). This means that our framework is

conservative for the utility maximization hypothesis. The underlying argument is that,

if a data set cannot be distinguished from random behavior, then it should not be treated

as arising from the process of utility maximization.

Our testing procedure relies on a permutation approach to operationalize the princi-

ple of irrational, random choice behavior.4 The idea of the test is fairly straightforward.

For a given data set on prices and quantities, we consider the population of data sets

that is obtained by fixing the budgets but permuting the consumption rays over the

different observations. If the consumer is really randomizing, then the CCEI of the

observed data set is equally likely to be realized as any CCEI of these permuted data

3We focus on the CCEI as our test statistic as this measure is well-known and easily computable.
Importantly, however, the use of our testing method is not restricted to the CCEI. One may equally
well use other goodness-of-fit measures that have been proposed in the revealed preference literature.
Examples include the Houtman-Maks index (Houtman and Maks, 1985), the Varian index (Varian,
1991), the money pump index (Echenique, Lee, and Shum, 2011), the swaps index (Apesteguia and
Ballester, 2015) or the minimum cost index (Dean and Martin, 2016). Further, our permutation test
framework could be adapted to test any model of consumer behavior (rational, irrational, or anything
in between) provided this model is taken as the alternative hypothesis and tested against a null of
random behavior. Such an exercise would establish if a particular model provides a better account of
the data than pure random choice. The key to adapting the method is to find a suitable goodness-of-fit
measure analogous to the CCEI for the model considered.

4See, for example, Pesarin and Salmaso (2010) for a review of the permutation testing approach.
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sets. As such, the distribution of the CCEIs over the permuted data sets provides the

distribution for the CCEI of the true data set under the null hypothesis, conditional on

the realized observations of prices and quantities.

As our test belongs to the family of permutation tests, it has the specific advantage

that it is exact for any sample size. This is particularly convenient in the current

setting, as individual revealed preference tests are usually conducted for a small number

of observations. For example, our own empirical exercises consider real-life panel data

with 26 observations per subject and experimental data with 50 choice observations per

subject. In what follows, we will characterize the asymptotic power of our permutation

test as well as provide simulation evidence of its power in finite samples.

Outline. The remainder of this paper unfolds as follows. Section 2 discusses related

concepts that appeared in the literature on empirical revealed preference analysis. Sec-

tion 3 introduces some preliminary notions, and motivates our testing procedure through

numerical examples. Section 4 formally presents our statistical test and establishes its

theoretical properties. Section 5 discusses simulated power results and provides two

empirical applications (on experimental and observational data, respectively). Section

6 contains our conclusion. All our proofs are in the Appendix.

2 Related concepts in empirical revealed preference

analysis

We start by discussing the relationship between our statistical test and some other

concepts in the revealed preference literature. First, we consider the notions of power

and predictive success of revealed preference tests. Next, we relate our test to other

statistical tests based on revealed preference conditions for rational consumer behavior.

Power of revealed preference tests. Our approach shares some resemblance with

Bronars’ (1987) procedure for measuring the power of revealed preference tests. Similar

to our procedure, Bronars’ power index starts from the idea that irrational behavior can

be modeled as random behavior.5 Computing this index starts by generating a large

number of random data sets, and the index is calculated as the fraction of these random

data sets that violate (approximate) utility maximization. In the operationalization

of Bronars’ procedure, random behavior is usually simulated by drawing consumption

bundles at random from the budget hyperplane. This, however, implies an ad hoc

5This idea goes back to Becker (1962).
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reliance on some distribution to simulate random behavior, and different distributions

may generate different power results. In addition, the chosen distribution may bear

little resemblance to the actual distribution of consumption, even if the consumer is

truly drawing consumption bundles at random. By contrast, our notion of irrational

behavior allows subjects to draw consumption rays at random from any distribution.

From this perspective, our permutation method is more closely related to the ‘boot-

strap’ method that has also been used for measuring the power of revealed preference

tests (see, for example, Andreoni and Miller (2002)). Although this bootstrapping

approach does away with the reliance on some arbitrary distribution, it has –to our

knowledge– no theoretical grounding. Another main difference with our procedure is

that these power measures are designed to produce an index for the strictness of a de-

terministic revealed preference test. Lower index values then indicate a rather weak

revealed preference tests and, therefore, do not allow for strong statements favoring

the rationality hypothesis. Unlike our method, however, the Bronars or bootstrap in-

dex cannot be used directly to test whether or not a particular consumer is a utility

maximizer.

Predictive success. Another popular measure in empirical revealed preference anal-

ysis is Beatty and Crawford (2011)’s predictive success measure, which is based on an

original idea of Selten (1991). This measure is computed as the difference between the

pass rate of a revealed preference test (from a population of data sets) and one minus

Bronars’ power index of this test. Predictive success values close to zero imply that

the pass rate for the observed data sets is close to the pass rates for the population of

randomly generated data sets. By contrast, values close to one point out that (almost)

all observed data pass the revealed preference tests, while the opposite holds for random

data. Finally, values below zero indicate that random behavior performs better than

actual behavior on the revealed preference tests.

Summarizing, Beatty and Crawford’s predictive success measure tells us how well a

revealed preference test can distinguish between actual behavior and random behavior.

However, it remains silent about whether a particular individual behaves according to

the utility maximization model or what critical values are to be used to reach that

conclusion. This is exactly the distinguishing feature of our procedure. In this sense,

we see the two procedures as complementary, each one highlighting a different aspect of

the data.

Other statistical tests. Finally, there exist a number of statistical tests for rational

consumer behavior that are based on nonparametric revealed preference conditions.
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For example, some authors have developed statistical tests of utility maximization for

populations of individuals on the basis of revealed preference theory (see the recent paper

of Kitamira and Stoye (2018) and references therein). In the current study, however, we

focus on individuals rather than populations of individuals.

We are aware of three other papers in which stochastics are introduced to the revealed

preference analysis of an individual consumer. Varian (1985) and Epstein and Yatchew

(1985) consider a perfectly utility maximizing consumer whose demand is observed with

identically and independently normally distributed measurement error. Under this con-

dition, they provide a lower bound on a chi-squared distributed test statistic that can

be calculated given knowledge of the variance of the measurement error. A paper by

Echenique, Lee, and Shum (2011) follows a similar approach. However, instead of intro-

ducing measurement error into demand, these authors introduce measurement error into

prices. The Echenique, Lee, and Shum (2011) approach also requires that the marginal

utility of income is constant at the observed price levels. All three studies require the

analyst to know (or guess) the standard deviation of the error term. Comfortingly, our

test procedure avoids such issues. Also, these other studies assume the same standard

deviation for all goods (or prices), which implies that the units of analysis matter.

The most crucial difference between these tests and ours, however, pertains to the

specification of the null hypothesis. These existing studies take as null the assumption

that observed behavior results from rational utility maximizing behavior (with normally

distributed measurement error). By contrast, the null hypothesis of our test states that

a consumer’s decisions follow random behavior.

3 Basic concepts

We begin our formal exposition by briefly introducing some necessary concepts and

notation. Throughout, we will consider a consumption setting with L ≥ 2 goods.

A revealed preference analysis usually departs from a finite set of T observed prices

pt = [pt1, . . . , p
t
L] ∈ RL

++ and associated quantities qt = [qt1, . . . , q
t
L] ∈ RL

+ (1 ≤ t ≤ T ).

The idea is that, at each observation t, the consumer purchased the bundle qt under

the prevailing prices pt. Let mt = pt · qt denote the total amount of money spent.

A data set is defined as an ordered collection of triples (qt, pt,mt) and denoted by

DT = (qt, pt,mt)t≤T .6

6In the literature, one often refers to a data set as the collection of pairs DT = (qt, pt)t≤T . Indeed,
the inclusion of expenditure levels is redundant as they can be calculated from the pairs (qt, pt). We
include expenditures as it greatly simplifies our exposition when introducing the stochastic structure
to the analysis.
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GARP and CCEI. We say that the bundle qt is revealed preferred to the bundle

qv if mt ≥ pt · qv. We denote this by qtRqv. In words, the bundle qt was chosen at

observation t while qv was also attainable (for the given expenditure mt and prices pt).

Similarly, a bundle qt is strictly revealed preferred to qv if mt > pt · qv, which we denote

by qt P qv. Intuitively, qt was chosen although qv was equally affordable together with

some additional money left for the consumer.

A data set DT satisfies the Generalized Axiom of Revealed Preference (GARP) if

there is no ‘strict’ cycle in the revealed preference relation: for any sequence of obser-

vations t1, . . . , tM ≤ T :

qt1 Rqt2 R . . . R qtM implies not qtM P qt1 .

Afriat (1967) has shown that the observed behavior (captured by the data set DT ) can

be rationalized as maximizing a well-behaved (i.e. continuous, increasing and quasi-

concave) utility function if and only if the data set DT satisfies GARP.

If a data set does not satisfy GARP, we may consider a weakening of the sharp

GARP condition. As indicated in the Introduction, a popular way to do so makes use

of the Critical Cost Efficiency Index (CCEI). To formally define the CCEI, we consider

the relations qtRe qv if emt ≥ pt · qv and qt P e qv if emt > pt · qv, which make use of a

prespecified ‘efficiency’ value e ∈ [0, 1]. Intuitively, the revealed preference relations Re

and P e imply a weakening of the relations R and P , as qt is now said to be (strictly)

revealed preferred to qv only if qv was available when the budget at observation t was

decreased by a fraction (1− e). We say that a data set DT satisfies e-GARP if, for all

sequences of observations t1, . . . , tM ≤ T :

qt1 Re qt2 Re . . . Re qtM implies not qtM P e qt1 .

Obviously, for e = 1 we have that e-GARP coincides with GARP. Moreover, any data

set satisfies e-GARP for e = 0. More generally, if a data set DT satisfies e-GARP, then

it will satisfy e′-GARP for any value e′ ≤ e. This calls for defining the highest value of

e such that a data set still satisfies e-GARP. This value gives us the CCEI, which we

denote by τ(DT ) for a data set DT :

τ(DT ) = sup{e ∈ [0, 1] : DT satisfies e-GARP}.

Varian (1990) proposed the CCEI as a goodness-of-fit measure in empirical revealed

preference analysis. The higher the value of the CCEI, the closer the observed data

set is to satisfying GARP. As is clear from the definitions above, one minus the CCEI
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equals the fraction that the consumer is allowed to waste at each observed consumption

decision, while still being labeled as approximately utility maximizing.

Critical CCEI value. A natural question is whether an observed CCEI value is

sufficiently high to conclude that the decision maker is approximately utility maximizing

and not just picking consumption bundles at random. In the literature, there is no

consensus on what value the CCEI should minimally attain to conclude that behavior is

(approximately) rational. Varian (1991) mentions the critical value of 0.95, but admits

that this is mainly out of sentimental reasons. Choi, Fisman, Gale, and Kariv (2007)

use 0.90 based on their results for Bronars’ power procedure. Particularly, for their

application these authors find that the CCEI is below 0.90 for most randomly generated

data sets (using a uniform distribution to simulate random behavior). Most of the other

papers in the literature tend to use cut-offs of 0.90, 0.95 or 0.99 (see, for example,

Polisson, Quah, and Renou (2020)).

In the current paper, we set out a framework to define an individual-specific cut-off

that is determined as the critical value of a statistical test. To determine this cut-off,

we consider a data set that is obtained by random choice. Random choice is modeled

by fixing the various budgets but permuting the consumption rays over the different

observations. Figure 1 provides an illustration for three observations and two goods.

The budgets are given by the solid lines and the bundles are represented by squares.

Assume that we observe a consumer who picks the consumption bundles according to

the top left panel of the figure. The observed data set then produces three consumption

rays depicted by the dashed lines through the origin. If the consumer were irrational

and picked her consumption rays from some random distribution of rays, the observed

consumption pattern would be equally likely as any consumption pattern in the other 5

panels of Figure 1 that are obtained by permuting the three observed consumption rays

over the observed budgets.

For a permutation σ, we denote the permuted data set by DT
σ (see Section 4 for

a formal definition), and the corresponding CCEI value by τ(DT
σ ). If the individual

chooses her consumption bundles by randomly picking rays from some distribution then,

conditional on the observed rays and budgets, the probability of observing the data set

DT must have the same likelihood as observing the data set DT
σ . This is the main idea

behind our permutation test. To put this into practice, we compute the CCEI values

for all possible data sets that are obtained by permuting the consumption rays over the

observations. If actual behavior picked consumption rays at random, then the CCEI

value for the true data set would be a random draw from the distribution of all these

CCEI values. Thus, we can reject the hypothesis of random behavior at the significance
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Figure 1: Permuting consumption rays

level α if at most a fraction α of all the permuted data sets have a CCEI value above

or equal to τ(DT ).

We end this section with an illustrative example on how our methods can be used

in practice.

Example 1. Figure 2 shows an artificial data set with nine observations and two goods.

This data set violates GARP but only to a small degree. In particular, we have that

τ(DT ) = 0.984, indicating that the CCEI is quite close to one. When computing the

CCEI for all 362 880 permuted data sets, we find that 2.49% of these data sets have

a CCEI that is at least as high as 0.984. In other words, the p-value for the null

hypothesis that the consumer determines her consumption by randomly picking rays is

0.0249. We conclude that the hypothesis of random consumer behavior cannot be rejected

at a significance level of 1%, while it is rejected at the 5% or 10% level.
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Figure 2: Data set for Example 1

4 Hypothesis Test

We aim to develop a statistical test that distinguishes between the following two hy-

potheses:

H0 : The observed consumption data is generated by a random consumer.

H1 : The observed consumption data is generated by an approximate utility maximizer.

Naturally, we have to precisely define what it means to be a random consumer as well as

to be an approximate utility maximizer. We also need to show that the two hypotheses

are exclusive. To do so, it will be useful to express chosen consumption bundles in

terms of consumption rays. More specifically, any consumption bundle, price vector,

and expenditure level triple (q, p,m) has an equivalent dual representation as a ray,

price vector, and expenditure level triple (r, p,m) via the transformations:

r` =
q`∑L
i=1 qi

, ` = 1, . . . , L, (1)

and

q` = m
r`
p · r

, ` = 1, . . . , L. (2)

Given this, we can express any data set DT either in bundle form DT = (qt, pt,mt)t≤T or

in ray form Dt = (rt, pt,mt)t≤T . We will freely switch between these two representations.
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In view of what follows, we note that any ray r belongs to the L − 1 dimensional unit

simplex:

∆L−1 =

{
r ∈ RL

+ :
L∑
`=1

r` = 1

}
.

Further, we will write random variables and vectors in bold. For example, r is a random

ray while r is a deterministic ray. A random data set in ray form and bundle form is

expressed as, respectively:

DT = (rt,pt,mt)t≤T and DT = (qt,pt,mt)t≤T .

Next, the expression P (E) will denote the probability of some event E. For example,

P (qt ∈ Q) denotes the probability that the consumer selects a consumption bundle in

some set Q at observation t.7

Random consumer. We define the random consumer as a consumer who makes

choices from budget sets by selecting an affordable bundle along a random consumption

ray without regard to the budget being faced. In particular, a random consumer can be

identified by a distribution R over the set of rays ∆L−1.8

Definition 1. A random data set DT = (rt,pt,mt)t≤T is generated by a random con-

sumer if there is a distribution R on ∆L−1 such that the rays r1, . . . , rT are independent

draws from R that are also independent of the budgets (p1,m1), . . . , (pT ,mT ).

Definition 1 specifies that a consumer behaves randomly when her consumption

choices are defined by randomly picking consumption rays from a particular distribution,

irrespective of the observed prices and income levels. At this point, we remark that

our null hypothesis does not exclude all utility maximizing behavior. For example,

a consumer with a Leontief utility function (i.e. goods are perfect complements) will

always consume on a fixed ray. We will rule out this extreme case by requiring utility

functions to be strictly increasing (see Assumption 1).

We acknowledge that the random rays null hypothesis that we use represents only one

of many possible ways to model random behavior. For example, Becker (1962), Bronars

(1987) and Beatty and Crawford (2011) equate random behavior as picking budget

shares instead of rays. Our test can easily be altered to allow for a null hypothesis with

the consumer selecting random budget shares instead of random consumption rays.

Importantly, however, an advantage of our random rays approach is elucidated via

7More technically, there is some underlying probability space (Ω,F , P ). An observation (rt,pt,mt)
is a triple of random vectors, each measurable in the appropriate Borel sigma algebra.

8That is, R is a probability measure on the Borel sigma algebra on the unit simplex ∆L−1.
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Theorems 3 and 4 that we present below. These results lean heavily on the random

rays null hypothesis and it is not straightforward to see how they can be altered to

accommodate a random shares hypothesis. Moreover, Example 2 provides an example

of one (of many) specific intuition of our random consumer model as a special case

of a random utility model (RUM). In particular, any data set generated by a random

consumer (according to our definition) can be thought of as being generated by a random

utility maximizer with Leontief preferences.

Example 2. The following household acts as a whole as a random consumer. There

are two goods; cereal and milk. Ann and Bob live together. Once a week, either Ann

or Bob goes shopping. The probability that Ann goes is 50 percent and the probability

that Bob goes is also 50 percent. If Ann goes shopping then she always buys two units

of cereal and one unit of milk. If Bob goes then he always buys one unit of cereal and

two units of milk.

Permutation test. We are interested in comparing the CCEI of a random data set

DT with that of a permuted data set DT
σ . From our definition of permuted data sets, it

will be clear that if DT is generated by a random consumer, then so is DT
σ , from which

it follows that the CCEI values τ(DT ) and τ(DT
σ ) have the same distribution. This will

be instrumental in defining bounds on the Type-1 errors in Theorem 1 below.

Let Π be the set of all permutations on {1, . . . , T}.Then for σ ∈ Π, we define:

DT
σ = (rσ(t),pt,mt)t≤T

to be a permuted version of DT = (rt,pt,mt)t≤T . For a data set DT and a significance

level α ∈ (0, 1), the binary random variable φα(DT ) returns a value of 1 if the fraction

of permuted data sets that have higher CCEI levels than the data set DT is less than

α, while it returns a value of 0 otherwise. Formally:

φα(DT ) = 1


∣∣∣{σ ∈ Π : τ(DT

σ ) ≥ τ(DT )
}∣∣∣

T !
≤ α

 , (3)

where 1[.] is the indicator function that equals 1 if the expression between brackets is

true and 0 otherwise. Using this, we can describe our permutation test as follows.

Procedure 1. Let α ∈ (0, 1). Reject H0 in favor of H1 at significance level α if the

proportion of permutations σ ∈ Π that satisfy τ(DT
σ ) ≥ τ(DT ) is weakly smaller than α,

that is, if:

φα(DT ) = 1.
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The next theorem motivates the theoretical validity of Procedure 1, by showing that

the probability of making Type-1 errors is at most α.9 We note that this result holds

for a data set of any size T .

Theorem 1. Let α ∈ (0, 1) and suppose that the random data set DT = (rt,pt,mt)t≤T

is generated by a random consumer. Then Procedure 1 rejects H0 with probability less

than or equal to α. That is, P
(
φα(DT ) = 1

)
≤ α.

Approximate utility maximization. We next present the details of our alternative

hypothesis, which states that “the observed consumption is generated by an approximate

utility maximizer”. We will characterize an approximate utility maximizer by a pair

(U, e) where e ∈ (0, 1] is a measure of rationality and U is well-behaved in the following

sense.10

Assumption 1 (Well-Behaved). The utility function U : RL
+ → R is continuous, strictly

increasing, and quasi-concave.

Let B(p,m) = {q ∈ RL
+ : p · q = m} denote the budget hyperplane given a price

vector and expenditure pair (p,m) ∈ RL
++×R++. Then we use x(p,m) for the (optimal)

demand correspondence generated by a well-behaved utility function U , that is:

x(p,m) = arg max U(q) subject to q ∈ B(p,m). (4)

Given the one-to-one mapping between the bundle representation (q, p,m) and the ray

representation (r, p,m), we can also define the (optimal) ray correspondence µ(p,m),

which determines the ray(s) that are chosen by a utility maximizing consumer:

µ(p,m) =

{
r ∈ ∆L−1 : r =

q∑L
`=1 q`

, for q ∈ x(p,m)

}
. (5)

We assume two additional properties for an approximate utility maximizer characterized

by the pair (U, e). First, when faced with the budget (pt,mt), she always picks bundles

that give at least as much utility as what could be secured by a perfect utility maximizer

selecting from the budget set B(pt, emt).

Assumption 2. For all t ≤ T :

U(qt) ≥ max
q

U(q) subject to q ∈ B(pt, emt) with probability 1. (6)

9From the continuity of the CCEI function τ(DT ), it follows that φα is a measurable function.
10By strictly increasing we mean U(q) > U(q′) when q > q′ (i.e. q` ≥ q′` for all goods ` and q 6= q′). As

alluded to earlier, this rules out Leontief preferences, which are indistinguishable from random behavior
as defined in our null hypothesis.
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Figure 3: Illustration of Assumptions 2 and 3

Figure 3 provides intuition for this assumption.11 The figure shows the budget

hyperplanes B(pt,mt) and B(pt, emt) for some e < 1, and the two indifference curves

corresponding to maximum utility for these budgets. Assumption 2 imposes that the

random bundle qt, of which the distribution is restricted to the budget hyperplane

B(pt,mt), must provide at least as much utility as the optimal bundle at B(pt, emt). In

other words, the support of qt is restricted to the thick part of the budget hyperplane

B(pt,mt). An example of such a distribution is illustrated by the dashed curve. It is

easy to see that, for given U , the support region grows as e decreases. Conversely, if e

gets close to 1, the support of qt is increasingly restricted to a close neighborhood of

the optimal bundle q∗.

The second property that we impose is that a random data set for an approximate

utility maximizer must be U-possibly perfect. This means that, for any open neighbor-

hood R of the utility maximizing rays µ(pt,mt), the probability with which the consumer

selects a ray in R is strictly positive. Intuitively, a data set is U -possibly perfect if it is

possible that the consumer’s choices are arbitrarily close to perfect optimization.

Assumption 3 (U -possibly perfect). For all observations t ≤ T , all open sets B ⊆
RL

++×R++ and all (relative) open sets R ⊆ ∆L−1 satisfying µ(p,m) ⊆ R for all (p,m) ∈
B, if P ((pt,mt) ∈ B) > 0, then:

P
(
rt ∈ R

∣∣(pt,mt) ∈ B
)
> 0. (7)

11Let V (p,m) = U(x(p,m)) where x is the demand correspondence defined in (4). It is well-known
that V is continuous. Equation (6) is equivalent to U(qt) ≥ V (pt, emt), which clearly corresponds to
a measurable event.
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Going back to Figure 3, we know that Assumption 2 restricts the support of qt to

the thick part of the budget hyperplane B(pt,mt). Assumption 3 then requires that the

probability of having qt in any open neighborhood of the optimal bundle q∗ is strictly

positive. For example, this holds when the distribution of qt on the budget hyperplane

B(pt,mt) is continuous and has strictly positive density at q∗. This is the case for the

dashed curve in Figure 3.

Definition 2. A random data set DT = (rt,pt,mt)t≤T is generated by an approximate

utility maximizer if there exists a pair (U, e) with e ∈ (0, 1] such that Assumptions 1, 2

and 3 are satisfied.

The following theorem connects Assumption 2 to the notion of e-GARP and thus to

the CCEI function τ that we use as our test statistic.

Theorem 2. Suppose e ∈ (0, 1] and let DT = (qt, pt,mt)t≤T be a (deterministic) data

set. There exists a utility function U that satisfies Assumption 1 and:

U(qt) ≥ max
q

U(q) subject to q ∈ B(pt, emt), for all t ≤ T, (8)

if and only if DT satisfies e-GARP.

A straightforward corollary of Theorem 2 is the following. If DT is generated by

an approximate utility maximizer characterized by the pair (U, e), then DT satisfies

e-GARP with probability 1.

The next identification result shows that a data set cannot be generated by both a

random consumer and an approximate utility maximizer given a full support assump-

tion on the distribution of budgets.12 In other words, the two types of consumers are

empirically distinguishable.

Theorem 3. Let DT = (qt,pt,mt)t≤T be a random data set. Suppose that (pt,mt)

has support RL
++ × R++ for all t ≤ T . Then DT cannot be generated by both a random

consumer and an approximate utility maximizer.

Summarizing, Theorem 1 motivates our permutation test by characterizing its size,

and Theorem 3 gives conditions such that our null and alternative hypothesis are dis-

tinguishable. Our last result concerns the power of our procedure, i.e. the probability

12We say that a random vector X in RN has support A ⊆ RN if (i) P (X ∈ A) = 1 and (ii) for any
non-empty open set E ⊆ A we have P (X ∈ E) > 0. This definition of support is not standard but it
allows us to say that the support of a price vector p is RL++ whereas the support would usually be a
closed set. Of course we could talk about relative topologies (in which case RL++ could be a closed set)
or simply say that the support of a price vector is RL+, but we feel this may cause more confusion than
clarity.
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of rejecting the null hypothesis when the alternative is true. To address this issue, we

present conditions under which the asymptotic power of the test is 1.

Theorem 4. Suppose the random data set DT = (qt,pt,mt)t≤T is generated by an

approximate utility maximizer characterized by the pair (U, e) (with e ∈ (0, 1]). Suppose

that the individual observations are independent and identically distributed and that

(pt,mt) has support RL
++ × R++ for all t ≤ T . Then for any significance level α ∈

(0, 1), the probability with which Procedure 1 rejects H0 goes to 1 as T → ∞. That is,

limT→∞ P (φα(DT ) = 1) = 1.

Two final qualifications apply to our results. First, Theorem 4 assumes that obser-

vations are independent and identically distributed (IID), which may not always be a

sensible assumption. The IID assumption can be weakened at the cost of some addi-

tional complexity. This is addressed by Theorem 6 in the Appendix. Next, it is perhaps

not obvious how to interpret the full support assumption in Theorems 3 and 4. We view

the assumption as a requirement that there is sufficient price variation in the data. The

full support assumption is further relaxed by Theorem 5 in the Appendix, again at the

cost of introducing somewhat more elaborate notation. We also note that full support

conditions are not uncommon in the related literature (see, for example, Matzkin (1994)

and references therein).

5 Empirical exercises

Theorem 4 is a large sample result. In what follows, we first conduct a simulation

exercise that investigates the power of our permutation test in the finite sample case.

Subsequently, we demonstrate the empirical usefulness of our testing procedure by ap-

plying it to the experimental data set of Fisman, Kariv, and Markovits (2007) and

the real-life Stanford Basket data set that was also used by Echenique, Lee, and Shum

(2011). To illustrate the versatility of our approach, we end by exploring the added

value of considering the more restricted class of quasi-linear preferences.

The permutation test that we outlined in the previous section starts by calculating

the CCEI, τ(DT ), for a data set DT of observed prices and quantities associated with

a single consumer. Subsequently, it permutes the budget rays across observations, and

computes the CCEI, τ(DT
σ ), for each permuted data set DT

σ . This means that we must

compute τ(DT
σ ) for each of the (T !) possible permutations σ. However, for large enough

data sets, this quickly becomes computationally intractable. For example, for a data set

of T = 50 observations, this requires (50!) ≥ 3×1064 permutations. To ensure computa-

tional feasibility, it is standard practice in the literature on permutation tests to take a
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large enough sample of random permutations when the number of observations becomes

too large. In our following exercises, our test uses all possible permutations when the

number of observations equals at most T = 7. In the other cases, we randomly sample

10 000 permutations with replacement. In order to speed up our computations, we fur-

ther employ the following ‘heuristic’: if after running the test using 1 000 permutations

we find a p-value strictly greater than 0.2, we abort the test and report the results using

only these 1 000 permutations. This saves us the trouble of refining our p-value when

there is little chance of ever approaching the 10% significance level.

The CCEI-value of a data set is computed using a standard binary search algorithm.

We choose the number of iterations that guarantees that the CCEI is calculated to

within an error of 2−17 of the true value. We make sure to always test the data set for

GARP so that if the data set is perfectly rationalizable, we return a CCEI value of 1.

Simulated data. To compute the power of our test, we need to generate data that

are consistent with e-GARP for chosen values of e. To generate a budget set when there

are L goods we start by drawing L numbers uniformly from the interval [1, 10]. Denote

these numbers by α1, . . . , αL. Next, for each good ` we set the price equal to 10/α`,

and we fix the expenditure level at 10. This ensures that if the consumer allocates her

income exclusively to good `, she could purchase exactly α` units. Once the budgets

are selected, we generate 100 random data sets satisfying e-GARP by using the Markov

Chain Monte Carlo algorithm of Demuynck (2020).

Table 1 contains the simulation results for various numbers of goods (L = 2, 4, 8, 16)

and different number of observations (T = 6, 8, 10, 14, 20). The different cells reveal the

power of our statistical test for alternative combinations of L, T , e and α. For example,

the cell (T = 8, L = 2 with e = 0.99 and α = 0.10) has a value 0.55. This says that

for 55 percent of our simulations, we reject the null hypothesis of random behavior at

the 10% significance level. Generally, we find that the power of our permutation test

increases in the number of goods (L) and the number of observations (T ). It naturally

decreases when e decreases. The power is close to 1 as soon as we have 20 observations.

We conclude that our test has sufficient power whenever T is moderately large. This

especially holds true when the number of goods L is sufficiently large.

Experimental data. An advantage of experimental data is that they allow for gath-

ering a high number of consumption observations for one and the same individual at low

cost. In addition, the experimental designer has full control over the various budgets

faced by the experimental subjects. This type of data is exactly in line with the set-

ting in our simulation exercise above, which motivates that our procedure has sufficient

17



e = .99

α
T 0.10 0.05 0.01

L = 2 6 0.12 0.02 0.00
8 0.55 0.22 0.00

10 0.88 0.63 0.14
14 1.00 1.00 0.81
20 1.00 1.00 1.00

L = 4 6 0.25 0.06 0.00
8 0.93 0.61 0.06

10 1.00 0.96 0.43
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 8 6 0.58 0.25 0.01
8 0.99 0.87 0.18

10 1.00 1.00 0.88
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 16 6 0.79 0.53 0.08
8 1.00 0.98 0.50

10 1.00 1.00 0.97
14 1.00 1.00 1.00
20 1.00 1.00 1.00

e = .95

α
T 0.10 0.05 0.01

L = 2 6 0.07 0.02 0.00
8 0.34 0.08 0.00

10 0.77 0.44 0.03
14 0.98 0.90 0.53
20 1.00 1.00 0.96

L = 4 6 0.25 0.07 0.00
8 0.81 0.49 0.01

10 0.96 0.89 0.34
14 1.00 1.00 0.96
20 1.00 1.00 1.00

L = 8 6 0.53 0.22 0.01
8 0.97 0.82 0.18

10 0.99 0.99 0.76
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 16 6 0.82 0.45 0.12
8 1.00 0.95 0.45

10 1.00 1.00 0.95
14 1.00 1.00 1.00
20 1.00 1.00 1.00

e = .90

α
T 0.10 0.05 0.01

L = 2 6 0.03 0.00 0.00
8 0.25 0.07 0.00

10 0.63 0.39 0.03
14 0.92 0.75 0.24
20 1.00 0.99 0.80

L = 4 6 0.22 0.04 0.00
8 0.68 0.34 0.02

10 0.86 0.68 0.16
14 1.00 1.00 0.77
20 1.00 1.00 0.99

L = 8 6 0.40 0.15 0.01
8 0.89 0.75 0.09

10 0.98 0.90 0.60
14 1.00 1.00 0.95
20 1.00 1.00 1.00

L = 16 6 0.82 0.48 0.05
8 1.00 0.95 0.53

10 1.00 1.00 0.95
14 1.00 1.00 1.00
20 1.00 1.00 1.00

Table 1: Power results for simulated data

power.

We illustrate this for the data set on giving versus keeping of Fisman, Kariv, and

Markovits (2007). This experiment was designed to investigate individual preferences

for giving by exposing subjects to a series of dictator games under varying incomes and

conversion rates between giving and keeping.13 The data set has two components. The

first component contains information for 76 subjects (i.e. 76 consumers) on 50 choices

between keeping and giving to one other individual (i.e. 2 goods), and the second

component contains information for 65 subjects on choices between keeping and giving

to either individual A or individual B (i.e. 3 goods). We refer to Fisman, Kariv, and

Markovits (2007) for more details on the data.

Table 2 summarizes our results. Attractively, we find that the experimental data

allow us to statistically discriminate between utility maximizing and random behavior.

All rejection rates are well above the nominal significance levels, even without imposing

specific additional structure on the consumers’ utility functions (see also below). For

instance, we reject the null hypothesis of random choice behavior at the 1% significance

level for 72% of the subjects (for the choices with 2 goods) and 83% of the subjects

(for the choices with 3 goods). In our opinion, this convincingly demonstrates that our

permutation test can have substantial empirical bite in practice.

Real-life data. We next study the Stanford Basket data set that was also used by

Echenique, Lee, and Shum (2011). This data set captures consumer expenditures on 14

13In particular, subjects made several choices by filling in questions of the form: “Divide X tokens:
Hold at a points, and Pass at b points (the Hold and Pass amounts must sum to X)”.
The parameters X, a and b were varied across the decision problems.
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types of goods that fall in the “food” category, covering the period from June 1991 to

June 1993 (i.e. 104 weeks). There are 494 consumers and, after aggregating up to brand

level and dropping goods which have no price data for some weeks, we retain a total of

430 goods. We aggregate the data so that one period represents 4 weeks, resulting in

a maximum of 26 periods per participant. All our aggregation steps closely follow the

same procedures as in Echenique, Lee, and Shum (2011).

If we compute CCEI values for the 494 consumers in the Stanford Basket Data set,

we find that 416 (84.2%) have a CCEI value below unity, i.e. they violate the sharp

GARP condition. Still, we find that the CCEI values are generally high. The average

CCEI equals 0.9504, with a standard deviation of 0.0578. Although the minimum CCEI

value equals no more than 0.4278, we observe that the first quartile, median and third

quartile amount to 0.93, 0.97 and 0.99, respectively. This may suggest that the observed

behavior is generally close to approximate utility maximization.

Our test procedure allows us to investigate the statistical support for this claim. In

particular, we can use our procedure to assess for which subjects we reject the null of

random behavior. The results of this exercise are also given in Table 2. Generally, we

find that the statistical support for utility maximizing behavior is rather weak when

using a significance level of 1%, with the rejection rate of the null hypothesis amounting

to only 10%. The picture is somewhat more nuanced for the 10% significance level, with

a rejection rate of 40%.

Quasi-linear preferences. One possible conclusion from the results in Table 2 is that

the restrictions imposed by nearly utility maximizing behavior are often not sufficiently

restrictive to significantly distinguish such behavior from purely random behavior. So

many types of behavior can count as approximate utility maximization that it is often

hard to differentiate it from randomness. To explore this in more detail, we applied

our testing procedure when using the (stronger) alternative hypothesis of approximate

utility maximization with quasi-linear preferences. Particularly, we say that a utility

function U is quasi-linear if there exists an outside good y such that we can write:

U(q, y) = V (q) + y.

The model of quasi-linear utility maximization is substantially more restrictive than

the standard utility maximization model. As such, if people effectively behave like

approximate quasi-linear utility maximizers, we should more easily detect this when

using an appropriate statistical test. For this exercise, we make use of the revealed

preference characterization of quasi-linear utility maximization that was developed by
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Experimental data Real-life data

Rejection rates Rejection rates Rejection rates Rejection rates
Sign. level Gen. pref., 2 goods Gen. pref., 3 goods Gen. pref. Quasi-linear pref.

α = 0.10 0.88 0.94 0.40 0.49
α = 0.05 0.82 0.92 0.30 0.39
α = 0.01 0.72 0.83 0.10 0.24

Table 2: Rejection rates for experimental and real-life data

Brown and Calsimiglia (2007, Theorem 2.2), which we adapt to our particular setting.14

As expected, the goodness-of-fit of this more restricted model, measured once more

by the CCEI, is significantly lower. In this case, the first quartile, median and third

quartile amount to respectively 0.7875, 0.8390 and 0.8810. Next, the results of our

statistical test are again summarized in Table 2. It is interesting to note that there

are many people for which we reject the null in favor of the alternative hypothesis of

nearly quasi-linear utility maximization, but not in favor of the standard nearly utility

maximization model, particularly when using a significance level of 1%. This shows

that it might often be useful to focus on a more restricted class of utility functions to

verify the utility maximization hypothesis. If the observed behavior is consistent with

a more restrictive utility maximization model, it will generally be easier to distinguish

such optimizing behavior from purely random behavior.

6 Conclusion

We present a novel statistical testing procedure for the hypothesis of (approximate)

utility maximization on the basis of nonparametric revealed preference conditions. It

allows us to compute critical values for the CCEI in order to statistically distinguish

utility maximization from random behavior. A specific feature of our test procedure

is that it shifts the burden of proof: we only reject random consumption behavior if

there is substantially strong evidence favoring utility maximizing behavior. We take

as null hypothesis that consumers behave randomly, and as alternative hypothesis that

consumers are approximate utility maximizers. Our statistical test makes use of a

permutation method to operationalize the principle of randomization. This permutation

procedure is also valid for small samples and allows us to characterize the asymptotic

power of the test.

14Specifically, the CCEI for quasi-linear utility maximization can be calculated by testing the data
for cyclical monotonicity (as defined in Brown and Calsimiglia (2007)), which is the approach we take
here.
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We illustrate the practical usefulness of our test for both experimental and observa-

tional scanner data. Our application to experimental data shows the use of experiments

to statistically discriminate between utility maximizing and random behavior. A main

advantage of experimental data is that it allows for gathering a high number of con-

sumption observations for one and the same individual at low cost. This can yield a

strong statistical test even when focusing on the standard utility maximization model.

Finally, our application to real-life data illustrates the possibility of adding additional

structure on the preferences of the consumer (in our case, quasi-linearity) to strengthen

the test. If the observed behavior is (approximately) utility maximizing for such more

structured preferences, it will generally be easier to statistically distinguish optimizing

behavior from random behavior.
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A Proofs

A.1 Proof of Theorem 1

Fix α ∈ (0, 1) and suppose the data set DT = (rt,pt,mt)t≤T is generated by a random

consumer. Let Π contain all permutations σ : {1, . . . , T} → {1, . . . , T}. It is clear that

DT and DT
σ have the same distribution for all permutations σ ∈ Π. As such, we have

that, for all σ ∈ Π:

E[φα(DT )] = E[φα(DT
σ )].

Averaging the right hand side over all permutations gives:

E[φα(DT )] =
1

T !

∑
σ∈Π

E[φα(DT
σ )]

=
1

T !
E

[∑
σ∈Π

φα(DT
σ )

]
,
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where the last equality follows from exchanging integration and summation. For the

sum within the expectation sign, we have:

∑
σ∈Π

φα(DT
σ ) =

∑
σ∈Π

1


∣∣∣{ρ ∈ Π : τ(DT

ρ ) ≥ τ(DT
σ )
}∣∣∣

T !
≤ α

 . (9)

Consider a realization DT of DT and a ranking of all permuted data sets DT
σ (σ ∈

Π) according to their CCEI, τ(DT
σ ), from smallest to largest. Then the term in the

summation on the right hand side of (9) will be zero for the lowest values of the ranking

and will be equal to 1 from the (1− α)th quantile onward. As such, for all realizations

DT , we have: ∑
σ∈Π

φα(DT
σ ) ≤ α (T !).

From this, we obtain:

E(φα(DT )) ≤ 1

T !
E [(T !)α]

= α.

A.2 Proof of Theorem 2

Suppose that DT = (qt, pt,mt)t≤T satisfies (8) for some well-behaved utility function U

and e ∈ (0, 1]. Let qtReqv, i.e. emt ≥ pt · qv. Then U(qt) ≥ maxpt·q̃≤emt U(q̃) ≥ U(qv),

so U(qt) ≥ U(qv). Similarly, we can show that qtP eqv implies U(qt) > U(qv). Then if

e-GARP is violated, we have that there is a sequence t1, . . . , tM ≤ T such that:

qt1Re . . . ReqtM and qtMP eqt1 .

However, this implies:

U(qt1) ≥ . . . ≥ U(qtM ) and U(qtM ) > U(qt1),

a contradiction.

For the reverse, let DT = (qt, pt,mt)t≤T satisfy e-GARP. From Fostel, Scarf, and

Todd (2004), we know that there exist numbers U t and λt > 0 such that, for all obser-
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vations t, v ≤ T :

U t − U v ≤ λvpv · (qt − eqv). (10)

Consider the utility function:

V (q) = min
t≤T

{
U t + λtpt · (q − eqt)

}
.

The function V is increasing, continuous and concave. Let us first show that V (qt) ≥ U t.

If not, there must exist an observation v such that:

V (qt) = U v + λvpv · (qt − eqv) < U t.

This contradicts (10). Now, towards a contradiction, assume that for all U the data set

DT does not satisfy (8). Then there is an observation t such that:

V (qt) < max
q
V (q) s.t. pt · q ≤ emt.

Let q∗ solve the maximization problem on the right hand side. Then:

U t ≤ V (qt)

< V (q∗)

≤ U t + λtpt · (q∗ − eqt)

= U t + λt(pt · q∗ − e(pt · qt))

≤ U t,

where the last inequality comes from the fact that pt · q∗ ≤ emt = e pt · qt. This gives

the desired contradiction.

A.3 Proof of Theorem 4

We will prove Theorem 4 in 3 steps by first proving two stronger results (Theorems 5

and 6). Theorem 5 relaxes both the IID and full support assumption in terms of two

higher level conditions. Theorem 6 relaxes the IID condition.

Figure 4 gives the dependencies between the various Theorems and Lemmata leading

to Theorem 4. The Lemmata and their proofs can be found in Appendix A.5.

Theorem 6 and its proof use conditional probabilities, i.e. probabilities of events after

conditioning on some σ-algebra (or the σ-algebra generated by a random vector). As
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Figure 4: Structure for the proof of Theorem 4

the concept may not be familiar to many readers we feel a brief primer might be in

order.

A.3.1 Conditional Probabilities

Let (Ω,F , P ) be a probability space. For A,B ∈ F with P (B) > 0 let P (A|B) be

the familiar probability of A conditional on B. That is, P (A|B) = P (A ∩ B)/P (B).

Sometimes we would like to condition on probability 0 events (i.e. an event B ∈ F
satisfying P (B) = 0). Clearly the formula P (A|B) = P (A ∩ B)/P (B) can no longer

used in this case. The solution is to condition on an entire σ-algebra of interest instead

of one event.

Let G be a sub-σ-algebra of F and let RN denote the Borel σ-algebra on RN . A

random vector X : Ω → RN is said to be G-measurable if X−1(A) ∈ G for all A ∈ RN .

For A ∈ F let P (A|G) : Ω→ [0, 1] be a G-measurable random variable which satisfies:

P (A ∩G) =

∫
G

P (A|G)dP, for all G ∈ G. (11)

The random variable P (A|G) is called the probability of A conditional on G. Instead of

a σ-algebra we may condition on some random vector X : Ω → RN . Let σ(X) be the

smallest σ-algebra for which X is measurable. Define P (A|X) by P (A|X) ≡ P (A|σ(X)).

We call P (A|X) the probability of A conditional on X. See Billingsley (1986) for more
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on the intuition behind conditional probabilities as well as a proof that such a random

variable always exists. We can now proceed to our proof of Theorem 4.

A.3.2 Step 1

Let DT = (rt,pt,mt)t≤T be a random data set. For a set of observations t, v, . . . , s ≤ T ,

let DT
−t,−v,...,−s be the data set formed by removing observations t, v, . . . , s. That is,

DT
−t,−v,...,−s = (r`,p`,m`) `≤T

`/∈{t,v,...,s}
.

The following theorem provides a set of sufficient conditions such that the asymptotic

power result holds.

Theorem 5. Suppose the data set DT = (qt,pt,mt)t≤T is generated by an approximate

utility maximizer characterized by the pair (U, e) with e ∈ (0, 1] and suppose there is a

number 0 < π < 1 so that the following two conditions hold:

1. For any T ≥ 2 and any two distinct pairs of observations t, v ≤ T :

P
(
τ
(
(rv,pt,mt), (rt,pv,mv)

)
≥ e
∣∣DT
−t,−v

)
≤ π with probability 1.

2. For any T ≥ 3 and any distinct triples of observations t, v, s ≤ T :

P
(
τ
(
(rv,pt,mt), (rs,pv,mv)

)
≥ e
∣∣DT
−t,−v,−s

)
≤ π with probability 1.

Then for any significance level α ∈ (0, 1), the probability with which Procedure 1 rejects

H0 goes to 1 as T →∞. That is, limT→∞ P (φα(DT ) = 1) = 1.

Conditions 1 and 2 in Theorem 5 require that, with some positive probability, certain

permuted sub-data-sets violate e-GARP (regardless of the values taken by the remaining

observations). Provided this violation is possible (i.e. occurs with positive probability),

we can show that the asymptotic power result of the proposition holds.

Proof. Suppose, for all T , the data set DT is generated by an approximate utility maxi-

mizer characterized by the pair (U, e) with e ∈ (0, 1]. Let (Π, 2Π,Q) denote the uniform

probability space on Π, i.e. Q is the probability measure on (Π, 2Π) such that, for all

S ⊆ Π:15

Q(σ ∈ S) =
|S|
T !
.

15Here we use the bold notation σ to denote the random variable σ : Π→ Π where σ(σ) = σ for all
σ ∈ Π.
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Our aim is to construct an upper bound on P (φα(DT ) = 0) that converges to 0 as

T →∞. Notice that, by Theorem 2:

1 = P (DT satisfies e-GARP) = P (τ(DT ) ≥ e).

As such:

P (φα(DT ) = 0) = P
(
φα(DT ) = 0

∣∣τ(DT ) ≥ e
)

≤ P

(∣∣σ ∈ Π : τ(DT
σ ) ≥ τ(DT )

∣∣
|Π|

> α

∣∣∣∣∣τ(DT ) ≥ e

)

≤ P

(∣∣σ ∈ Π : τ(DT
σ ) ≥ e

∣∣
|Π|

> α

)
≤ EP

[
EQ
[
1
(
τ(DT

σ) ≥ e
)]
≥ α

]
,

where we use EP to denote the expectation with respect to P and EQ to denote the

expectation with respect to Q. Next, applying Markov’s inequality gives:

P (φα(DT ) = 0) ≤ 1

α
EP
[
EQ
[
1
(
τ(DT

σ) ≥ e
)] ]

=
1

α
EQ
[
EP
[
1
(
τ(DT

σ) ≥ e
)] ]

,

where the last equality follows from exchanging integration and summation (as Π is

finite).

We say that a permutation σ ∈ Π has n fixed points if there are exactly n observations

t ∈ {1, . . . , T} such that σ(t) = t. Let Πn be the set of permutations with n fixed points.
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Then:

P (φα(DT ) = 0) ≤ 1

α
EQ
[
EP
[
1
(
τ(DT

σ) ≥ e
)] ]

=
1

α

T∑
n=0

Q(Πn)
∑
σ∈Πn

1

|Πn|
EP
[
1
(
τ(DT

σ ) ≥ e
)]

≤ 1

α

T∑
n=0

Q(Πn)
∑
σ∈Πn

1

|Πn|
π
T−n

4 (by Lemma 2)

≤ 1

α

T∑
n=0

1

n!
π
T−n

4 (by Lemma 3)

≤ 1

α
π
T
4

∞∑
n=0

π−
n
4

n!

=
1

α
π
T
4 exp

(
π−

1
4

)
T→∞→ 0,

which completes the proof.

A.3.3 Step 2

In the second step, we demonstrate the following result:

Theorem 6. Assume that DT = (rt,pt,mt)t≤T is generated by an approximate utility

maximizer. Further assume that for all open sets B ⊆ RL
++ × R++ and all (relative)

open subsets R ⊆ ∆L−1 satisfying µ(p,m) ⊆ R for all (p,m) ∈ B there exists an a > 0

such that for all T ∈ N and all t ≤ T :

P
(
(rt,pt,mt) ∈ R×B|DT

−t
)
> a with probability 1.

Then for any significance level α ∈ (0, 1), the probability with which Procedure 1 rejects

H0 goes to 1 as T →∞. That is, limT→∞ P (φα(DT ) = 1) = 1.

Theorem 6 relaxes the IID assumption of Theorem 4 and instead only requires that

any triple (rt,pt,mt) can be observed with a positive probability provided that the

corresponding qt is arbitrarily close to maximizing utility. In contrast, the full support

assumption is maintained.

Proof. The proof proceeds by showing that the conditions of Theorem 6 imply that

conditions 1 and 2 of Theorem 5 hold.

For condition 1, consider the open sets B1, B2 ⊆ RL
++×R++ and the (relatively) open

sets R1, R2 ⊆ ∆L−1 for which the existence is guaranteed by Lemma 6 for the particular
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efficiency level e ∈ (0, 1]. As µ(p,m) ⊆ R1 for all (p,m) ∈ B1 and µ(p,m) ∈ R2 for all

(p,m) ∈ B2, we have from Lemma 8 that there is a b > 0 such that for all T ≥ 2 and

all t, v ≤ T :

P

(
(rt,pt,mt) ∈ R1 ×B1 and

(rv,pv,mv) ∈ R2 ×B2

∣∣∣∣∣DT
−t,−v

)
> b with probability 1.

If we choose π such that:

0 < 1− π < b,

we have that condition 1 of Theorem 5 holds if we can show that:

τ
(
(rt, pv,mv), (rv, pt,mt)

)
< e, for all

(rt, pt,mt) ∈ R1 ×B1, (rv, pv,mv) ∈ R2 ×B2. (12)

Using (17) in Lemma 6 we can show that (rt, pv,mv) is “e-revealed preferred” to (rv, pt,mt)

in the sense that:

e >
mt

mv

pv · rv

pt · rv
,

⇐⇒ e >
pv · γ(rv, pt,mt)

mv
,

⇐⇒ emv > pv · γ(rv, pt,mt),

where

γ(r, p,m) = m
r

p · r
gives the demanded quantities given the ray r, price vector p and income level m. A

similar argument shows that (rv, pt,mt) is e-revealed preferred to (rt, pv,mv) and thus

condition (12) holds.

To show condition 2 of Theorem 5, as before let R1, R2 and B1, B2 be the sets of

which existence is guaranteed by Lemma 6 for the particular efficiency level e ∈ (0, 1].

From part 2 of Lemma 8, we have that there is a b > 0 such that, for all T ≥ 3 and
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t, v, s ≤ T :

P
(
(pt,mt) ∈ B1 and (rv,pv,mv) ∈ R2 ×B2 and rs ∈ R1

∣∣DT
−t,−v,−s

)
≥ P

 (rt,pt,mt) ∈ R1 ×B1 and

(rv,pv,mv) ∈ R2 ×B2 and

(rs,ps,ms) ∈ R1 ×B1

∣∣∣∣∣∣∣DT
−t,−v,−s

 > b with probability 1.

Given 0 < 1− π < b, condition 2 of Theorem 5 holds if we can show that:

τ
(
(rv, pt,mt), (rs, pv,mv)

)
< e, for all,

(pt,mt) ∈ B1, (rv, pv,mv) ∈ R2 ×B2, rs ∈ R1. (13)

Using (17) in Lemma 6 we can show that (rv, pt,mt) is e-revealed preferred to (rs, pv,mv).

Indeed:

e >
mv

mt

pt · rs

pv · rs
,

⇐⇒ e >
pt · γ(rs, pv,mv)

mv
,

⇐⇒ emt > pt · γ(rs, pv,mv).

A similar argument can be used to show that (rs, pv,mv) is e-revealed preferred to

(rv, pt,mt), which shows (13).

A.3.4 Step 3

We finalize the proof of Theorem 4 by showing that the conditions of Theorem 6 hold.

Let B be an open subset of RL
++×R++ and let R be a (relatively) open subsets of ∆L−1

such that:

∀(p,m) ∈ B : µ(p,m) ⊆ R.

Then for T ∈ N, t ≤ T , with probability 1:

P
(
(rt,pt,mt) ∈ R×B

∣∣DT−t) = P
(
(rt,pt,mt) ∈ R×B

)
,

= P
(
rt ∈ R|(pt,mt) ∈ B

)
P
(
(pt,mt) ∈ B

)
≡ γ > 0

The equivalences follow from the IID assumption and the definition of conditional proba-

bilities. The last inequality follows from Assumption 3 and the full support assumption.

From the IID assumption, we notice that γ only depends on R and B, but not on the

particular values of T or t.
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A.4 Proof of Theorem 3

Let DT = (rt,pt,mt)t≤T be a random data set. Let F be the distribution of the first

observation (r1,p1,m1). Let D̃T̃ = (q̃t, p̃t, m̃t)t≤T̃ be the random data set composed of

T̃ IID draws from F . Clearly, if DT is generated by a random consumer then so is D̃T̃ ,

and if DT is generated by an approximate utility maximizer characterized by the pair

(U, e) then so is D̃T̃ .

From Theorem 1 it follows that if the random data set DT is generated by a random

consumer, then:

P (φα(D̃T̃ ) = 1) ≤ α,

for all T̃ ∈ N and α ∈ (0, 1).

On the other hand, from Theorem 4 it follows that if DT is generated by an approx-

imate utility maximizer, then:

lim
T̃→∞

P (φα(D̃T̃ ) = 1) = 1,

for all α ∈ (0, 1). As these two conditions are mutually exclusive we see that DT cannot

be generated by both a random consumer and an approximate utility maximizer.

A.5 Lemmata

In what follows (Ω,F , P ) denotes the underlying probability space.

Lemma 1. Let G be a sub σ-algebra of F let A ∈ G B ∈ F , P (A) > 0 and P (B|G) ≤ π

with probability 1. Then:

P (B|A) ≤ π.

Proof. From the definition of a conditional probability (equation (11)) we have:

P (B ∩ A) =

∫
A

P (B|G) dP ≤ πP (A).

On the other hand, as P (A) > 0:

P (B|A) =
P (B ∩ A)

P (A)
≤ π

P (A)

P (A)
= π.

Lemma 2. Suppose DT is satisfies the conditions of Theorem 5. Then there exists a
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number π ∈ (0, 1) so that for any σ ∈ Π:

P (τ(DT
σ ) ≥ e) ≤ π

T−n
4

,

where n = |{i ≤ T : σ(i) = i}| is the number of fixed points of σ.

Proof. Any permutation can be decomposed into an exhaustive set of disjoint cycles.

As there are T elements in total in the set {1, . . . , T}, the maximum length of a cycle

in σ is T . Also, the statement of the lemma assumes that there are n cycles of length

1. Let us denote by Cm the number of cycles in the permutation σ of length m. Then

calculating the elements by cycle gives:

T =
T∑
k=1

kCk = n+
T∑
k=2

kCk. (14)

Consider a cycle of length 2. As this cycle has no fixed points, it must take the form:

D̃ =
(

(rσ(i),pi,mi), (ri,pσ(i),mσ(i))
)
,

for some i ≤ T .

Next, any cycle of length k ≥ 3 allows for constructing
⌊
k
3

⌋
non-overlapping data

sets of size 3 that take the form:((
rσ(i),pi,mi

)
,
(
rσ(σ(i)),pσ(i),mσ(i)

)
,
(
rσ(σ(σ(i))),pσ(σ(i)),mσ(σ(i))

))
,

for some i ≤ T and bac denoting the greatest integer below a. Consider the data subsets

generated from these three element data sets by dropping the last observation:

D =

((
rσ(i),pi,mi

)
,
(
rσ(σ(i)),pσ(i),mσ(i)

))
.

Clearly, all these data sets D have no indices in common with the other data sets

constructed from the same cycle. Let us enumerate the constructed sub data sets D̃

and D of size 2 by D1,D2, . . . ,DK . For each k ≤ K let Ek be the event that τ(Dk) ≥ e.

Then:

P (τ(Dσ) ≥ e) ≤ P
(
E1 ∩ . . . ∩ EK

)
.

Let us show that the right hand side is less than or equal to πK . First, if P (E1 ∩ E2 ∩
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. . . ∩ Ek) = 0 then immediately:

P (τ(Dσ) ≥ e) ≤ πK .

On the other hand, if P (E1 ∩ E2 ∩ . . . ∩ Ek) > 0 then we have:

P (τ(Dσ) ≥ e) ≤ P
(
E1 ∩ . . . ∩ EK

)
=

K∏
k=1

P
(
Ek|Ek−1 ∩ . . . ∩ E1

)
≤ πK ,

where the last line follows from Lemma 1 and conditions 1 and 2 in Theorem 5.

Next, the total number of both types of data subsets of size 2 is bounded from below

as follows:

K = C2 +
T∑
k=3

Ck

⌊k
3

⌋
≥ C2 +

T∑
k=3

Ck
k

4

≥ 1

4

T∑
k=2

k Ck

=
1

4
(T − n). (by equation (14))

The first inequality follows from the fact that, for k ≥ 3, bk/3c ≥ k/4. The result

follows.

Lemma 3. We have

Q(Πn) ≤ 1

n!
. (15)

Proof. A derangement is defined as a permutation with no fixed points. Let !m be the

number of derangements of {1, . . . ,m}. It directly follows that !m/m! ≤ 1 for all m ∈ N
and, thus:

Q(Πn) =

(
N
n

)(
!(N − n)

)
N !

=
!(N − n)

n!((N − n)!)
≤ 1

n!
.

Here, we counted the number of elements in Πn by first counting the possible ways to

pick n fixed points and then, for each set of fixed points, counting the possible ways in

which the remaining elements can be deranged.

Lemma 4. Let U : RL
+ → R be a well-behaved utility function and m > 0 an income

level. For all δ > 0 and j ∈ {1, 2}, there exists a price vector p ∈ RL
++ with pj < δ and
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for all ` 6= j: p` = Lm, such that that for all optimal demands q ∈ x(p,m) we have

qj >
1

δ
.

Proof. Fix an income level m > 0. Towards a contradiction, assume that there exists a

δ > 0 and a j ∈ {1, 2} such that for all p ∈ Rn
++ with pj < δ and p` = Lm (for ` 6= j)

there is an optimal demand q ∈ x(p,m) such that qj ≤
1

δ
.

Let (pn)n∈N be the sequence of prices in RL
++ with:

pn` =

{
1/n if ` = j,

Lm if ` 6= j.

Then by assumption, for all n ≥ 1/δ, we can find an optimal bundle qn ∈ x(pn,m), such

that qnj ≤
1

δ
. Given that for all ` 6= j, qn` ≤ 1

L
, we have that the sequence of bundles

(qn)n∈N is bounded. By proceeding along a sub-sequences, if necessary, we may therefore

assume that limn→∞ q
n = q̃ ∈ RL

+. In particular, q̃j ≤ 1/δ.

Next, note that for all n ∈ N:

{q ∈ RL
+ : pn · q ≤ m} ⊆ {q ∈ RL

+ : pn+1 · q ≤ m},

and so, by optimality of the bundles qn, we must also have that:

U(qn) ≤ U(qn+1) ≤ . . . ≤ U(q̃), (16)

where the last inequality uses continuity of the utility function U . Then from the

continuity and strict increasing property of U there must be a ε > 0 and a k 6= j, such

that the bundle q̃′ where:

q̃′` =


q̃j + 1 if ` = j,

q̃k − ε if ` = k,

q̃` else,

satisfies U(q̃′) > U(q̃).

From the definition of pn, we can find a number D such that supn ‖pn‖ < D. Take

N ∈ N large enough such that for all n ≥ N (such an N exists as qN → q̃):

1

n
+D‖q̃ − qn‖ < εLm.
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Then for all n ≥ N , we have that:

pn · q̃′ =
L∑
`=1

pn` q̃
′
`,

= −εpnk + pnj +
L∑
`=1

pn` q̃`,

= −εLm+ 1/n+ pn · qn + pn · (q̃ − qn),

≤ −εLm+ 1/n+m+ ‖pn‖‖q̃ − qn‖,

≤ −εLm+ 1/n+D‖q̃ − qn‖+m < m.

Here the first inequality uses the Cauchy-Schwartz inequality together with the fact that

pn · qn = m. The final line shows that pn · q̃′ < m, which contradicts the fact that qn

is optimal for (pn,m) (i.e. qn ∈ x(pn,m)) and U(qn) ≤ U(q̃) < U(q̃′). This gives the

desired contradiction.

Lemma 5. Let U : RL
+ → R be well-behaved utility function and let e > 0. There exists

(p1,m1), (p2,m2) ∈ RL
++ × R++ which satisfy:

m2

m1

p1 · r1

p2 · r1
< e, for all r1 ∈ µ(p1,m1) and ,

m1

m2

p2 · r2

p1 · r2
< e, for all r2 ∈ µ(p2,m2)

Proof. Fix m1,m2 > 0. From Lemma 4, we know that for all δ > 0 there exists prices

p1, p2 with for j, k ∈ {1, 2}: pjk = Lmj if j 6= k and such that for all qj ∈ x(pj,mj):

qjj >
1
δ
,

Then for j, k ∈ {1, 2} with j 6= k:

pj · qk =
L∑
`=1

pj`q
k
` ,

= pjkq
k
k +

∑
`6=k

pj`q
k
` ,

≥ pjkq
k
k >

Lmj

δ
.
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As such:

mj

pj · qk
<
mjδ

Lmj
=
δ

L
= e,

where we have chosen the value δ = Le. Using the transformation from bundles to rays:

qk = mk rk

pk · rk
,

we obtain that for j, k ∈ {1, 2} with j 6= k:

mj

mk

pk · rk

pj · rk
< e,

as we wanted to show.

Lemma 6. Let U : RL
+ → R be a well-behaved utility function. For all e > 0, there exists

non-empty open sets of price income combinations B1, B2 ⊆ RL
++×R++ and (relatively)

open sets of rays R1, R2 ⊆ ∆L−1 such that:

1. For all k = 1, 2 and (pk,mk) ∈ Bk:

µ(pk,mk) ⊆ Rk.

2. For k, j ∈ {1, 2} with k 6= j:

mj

mk

pk · rk

pj · rk
< e for all (pk,mk) ∈ Bk, (pj,mj) ∈ Bj, rk ∈ Rk. (17)

Proof. Given e > 0, we can find, by Lemma 5, budgets (p1,m1), (p2,m2) which satisfy

for j, k ∈ {1, 2} and j 6= k:

mj

mk

pk · rk

pj · rk
<
e

2
, for all rk ∈ µ(pk,mk). (18)

Let Bk
δ be the open ball of radius δ > 0 around (pk,mk) and let:16

Rk
δ =

⋃
(p̃k,m̃k)∈Bkδ

µ(p̃k, m̃k)

be the union of all optimal rays over the budgets in Bk
δ .

16We choose δ small enough such that Bkδ ⊆ RL++ × R++.
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Let us first show that there exists such number δ > 0 such that for j, k ∈ {1, 2} and

j 6= k:

m̃j

m̃k

p̃k · r̃k

p̃j · r̃k
<
e

2
, for all (p̃j, m̃j) ∈ Bj

δ , (p̃
k, m̃k) ∈ Bk

δ , r̃
k ∈ Rk

δ .

Towards a contradiction, if the above is not true, we can find a sequence of budgets

(p̃jn, m̃
j
n) ∈ Bj

1/n, (p̃kn,m
k
n) ∈ Bk

1/n and a sequence of rays r̃kn ∈ Rk
1/n such that for all n

large enough:
m̃j
n

m̃k
n

p̃kn · r̃kn
p̃jn · r̃kn

≥ e

2
.

As for all n large enough, r̃kn ∈ Rk
1/n we can find (using the definition of Rk

δ ) a sequence of

budgets (pkn,m
k
n) ∈ Bk

1/n such that r̃kn ∈ µ(pkn,m
k
n). As (pkn,m

k
n)

n→ (pk,mk), we have, by

the upper hemi-continuity of the optimal ray correspondence (which follows from Berge’s

maximization theorem), that, possibly along a subsequence, r̃kn
n→ rk ∈ µ(pk,mk). As

also (p̃jn, m̃
j
n)

n→ (pj,mj) and (p̃kn, m̃
k
n)

n→ (pk,mk), we obtain:

m̃j
n

m̃k
n

p̃kn · r̃kn
p̃jn · r̃kn

n→ mj

mk

pk · rk

pj · rk
≥ e

2
,

which contradicts (18).

Given this δ > 0, we set B1 = B1
δ and B2 = B2

δ which are both open sets. Although

R1
δ and R2

δ satisfy both conditions of the lemma, the sets might not be open. However

as for all j, k ∈ {1, 2} with j 6= k:

sup
(pj ,mj)∈Bj ,(pk,mk)∈Bk,rk∈Rkδ

mj

mk

pk · rk

pj · rk
≤ e

2
,

we can expand the sets Rk
δ slightly to obtain open sets Rk ⊇ Rk

δ such that the conditions

of the lemma still hold.

Lemma 7. Let G1,G2,H be sub σ-algebra’s of F such that H ⊆ G1 and H ⊆ G2. Let

a, b > 0, B ∈ F and A ∈ G2 be such that:

P (A|G1) ≥ a with probability 1,

P (B|G2) ≥ b with probability 1.

Then:

P (A ∩B|H) ≥ ab

2
with probability 1.

Proof. Towards a contradiction, assume that there is a C ∈ H with P (C) > 0 such that
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P (A ∩B|H) < ab
2

on C. Using (11):

P (A ∩B ∩ C) =

∫
C

P (A ∩B|H) dP ≤ ab

2
P (C).

From H ⊆ G1, we have that C ∈ G1. As such:

P (A ∩ C) =

∫
C

P (A|G1) dP ≥ aP (C).

Next, notice that A,C ∈ G2 gives A ∩ C ∈ G2. Then:

P (A ∩B ∩ C) =

∫
A∩C

P (B|G2) dP ≥ bP (A ∩ C) ≥ abP (C),

This gives abP (C) ≤ ab
2
P (C) which can only hold if P (C) = 0, a contradiction.

Lemma 8. Assume that the conditions of Theorem 6 hold. Then for all open sets of

budgets B1, B2 ⊆ RL
++×R++ and (relatively) open sets of rays R1, R2 ⊆ ∆L−1, with for

k ∈ {1, 2}:
µ(p,m) ⊆ Rk for all (p,m) ∈ Bk :

there exists a number b > 0 such that for all T ∈ N:

1. If T ≥ 2, then for all t, v ≤ T and for all j, k ∈ {1, 2}:

P

(
(rt,pt,mt) ∈ Rj ×Bj and

(rv,pv,mv) ∈ Rk ×Bk

∣∣∣∣∣DT
−t,−v

)
> b with probability 1.

2. If T ≥ 3, then for all t, v, s ≤ T and for all j, k, ` ∈ {1, 2}:

P

 (rt,pt,mt) ∈ Rj ×Bj and

(rv,pv,mv) ∈ Rk ×Bk and

(rs,ps,ms) ∈ R` ×B`

∣∣∣∣∣∣∣DT
−t,−v,−s

 > b with probability 1.

Proof. For an observation rt,pt,qt and an element of the sample space ω ∈ Ω let

(rt,pt,qt)(ω) be defined as (rt(ω),pt(ω),qt(ω)). The proof of the present lemma is

a consequence of Lemma 7. For condition 1, for j, k ∈ {1, 2} and t, v ≤ T set:

G1 = DT
−v, G2 = DT

−t, H = DT
−t,−v,

A = {ω ∈ Ω : (rv,pv,mv)(ω) ∈ Rk ×Bk},

B = {ω ∈ Ω : (rt,pt,mt)(ω) ∈ Rj ×Bj}.
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Then by assumption:

P (A|G1) > a, with probability 1,

P (B|G2) > a, with probability 1 and

A ∈ G2,H ⊆ G1,H ⊆ G2.

Lemma 7 then gives:

P (A ∩B|H) >
a2

2
with probability 1.

For condition 2, for j, k, ` ∈ {1, 2} and t, v, s ≤ T set:

G̃1 = DT
−s, G̃2 = DT

−t,−v, H̃ = DT
−t,−v,−s,

Ã = {ω ∈ Ω : (rs,ps,ms)(ω) ∈ R` ×B`},

B̃ =

{
ω ∈ Ω :

(rt,pt,mt)(ω) ∈ Rj ×Bj and

(rv,pv,mv)(ω) ∈ Rk ×Bk

}
.

Notice that B̃ = A ∩B. Then:

P (Ã|G̃1) > a with probability 1,

P (B̃|G̃2) = P (A ∩B|H) ≥ a2

2
with probability 1, and

Ã ∈ G̃2, H̃ ⊆ G̃1, H̃ ⊆ G̃2,

we can again apply Lemma 7 to obtain:

P (Ã ∩ B̃|H̃) ≥ a3

4
> 0 with probability 1.

Setting b = a3

4
completes the proof.
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