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Abstract—Collision detection (CD) is a key capability of
carrier sense multiple access (CSMA) based medium access
control (MAC) protocol. Applying CD, the transmitter can abort
transmission immediately so that the power can be saved. This
technique does not need the peer receiver to give feedback on
whether there is a packet collision, and hence, the overall over-
head is significantly low. The challenge, however, is to operate in
transmit time and instantly detect the week colliding signal in the
presence of strong self-interference (SI). This paper investigates
two CD methods. The first technique trains a convolutional neural
network (CNN) model which operates on raw baseband samples,
without the need for pre-decoding. The second method treats
the SI as a normal signal and estimates the signal to noise ratio
(SNR): low SNR implies there is a collision because the pure SI is
expected to have high SNR. Both models are evaluated by IEEE
802.15.4-like measured and simulated signals. The results show
that collisions up to 30 dB below the SI signal can be detected
precisely within 20 µs, while the proposed models can deliver
acceptably low false alarm rate < 1.5 %.

Index Terms—In-band full-duplex, self-interference cancel-
lation, collision detection, convolutional neural network, SNR
estimation.

I. INTRODUCTION

Thanks to the recent advances in wireless technology, we
have witnessed remarkable improvement in wireless network-
ing in such a way that today, a broad diversity of applications
with particular requirements can be developed. Due to this
successful performance, it is anticipated to end up with billions
of networked devices which compete to access the commu-
nication medium [1]. Beside the fast-growing densification
of wireless networks, the scarcity of spectrum highlights the
necessity of efficient medium access control (MAC) protocols
that can minimize the cost of packet collision and interference.
It occurs in contention-based networks when two or more
wireless nodes start transmission with overlap in time. In such
a condition, the receiving node fails to decode the packet,
leading retransmission and extra energy consumption [2].

In addition, a probable packet collision also can severely
impact the latency performance and consequently degrades the
reliability. It is, therefore, more crucial in applications such
as vehicular networks, self-driving cars and tactile internet
[3], where the network has to fulfill low-latency (1m) and
ultra-reliability (99.99%) requirements. As a primary solution,
carrier sense multiple access (CSMA) with collision avoidance

The first two authors contributed equally to this paper.

(CA) is introduced [4], [5]. This MAC scheme applies a
random back-off mechanism to achieve distributed medium
access. The performance of this mechanism, however, can
be significantly reduced by growing the number of nodes
[2]. Although prolonging the back-off delay may resolve
the contention problem, yet it negatively affects the latency,
reliability, and throughput. To avoid the long back-off delay
in dense networks, the CSMA MAC protocol with collision
detection (CD) is developed. Via an instantaneous collision
detection, the node can take an appropriate reaction to lessens
the collision’s impact. For instance, the transmitter can abort
the ongoing transmission to prevent the waste of power or
vacate the channel for a high-priority message. Intensive
research has been done to perform CD at the receiver side,
mostly relying on a feedback signal to notify the transmitter.
This approach either requires a high transmission power or
demands a dedicated out-of-band control channel [6].

Instant CD can be achieved at the transmitter side more
efficiently. This approach resolves the need for a feedback
signal and does not require any contribution from the receiver
node. To detect the collision, though, the device has to
overcome the strong self-interference (SI) in such a way that
it can listen to the channel in transmit time. This capability
is feasible by in-band full-duplex (IBFD) technology [7], [8],
which allows two nodes to communicate concurrently over
the same frequency channel. Recent works have shown the
network-level benefits of using IBFD for collision detection
[9]–[11], in the sense of power efficiency, throughput, and
delay performance.

By any means, the performance of these MAC protocols
highly depends on the rapidity and precision of the CD
method, although the collision detection in this context has
still not been investigated thoroughly. In [12], the authors study
two different IBFD CD techniques: the energy detector, and
the goodness-of-fit (GoF) test. The GoF test compares two
empirical cumulative distribution functions (CDFs), belonging
to the interfered and the pure SI signal, to judge whether
they are in agreement. The measured results reveal that the
Kuiper (KP) criteria [13] for the GoF test outperforms the
energy detector, allowing nearly 100% accurate detection
within 250 µs. Apart from its computational overhead, this
statistical technique is not still fast enough to satisfy the
mentioned applications.
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Fig. 1. (Left): System model overview. (Right): Analog self-interference
cancellation using electrical balance duplexing.

By leveraging multiple hidden convolutional layers, modern
machine learning techniques have confirmed their effective-
ness in a wide range of applications, such as automatic
image recognition, and network optimization. Motivated by
its remarkable success in various fields as well as its real-
time functionality, in this paper we investigate whether a
convolutional neural network (CNN) can be exploited to
accelerate CD without sacrificing the detection accuracy.

Meanwhile, we realize that the CD problem can be mapped
to traditional SNR estimation problem. When there is a colli-
sion, the signal SNR will drop. Lots of domain knowledge are
there with regard to signal demodulation and SNR estimation.
On the contrary, CNN could be regarded as a kind of domain-
specific knowledge less method. It will be interesting to see
the performance comparison between the two methodologies.
This kind of comparison will inspire the research community
to study further about how should we combine the domain-
specific knowledge (DSK) with CNN. Besides, to encourage
future studies, we offer free access to the data and programs
in [14] and [15], which allows researchers to reproduce our
results out of the box or investigate different approaches.

The rest of this paper is constructed as follows. Section
II briefly introduces the concept of IBFD transmitter-based
collision detection, including a brief overview of in-band self-
interference cancellation. The proposed CD approaches are
described in Section III and Section IV. Section V represents
the measurement setup and discusses the performance metrics.
The results are then presented in Section VI and finally,
conclusion is drawn in Section VII.

II. IBFD TRANSMITTER-BASED COLLISION DETECTION

A. System Model

Fig. 1 (Left) illustrates the system model of the IBFD
transmitter-based CD system. The model consists of an IBFD
transceiver which is equipped with an analog self-interference
cancellation (SIC) module, a receiver, and the interferer. While
the transceiver sends a signal to the receiver, the interferer
may cause packet collision as a result of missynchronization
or contention. To detect an occurring packet collision, the
transceiver has to solve a binary hypothesis test [12] based
on the received signal at the transceiver node Y (t) and decide
on the correct hypothesis:

Y (t) =

{
hxx(t) ∗X(t) +W (t) if Hx

hxx(t) ∗X(t) +W (t) + hxi(t) ∗ I(t) if Hi

(1)
where X(t) is the transmit signal by the transceiver, hxx(t)
characterizes the SI channel, hxi(t) specifies the channel
between the interferer and the IBFD transceiver, I(t) denotes
the signal transmitted by the interferer, W (t) stands for the
additive noise, and (∗) presents the time-domain convolution
operator. The hypothesis Hx means that the received signal
is merely the residual SI after analog SI rejection. Detection
of the hypothesis Hi also implies that the IBFD transceiver
is exposed to signal interference, and hence, it has to take an
appropriate reaction to deal with it.

B. Analog Self-interference Cancellation by Electrical Bal-
ance Duplexing

Channel-awareness in transmit time is not possible unless
the undesired strong SI signal is suppressed sufficiently. Typi-
cally, an IBFD device comprises two stages of SI cancellation.
The first provides the essential Tx-Rx isolation at the analog
domain to enable further SI rejection at the digital sampled
baseband. Fig. 1 (Right) depicts the structure of the electrical
balance duplexer (EBD), which is an attractive analog SIC
solution. As shown, the EBD consists of a hybrid transformer
coupled with an impedance network Zbal. As long as the
impedance network imitates the impedance of the antenna
Zant, the two copies of the transmit signal (shown by dashed
arrows in Fig. 1 (Right)) interfere destructively at the EBD’s
receiver port [16]. This can be done by a tuning algorithm
which manipulates Zbal, aiming maximum Tx-Rx isolation.
Due to the high level of Tx-Rx isolation that the EBD can
provide, we employed it in this work.

III. COLLISION DETECTION BY A MULTILAYER
CONVOLUTIONAL NEURAL NETWORK

Fundamentally, a CNN platform operates over the time-
domain data stream, without the need for higher-level decoding
or prerequisite advanced feature extraction. The model can
learn multiple matched filters, so-called kernels, which enable
extracting invisible patterns hidden in the data [17]. Depending
on the size of the data-set and the classification complexity, the
model requires relatively long learning time. However, once
the model is trained, it can render instant identification which
makes it suitable for the CD problem. This section represents
the proposed CNN-based collision detector followed by the
training details.

A. Proposed CNN Architecture

Aiming minimal network size, the designed CNN model
comprises two successive convolutional layers, a single dense
layer of 16 cells and the output layer, as shown in Fig. 2.
The input to the network is a windowed sequence of N
amplitude/phase samples of the baseband received signal.
The amplitude vector is l2 normalized and the phase is also
normalized between -1 and 1.
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Fig. 2. Proposed CNN architecture used for signal collision detection.

The input vector is fed to the first convolution layer (CL),
including 16 kernels, each comprises 16 taps. The resultant
feature map is then passed through a rectified linear unit
(ReLU) activation function [18] to introduce the non-linearity
that is needed for learning the CD problem. The choice of
this activation function was motivated by its optimum compu-
tational overhead. The ReLU operation can be mathematically
described as

ReLU(x) = max(0, x). (2)

Typically, a max-pooling operator follows each of the
convolutional layers. This block summarizes the outputs of
neighboring groups of neurons in the same layer and reduces
the dimensionality of the feature map to the most influential
ones. The employed max-pool block in the first CL includes
a sliding window of length 16, which moves with a stride of
8 to prevent over-fitting during the training stage [19].

The second CL benefits from a similar structure, including
12 kernels of 8 taps and the ReLU operator, followed by a
max-pool window of length 4. The resultant output feeds the
dense layer of the model, which contains 16 neurons with the
ReLU activation function.

The output layer consists of two neurons that map the last
feature map to one of the two ultimate classes, representing
the hypothesis Hx and Hi, introduced earlier in Sections II. In
order to transform the non-normalized output of the network
to a probability distribution over the predicted hypothesis,
the softmax activation function is applied in this layer. The
softmax operator can be presented as

p(xi) =
exi∑1
j=0 e

xj

, (3)

where xi denotes the output of the neurons in the last layer
whose softmax value is indicated by p(xi). Note that while
the softmax operator aids the convergence of the model in the
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Fig. 3. SNR estimation based collision detection model overview.

training phase, it can be substituted with a ReLU activation
function in the identification stage to reduce the computational
overhead.

To train the model, the Adam algorithm [20], a first-order
gradient-based optimizer with a learning rate of 0.0001 is
employed. The aim is to minimize the softmax cross-entropy
loss of L defined as follows.

L = −
1∑

i=0

yilog(p(xi)), (4)

where yi ∈ {y0, y1} stands for the ground-truth collision
detection probability, defined as follows.

y =

{
{0, 1} if Hx

{1, 0} if Hi
(5)

IV. COLLISION DETECTION BASED ON DOMAIN-SPECIFIC
KNOWLEDGE

According to the signal model in (1), the main component
hxx(t) ∗ X(t) in the received signal Y (t) is from the self-
transmitted signal X(t). In the setup of this paper, we know
that X(t) uses QPSK modulation, and hxx(t) ∗X(t) is much
stronger than both noise W (t) and interference hxi(t) ∗ I(t).
So we can use traditional communication signal processing
algorithm to recover constellation of X(t) and estimate SNR.
When interference is not presented, SNR will be decided by
both noise W (t) and distortion function hxx(t), that reflect the
hardware quality. When there is an interference, SNR will drop
because the term hxi(t)∗I(t) increases the noise floor. Here we
assume hxx(t) is a scalar. Only timing and frequency error are
considered, while other non-linear and frequency selectivity
effects are ignored. In the topic of this paper, the collision
causing SNR drop is our domain-specific knowledge.

The principle of SNR based collision detection is shown
in Fig. 3. The appropriate algorithm is chosen according
to the waveform characteristics and the hardware capability,
such as clock accuracy ε(ppm). The accumulated normalized
sampling phase variation ∆ϕs during N successive samples
is

∆ϕs = Nε. (6)



Similarly, the carrier phase changes ∆ϕc can be written in
the form

∆ϕc =
2πNfcε

fs
, (7)

where fs denotes the baseband sampling rate and fc is the
carrier frequency.

Given the hardware features and the model parameters, in
Section V we show that ∆ϕs is relatively small and can be
neglected regarding the SNR of QPSK signal. The carrier
phase changing ∆ϕc during the input period is, however, more
significant. Therefore, both carrier frequency and phase will
be estimated and corrected.

A. Algorithm Description
Eq. (8) shows how the optimal sampling phase p is decided.

arg max
p∈[−1,1)

ˆSNR(SY Nf (fint(Y (t), p))), (8)

where fint(Y (t), p) means re-sampling the input signal Y (t)
with normalized relative sampling offset p by specific interpo-
lation method, such as linear or Makima [21]. SY Nf (Z(t))
performs carrier synchronization on previously re-sampled
signal Z(t) = fint(Y (t), p). To estimate frequency and phase
of Z(t), the 1st step is QPSK modulation removal by 4 times
multiplication [22]: Q(t) = Z(t)4.

Then Q(t) only contains the phase rotation caused by fre-
quency offset. The normalized phase and frequency estimation
can be done based on (9) and (10), where 4 comes from four
times multiplication, N is the number of samples in Q(t),
arg() calculates the phase of a complex sample.

ϕerr = [arg

N−1∑
i=0

Q(ti)]/4 (9)

ferr =
arg

∑N/2−1
i=0 Q(ti)− arg

∑N−1
i=N/2Q(ti)

4N/2
(10)

Frequency and phase correction to Z(t) can be done by
applying those estimations. The correction finally generates
the estimation of X(t), noted as X̂(t), for SNR estimation.
For QPSK modulation, SNR can be estimated per quadrant by
(11) and (12) as in [23]:

SNRq =
‖Aq‖2∑

i∈quadrant q

∥∥∥(X̂(ti)−Aq)
∥∥∥2 /Nq

, (11)

Aq =
∑

i∈quadrant q

X̂(ti)/Nq, q ∈ {0, 1, 2, 3}, (12)

where q is the quadrant index, i ∈ quadrant q means the
sample index of all X̂(ti) falling into quadrant q, and Nq is
the number of samples in quadrant q. The overall SNR is given
by the weighted SNR of each quadrant as follows.

SNR =

3∑
q=0

SNRqNq

N
(13)
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Fig. 4. Measurement setup used for generating the training and test databases.

B. Optimum SNR threshold

To decide the optimal SNR threshold for CD, multiple
random tests are performed based on I/Q samples with and
without collision. Then we can have two approximate prob-
ability density functions (PDF) of SNR with and without
collision PHi(SNR), PHx(SNR). Based on the two PDFs,
the optimal SNR threshold can be decided as

arg min
th

[P(SNR > th|Hi) + P(SNR < th|Hx)]. (14)

Since we do not have analytic form PDF of SNR, above
threshold can be calculated by numerical method. Because the
interference is much weaker than self-interference, in practice
SI level can be estimated easily from the amplitude of I/Q
sample, but it is challenging to estimate interference level.
So, different SI level may have various thresholds, but for a
single SI level, all interference levels should share the same
threshold.

V. MEASUREMENT SETUP AND PERFORMANCE METRICS

We study the performance of the proposed CD techniques,
using the baseband samples collected from an experimental
setup, shown in Fig. 4. Similar to the used measurement
setup in [12], the hardware installation combines two National
Instruments USRPs, one of which is equipped with an EBD
[16] to render the essential SI rejection at the analog domain.
The other USRP plays the role of the interferer, by connecting
its RF front-end to the EBD’s antenna port via a variable
attenuator. This arrangement allows for various path loss
emulation. Both USRPs transmit the same IEEE 802.15.4-like
signals at 0 dBm, and the measured noise power is −90 dBm.
The communication signal is four times oversampled both at
the transmitter and at the receiver. The baseband sampled
signal is recorded at 8 MHz by the receiver of the EBD-
equipped USRP to be exploited for training and assessment
of the proposed collision detectors. In order to tune the EBD,
the particle swarm optimizer described in [24] is implemented
on a MicroBlaze, which itself is deployed on the FPGA of the
USRP. With this hardware configuration, one can achieve up
to 60 dB SI rejection at the analog domain.

Given the carrier frequency at fc = 2.4GHz, worst case
USRP’s clock accuracy ε = 5 ppm (official accuracy is
2.5 ppm in data sheet of [25]), baseband sampling rate at
fs = 8 MSPS, and employing N = 160 samples for CD, one
can estimate the accumulated carrier phase changes ∆ϕs and
normalized sampling phase variation ∆ϕs, 1.5 rad and 0.0008



respectively. This validates the assumption in Section IV that
the sampling phase variation has an insignificant impact on
the CD problem.

To assess the proposed detector, we adopt the probability of
correct collision/interference detection PD as a performance
metric. Basically, PD is desired to be 100%, which implies
that the CD algorithm detects all occurring packet collisions.
Although this metric can reflect the success rate of the correct
detection, it does not entirely reveal the merit of the method.

Practically, the rate of incorrect detection is also equally
important as it can severely affect the latency performance. For
instance, the congestion window parameter should be double
as determined by the binary-exponential back-off algorithm
used in IEEE 802.11 [26]. Hence, we also acknowledge the
probability of false alarm PF (incorrect collision detection)
as the second intended performance metric which has to be
minimized by the CD algorithm.

VI. RESULTS

In addition to the measured database, which is detailed in
Section V, the ideal IEEE 802.15.4 waveform is also simulated
by MATLAB. This allows unbiased assessment, avoiding the
impact of practical hardware imperfections, such as noise un-
certainty, transmitter nonlinearity, etc. The databases comprise
pure SI and interfered SI signals, assuming 40 dB and 60 dB
analog SI rejection. We implemented the CNN platform using
TensorFlow [27], which is a data flow graph based numerical
computation library from Google. The model is then trained
by a Nvidia GeForce GTX 1080 graphics card. For DSK-based
CD, the optimal SNR threshold is 34 dB, that is optimized
under −70 dBm interference, when SI cancellation is 40 dB.
Accordingly, the optimal threshold is 20 dB under the case of
SI 60 dB Tx-Rx isolation and interference level at −80 dBm.
The CD performance is evaluated for 10240 instances of
N = 160 I/Q samples (20 µs).

Fig. 5 show the detection performance when the analog SIC
provides 40 dB SI rejection. As shown in Fig. 5 (Up), both
CD models can deliver nearly 100% correct detection even
for the case the colliding signal is 30 dB below the residual
SI signal. This graph also shows that different detection rates
are achieved when the collision is more than 30 dB weaker
than the residual SI. The reason lies in the fact that not all
the hardware characteristics are contributed to generate the
simulated database. Nevertheless, the CNN model produces
more accurate detection in such a condition. Fig. 5 (Down)
depicts the CD false alarm rate PF. As shown, PF better than
1% is obtained in all cases.

To study the impact of the Tx-Rx isolation, the test is also
repeated for 60 dB analog SI cancellation. As depicted in
Fig. 6 (Up), in this case, the DSK model archives a better
detection performance for the collisions 15 dB under the
remaining SI. However, the false alarm rate PF is slightly better
for the CNN modle, as shown in Fig. 6 (Down).

The reason behind the above results needs to be researched
in the future work. A possible explanation is that the stronger
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SI involves more non-ideal RF characteristics, such as non-
linear channel response, higher noise floor or phase noise.
CNN somehow learns these characteristics and its performance
is slightly higher in this case. The SNR based method always
assumes the ideal linear signal model, so it performs slightly
better in the weak SI case. The trade-off between performance
on specific model and generality needs to be considered in
the future, no matter machine learning or domain-specific
knowledge is used.

VII. CONCLUSION

This paper proposed machine learning and domain knowl-
edge as two potential solutions to enhance signal collision
detection (CD) in wireless IBFD CSMA/CD MAC protocol.
Particularly, we developed a convolutional neural network
(CNN) platform and a model based on domain-specific knowl-
edge (DSK) to perform instantaneous CD. Both models are
evaluated by measured and simulated datasets, considering
40 dB and 60 dB Tx-Rx isolation. The results show that the
detection success depends on the extent of Tx-Rx isolation as
well as the strength of the interfering signal.

Both CNN and DSK-based CD models could recognize
nearly 100% of the collisions that are up to 30 dB below
the remaining self-interference (SI) signal, with considerably
low false alarm rate (1%). The detection time is 20 µs, which
is twelve-fold faster than the goodness-of-fit test proposed in
[12]. We also conclude that the CNN model achieves a better
detection sensitivity, if the remaining SI signal is not fully
attenuated by the analog SI canceler. Otherwise, the DSK-
based CD algorithm gives better detection sensitivity while
increases the false alarm rate slightly.
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