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ABSTRACT 13 

To preserve the quality of fresh pear fruit after harvest and deliver quality fruit year-round a controlled 14 

supply chain and long-term storage are applied. During storage, however, internal disorders can 15 

develop due to suboptimal storage conditions that may not cause externally visible symptoms. This 16 

makes them impossible to be detected by current commercial quality grading systems in a reliable and 17 

non-destructive way. A combination of a Support Vector Machine coupled with a feature extraction 18 

algorithm and X-ray Computed Tomography is proposed to successfully detect internal disorders in 19 

‘Conference’ and ‘Cepuna’ pear fruit nondestructively. Classifiers were able to distinguish defective 20 

from sound fruit with classification accuracies ranging between 90.2 and 95.1 % depending on the 21 

cultivar and number of used features. Moreover, low false positive and negative rates were obtained, 22 

respectively ranging between 0.0 and 6.7 %, and 5.7 and 13.3 %. Classifiers trained on ‘Conference’ 23 

data were transferred effectively to the ‘Cepuna’ cultivar, suggesting generalizability to other cultivars 24 

as well. With continuing developments in both hardware and software to increase inspection speed 25 

and reduce equipment costs, the method can be implemented in industrial applications,  e.g., inline 26 

translational X-ray CT. 27 
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1 INTRODUCTION 31 

A controlled supply chain and long-term storage is necessary to deliver quality fruit year-round. 32 

However, suboptimal storage conditions can cause severe quality loss by chilling injury, accelerated 33 

ripening and senescence, fermentation, stimulated pathogen growth or other physiological decay. The 34 

disorders that develop during growth or storage may not cause externally visible symptoms. Examples 35 
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are internal browning, watercore, bitter pit or cavities in the fruit tissue (Lu and Lu, 2017; Mercier et 36 

al., 2017).  37 

Most commercial quality grading systems are based on external quality attributes only. Sensors for 38 

inline inspection of these attributes, most often based on visible and near-infrared (Vis-NIR) 39 

spectroscopy, are commercially available, but they do not allow to inspect internal quality attributes, 40 

such as absence of internal disorders, in a reliable way (Huang et al., 2020; Nicolaï et al., 2014). In 41 

research, however, Vis-NIR has been used successfully to detect internal disorders. Han et al. (2006) 42 

reported  false positive and negative rates of respectively 4.3 and 5.3 % for brown core detection in 43 

‘Yali’ pears using transmission vis-NIR spectroscopy at three different locations per sample with 44 

precisely aligned pears. Khatiwada et al. (2016) used transmission Vis-NIR spectroscopy to detect 45 

internal browning in ‘Pink LadyTM’ apples with four spectra acquired of each fruit and reported a 46 

classification accuracy of more than 95 %. Huang et al. (2020) investigated transmission Vis-NIR 47 

spectroscopy to detect internal defects in ‘Honeycrisp’ apples by acquiring spectra from six different 48 

locations per fruit. Using the mean spectrum of the six measurements, a classification accuracy of up 49 

to 93.1 % was reported. For fruit with a defective tissue area less than 40 % of the total fruit tissue 50 

area being rated, the accuracy dropped to 77.3 %. The main challenges for using Vis-NIR for the 51 

inspection of the internal quality is that internal defects are mostly not uniformly distributed in the 52 

fruit. This causes the need for long exposure times, the requirement for a fixed orientation, or the need 53 

for multiple measurements from different positions (Lu and Lu, 2017). Additionally, the measured 54 

spectrum is hard to interpret and, moreover, depends on the fruit size, cultivar and season. Therefore, 55 

large amounts of data are required to perform calibration (Bobelyn et al., 2010; Nicolaï et al., 2007).  56 

Several visualization techniques have been proposed as an alternative to assess internal quality and 57 

disorders non-destructively. These include magnetic resonance imaging (MRI), X-ray radiography and 58 

X-ray computed tomography (CT) (Arendse et al., 2018; Kotwaliwale et al., 2014; Nicolaï et al., 2014; 59 

Srivastava et al., 2018; Wang et al., 2018). For MRI, the remaining concerns are low image acquisition 60 

speed due to physical constraints, the need for a sufficiently powerful and homogenous magnetic field, 61 

high equipment costs, electromagnetic inference and motion artefacts (Colnago et al., 2014; Srivastava 62 

et al., 2018). X-ray radiography provides 2D transmission images of the scanned fruit with a contrast 63 

that scales with the accumulated amount of absorbed X-rays by the product. It can be easily 64 

implemented inline in the form of an X-ray line-scanner (Casasent et al., 1998; Jiang et al., 2008; 65 

Karunakaran et al., 2004; Kim and Schatzki, 2001, 2000; Kotwaliwale et al., 2007; Shahin et al., 2001; 66 

van Dael et al., 2016). X-ray radiography image contrast may, however, suffer from effects of fruit 67 

shape, volume and internal structure such that internal defects can be less prominent in the image 68 
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when they are, e.g., shadowed by the core of the fruit. Good detection and classification are then 69 

jeopardized unless advanced approaches are pursued (van Dael et al., 2018, 2017, 2015).  70 

X-ray CT delivers 3D images of the X-ray absorption contrast, thereby resolving shape and volume of 71 

the fruit while providing better spatial information on the internal fruit structure and disorders than in 72 

radiographies. CT has been successfully used in research to analyze the internal quality of fruit and 73 

vegetables (Donis-González et al., 2016a, 2016b, 2014; Herremans et al., 2014, 2013; Jarolmasjed et 74 

al., 2016; Lammertyn et al., 2003a, 2003b; Muziri et al., 2016; Si and Sankaran, 2016). Yet, it is still 75 

challenging to use CT efficiently for high-throughput quality inspection, which limits its usage in 76 

industrial applications to the inspection of high value products at a relatively slow rate, or to its usage 77 

in research and development stages (Buratti et al., 2018; Wevers et al., 2018). However, recent 78 

developments in both reconstruction algorithms and hardware have made it possible to perform X-ray 79 

CT measurements inline by translating and rotating the sample at the same time, i.e., translational X-80 

ray CT. To facilitate fast inline CT scanning new hardware equipment must be developed. However, 81 

these are technical challenges that, with enough resources available, can already be overcome. 82 

Moreover, by using prior knowledge about the products to train dedicated reconstruction algorithms, 83 

reconstructions can be made with far less projections than normally required (Alves Pereira et al., 84 

2017; De Schryver et al., 2016; Janssens et al., 2018, 2016). The concerns that CT shares with MRI 85 

relating inspection speed and inline application might therefore be partially resolved.   86 

To respond to these promising advancements, a nondestructive method for automated internal quality 87 

grading of pear fruit using machine learning is proposed, aimed to be implemented in inline 88 

translational X-ray CT. Hereto, a binary linear Support Vector Machine (SVM) is trained and tested on 89 

labeled X-ray CT reconstructions of control and defective pear fruit of the cultivars Pyrus communis L. 90 

cv. ‘Conference’ and Pyrus communis L. cv. ‘Cepuna’. ‘Conference’ is one of the most important 91 

commercial cultivars in Europe, represents almost 90 % of the acreage of Belgian pears (Statbel, 2018), 92 

and is known to be susceptible to internal browning (Franck et al., 2007). ‘Cepuna’ is a cross between 93 

‘Conference’ and ‘Doyenné d’Hiver’ and used for testing the transferability of the method to other 94 

cultivars. 95 

2 MATERIALS AND METHODS 96 

2.1 Pear fruit and long-term storage 97 

‘Conference’ and ‘Cepuna’ pears were respectively harvested on 14 and 25 September 2017 and 98 

delivered by a growers member of the Flemish fruit cooperatives BFV and Belorta (Belgium), 99 

respectively. Starting from the harvest date, the fruit was stored for six months following two 100 

treatments, with approximately 50 kg fruit per treatment. In the first treatment, the storage conditions 101 
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were set according to the recommendations of the Flanders Centre of Postharvest Technology (VCBT, 102 

Leuven, Belgium) for commercial sale (Ultra Low Oxygen treatment, ULO) to deliver control fruit 103 

without internal disorders (VCBT, 2017). Herein, the temperature, O2 and CO2 partial pressures were 104 

set to -1.0 °C, 3.0 kPa and 0.7 kPa, respectively. Prior to the ULO storage, fruit following this treatment 105 

underwent an acclimatization period of 21 d at -1.0 °C. In the second treatment suboptimal storage 106 

conditions, based on the findings of (Lammertyn et al., 2000), were applied to deliver fruit with internal 107 

disorders. Herein, the temperature, O2 and CO2 partial pressures  were respectively -1.0 °C, 1.0 kPa 108 

and 5.0 kPa.  A low O2 partial pressure causes hypoxia in the fruit. In combination with increased CO2 109 

partial pressure, this promotes the shift from respiration to fermentation, resulting in a limited 110 

availability in energy and an imbalance between oxidative and reductive processes. As such, cell 111 

membranes are degraded by reactive oxygen species, leading to cell leakage and cell death, which 112 

manifest as internal browning and cavity formation (Franck et al., 2007; Pedreschi et al., 2009; Veltman 113 

et al., 2003).  114 

2.2 X-ray CT scans and data labeling 115 

After approximately 6 months, the fruit was removed from storage on 2018-02-27 at the end of the 116 

day. Fruit were acclimatized to room conditions before X-ray CT scanning the next day. Minimally 50 117 

fruit per treatment were randomly selected and scanned individually. The fruit was scanned with their 118 

stalk-calyx axis approximately aligned with the rotation axis of the scanner. To stabilize the samples 119 

during scanning, the fruit was placed on a sample holder consisting of three styrofoam cones glued on 120 

a stainless-steel plate which was mounted on top of the rotation table. The system comprised a 121 

micro-focus L9181 X-ray source (Hamamatsu Photonics, Hamamatsu, Japan) and a 1512 Dexela CMOS 122 

Flat Panel X-ray Detector (PerkinElmer, Waltham, Massachusetts, USA). The rotation table and 123 

detector were placed at respectively 674.8 mm and 784.2 mm from the source. The X-ray projections 124 

did not fit entirely in the X-ray detector frame. Therefore, two scans per fruit were performed at 125 

different heights and stacked together to reconstruct the whole fruit in the CT volume. The scans were 126 

performed with a source voltage of 130 kV at 300 mA and pixel size of 598.4 µm. The exposure time 127 

was 80 ms. An aluminum filter of 1 mm thickness was used to improve the contrast in the radiographic 128 

projections that were obtained with an angular step of 0.9° and were 242 × 192 pixels in size. The 129 

samples were rotated over 360° around the central rotation axis of the scanner, resulting in 400 130 

projections. For the acquisition, ACQUILA software was used (Tescan XRE nv, Ghent, Belgium).  A 3D 131 

image was reconstructed of each fruit with the filtered back-projection algorithm using the ACQUILA-132 

RECON reconstruction software (Tescan XRE nv, Ghent, Belgium). The resulting tomographs had a size 133 

of 241 × 241 × 309 voxels, with each isotropic voxel measuring 514.9 × 514.9 × 514.9 µm3. In total, 134 

scanning (32 s/scan), moving the sample stage down and starting the second scan (2 s), stacking and 135 
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reconstruction (23 s) amounted on average to 1 min and 30 s per sample. The samples were assigned 136 

a ground truth label (‘healthy’ or ‘defective’) by visual inspection of the CT reconstruction of each fruit.  137 

Figure 1 shows the experimental X-ray CT setup and a cut-open image and orthogonal slices through 138 

the CT volume of a ‘Cepuna’ pear severely affected by internal browning. Internal browning can be 139 

observed in the lower intensity regions on the CT slices. 140 

 141 

Figure 1: Experimental setup and a ‘Cepuna’ pear’s cut-open image and CT scan. (a) Experimental setup with X-ray source 142 
(left), and mobile X-ray detector (right) and rotation stage (middle); (b) image of a cut-open ‘Cepuna’ pear affected by 143 

internal browning; (c) orthogonal slices through the CT volume of the same fruit. The XZ and YZ slices are zoomed in on the 144 
region affected by internal browning. 145 

2.3 Internal disorder detection method on CT images 146 

An algorithm was developed to perform internal disorder detection for pear fruit using the CT images. 147 

Recent developments in the medical imaging field reported interesting results for disease detection in 148 

CT and MRI data using deep learning based segmentation methods (Lee et al., 2017; Shen et al., 2017). 149 

However, these approaches typically require many manually labelled samples for training. Due to 150 

limited  number of samples and the high cost of manually labelling them, a more classical machine 151 

learning approach was chosen. First, a feature extraction algorithm was developed to get valuable 152 

quantities, or features, from the 3D image datasets (see section 2.3.1). Subsequently, the features 153 

were statistically compared between the cultivars and classes (see section 2.3.2). Thereafter, support 154 
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vector machines (SVM) were trained separately on the ‘Conference’ feature dataset to classify the 155 

fruit. Then, it was investigated whether features could be eliminated while minimizing the reduction 156 

in the classification performance. Finally, to test the generalizability of the method, the classifier 157 

trained on the ‘Conference’ data was validated on fruit of the ‘Cepuna’ cultivar and compared with 158 

classifiers trained on the combined dataset (see section 2.3.3). All code was written with MATLAB using 159 

the Image Processing and Statistics and Machine Learning Toolboxes (MATLAB, 2019a). 160 

2.3.1 Feature extraction algorithm 161 

A feature extraction algorithm was developed to extract 10 features from the CT volume of pear fruit 162 

and produced 2 feature datasets, one for each cultivar.  To extract the features, five 3D binary masks 163 

were generated indicating different regions of the fruit (see Figure 2). Each 3D binary mask specified 164 

whether a certain voxel belonged to a certain segment of the volume (value = 1) or not (value = 0). 165 

First, a binary mask that indicated which voxels were part of the fruit tissue (tissue mask) was 166 

generated using a 3D global Otsu-threshold (Otsu, 1979). Second, a fruit mask was generated by filling 167 

up all internal holes of the tissue mask so that voxels outside and inside the fruit had the values 0 and 168 

1, respectively. Third, an internal air mask, only including voxels part of holes, was obtained by 169 

subtracting the tissue mask from the fruit mask. Finally, a low-density and a high-density tissue mask 170 

were generated by applying a 3D adaptive threshold on all tissue voxels based on the local mean 171 

intensity in a 31 x 31 x 31 voxel neighborhood. In pome fruit, tissue of higher density can typically be 172 

observed around the core and in the surface region. In between those regions, typically a higher 173 

porosity can be found (Nugraha et al., 2019). Low-density and high-density tissue regions are thus 174 

generally always present, however, a large difference between those regions can indicate the 175 

occurrence of water loss due to internal tissue breakdown. In the reconstructed CT volume, voxels 176 

with a relative low intensity value had a lower X-ray attenuation, and thus lower density (higher 177 

porosity), than voxels with a higher intensity value. 178 
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 179 

Figure 2: Orthogonal slices through the original grayscale CT reconstruction and generated 3D binary masks of a 180 
‘Conference’ sample with disorders. (a) Orthogonal slices through the original grayscale CT reconstruction of the sample; 181 

cavities can be observed around the core (core indicated by red arrow); (b) orthogonal slices through the fruit mask (white); 182 
(c) orthogonal slices through the tissue (cyan) and internal air masks (dark blue); (d) orthogonal slices through the internal 183 
air (dark blue), low-density tissue (green) and high-density tissue (yellow) masks. Each 3D binary mask indicates whether a 184 

certain voxel belongs to a certain segment of the volume (value = 1) or not (value = 0). 185 

Features were extracted using the generated masks. By subtracting the tissue mask from the fruit mask 186 

and counting the number of remaining voxels, the internal air volume could be calculated. As a first 187 

feature, the internal air volume normalized for the total fruit volume was used. For the second to ninth 188 

feature, the mean and standard deviation of the intensities of fruit voxels, tissue voxels, low density 189 

tissue voxels and high-density tissue voxels were calculated by using the fruit, tissue, low density tissue 190 

and high-density tissue mask, respectively. As a final feature, the Kolmogorov-Smirnov test statistic 191 

(KS-value) of the Two-Sample Kolmogorov-Smirnov Test between the cumulative intensity 192 

distributions of the low- and high-density tissue voxels was used (Massey, 1951; MATLAB, 2019b). 193 

Here, the KS-value was interpreted as a measure of homogeneity of the fruit tissue by comparing the 194 
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intensity distributions of both regions. A lower KS-value indicates that the low-density and high-density 195 

tissue regions are of similar density, suggesting that internal tissue breakdown such as browning is less 196 

probable (Franck et al., 2007). This is illustrated for a ‘defective’ and ‘healthy’ ‘Conference’ fruit in 197 

Figure 3.  The feature datasets were centered and scaled using the corresponding column mean and 198 

standard deviation. 199 

 200 

Figure 3: Orthogonal slices through CT volume, cumulative intensity distributions and KS-value of the  low- (green) and high-201 
density tissue (yellow) in a ‘defective’ (left) and ‘healthy’ (right) ‘Conference’ pear. The ‘healthy’ sample has more similar 202 

intensity distributions and lower KS-value compared to the ‘defective’ sample 203 

2.3.2 Statistical feature comparison 204 

A quantitative feature comparison was performed to explore the data, investigate differences between 205 

the cultivars or classes and infer relevant features for classification. Hereto, it was tested if the normal 206 

distributions of the features were significantly different between the ‘Conference’ and ‘Cepuna’ 207 

cultivars on the one hand and the ‘defective’ and ‘healthy’ classes on the other hand using a Two-208 

Sample t-test at the 5% significance level. Moreover, the linear correlation coefficients between all 209 

features of the ‘Conference’ feature dataset were calculated. 210 
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2.3.3 Binary linear Support Vector Machine classifiers 211 

Using the ‘Conference’ feature dataset, a binary linear support vector machine (SVM) was trained and 212 

evaluated to classify the fruit. A linear classifier was chosen over non-linear approaches because of its 213 

simplicity in terms of the number of parameters, because it allows to interpret the importance of each 214 

feature for classification and because it is less prone to overfitting compared to non-linear methods. 215 

In contrast to other classifiers, e.g., k-nearest neighbors, the training data is afterwards no longer 216 

needed for making predictions. 217 

Confusion matrices were used to present the classification results with true positives (the correctly 218 

classified fruit with internal disorders) and true negatives (the correctly classified fruit without internal 219 

disorders) shown as a percentage on the matrix diagonal. The false positives and false negatives are 220 

shown as a percentage on the bottom left and the top right, respectively. 221 

Thereafter it was investigated whether the number of features used by the classifier could be reduced 222 

without losing classification performance. Hereto the SVM recursive feature elimination method (SVM 223 

RFE) as described by Guyon et al. (2002) was used in which the importance of each feature relative to 224 

the other features was evaluated based on the weights that define the decision boundary of the SVM 225 

in feature space. The higher the squared weight value, the more important the corresponding features 226 

is for classification. Note that this is only possible when using a linear kernel in the SVM, as for other 227 

kernels the data is transformed to another space not related to the original input space. In practice, a 228 

series of classifiers was trained and evaluated on the ‘Conference’ dataset using 5-fold cross-validation 229 

(further referred to as the ‘Conference’ based SVMs). In each iteration, the feature with the lowest 230 

squared weight value was eliminated. By tracking the classification accuracy and false positive and 231 

negative rates, a decision was made on which features were the most critical and which classifier 232 

should be used. 233 

Next, the generalizability of the trained classifier to other cultivars was evaluated and it was 234 

investigated whether the generalizability would increase with a reduction in the number of features. 235 

Hereto, the series of trained classifiers was validated on the feature dataset of the ‘Cepuna’ cultivar. 236 

Finally, the ‘Conference’ and ‘Cepuna’ datasets were combined and the performance of the series of 237 

‘Conference’ based SVMs’ was compared with two series of SVMs retrained on this combined dataset. 238 

The first series was forced to use the same features as the ‘Conference’ based SVMs’ in each iteration, 239 

while in the second series the feature elimination algorithm decided which features were used. 240 

The runtime for feature extraction and classification was on average 2.3 s per sample on a quad-core 241 

3.8 GHz processor with 32 GB of RAM memory. 242 
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3 RESULTS 243 

3.1 X-ray micro CT reconstructions and labeled datasets 244 

For ‘Conference’, 102 samples were scanned of which 42 and 60 fruit were assigned a ‘healthy’ and 245 

‘defective’ label, respectively, from expert inspection of the CT images. For ‘Cepuna’, 15 ‘healthy’ and 246 

87 ‘defective’ fruit were observed in the 102 scanned samples.  247 

Examples of orthogonal slices and grayscale intensity profiles through CT reconstructed volumes of 248 

‘healthy’ and ‘defective’ ‘Conference’ and ‘Cepuna’ fruit are shown in Figure 4. In the ‘healthy’ fruit 249 

(Figure 4, rows b and d) a gradient in voxel intensity can be observed from the center to the fruit 250 

surface. Higher intensities due to higher tissue density were observed around the core. When moving 251 

from the core towards the fruit surface, the intensities first decreased and thereafter increased again 252 

closer to the surface, confirming the observed density distributions from other research (Nugraha et 253 

al., 2019). The ‘defective’ ‘Conference’ fruit (Figure 4, row a) showed regions of lower voxel intensities 254 

that were affected by internal browning (Franck et al., 2007; Lammertyn et al., 2003a; van Dael et al., 255 

2017). Severe internal browning resulted in cavity formation, which was observed around the core and 256 

stalk-calyx axis. The ‘defective’ ‘Cepuna’ fruit (Figure 4, row c) were also affected by internal browning, 257 

but cavity formation was far less severe. In the grayscale intensity profiles of the ‘defective’ fruit, the 258 

regions affected by internal browning caused a stronger slope compared to those of the ‘healthy’ fruit. 259 
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 260 

Figure 4: Column 1-3: Orthogonal slices through the CT reconstructions of ‘defective’ and ‘healthy’ ‘Conference’ and 261 
‘Cepuna’ fruit. Column 4: Grayscale intensity profile through the widest position of the fruit in the XZ slices. (a) ‘defective’ 262 

‘Conference’ pear; (b) ‘healthy’ ‘Conference’ pear; (c) ‘defective’ ‘Cepuna’ pear; (d) ‘healthy’ ‘Cepuna’ pear. 263 

3.2 Quantitative feature comparison 264 

The average of the extracted features and their corresponding standard deviations for ‘Conference’ 265 

and ‘Cepuna’ ‘defective’ and ‘healthy’ fruit are shown in Table 1. Using a Two-Sample t-test at the 5 % 266 

significance level, it was tested if the distributions of feature values were significantly different 267 

between the ‘Conference’ and ‘Cepuna’ cultivars on one hand and the ‘defective’ and ‘healthy’ classes 268 

on the other hand. Figure 5 presents the linear correlation coefficients (R) between all features of the 269 

‘Conference’ feature dataset.  270 
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Table 1: The average of feature values and their corresponding standard deviations for ‘Conference’ and ‘Cepuna’ ‘defective’ 271 
and ‘healthy’ fruit. Different letters in superscript indicate significantly different normal distributions at the 5% significance 272 
level using the Two-Sample t-test. 273 

Feature Label ‘Conference’ ‘Cepuna’ 

Normalized cavity volume [%] Defective 0.752 ± 0.745c 1.205 ± 1.297d 

Healthy 0.195 ± 0.156b 0.002 ± 0.002a 

Mean fruit intensity Defective 0.829 ± 0.015c 0.802 ± 0.017a 

Healthy 0.835 ± 0.012d 0.824 ± 0.008b 

Std fruit intensity Defective 0.091 ± 0.025c 0.102 ± 0.038c 

Healthy 0.066 ± 0.008b 0.053 ± 0.001a 

Mean tissue intensity Defective 0.835 ± 0.013c 0.812 ± 0.013a 

Healthy 0.836 ± 0.012c 0.824 ± 0.008b 

Std tissue intensity Defective 0.062 ± 0.004c 0.064 ± 0.006d 

Healthy 0.056 ± 0.002b 0.053 ± 0.001a 

Mean low-density tissue intensity Defective 0.814 ± 0.019c 0.782 ± 0.023a 

Healthy 0.825 ± 0.013d 0.806 ± 0.010b 

Std low-density tissue intensity Defective 0.027 ± 0.060c 0.039 ± 0.020d 

Healthy 0.020 ± 0.002a 0.023 ± 0.002b 

Mean high-density tissue intensity Defective 0.856 ± 0.012c 0.838 ± 0.013a 

Healthy 0.854 ± 0.011c 0.846 ± 0.006b 

Std high-density tissue intensity Defective 0.025 ± 0.003c 0.031 ± 0.005d 

Healthy 0.023 ± 0.002a 0.023 ± 0.001a 

KS-value Defective 0.578 ± 0.116b 0.586 ± 0.129b 

Healthy 0.506 ± 0.048a 0.610 ± 0.038b 

 274 
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 275 

Figure 5: Linear Correlation Coefficients between all features of the ‘Conference’ dataset. 276 

The features ‘Normalized cavity volume’ and ‘Std fruit intensity’ were highly correlated (R = 0.98). This 277 

was expected as fruit with more or large cavities would also have a high variability in voxel intensity. A 278 

lower linear correlation was found between the features ‘Normalized cavity volume’ and ‘Std tissue 279 

intensity’ (R = 0.71). The ‘Std tissue intensity’ only considers non-cavity voxels, but fruit with a relatively 280 

high number of cavities could have more partial volume artefacts (the loss of contrast in voxels that 281 

are occupied by multiple types of tissue due to insufficient resolution), or internal browning and thus 282 

a higher variability in fruit tissue intensity.  283 

We also observed that the features ‘Mean fruit intensity’, ‘Mean tissue intensity’, ‘Mean low-density 284 

tissue intensity’ and ‘Mean high-density tissue intensity’ were highly correlated, with linear correlation 285 

coefficients ranging between 0.66 and 0.95. Not surprisingly, the correlations were higher between 286 

the features of which the regions indicated by the 3D binary masks were more similar, e.g., ‘Mean fruit 287 

intensity’ and ‘Mean tissue intensity’ had a higher correlation than ‘Mean low-density tissue intensity’ 288 

and ‘Mean high-density tissue intensity’. 289 
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Obviously, as the fruit and tissue masks only differ in the cavity voxels, a rather high correlation 290 

(R = 0.78) was found between ‘Std fruit intensity’ and ‘Std tissue intensity’. ‘Std tissue intensity’ and 291 

‘Std low-density tissue intensity’ had a linear correlation of R = 0.64, while ‘Std high-density tissue 292 

intensity’ and ‘KS-value’ where not highly correlated with other features. 293 

3.3 Classification results 294 

3.3.1 ‘Conference’ based SVM 295 

The classifier trained on the whole ‘Conference’ feature dataset, comprising 60 ‘defective’ and 42 296 

‘healthy’ samples, reached an average classification accuracy of 92.2 % for ‘Conference’ in a 5-fold 297 

cross validation with an 88.3 % true positive and a 97.6 % true negative rate, respectively. The 298 

confusion matrix with classification results for ‘Conference’ is shown in Table 2. 299 

Table 2: Confusion matrix with average classification results of the ‘Conference’ specific classifier on ‘Conference’ in 5-fold 300 
cross validation. 301 

 Predicted 

Defective Healthy 

Ground truth Defective 88.3 % 11.7 % 

Healthy   2.4 % 97.6 % 

Overall classification accuracy:  92.2 %  

The weights that determine the separating plane are shown in Figure 6. The features with a high 302 

absolute value of the weight are the most important for determining the class of a fruit. The top three 303 

features were ‘Std tissue intensity’, ‘Std high-density tissue intensity’ and ‘Std low-density tissue 304 

intensity’. Features that measure variability rather than absolute values had higher absolute weights 305 

and, thus, were more important for classifying pear fruit. Moreover, fruit with higher values for these 306 

features were more likely to be classified as ‘defective’ fruit, i.e., the positive class, due the positive 307 

corresponding weights. Both the weights of ‘Mean tissue intensity’ and ‘KS-value’ features were rather 308 

insignificant. 309 
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 310 

Figure 6: Weights of the ‘Conference’ based SVM’ sorted by descending weight value. 311 

3.3.2 Feature selection 312 

From the previous results, it was observed that not all features were equally important for 313 

classification. Some features, e.g., ‘KS-Value’, ‘Mean Tissue Intensity’ and ‘Mean low-density tissue 314 

intensity’, have relatively low weights compared to others (see Figure 6). As explained in section 2.3.3, 315 

the SVM RFE method was applied to select the most relevant features. A series of classifiers was 316 

trained and evaluated on the ‘Conference’ dataset and in each iteration the feature with the lowest 317 

squared weight value was removed for the next iteration. The resulting features used by each classifier 318 

are shown in Figure 7. 319 



16 

 

 320 

Figure 7: Plot of features used for training each SVM on the ‘Conference’ dataset. Each column represents a classifier in a 321 
series of classifiers, in which the number of features allowed to be used decreased from the left (10 features) to the right (1 322 
feature). Every column thus shows the features used by a classifier in the series, while each row shows in which classifiers a 323 
certain feature was used. A grey tile indicates a feature was used, while a black tile indicates a feature was eliminated for 324 

the specific SVM in the feature elimination procedure. 325 

Figure 8 shows a plot of the classification accuracy, true positive, true negative, false positive and false 326 

negative rate of the SVM series trained with 1 up to 10 features of the ‘Conference’ dataset in a 5-fold 327 

cross-validation. 328 
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 329 

Figure 8: Plot of classification accuracy, true positive rate, true negative rate, false positive rate and false negative rate of 330 
SVMs trained with 1 and up to 10 features of the ‘Conference’ dataset. 331 

From Figure 8 it can be observed that the performance metrics only slightly decreased up until the last 332 

SVM trained with only 1 feature, for which the accuracy dropped to 75.5 %. The SVM trained with two 333 

features, (‘Std tissue intensity’ and ‘Std low-density tissue intensity’, see Figure 7) still achieved an 334 

accuracy of 91.2 % and the false positive rate of 4.8 % while the false negative rate increased slightly 335 

from the 11.7 % of the best classifier to 13.3 %. 336 

3.3.3 Validating the ‘Conference’ based SVMs’ on the ‘Cepuna’ cultivar 337 

To test the generalizability to other cultivars, the series of ‘Conference’ based SVMs’ was validated on 338 

the ‘Cepuna’ cultivar without retraining the classifiers on the ‘Cepuna’ data. The ‘Cepuna’ dataset 339 

comprised 87 ‘defective’ and 15 ‘healthy’ fruit. The ten-features classifier reached a good classification 340 

accuracy of 95.1 % for ‘Cepuna’ with 94.3 % true positive and 100.0 % true negative rate, respectively. 341 

The confusion matrix with classification results for ‘Cepuna’ is shown in Table 3. 342 

Table 3:  Confusion matrix with classification results of the ten-features ‘Conference’ based SVM’ on ‘Cepuna’ without 343 
retraining the SVM. 344 

 Predicted 

Defective Healthy 

Ground truth Defective 94.3 %     5.7 % 

Healthy   0.0 % 100.0 % 

Overall classification accuracy:  95.1 %  

When testing the ‘Conference’ based SVM series trained with 1 and up to 10 features on the ‘Cepuna’ 345 

dataset, the classification performance remained the same for the classifiers using between ten and 346 

five features. For the classifiers using between 4 and 2 features, the false positive rate increased from 347 
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0.0 % to 6.7 %, while the accuracy remained 95.1 % and the false negative rate reduced from 5.7 % to 348 

4.7 %. With only one feature, the last classifier had a false positive rate of 80.0 %. However, due to the 349 

low number of ‘healthy’ samples in the ‘Cepuna’ dataset (fifteen), the accuracy only dropped to 86.7 %. 350 

3.3.4 Testing the ‘Conference’ based SVMs’ and retrained classifiers on the combined 351 

dataset 352 

The series of ‘Conference’ based SVMs’ was tested on the combined dataset. The confusion matrix with 353 

classification results of the ten-features classifier is shown in Table 4.  354 

Table 4: Confusion matrix with average classification results of the ten-features ‘Conference’ based SVM’ on the combined 355 
dataset. 356 

 Predicted 

Defective Healthy 

Ground truth Defective 91.8 %   8.2 % 

Healthy   1.7 % 98.3 % 

Overall classification accuracy:  93.6 %  

Like the previous results, the classification accuracy, true positive rate, true negative rate, false positive 357 

rate and false negative rate of the ‘Conference’ based SVMs’ classifiers using between ten and two 358 

features tested on the combined dataset was similar. The two-feature ‘Conference’ based SVM’ 359 

achieved an accuracy of 93.1 % and a false positive and false negative rate of 3.5 % and 8.2 %, 360 

respectively.  361 

Next, a first series of SVMs was retrained on the combined dataset but was forced to use the same 362 

features as their corresponding ‘Conference’ based SVM’ (see Figure 7). The SVMs were thus only 363 

allowed to change the weight associated to a certain feature. The classifiers using ten and two features 364 

achieved the same classification metric scores, with an accuracy of 92.7 % and false positive and false 365 

negative rate of 5.3 and 8.2 %, respectively. However, the accuracy and false positive rate were slightly 366 

worse compared to the two-feature ‘Conference’ based SVM’, that achieved the same false negative 367 

rate with an accuracy of 93.1 % and false positive rate of 3.5 %. 368 

Finally, a second series of SVMs was retrained on the combined dataset which was now allowed change 369 

the selected features at each iteration. The used features are shown in Figure 9. The ten-feature 370 

classifier reached an accuracy of 92.7 % and false positive and false negative rate of 5.3 and 8.2 %. The 371 

two-feature classifier scored an accuracy of 91.2 % with a false positive and false negative rate of 12.3 372 

and 7.5 %, respectively. The latter classifier used the features ‘Mean fruit intensity’ and ‘Mean high-373 

density tissue intensity’ in contrast to the two-feature ‘Conference’ based SVM’ that used the features 374 

‘Std tissue intensity’ and ‘Std low-density tissue intensity’. 375 
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 376 

Figure 9: Plot of features used for retraining each SVM on the combined dataset. Each column represents a classifier in a 377 
series of classifiers, in which the number of features allowed to be used decreased from the left (10 features) to the right (1 378 
feature). Every column thus shows the features used by a classifier in the series, while each row shows in which classifiers a 379 

certain feature was used. A grey tile indicates that the feature was used, while a black tile indicates that a feature was 380 
eliminated for the specific SVM in the feature elimination procedure. 381 

4 DISCUSSION 382 

4.1 Internal variability must be measured to separate ‘defective’ from ‘healthy’ pear fruit 383 

Internal browning and cavity formation were introduced in ‘Conference’ and ‘Cepuna’ pears by 384 

exposing them to suboptimal storage treatments for six months. The internal disorders differed in 385 

severity, location and appearance. Internal browning was characterized by reduced voxel intensity in 386 

the CT reconstructions of the fruit due to reduction in tissue density associated with water loss in the 387 

affected regions. In regions with severe internal disorder development, cells broke down completely 388 

and cavities were observed. This is in line with observations for pear made by (Lammertyn et al., 2003a; 389 

Muziri et al., 2016; van Dael et al., 2017). 390 

To further characterize ‘defective’ and ‘healthy’ pear fruit, features were extracted from the CT 391 

volumes and compared between ‘Conference’ and ‘Cepuna’ ‘defective’ and ‘healthy’ fruit (see Table 392 

1). First, the features ‘Std fruit intensity’, ‘Std tissue intensity’, ‘Std low-density tissue intensity’ and ‘Std 393 

high-density tissue intensity’ seemed to be the most relevant ones for separating the classes ‘defective’ 394 

and ‘healthy’, regardless of the fruit cultivar. The ‘defective’ class had significantly higher values for 395 
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these four features due to a wider range in voxel intensity and thus in tissue density. This suggests that 396 

when looking for features that separate the ‘defective’ from ‘healthy’ pear fruit, features that measure 397 

variability rather than absolute values will be more performant for classifying pear fruit regardless of 398 

their cultivar. 399 

Second, for the ‘Cepuna’ cultivar a significantly lower ‘Mean tissue intensity’ for both ‘healthy’ and 400 

‘defective’ fruit was observed compared to ‘Conference’ fruit. This might indicate that on average, the 401 

‘Cepuna’ fruit have a lower density, i.e. higher porosity, than ‘Conference’ fruit (Nugraha et al., 2019).  402 

Third, other features like ‘Mean fruit intensity’ and ‘Mean low-density tissue intensity’ were 403 

significantly different between the classes for each cultivar, but no clear threshold can be indicated 404 

that works for both cultivars.  405 

Fourth, the KS-value showed to be a good feature to separate ‘healthy’ and ‘defective’ ‘Conference’ 406 

fruit with higher KS-values for ‘defective’ fruit. However, the KS-value was not significantly different 407 

for both classes of ‘Cepuna’ fruit. Even an opposite, although not significant, trend was observed with 408 

slightly higher values for ‘healthy’ fruit.   409 

Finally, compared to the observed ‘healthy’ ‘Cepuna’ fruit, the ‘healthy’ ‘Conference’ fruit had 410 

significantly higher normalized cavity volumes. As such, relative to the total fruit volume, ‘Conference’ 411 

fruit might have larger cores than ‘Cepuna’ fruit. 412 

One must be careful to generalize these results because environmental factors potentially influencing 413 

the fruit characteristics were not investigated. Fruit characteristics and susceptibility for internal 414 

disorders can be seasonal and location specific. Moreover, only fifteen ‘healthy’ ‘Cepuna’ fruit 415 

occurred in the dataset. Unfortunately, a large part of the ‘Cepuna’ fruit following the control 416 

treatment also developed internal disorders. Due to the small sample size of ‘healthy’ ‘Cepuna’ fruit, 417 

the observed differences between classes and cultivars must thus be interpreted with caution.  418 

4.2 X-ray CT and machine learning can be implemented inline to classify fruit reliably 419 

The large variability in severity, location and appearance of the internal disorders makes it challenging 420 

to develop algorithms that detect ‘defective’ fruit reliably. However, for the internal disorder detection 421 

in ‘Conference’ pears, a SVM achieved a classification accuracy of 92.2 % with false positive and false 422 

negative rates of respectively 2.4 and 11.7 % (see Table 2). Moreover, the number of features was 423 

reduced from ten to two while keeping classification performance high by using the SVM RFE method 424 

(see Figure 7 and Figure 8). The classifier trained with the features ‘Std tissue intensity’ and ‘Std low-425 

density tissue intensity’ still achieved an accuracy, false positive rate and false negative rate of 426 

respectively 91.2, 4.8 and 13.3 %.  427 
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Furthermore, without retraining or other adaptions to the method the ‘Conference’ based SVMs’ 428 

performed excellent on the ‘Cepuna’ cultivar as well. An overall classification accuracy of 95.1 % with 429 

a false positive and a false negative rate of respectively 0.0 and 5.7 %, was achieved by the ten-feature 430 

‘Conference’ based SVM’ (see Table 3). Compared to the ten-feature classifier, the two-feature 431 

classifier scored the same accuracy with a better false negative rate of 4.6 %, but worse false positive 432 

rate of 6.7 %. This shows that the classifiers trained on the ‘Conference’ cultivar generalize well to the 433 

‘Cepuna’ cultivar and suggests that the method can be used for other pear cultivars too without much 434 

effort. However, an increase in generalizability by reducing the number of features used by the 435 

classifiers was not observed, as the performance of all classifiers using between ten and two features 436 

was very similar for both cultivars. 437 

The ‘Conference’ based SVMs’ were compared to two series retrained on the combined dataset. The 438 

first series was forced to use the same features as the ‘Conference’ based SVMs’, but was allowed to 439 

adapt the weights. In the second series, also the selected features were allowed to be altered by re-440 

implementing the SVM RFE method. In both cases, the ‘Conference’ based SVMs’ scored better, even 441 

though no ‘Cepuna’ data was included in the training process. The two-feature SVM of the second 442 

series trained on the combined dataset used the features ‘Mean fruit intensity’ and ‘Mean high-density 443 

tissue intensity’ in contrast to the two-feature ‘Conference’ based SVM’ that used the features ‘Std 444 

tissue intensity’ and ‘Std low-density tissue intensity’. Differences in performance and selected features 445 

are probably caused by the imbalance in the combined dataset.  Only 28 % of the combined dataset 446 

was ‘healthy’ as just fifteen out of the 102 ‘Cepuna’ samples were ‘healthy’, compared to 42 out of the 447 

102 ‘Conference’ samples. The classification metrics for both two-features classifiers are shown on the 448 

combined dataset, the ‘Conference’ subset and the ‘Cepuna’ subset in Table 5. The classifier retrained 449 

on the combined dataset scored very poorly on ‘healthy’ ‘Cepuna’ fruit, with a 40.0 % false positive 450 

rate. Due to the small number of ‘healthy’ ‘Cepuna’ samples, however, this only had a limited effect 451 

on the overall classification accuracy over the ‘Cepuna’ and combined datasets. 452 
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Table 5: Confusion matrix with average classification results on the combined dataset, ‘Conference’ dataset and ‘Cepuna’ 453 
dataset of the two-features ‘Conference’ based SVM’ vs the two-feature classifier that was retrained on the combined 454 
dataset with the features ‘Mean fruit intensity’ and ‘Mean high-density tissue intensity’. 455 

 Predicted 

Combined dataset ‘Conference’ based 
SVM 

Retrained SVM 

Defective Healthy Defective Healthy 

Ground truth Defective 91.8 % 8.2 % 92.5 %   7.5 % 

Healthy   3.5 % 96.5 % 12.3 % 87.7 % 

Overall classification 
accuracy:  

93.1 %  91.2 % 

   

  Predicted 

‘Conference’ subset ‘Conference’ based 
SVM 

Retrained SVM 

Defective Healthy Defective Healthy 

Ground truth Defective  86.7 % 13.3 % 85.0 % 15.0 % 

Healthy    4.8 % 95.2 %   4.8 % 95.2 % 

Overall classification 
accuracy:  

 91.2 %  89.2 % 

  

 Predicted 

‘Cepuna’ subset ‘Conference’ based 
SVM 

Retrained SVM 

Defective Healthy Defective Healthy 

Ground truth Defective 95.3 %   4.7 % 97.7 %   2.3 % 

Healthy   6.7 % 93.7 % 40.0 % 60.0 % 

Overall classification 
accuracy:  

95.1 %  92.2 % 

Overall low false positive rates by the ‘Conference’ based SVMs’ were achieved, ranging between 0.0 456 

and 6.7 % (see Table 2, Table 3, Table 4 and Table 5). Low false positive rates ensure that the number 457 

of ‘healthy’ fruit that are falsely rejected, are minimized. Furthermore, there were false positives that 458 

did not have a pronounced internal disorder but showed small deviating characteristics. For instance, 459 

one rejected ‘Conference’ fruit had a relatively big open core which might be indeed disliked by some 460 

consumers (see Figure 10). Economically, it makes sense to minimize the false positive rate for this 461 

application, since during inspection the occurrence of internal disorders in a certain batch might be 462 

relatively low and the false negatives might not have severe defects. In contrast, with a high false 463 

positive rate to ensure a low false negative rate, the added benefit of detecting ‘defective’ fruit might 464 

be offset by the falsely rejected ‘healthy’ fruit. Of course, this depends on the severity of the internal 465 

disorders. To balance the compromise between the false positive and false negative rate in a desired 466 

way, one could set a different threshold for the decision boundary of the classifier instead of placing it 467 

at f(x) = 0. For ‘Conference’, the classifier had a true positive rate of 86.7 % with a false positive rate of 468 
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4.8 %. To have 0 % false positives, the true positive rate had to drop to around 82 %. To achieve a true 469 

positive rate of 100 %, the false positive rate increased to 60 %. 470 

 471 

Figure 10: Orthogonal slices through the CT reconstructions of a false positive ‘Conference’ pear example with relatively big 472 
open core. 473 

The ‘Conference’ based SVMs’ had false negative rates ranging between 11.7 and 13.3 % for 474 

‘Conference’ and between 4.7 and 5.7 % for ‘Cepuna’. Compared to the false positive rates, the false 475 

negative rates are thus higher. As explained above, however, in this application it might be more 476 

important to reduce the false positive rate. Moreover, most of the false negative samples had only a 477 

very small internal defects that may not even be noted by the end consumer. As an example, Figure 478 

11 shows orthogonal slices through the CT reconstructions of a ‘Conference’ and ‘Cepuna’ pear. These 479 

examples make clear that for interpreting classification results, it is important to investigate how the 480 

data was labeled. To consider the consumer acceptance and preferences in future research, it is 481 

suggested to perform an expert panel survey for labeling the fruit based on images of cut fruit in 482 

addition to a visual inspection of the CT data.  483 
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 484 

Figure 11: Orthogonal slices through the CT reconstructions of a false negative ‘Conference’ (a) and ‘Cepuna’ (b) pear 485 
examples. 486 

This analysis showed that the inspection of the internal quality of pear fruit can be done in 3D using X-487 

ray CT at high classification accuracies and low false positive rates. In the current experiment, the 488 

achieved inspection speed (1.5 minute for scanning, stacking and reconstruction, plus 2.3 s for feature 489 

extraction and classification) was not yet compatible with the commercial speed of existing sorting 490 

lines, requiring at least 10 fruit per second per lane. Nonetheless, it should be noted that both the 491 

experimental CT setup and the feature extraction algorithm were not optimized for reducing the 492 

runtime. With advanced reconstruction algorithms available for translational X-ray CT (De Schryver et 493 

al., 2016; Janssens et al., 2018), prototypes of inline CT systems can be developed. Speed 494 

improvements can be made using a dedicated system combined with a trained reconstruction 495 

algorithm that needs far less projections (Beister et al., 2012; De Schryver et al., 2016; Janssens et al., 496 

2018; Willemink et al., 2013). Moreover, a stacked scan was needed due to the relatively small detector 497 

size, requiring two full 360° sample rotations, intermediate height adjustments and a stacking 498 

procedure. With a detector of appropriate size, the scanning time can thus already be reduced by 50 %. 499 

The method could also be tested with other scanning settings, like exposure time and number of 500 

projections to reduce the scanning time, or pixel and voxel sizes to reduce the computational cost 501 

during reconstruction and analysis. Additionally, the feature extraction algorithm could be optimized 502 

and it was shown that the number of features can be reduced to further reduce the processing time. 503 

In terms of hardware, technical challenges must be overcome to transition from prototype systems to 504 

fast inline CT systems, e.g., the development sample holders that stabilize and rotate the sample while 505 

translating at adequate speed. For industrial application continuing developments in both hardware 506 
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and software are thus needed to increase the inspection speed and reduce the equipment costs. In 507 

addition, the internal quality inspection system can be used on a limited part of the supply in which a 508 

high occurrence of internal disorders is expected. In this case, lower inspection speeds might be 509 

adequate. 510 

The proposed method uses machine learning in which a classifier is trained on a training set in feature 511 

space. However, the features were still hand-crafted and thus possibly application specific. Application 512 

on other fruit products, like apples, might require other features to be used making feature 513 

determination more difficult. In the feature extraction algorithm, the KS-value was calculated as a 514 

measure of similarity between the low intensity (low density) and high intensity (high density) tissue 515 

regions. It was expected to be an important feature for separating the classes, however only low 516 

corresponding weights were given to this feature by the classifiers. This illustrates that intuitive hand-517 

crafted features that seem smartly designed, may not always be the best choice, and presents a 518 

limitation of machine learning. In deep learning, valuable representations of the data are learned and 519 

extracted by the model itself. Hand-crafted features must thus no longer be engineered (Goodfellow 520 

et al., 2016). Deep learning on X-ray imaging is increasingly adopted, e.g., in medical applications (Lee 521 

et al., 2017; Shen et al., 2017), and might thus be considered as an alternative method in future 522 

research. 523 

5 CONCLUSION 524 

A combination of machine learning and X-ray computed tomography was proposed to successfully 525 

detect ‘Conference’ and ‘Cepuna’ pear fruit with a wide range in internal disorder severity 526 

automatically. Trained SVMs achieved good classification accuracies ranging between 90.2 and 95.1 % 527 

depending on the cultivar and number of features that were used. Moreover, low false positive and 528 

negative rates were obtained, respectively ranging between 0.0 and 6.7 %, and 5.7 and 13.3 %. 529 

Classifiers trained on ‘Conference’ data achieved high validation scores on the ‘Cepuna’ cultivar 530 

suggesting generalizability to other cultivars as well. 531 

With continuing developments in both hardware and software to increase inspection speed and 532 

reduce the equipment costs, the method can be implemented in e.g., inline translational X-ray CT for 533 

industrial application. Further research should focus on testing the method on an inline translational 534 

CT system with various parameter settings for image acquisition, validating the method for other 535 

cultivars or fruit and investigate other methods, e.g., deep learning, for quality inspection of food in 536 

3D X-ray CT imaging.  537 
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