
Automated Reasoning and Learning for Automated Payroll Management

Sebastijan Dumančić, 1 Wannes Meert, 1 Stijn Goethals, 2 Tim Stuyckens, 2 Jelle Huygen, 2 Koen
Denies 2

1 KU Leuven, Belgium
2 Teal Partners, Belgium

{sebsatijan.dumancic,wannes.meert}@kuleuven.be, {stijn,tim,jelle,koen}@tealpartners.com

Abstract

While payroll management is a crucial aspect of any business
venture, anticipating the future financial impact of changes to
the payroll policy is a challenging task due to the complexity
of tax legislation. The goal of this work is to automatically
explore potential payroll policies and find the optimal set of
policies that satisfies the user’s needs. To achieve this goal,
we overcome two major challenges. First, we translate the
tax legislative knowledge into a formal representation flexi-
ble enough to support a variety of scenarios in payroll cal-
culations. Second, the legal knowledge is further compiled
into a set of constraints from which a constraint solver can
find the optimal policy. Furthermore, payroll computation is
performed on an individual basis which might be expensive
for companies with a large number of employees. To make
the optimisation more efficient, we integrate it with a ma-
chine learning model that learns from the previous optimisa-
tion runs and speeds up the optimisation engine. The results
of this work have been deployed by a social insurance fund.

Introduction
Payroll management is a crucial aspect of any business ven-
ture. While performing the tax calculation given all nec-
essary inputs is straightforward, anticipating the impact of
changes in the inputs is a challenging task due to the com-
plexity of the legislation. Evaluating changes, however, is
necessary to find an optimal payroll policy (e.g., allowing a
car or paying part of a salary in the shares of the company).
The goal of this work is to automatically explore potential
policies and find a set of optimal policies.

To achieve this goal, two challenges need to be solved.
The first challenge is to translate legal knowledge into a
formal representation flexible enough to support and sim-
ulate a variety of scenarios that can occur in payroll calcula-
tions. The advantage of working with tax legislation is that
it is precisely defined and deterministic whereas many other
areas of legislation are vague and open-textured (Prakken
2017). The major challenge in this regard is that the exact
calculation is not known upfront and thus a single algorithm
or a computation graph cannot be used. An alternative, and
more general, approach is to encode the knowledge in a for-
mal declarative language from which computation graph can

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be generated and customised on demand. The benefit of the
single knowledge base supporting all tasks is that there is
no additional maintenance cost and lower risk that errors are
introduced.

The second challenge is to systematically explore various
policies. Simple intuition is often misleading – increasing
the gross wage by a small amount could change the taxa-
tion grade of an employee and result in a smaller net wage
– and all possible scenarios should be tried and checked.
This requires an intractable amount of time if many choices
are available and is thus not a valid approach. As a con-
sequence, exploring various policies is often a manual ad-
hoc exercise based on limited intuitions. For a certain set of
tasks, automated approaches are available but they are lim-
ited to tasks that can be expressed as linear programs (LP) or
mixed-integer programs (MIP). But many payroll tasks are
non-linear and current software packages for payroll man-
agement, to the best of our knowledge, have limited support
for finding optimal values in this setting (e.g., TurboTax).

In this work we focus on any financial decision that can
be expressed as an optimisation tasks of the following form:
Optimise an output quantity given a number of open input
variables, while respecting the financial computation rules.

For instance, a self-employed person might be interested
in the minimally required number of working days and the
desired rate to achieve an income above a certain amount.
Important to note is that the exact optimisation task is not
known upfront and depends on the question that a customer
asks. Therefore, the task cannot be coded upfront and we
need to support all tasks with various input-output relations.

In this work, we describe a general methodology for solv-
ing the described optimisation tasks based on the state-of-
the-art constraint solving technology, a field of artificial in-
telligence (De Moura and Bjørner 2008). The methodology
is integrated into VIREN1, a platform which helps companies
to manage the complexity related to payroll regulation and
enables users to generate, simulate and compare different
earning scenarios in real-time. The results of this work have
been deployed successfully for almost one year by Xerius, a
social insurance fund, and Teal Partners. The knowledge for
this particular use case has been supplied by SD Worx, one
of the main payroll service providers in Belgium, and the

1https://www.viren.be/

results have been verified by an independent and licensed
accountant.

Constraint solving is a natural fit for this problem for
three reasons: (1) the rules present in the legislation can be
translated into a set of constraints; (2) all supported tasks
can be automatically encoded as constraints with objective
functions, dynamically adapting to various input and out-
put combinations; and (3) it guarantees that found solutions
satisfy the constraints. There are, however, several require-
ments that are not trivial such as optimising over chained,
numerical, non-linear formulas. Although in theory a hard
problem, we found that in practice the problems can be tack-
led by applying certain transformations and a customised
optimisation algorithm.

The first contribution of this work is a compilation pro-
cedure of the payroll knowledge, specified within VIREN, to
a formal representation that allows finding optimal payroll
policies automatically. This includes the tasks where the out-
puts depend non-linearly on the input variables, a case that is
unsupported in other software packages. The second contri-
bution is the integration of a machine learning model which
assist the optimisation engine such that it finds new solutions
faster. In practice, the optimisation task has to be solved for
(tens of) thousands of employees; this puts a large burden
on the system if the task itself is expensive. However, while
most people are different, many people are similar to at least
a few other people; this observation can be used to guess an
initial solution that can then be further refined by the opti-
mization algorithm. The third contribution is that we have
deployed this method and validated it in a real-world setting.

The presented methodology is not limited only to payroll
management problems. Any financial task formulated as an
optimisation problem that has to adhere to constraints, legal
or any kind, can be tackled in the same way. Payroll legis-
lation is particularly appealing because the constraints and
computational rules are precise and explicit.

Problem Statement
The VIREN calculation engine (Goethals 2019) is a platform
for executing a high load of complex calculations with a very
low response time. The VIREN engine solves problems of
the following form

Given a domain model consisting of

• input parameters I
• output parameters O
• a set of computational rules relating I to O
• an optional value assignment A to I ′ ⊂ I

Find an assignment A to the input parameters I \ I ′ such
that output values o ⊆ O are optimised.

The domain model describes legislative knowledge and
customers’ interests. The inputs and outputs for the general
domain model are specified in advance. However, when ap-
plied to a specific case, some of the input and outputs have
fixed values; which ones is not known in advance.

Figure 1: Example of an FML model

Financial Modelling

The tool used for describing legislative knowledge and
defining customers’ interests in this work is the VIREN Fi-
nancial Modelling Language (FML), but the compilation
can be easily adapted to other languages. FML is a math-
ematical expression language with, at its core, rules that as-
sociate formulas and variables. The underlying idea is simi-
lar to formulas in a spreadsheet. The rules support standard
mathematical calculation over boolean values, integers and
decimals, extended with functionality for database lookup,
control flow, (business) date calculation and user-defined
functions (Figure 2 gives the expression grammar for FML).

One of the reasons why payroll optimisation is a challeng-
ing computational problem is that payroll scenarios not only
involve calculations with different variable types but also re-
quire additional domain-specific types of variables. On top
of the standard unit types, such as Boolean, decimal, date-
time and strings, the VIREN platform allows users to specify
complex types representing the composition of several unit
types, as well as a table type which is a complex type used
to implement a database functionality.

FML organises rules and computation in blocks, where
each block has clearly defined input and output parameters
and rules. The VIREN platform introduces three types of
blocks: simple blocks that perform the computation, com-
posite blocks that combine results of multiple simple blocks,
and switch blocks that choose which block to execute given
a condition.

Figure 1 illustrates five blocks in FML that computes the
(simplified) net income earned by a person. The created
model has two input variable: HasWork and Income. The
first quantity the model calculates is the gross income: for
employed persons that equals their wage, while for the un-
employed people that equals the minimal wage (e 1200 in
this case). To calculate the tax on the gross income, the block
Taxes applies a flat rate of 20% to the gross income. The re-
sult is linked back to the root block, providing the end-user
with the result of the computation.

Model → Block | Block, Block
Block → Simple | Composite | Switch
Simple → Expr
Composite → Compose(Block, Block, Relations)
Switch → ite(Condition, Block, Block)
Expr → Expr | Expr, Expr | Condition |

Const | Var | !Expr | −Expr |
Complex | Expr BinaryOp Expr |
ite(Condition, Expr, Expr)

Condition → Expr Compare Expr |
Condition AND Condition |
Condition OR Condition

Compare → == | > | ≥ | < | ≤ | !=
BinaryOp → + | − | / | % | × | Bitwise
Bitwise → & | || | << | >>
Complex → Database | Date | Arithmetic
Database → Lookup | LookupMany
Date → AddDays | AddMonths | AddYears |

FirstOfMonth | LastOfMonth | Date |
Day | Month | Year | DaysInYear |
DaysInMonth | DateInYear |
BusinessDaysInMonth | ExactYears |
BusinessDaysUntil | YearsBetween |
MonthsBetween | DaysBetween

Arithmetic → Count | Sum | Min | Max | Average |
Floor | Ceiling | Pow | RoundDown
FloorToNearestMultiple | Round

Figure 2: An expression grammar of the Financial modelling
language. Arguments of the functions are left out for brevity.

Lessons Learned
Solving constraint satisfaction problems (CSPs) is funda-
mental to computer science. In short, CSPs considers prob-
lems of finding a solution to a set of constraints imposing
the conditions that the variables must satisfy. The solution
to the constraint satisfaction problem (CSP) is the value as-
signments to variables that satisfy all constraints. Most often
many solutions exist, but not all are equally desirable. To in-
dicate the preference for a particular solution, an objective
function can be imposed.

Here we briefly summarise the main insights gained
through this project, before proceeding with compilation
procedure which is the main contribution of the work. We
split the insights into two categories: choosing the right con-
straint solving paradigm and model transformations.

Constraint Solving Paradigms
With CSPs being fundamental to computer science, var-
ious paradigms for solving CSPs have emerged over the
past decades. These include Boolean satisfiability (SAT)
(Biere et al. 2009), Constraint programming (CP) (Rossi,
van Beek, and Walsh 2006) and Satisfiability modulo the-
ory (SMT) (De Moura and Bjørner 2008). SAT does not fit
our case as it only supports reasoning with Boolean vari-
ables. In essence, CP and SMT paradigms are equivalent:
both are a generalisation of the SAT problem in which de-
cision variables can take values from any countable or fi-
nite domain, including Boolean, integer and decimal val-
ues. Both paradigms support rich types of constraints in-

cluding arithmetic (e.g., incomeNet > 50000), logical
(e.g., !nocar || !typea), complex conditioning (e.g.,
if ... then ... else ...) and much more. We
have found SMT solvers to be best suited for the kind of
tasks occurring in payroll management. In the rest of this
section, we will briefly outline the reasons why it is so.

The first reason concerns search procedures. The main
difference between SMT and CP are the underlying search
procedures. SMT solvers operate as a collection of spe-
cialised solvers that are smartly orchestrated together; that
is, Boolean constraints are handled through a SAT solver
while the numeric constraints are handled with the spe-
cialised numeric solver. Consequently, they can efficiently
search infinite real domains. The search procedures within
CP are monolithic – regardless of whether the variables are
Boolean or integer, the search procedure is identical.

The second reason concerns the support for decimal
numbers. Payroll management scenarios involve numerical
computation with decimal numbers and the precision of the
calculation is often defined by law. Consequently, perform-
ing any kind of approximations is unacceptable. We have
found that SMT solvers have substantially better support for
decimal numbers compared to other solvers (e.g., MiniZinc
(Nethercote et al. 2007)). The main challenge are equality
constraints, such as

incomeGross ≡ dailyWage × workingDays

which states the variable incomeGross needs to have
exactly the same value as the product of variables
dailyWage and workingDays. Such constraints are
necessary to encode the computational rules regarding pay-
roll management. In contrast to SMT solvers which incorpo-
rate specialised solvers for constraints involving real num-
bers, other solvers from the CP family encounter rounding
errors when the number of computational rules is large; this,
consequently, prevents them from finding a satisfiable solu-
tion.

The third reason concerns the type of constraints various
solvers expect. Existing constraint solvers typically expect
linear constraints such as

yearlyWage ≡ 12×monthlyWage + benefits

i.e., two decision variables are never multiplied with each
other. The problems we encountered are, however, mostly
non-linear – constraints that have multiple (two or more)
decision variables are generated. In contrast, SMT solvers
have a specialised solver for non-linear problems (Jovanovic
2017). Though solving non-linear constraints is undecidable
in theory, many practical non-linear problems can be solved
with SMT solvers, including the typical programs in VIREN.

Model Transformations
The state of the art SMT solver, such as Z3 (De Moura and
Bjørner 2008), are mature and performant technology. How-
ever, we have found that certain model transformations im-
prove performance significantly.

Domain experts typically write general domain models
that account for many input variables. However, when the

general model is applied to a specific case, many of the in-
put variables have concrete fixed values. As we explain later
(Section), propagating this information through the model
can significantly reduce the number of constraints.

Financial calculations introduce variables with custom
domains, e.g., employment benefits come with predefined
categorical choices. Though such data types can usually be
emulated with Boolean or integer data types, we have found
out that introducing custom data types avoids several un-
wanted properties (Section). Moreover, custom types make
it possible to perform complex calculation efficiently: date
calculations are ubiquitous in financial domains (Section),
but none of the SMT solver support such calculation inher-
ently.

Date calculations typically cannot be performed analyt-
ically, as they require looping over days and years. How-
ever, SMT solvers do not support loops and unrolling loops
naively would make the corresponding CSP significantly
more complex to solve. Thus, we have found it important
to develop analytical solutions for the quantities that require
looping calculation (Section).

The FML Compiler
The Financial Modelling Language (FML) represents
knowledge as a set of financial modelling rules (FMR). Un-
fortunately, these cannot be used directly by an SMT solver.
A number of inference and transformation steps are required
to translate the procedural computation rules to financial
modelling constraints (FMC). The constraints in FMC will
be expressed in the standardised SMT-LIB format, which all
SMT solvers know how to read. The tool presented in this
work presents a compiler that automates this process. The
concept is generic and can generate constraints that are com-
patible with most constraint solvers.

Once the VIREN model is translated to the task-specific
constraints, the model is passed to an optimizer based on Z3
(De Moura and Bjørner 2008), a state-of-the-art SMT solver.
The answer(s) produced by Z3 are processed by the VIREN
cloud-based computation engine and shown visually in the
user interface.

An example of the VIREN user interface for knowledge
modellers is shown in Figure 4. The left pane shows the
blocks in the model and how they are connected, the middle
part shows the selected block’s computation rules in FML,
the right pane shows the block’s inputs and outputs. In the
remainder of this section, we provide more details on these
components in the following sections.

Blocks
FML groups computation rules in blocks that together com-
pute one concept. A block encapsulates a number of com-
putations from its environment, and it is defined by (1) in-
put variables, (2) output variables, and (3) rules connecting
the input to output variables. This block-wise structure in-
troduces a namespace behaviour which has to be considered
as different blocks can contain variables with the same name
and be reused across different regulations. Output variables
are connected to input variables by constraints making them

equal to each other, or by replacing the input values by the
connected output values. Additionally, Z3 requires a topo-
logical ordering based on the block dependency graph be-
cause variables need to be defined before being used. See
Figure 3 for an example.

FMR:

BasicFlatRateProfessionalCosts = AnnualWageCompanyDirector +

TotalBenefitsVAA + CarVAA

PercentageFlatRate = lookup(BV_FlatRateProfessionalCosts,

’Percentage’, TypeComputation)

MaximumFlatRate = lookup(BV_FlatRateProfessionalCosts,

’Maximum’, TypeComputation)

FlatRate = min(BasicFlatRateProfessionalCosts *
PercentageFlatRate, MaximumFlatRate

Basic = BasicFlatRateProfessionalCosts - FlatRate

FMC:

(declare-const BSC_PercentageFlatRate Real)

(declare-const BSC_MaximumFlatRate Real)

(declare-const BSC_Basic Real)

(declare-const BSC_BasicFlatRateProfessionalCosts Real)

(declare-const BSC_FlatRate Real)

(assert (= BSC_BasicFlatRateProfessionalCosts

(+ (+ BSC_AnnualWageCompanyDirector 252.0) 2200.0)))

(define-fun min_Real ((x Real)(y Real)) Real

(ite (< x y) x y))

(assert (= BSC_FlatRate

(min_Real BSC_MaximumFlatRate

(* BSC_BasicFlatRateProfessionalCosts

BSC_PercentageFlatRate))))

(assert (= BSC_Basic

(- BSC_BasicFlatRateProfessionalCosts BSC_FlatRate)))

Figure 3: Example block BasicSocialContributions (BSC),
both the FML version (top) and the FMC version (bottom).

Data Types for Financial Modelling

The FML data types need to be matched to the data types
available in Z3. In case a variable in FML is not typed, it is
inferred recursively from the rule what the expected type is.

Fixed-point Numbers FML uses fixed-point arithmetic as
most financial software does. In Z3 this is translated into real
numbers. For most use cases this representation is sufficient
but a post-processing validation step is performed to guar-
antee correctness.

Categorical Choices Certain variables can only have val-
ues from a predefined set of choices. This is often the case
with benefits that are offered with the employment contracts;
for instance, a person might get a company car (of a certain
type) or not. To model such categorical choices, we lever-
age Z3’s ability to specify custom data types. Note that the
custom types could be equally realized with boolean vari-
ables indicating individual choices. However, custom types
make the entire process more interpretable and avoid unde-
sired edge cases. For instance, mutual exclusivity of the val-
ues should be explicitly modelled in the boolean encoding,
whereas custom types assume it as a default behaviour.

Figure 4: The VIREN UI (large) and the end-user UI (small,
blurred for double-blind review)

Dates In financial calculations, many computations in-
volve date manipulation: salaries are paid on the last day of
a month and certain calculations rely on knowing the exact
number of days between the two given dates. It is therefore
of utmost importance to manipulate the dates correctly. Un-
fortunately, Z3 has no built-in date operations and support-
ing them is non-trivial.

To support date calculations, we have opted to use the or-
dinal date representation2 allowing us to map dates to a tuple
of integers. Ordinal date representation represents a date as
a tuple (YYYY,DDD) where YYYY indicates the year and
DDD indicates the index of the day within the year. The ad-
vantage of this representation is that crucial calculations re-
quired by VIREN can be performed analytically.

The first type of date calculation we explain in detail is
to map a given date to a date corresponding to the first day
of the same month. For instance, April 14 2017 would be
mapped to April 1 2017. To do so, we use the ordinal date
representation to calculate the day of the month of the given
date as

(DDD mod 30) + i−
⌊
0.6
((⌊DDD

30

⌋
+ 1
)
+ 1
)⌋

where i is 3 for normal and 2 for leap years.
The second type of date computation is calculating the

time passed between the two dates. This value takes the
form of a real number where the integer value represents
the number of years passed and the decimal value represents
the proportion of the days passed within the last year of the
difference (i.e., 365 days minus the number of days needed
to make the two dates exactly N years apart). This calcu-
lation is difficult to obtain analytically unless ordinal date
representation is used.

A more straightforward date representation would be the
number of days since January 1 year 0, which is often a

2NIST. 1988. Representation for Calendar Date and Ordi- nal
Date for Information Interchange. Federal Information Processing
Standards Publication 4-1

standard. But performing the required calculations with this
representation cannot be achieved analytically anymore: it
requires looping over the years and days. As Z3 does not
support loops, they would have to be unrolled which would
make the target CSP significantly more complicated.

Rules
Every single financial modelling rule (i.e., a formula) needs
to be translated into a form that is compatible with Z3.

Mathematical Operations All operations on numbers
(e.g., multiplication, min) have a direct mapping to Z3 oper-
ations (Barrett, Fontaine, and Tinelli 2017).

Domains One of the key concepts of constraint satisfac-
tion is the bound inference – techniques actively try to re-
duce the domains of variables to sensible regions during the
search. For instance, while we would represent a year with
an integer number, not all integer numbers qualify as a valid
solution: a person typically cannot be 300 years old. As the
size of domains substantially impacts the complexity of the
search, supplying sensible bounds upfront makes the search
faster. If domains are known from FML, they are incorpo-
rated as constraints.

Tables FML supports the representation of tables in which
values can be looked up. Given the input and output vari-
ables of a lookup operation, a table can be represented by a
sequence of if-then-else statements.

FMR:

lookup(NoticePeriod, ’p2’, Anc)

FMC:

(define-fun lookup_p2_from_noticeperiod ((Anc Real)) Real

(ite (and (<= 0.0 Anc) (< Anc 0.25)) 2.0

(ite (and (<= 0.25 Anc) (< Anc 0.5)) 4.0

...

Tables are losslessly compressed by applying the C4.5 de-
cision tree algorithm where the input values are the features
and the output value is the target variable (Quinlan 1993).

Control Flow If-statements are available in both FML and
Z3. A difference is that FML allows different assignments to
the same variable in both branches of an if-else-statement.
When expressing this as a constraint, a variable can only
be made equivalent to one statement and thus requires the
variable equivalence on the outer level. Therefore, variables
are moved from within the if-statement to the outside of it.

FMR:

if not carclass == "None": carVAA = carVAAfromtable

else: carVAA = 0.0

FMC:

(assert (= carVAA

(ite (not (= carclass "None") carVAAfromtable 0.0))))

Custom Functions FML allows users to define custom
functions. Fortunately, Z3’s language supports such con-
structs which allow for a direct mapping of the functions
defined in FML to the SMT-LIB specification. Date func-
tionality described in Section make use of this functionality.

Propagating Information
The models defined in VIREN represent general rules of
computation for a certain domain/problem, with many in-
put variables. However, when applying the general model
to a specific case (e.g., a particular employee), some of the
input variables become known and cannot be changed dur-
ing the optimisation (e.g., birth date and the number of chil-
dren). Consequently, their values can be propagated through
the computational rules rendering many intermediate calcu-
lations to a fixed value and, by doing that, reducing the num-
ber of variables in FMC. The VIREN platform does this auto-
matically – this reduces the number of constraints by a factor
of 10 consequently allowing Z3 to find a solution faster.

Note that Z3 has built-in simplification methods, but these
do not apply to tables. In many VIREN use cases, the tables
are one of the bottlenecks, sometimes having up to several
tens of thousands of rows. For example, official tables ex-
pressing the tax rate per sector. This is information you can-
not change and it is thus not useful to encode the entire table
as constraints. Instead, we automatically select the relevant
tuple from the table by propagating values throughout the
entire program.

Optimisation
Given a set of constraints that represent the knowledge about
tax calculation, we want to optimise a given target quantity.
The Z3 solver, however, is only focused on finding whether
a solution exists, and what that solution is. In this section,
we introduce the optimisation strategy that we developed on
top of the Z3 solver.3

Our optimisation strategy is designed to exploit two main
insights we obtained. First, we know the types of queries that
will be asked and all can be mapped to finding the minimal
value of a variable given ranges on a number of other vari-
ables. Second, Z3 is based on a conflict-driven approach and
thus, on average, fast at finding whether a situation is unsat-
isfiable. Thus even if finding a globally optimal solution is
slow, finding a solution close to the global optimal might be
fast in practice and sufficient.

Minimisation Algorithm
In the VIREN tool, we implemented an algorithm, VMin-
imise, that searches for the minimal value of a target vari-
able given a number of input variables (see Algorithm 1).
Given a threshold, VMinimise essentially adds an inequal-
ity constraint between the target variable and a threshold to
the already existing set of constraints and verifies whether
this new program is satisfiable. Next, a variation of bisec-
tion is used with a few changes to speed up the search. If the
program is unsatisfiable we know there is no such solution
and the lowest possible value for the target variable will be
higher than the threshold. We can set the new threshold to a
point between the previous threshold and the lower bound.
In case it is satisfiable and the returned solution found a
value for the target variable that is lower than any previous

3Support for optimisation is available in Z3 but it only supports
linear problems.

Algorithm: VMinimize

input : Target variable T , bounds Tmin and Tmax, tolerance ε, max
number of iterations imax, FMC

output: Best model (i.e., values) for FMC

σ ← 0.4; // where to split

bestmodel← none;
model← Z3(Tmin ≤ T ≤ Tmin + ε ∪ FMC);
ifmodel.sat = true then return model ;
τu ← model.T ; // lowest UNSAT threshold for T

model← Z3(T ≤ Tmax ∪ FMC);
ifmodel.sat = false then return none ;
τs ← model.T ; // highest SAT threshold for T

τ ← (1− σ)τu + στs; // threshold for T

i← 0;
while |τ − τs| > ε ∧ i < imax do

model←Z3(T ≤ τ ∪ FMC);
if model.sat = true then

bestmodel← model;
τs ← model.T ; // use found value of T

else
τu ← τ ;

τ ← (1− σ)τu + στs;
i← i+ 1;

return bestmodel
Algorithm 1: The VIREN minimisation algorithm. A
variation on the bisection search algorithm that intro-
duces a skew to split in unequal parts to benefit from
Z3’s conflict driven approach that is called in each it-
eration.

solutions, we have thus found a new lowest value. We can
set the new threshold to a point between the newfound value,
thus not the previous threshold, and the upper bound. Using
the found value for the target variable is correct because the
constraint we added states that the found value is smaller
or equal to the threshold. This process can be repeated un-
til a certain precision or a maximal number of iterations is
reached.

Because Z3 is conflict-driven, iterations in the optimi-
sation algorithm that conclude unsatisfiability are executed
faster. But only iteratively increasing the threshold to reach
a satisfiable program might take many steps. We thus opt
for a bisection algorithm with a slight bias towards check-
ing too low thresholds by not splitting the search space into
two equal parts using a 0.5/0.5 split but skewed to 0.4/0.6
split. This offers a good trade-off because the maximum
number of iterations is bounded by a slightly larger num-
ber than equal splits, log(Tmax−Tmin)−log(ε)

log(1/(1−σ)) , but less expen-
sive iterations. On average, the optimal value for skewness σ
is cost(unsat)

cost(sat)+cost(unsat) , assuming cost(unsat) ≤ cost(sat).
We can estimate this to be σ = 0.4 for the use case in this
paper.

This minimisation algorithm is sufficient to support the
three different tasks of interest. First, minimisation is the na-
tive use of this algorithm. Second, maximisation is achieved
by introducing a new auxiliary variable that is the negation
of the original variable:

(assert (= TargetVar (- TargetVarOrig)))

Algorithm: VirenMinimiseMachineLearning
input : Target variable T , tolerance ε, max number

of iterations imax, initial guess Ti, FMC

output: Best model (i.e., values) for FMC

Tinit ←ModelPrediction(FMC); // Learned
Model
τu ← none; τs ← none; τ ← Tinit; i← 0;
while τs is none do

model← Z3(T ≤ τ ∪ FMC);
if model.sat then τs ← model.T ;
else τu ← τ ; τ ← τ + εi+1 ;
i← i+ 1;

τ ← Tinit; i← 0;
while τu is none do

model← Z3(T ≤ τ ∪ FMC);
if model.sat then τ ← τ − εi+1 ;
else τu ← τ ;
i← i+ 1;

return VirenMinimize(T , τu, τs, ε, imax, FMC)
Algorithm 2: The Viren minimisation algorithm. A
variation on the bisection search algorithm that intro-
duces a skew to split in unequal parts to benefit from
Z3’s conflict-driven approach that is called in each it-
eration.

And third, the closest value to a given target value can
be found by introducing a new auxiliary variable that is the
difference between the target value and the target variable:
(assert (= TargetVar (abs (- TargetVarOrig TargetVal))))

Pareto-front Algorithm
Often, there is no one optimal set of input values that
achieves the best solution but a set of different combinations
of input values that lead to the same optimal result. In such
a case, a Pareto front is interesting because it expresses the
trade-off between the different combinations of input values
(Mas-Colell, Whinston, and Green 1995). This allows the
user to express a preference for one of these combinations
even though it is not explicitly encoded in the constraints. In
some cases, the user might not be aware of the impact of this
trade-off and wants to explore the Pareto front.

To search for a Pareto frontier, which is the set of Pareto-
optimal options, one collects all possible solutions and then
selects those solutions that are Pareto optimal with re-
spect to the other solutions. Concretely, a solution t∗ is
(strongly) Pareto-optimal if no other solution t′ weakly
Pareto-dominates t∗. An instance t∗ weakly Pareto domi-
nates t′ if ∀i ≤ n : utilty i(t

∗) ≥ utility i(t
′) and ∃i ≤ n :

utilty i(t
∗) > utility i(t

′). Here we take the utility function
to be the identity relation but it can be used to assign differ-
ent weights to the variables.

Selecting the Pareto optimal solutions afterwards is a
naive and costly approach. Fortunately, this can be made
more efficient by including the Z3 solver in the search and
incrementally adding constraints that exclude solutions that
we know cannot be Pareto optimal anymore. Thus avoiding

Algorithm: VParetoFront

input : Target variable T , target value τt, input variables I, accuracy δ,
max iterations imax, and FMC

output: Pareto models for I

Π← {}; // Potential Pareto front models

C← {}; // Constraints to exclude non Pareto

model← Z3(T − τt ≤ δ ∪ FMC);
while model.sat = true do

Π← Π ∪model;
// Exclude all solutions that cannot be Pareto

optimal

foreach I ∈ I do
C← C ∪ I ≥ model.I;

model← Z3(T − τt ≤ δ ∪C ∪ FMC);

// Exclude all not Pareto optimal solutions

Π← {π ∈ Π | ∀π′ ∈ Π \ π∀I ∈ I : π.I ≤ π′.I ∧ ∃I ∈ I :

π.I > π′.I};
return Π

Algorithm 3: The VIREN Pareto front algorithm. Con-
straints are incrementally added to use the Z3 solver
to find Pareto optimal solutions more efficiently.

regions of the solution space that are not interesting as soon
as possible (see Algorithm 3).

Improving Optimisation Speed with Machine
Learning

The payroll optimisation task is performed on an individual
employee basis. This can be an expensive task for a com-
pany of many thousands of employees. To overcome this is-
sue, we can improve the efficiency of the optimisation step
by using the solutions from previous calculations to provide
a better initial point for the optimisation procedure. Though
very few employees would share the identical characteris-
tics, many employees would be similar which could give us
a good estimate of the range for the optimal target value.

Remembering the optimal solutions for all previously
solved cases is not a feasible strategy. Therefore, we will
use machine learning to discover the relationship between
the subset of input values of the individuals and the optimal
payroll target and use the predicted value as an initial value
during optimisation. Individual optimisation instances will
represent the examples for the machine learning problem.
Each instance is described with a fixed set of parameters,
divided into the input and decision parameters, and the op-
timal target value obtained by performing the optimisation.
The input parameters are provided by the user ahead of time,
and the goal of the optimisation is to find the assignment to
the decision parameters such that the target value is optimal.

We will focus on predicting the optimal target value rather
than the exact values of decision parameters for two main
reasons. Firstly, the relationships between the parameters
(both input and decision) are dictated by complex con-
straints that are very difficult to discover with machine learn-
ing models. Secondly, our system needs to guarantee that the
given solution obeys all constraints specified by law. Predic-
tions of machine learning models would likely violate the

Figure 5: Using machine learning to initialise the optimisation procedure significantly improves the performance of the con-
straint solver. The solver is able to find the optimal solution up to 4× faster.

specified constraints if applied to the remaining parameters.
Therefore, we use the predicted value as an initial estima-
tion (instead of determining it through constraint solving)
and modify it to fit the law requirements. This procedure is
detailed in Figure 2.

Note that we cannot use machine learning to provide the
final output directly. A reasoning procedure is always re-
quired to guarantee that all constraints are met and the so-
lution is legal.

Experiments and Results
Our system always finds the optimal solution up to a cer-
tain precision. Therefore, the purpose of these experiments
is to (i) evaluate how long the system takes to find the opti-
mal solution, and (ii) whether machine learning can improve
the performance of the constraints optimisation procedure in
finding the optimal solution.

We extract 3016 real-world payroll calculation cases
come from the gross-net calculator by Xerius4, executed on
the VIREN platform. All cases are the same type of optimi-
sation: how many days should a self-employed person work
and at what rate to maximise net income. The (propagated)
models have 937 constraints on average, with the maximum
being 963. First, we perform the optimisation step for each
use-case in order to obtain the optimal target value. Next, we
repeat the computations but guide the optimisation using the
prediction given by a Random Forest model (Breiman 2001)
that is trained on a separate set of optimisation results (using
Scikit-learn).

We follow the standard 10-fold cross-validation proce-
dure while training a model. For each fold, we perform in-
ner 10-fold cross-validation in order to select the best hyper-
parameters of the model. We then use the selected hyper-
parameters to train the model of the training data of the par-
ticular split. To evaluate the benefit of a machine learning
model, we use the predictions on the test set as the initial
values for the optimisation

The results (Figure 5) demonstrates that our system is able
to find the optimal solution faster when initialised with the
predictions of the predictive models. The improvements are
substantial as the solver is able to find the optimal solution 4-
5 times faster than the solver with no initial value provided.

4https://brutonetto.xerius.be/nl/netto-inkomen/eenmanszaak

Moreover, the variance in the runtimes is likewise substan-
tially reduced.

Though the reduction in absolute time for an individual
problem might not look impressive, from 0.7s to 0.1s, the
constraint problem in practice needs to be solved once for
each employee which means that the reductions accumulate.
For instance, for a company with a 10000 employees, solv-
ing the constraint problem without an ML component would
take 116 min while relying on an ML estimate reduces the
solving time to 16 min. However, for a company providing
this service to other companies, this would constitute even
larger savings.

Related Work
The application presented in this work is unique in that it
uses a formal representation of the payroll legislation to de-
rive the constraints relevant for the task. The encoded legis-
lation is identical to the knowledge used for the actual pay-
roll computations. Creating and maintaining such a knowl-
edge base for payroll legislation is a non-trivial effort and
is, to our knowledge, not yet used in related work. There are
some suggestions for other domains of legislation such as
case law (Bench-Capon et al. 1987), or more recently traffic
law where Prakken (2017) analyses the difficulties of rep-
resenting law. Alternatively, general formal representations
are suggested (Kowalski 1995), tools are introduced for rea-
soning (Prakken 2013), consolidation (Arnold-Moore and
Sacks-Davis 1991) and compliance (Giblin et al. 2005) for
legislation that can be expressed by Boolean atoms. How-
ever, none of these previous works offer a functional solu-
tion for tax law with its many numerical constraints.

Many analytical tasks in the financial industry, on the
other hand, require a certain form of constraint satisfac-
tion on numerical constraints. However, the focus tends to
be on verification or on modelling market behaviour, not
legislation. For instance, the Imandra platform5 offers so-
lutions for designing and analysing financial trading venues
(Passmore and Ignatovich 2017) based on constraint satis-
faction technology. Jin, Tsang, and Li (2009) demonstrates
how many central economic problems, such as bargaining,
financial investment and supply-chain management can be
treated as optimisation problems with certain constraints as-
sociated. Nikolov, Nikolov, and Antonov (2013) focusses on

5https://www.imandra.ai/imarkets

https://brutonetto.xerius.be/nl/netto-inkomen/eenmanszaak
https://www.imandra.ai/imarkets

operations with financial instruments that model dynamic fi-
nancial markets. Back and Back (1995) uses tax constraints
to verify and guide planning but uses hardcoded parts of
legislation as an expert system. None of these works have
access to the complete formally represented tax legislation
nor do they offer optimisation services respecting the con-
straints imposed by legislation. Moreover, the work by Jin,
Tsang, and Li (2009) considered only two types of con-
straints, whereas VIREN platform offers a generic language
for expressing a wide set of constraints.

Deployment
The VIREN calculation engine (Goethals 2019) is a soft-
ware platform for executing a high load of complex calcu-
lations with a very low response time. While the industry
average for a complex wage on a mainframe is 56 calcula-
tions per second, the VIREN engine is capable of performing
10,000 calculations per second. Additionally, it is designed
such that analysts and lawyers can enter and review knowl-
edge directly without the need of programmers. For simpli-
fying development we created the Viren.Net package which
contains everything needed for the communication with the
Viren engine.

The Viren engine is already used in a wide variety of ap-
plications and has already executed more than 6 568 819
calculations6.

Conclusions and Future Work
In this work we presented a compilation procedure to trans-
late legislative knowledge about payroll to a formal repre-
sentation that allows for finding optimal policies automati-
cally. The method is made faster by integrating a machine
learning model that learns how to assist the optimisation en-
gine based on previous results. Additionally, this solution
has been deployed and validated in a real-world setting.

Acknowledgements
This research was supported by VLAIO O&O innovation
project “Platform for complex computations” (HBC.2017-
0123). The authors would like to thank Joris Valkenborgh
(SD Worx) to recognise this opportunity and help initiating
the project; and Stefano Teso for his insights about Z3.

References
Arnold-Moore, T.; and Sacks-Davis, R. 1991. Databases of
legislation: The problems of consolidations. In International
Conference on Research and Development in Information
Retrieval (SIGIR).

Back, B.; and Back, R. 1995. Financial statement planning
in the presence of tax constraints. European journal of op-
erational research 85(1): 66–81.

Barrett, C.; Fontaine, P.; and Tinelli, C. 2017. The SMT-
LIB Standard: Version 2.6. Technical report, Department
of Computer Science, The University of Iowa. Available at
www.SMT-LIB.org.

6as of July 16 2020

Bench-Capon, T. J.; Robinson, G. O.; Routen, T. W.; and
Sergot, M. J. 1987. Logic programming for large scale ap-
plications in law: A formalisation of supplementary benefit
legislation. In Proceedings of the 1st international confer-
ence on Artificial intelligence and law, 190–198.

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press. ISBN
978-1-58603-929-5.

Breiman, L. 2001. Random Forests. Mach. Learn. 45(1):
5–32.

De Moura, L.; and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, 337–340. Springer-Verlag.

Giblin, C.; Liu, A. Y.; Muller, S.; Pfitzmann, B.; and
Zhou, X. 2005. Regulations Expressed As Logical Models
(REALM). In JURIX, 37–48. Citeseer.

Goethals, S. 2019. Viren Documentation. Teal Partners, Van
de Wervestraat 20 bus 206, 2060 Antwerp, Belgium, 1 edi-
tion.

Jin, N.; Tsang, E.; and Li, J. 2009. A constraint-guided
method with evolutionary algorithms for economic prob-
lems. Applied Soft Computing 9(3): 924 – 935. ISSN 1568-
4946.

Jovanovic, D. 2017. Solving Nonlinear Integer Arithmetic
with MCSAT. In VMCAI.

Kowalski, R. A. 1995. Legislation as logic programs. In
Informatics and the Foundations of Legal Reasoning, 325–
356. Springer.

Mas-Colell, A.; Whinston, M. D.; and Green, J. R. 1995.
Equilibrium and its Basic Welfare Properties, Microeco-
nomic Theory. Oxford University Press.

Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a Standard
CP Modelling Language. In Proceedings of the 13th In-
ternational Conference on Principles and Practice of Con-
straint Programming, CP’07, 529–543. Berlin, Heidelberg:
Springer-Verlag. ISBN 978-3-540-74969-1. URL http:
//dl.acm.org/citation.cfm?id=1771668.1771709.

Nikolov, S.; Nikolov, V.; and Antonov, A. 2013. A
Constraint-Based Approach for Analysing Financial Market
Operations. In Proceedings of the 14th International Con-
ference on Computer Systems and Technologies, CompSys-
Tech ’13, 231–238.

Passmore, G. O.; and Ignatovich, D. 2017. Formal Verifi-
cation of Financial Algorithms. In de Moura, L., ed., Auto-
mated Deduction – CADE 26, 26–41. Cham: Springer Inter-
national Publishing. ISBN 978-3-319-63046-5.

Prakken, H. 2013. Logical tools for modelling legal argu-
ment: a study of defeasible reasoning in law, volume 32.
Springer Science & Business Media.

http://dl.acm.org/citation.cfm?id=1771668.1771709
http://dl.acm.org/citation.cfm?id=1771668.1771709

Prakken, H. 2017. On the problem of making autonomous
vehicles conform to traffic law. Artificial Intelligence and
Law 25(3): 341–363.
Quinlan, J. R. 1993. C4.5: programs for machine learning.
The Morgan Kaufmann Series in Machine Learning .
Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. USA: Elsevier Science Inc. ISBN
9780080463803.

	Introduction
	Problem Statement
	Financial Modelling
	Lessons Learned
	Constraint Solving Paradigms
	Model Transformations

	The FML Compiler
	Blocks
	Data Types for Financial Modelling
	Rules
	Propagating Information

	Optimisation
	Minimisation Algorithm
	Pareto-front Algorithm

	Improving Optimisation Speed with Machine Learning
	Experiments and Results
	Related Work
	Deployment
	Conclusions and Future Work

