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Abstract 

Laser surface texturing is widely explored for modifying the surface topography of 

various materials and thereby tuning their optical, tribological, biological, and other 

surface properties. In dentistry, improved osseointegration has been observed with laser 

textured titanium dental implants in clinical trials. Due to several limitations of titanium 

materials, dental implants made of zirconia-based ceramics are now considered as one 

of the best alternatives. Laser surface texturing of zirconia dental implants is therefore 

attracting increasing attention. However, due to the brittle nature of zirconia, as well as 

the metastable tetragonal ZrO2 phase, laser texturing in the case of zirconia is more 

challenging than in the case of titanium. Understanding these challenges requires 

different fields of expertise, including laser engineering, materials science, and 

dentistry. Even though much progress was made within each field of expertise, a 

comprehensive analysis of all the related factors is still missing. This review paper 

provides thus an overview of the common challenges and current status on the use of 

lasers for surface texturing of zirconia-based ceramics for dental applications, 

including texturing of zirconia implants for improving osseointegration, texturing of 
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zirconia abutments for reducing peri-implant inflammation, and texturing of zirconia 

restorations for improving restoration retention by bonding. 

Keywords: Laser surface texturing; Zirconia-based ceramics; Dental implants; 

Zirconia restorations  
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Nomenclature 

ABA Airborne particle abrasion 

Al2O3 Aluminum oxide 

ATZ Alumina toughened zirconia 

BIC Bone-to-implant contact 

c Cubic 

CaO Calcium oxide 

CCD Charge-coupled device 

CeO2 Cerium dioxide 

Ce-TZP Ceria-stabilized tetragonal zirconia polycrystal 

CO2 Carbon dioxide 

DLIP Direct laser interference patterning 

Er,Cr:YSGG Erbium, chromium-doped yttrium, scandium, gallium and garnet 

Er:YAG Erbium-doped yttrium aluminum garnet 

FLB Focused laser beam 

fs Femtosecond 

HSFL High-spatial frequency LIPSS 

LIPSS Laser-induced periodic surface structures 

LIPT Laser induced phase transformation 

LP Laser patterned 

LSFL Low-spatial frequency LIPSS 

LTD Low temperature degradation 

m Monoclinic 

MgAl2O4 Magnesium-aluminum oxide 

MgO Magnesium oxide 

Mg-PSZ Magnesia-partially stabilized zirconia 

µs Microsecond 

ms Millisecond 

Nd:YAG Neodymium-doped yttrium aluminum garnet 

nm Nanometer 

ns Nanosecond 

ps Picosecond 

PSZ Partially stabilized zirconia 

s Second 

SEM Scanning electron microscopy 
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t Tetragonal 

Ti Titanium 

TSC Tribochemical silica coating 

TZP Tetragonal zirconia polycrystal 

UV Ultraviolet 

WCA Water contact angle 

Yb Ytterbium 

8Y-FSZ 8 mol% Yttria-fully stabilized zirconia 

Y2O3 Yttrium oxide 

Y-PSZ Yttria-partially stabilized zirconia 

Y-TZP Yttria-stabilized tetragonal zirconia polycrystal 

3Y-TZP 3 mol% Yttria-stabilized tetragonal zirconia polycrystal 

ZrN Zirconium nitride 

ZTA Zirconia toughened alumina 
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1. Introduction 

Its excellent biocompatibility, desirable physical and mechanical properties have made 

titanium the material of choice for dental implants for more than five decades [1-4]. The 

primary limitation of titanium as a dental implant material is its grayish color which can 

lead to an unsatisfactory esthetic appearance after implantation [5, 6]. The corrosion of 

titanium dental implants in the oral cavity may also cause undesirable effects, such as 

the reduction of fatigue life of the implant, local pain and swelling, and particle release 

induced osteolysis [7, 8]. Some patients even develop metal hypersensitivity issues 

with titanium dental implants [9-12]. Nowadays, zirconia-based ceramics are 

considered as the most promising alternatives to titanium in dentistry because of their 

tooth-like color, excellent biocompatibility, and acceptable mechanical properties 

[13-15].  

A sufficient fracture toughness and mechanical strength of the base material is a 

prerequisite for a dental prosthesis component. Owing to the transformation toughening 

mechanism, zirconia-based ceramics exhibit the best mechanical properties in terms of 

fracture toughness and mechanical strength among all oxide ceramics [16, 17]. A 

conventional dental prosthesis is composed of an implant, abutment, and restoration. In 

addition to mechanical properties, the different parts of prosthesis may require the 

material to possess additional specific merits. For the implant, the osseointegration 

between the implant surface and human bone is of vital importance [18-20]. This 

requires the implant material to have a good biocompatibility, which has been proven 

for zirconia-based ceramics [21-23]. For the abutment material, zirconia is considered 

superior to titanium because zirconia is less attractive to bacterial adhesion and 

concomitantly has less peri-implant inflammatory problems [24-28]. The outstanding 
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material properties of zirconia-based ceramics suggest a good potential for their 

application in dental implants. Several review papers on the history and current status 

of zirconia-based ceramics in dental applications can be found in literature [20, 29-33]. 

Besides the material properties, the surface condition of the dental implants also plays 

an important role [34-36]. Many in vivo studies using different animal models showed 

that surface modified zirconia implants have a much better osseointegration than 

non-modified ones [37-42]. In a recent review on the role of the implant surface 

modification on osseointegration, Liu et al. summarized the characteristics of different 

implant surface modification techniques and their influence on osseointegration [43]. 

More review papers on this topic are also available [44-50]. For zirconia restorations 

like crowns and bridges, durable adhesion to the dentin or abutment remains a 

challenge [51]. Surface modification is also needed to improve bond strength and 

eventually increase the clinical longevity of zirconia restorations. 

Common zirconia implant surface modification methods include machining [52, 53], 

sandblasting [37, 54], chemical etching [54, 55], laser processing [56], coating [57, 58], 

etc. Compared to other methods, laser processing has started to attract increasing 

attention because of the following characteristics. First, there is no surface 

contamination onto the implant during surface processing because the laser treatment is 

a contact-free process. Second, laser processing can produce hierarchical surface 

structures with regular patterns and therefore control the wettability of the surface, 

which is believed to have a big influence on the cell adhesion behavior [59-61]. Third, 

laser processing, especially with ultrafast lasers, can be applied to any kind of material 

irrespective of its hardness and mechanical strength [62].  
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Laser processing for surface functionalization of dental implants has shown promising 

results in terms of improving osseointegration, reducing biofilm formation, and 

enhancing soft tissue attachment [63-70]. Review papers on this topic were mainly 

focused on titanium dental implants [71, 72]. However, the laser absorption 

mechanisms for ceramics and metals are fundamentally different. For metals, the laser 

energy is directly absorbed by free electrons which is a linear process, i.e. the absorbed 

laser energy is proportional to the laser intensity, while there are almost no free 

electrons in oxide ceramics. For zirconia-based ceramics, the laser absorption and 

subsequent material ablation can only be triggered with a much higher laser fluence that 

limits the laser source mainly to short or ultrashort pulsed lasers. Moreover, unlike 

titanium alloys, zirconia-based ceramics are brittle materials. Zirconia is a thermal 

insulator and is more susceptible to thermal shocks caused by laser generated high 

temperature gradients which can lead to the formation of thermal cracks and deteriorate 

the mechanical properties of the laser treated materials [73-75]. A careful evaluation of 

the influence of laser processing on the mechanical strength as well as long-term 

stability of zirconia-based ceramics is therefore indispensable. Thermal gradients are 

less critical when processing titanium implants and the main efforts were focused on 

the evaluation of biological response, especially the osseointegration, of laser 

processed implant surfaces [76-80]. 

In view of the above, an overall picture about laser surface texturing of zirconia-based 

ceramics ranging from laser–ceramic interaction mechanisms to the impact of laser 

texturing on surface topography and material properties, and the subsequent influence 

on the long-term stability of the laser processed materials as well as the functionality of 

the generated surfaces, is not yet available. Therefore, this review paper provides a 
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comprehensive overview of the current status on the use of lasers for surface processing 

of zirconia-based ceramics for dental applications. This review paper covers the 

following aspects: basics of pulsed laser–ceramic interaction mechanisms, brief 

introduction to zirconia-based ceramics, characteristics of laser generated surface 

textures, laser induced surface damages and their impact on mechanical strength and 

long-term stability, and experimental evaluation of laser textured functional surfaces. 

2. Zirconia-based ceramics in dentistry 

Pure zirconia has three temperature-dependent allotropes: monoclinic (m), tetragonal 

(t), and cubic (c) [81]. At ambient conditions, zirconia has a monoclinic crystal 

structure, which transforms to a tetragonal structure at 1170°C and to a cubic structure 

at 2370°C with a melting point at 2716°C [81]. The martensitic t-m transformation 

occurs upon cooling after the high-temperature sintering process and is accompanied 

by a volume expansion of approximately 4.5% which causes large internal stresses that 

can disintegrate the material by cracking [82]. To avoid this, stabilizing oxides such as 

CaO, MgO, Y2O3, or CeO2 are alloyed with pure zirconia to allow the high-temperature 

t or c phases to be fully or partially retained at room temperature [81]. However, the t 

phase is metastable and has a tendency to transform to m phase under applied tensile 

stresses or in the presence of water [83]. In the case of stress induced t→m 

transformation, the ensuing volume expansion will exert a compressive stress field to 

the crack tip, which can hinder the propagation of cracks, resulting in an enhancement 

of the fracture toughness of the material. This mechanism is usually referred to as 

transformation toughening [16]. Spontaneous t→m transformation can also occur 

gradually over time in the presence of water, which is known as low temperature 
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degradation (LTD) or hydrothermal aging [83]. LTD could lead to a reduction of the 

mechanical properties of zirconia-based ceramics and is believed to be responsible for 

the catastrophic failure of around 400 femoral heads shortly after surgery in 2001 [84]. 

The failure of these femoral heads was identified as the result of accelerated aging of 

Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in two Prozyr (SGAC 

Desmarquest, Evreux, France) product batches [84]. 

Based on their microstructure, zirconia-based ceramics can be classified into three 

categories [82, 85]: (a) TZP, e.g. 3Y-TZP; (b) partially stabilized zirconia (PSZ), e.g. 

Mg-PSZ and Y-PSZ; (c) zirconia containing ceramics like zirconia toughened alumina 

(ZTA) and alumina toughened zirconia (ATZ). Representative microstructures of these 

three categories are shown in Fig. 1.  

2.1 3Y-TZP 

Among these three categories, 3Y-TZP, which contains 3 mol% Y2O3, exhibits the 

optimal mechanical properties with a flexural strength of 900-1200 MPa and a fracture 

toughness of 3-10 MPa m
1/2

, and is therefore most widely used in dentistry [31, 33]. 

The main possible drawback associated with 3Y-TZP is its sensitivity to LTD [84]. The 

consequences of LTD include surface roughening due to grain pull out, micro-cracking, 

and mechanical strength degradation [32]. 

2.2 Mg-PSZ and Y-PSZ 

Mg-PSZ is reported to have a better performance in terms of long-term stability with a 

much lower degree of LTD than 3Y-TZP [86]. Its mechanical properties are however 

inferior to those of 3Y-TZP, and Mg-PSZ was therefore not the first choice for dental 

applications during the early stage of zirconia ceramics development [87]. With the 
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addition of spinel particles, such as MgAl2O4, the mechanical properties of Mg-PSZ, 

especially the fracture toughness, can be higher than that of 3Y-TZP [88]. Together with 

the major advantage of being almost hydrothermally stable, its prospect in future dental 

applications may still be promising [87]. Y-PSZ with yttria content higher than 3 mol%, 

such as 4Y-, 5Y-, and 6Y-PSZ, are attracting increasing attention due to their highly 

translucent appearance, which makes them aesthetically superior to 3Y-TZP for dental 

restorations [89, 90]. Their mechanical properties are however inferior to 3Y-TZP. 

Therefore, they are currently not used for abutments and implants but mainly for 

solitary crowns [91-94]. 

2.3 ZTA and ATZ 

ZTA is composed of a minor t-ZrO2 phase fraction that is dispersed in an alumina 

matrix. A higher content of t-ZrO2 phase leads to a larger fracture toughness of the 

composite, while a lower content leads to a better hydrothermal aging resistance [95]. 

When the zirconia content is below the percolation threshold, which is 16 vol% or 22 

wt%, LTD can be completely avoided, provided that no zirconia aggregates are formed 

[96]. ATZ, with alumina being the minor phase, also attracts much attention. ATZ 

exhibits a higher fracture toughness and especially strength than ZTA, but the LTD 

issue associated with the t-ZrO2 phase cannot be fully avoided [97]. Ce-TZP/Al2O3, 

with a typical composition of 10 mol% CeO2, shows a much better resistance to LTD as 

well as better mechanical properties, especially the fracture toughness, than 

yttria-stabilized zirconia and its composites [85, 98-101]. Its prospect in dental 

application is under assessing with some promising results already available [102, 103]. 
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Fig. 1. Representative microstructures of three categories of zirconia-based ceramics: 

(a) Y-TZP. Adapted with permission from [91]. Copyright © 2016 The Academy of 

Dental Materials. Published by Elsevier Ltd., (b) Y-PSZ. Adapted with permission 

from [104]. Copyright © 2020 The Academy of Dental Materials. Published by 

Elsevier Inc., (c) ATZ based on Y-TZP. Adapted with permission from [105]. 

Copyright © 2016 Elsevier Ltd. 

3. Laser–ceramic interaction mechanisms 

3.1 Long-pulsed laser 

Zirconia is a wide band gap dielectric with a band gap of around 5.8 eV [106], which is 

much larger than the photon energy of common lasers. The electrons in zirconia 

valence band cannot be excited into the conduction band through single photon 

absorption. However, even for ideal dielectrics, the conduction band, which is empty at 

0 Kelvin, is not totally free of electrons at ambient temperature. Color centers and 

impurities that always exist in industrial grade materials will contribute more free 

electrons and inter-band electrons with band gaps smaller than the photon energy. 

These free electrons and inter-band electrons are capable of absorbing photon energy 

through a linear process. For lasers with a pulse duration longer than a few tens of 

picoseconds, such as nanosecond and microsecond lasers, it is generally accepted that 

the laser absorption occurs by conduction band and small band gap inter-band electrons 

[107]. The conduction band and inter-band electrons absorb laser energy and transfer it 

to the lattice vibrations, causing the temperature to increase and eventually the removal 
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of material by melting and evaporation, and even phase explosion under high laser 

fluence [108]. 

3.2 Femtosecond laser 

For ultrashort pulse lasers, typically the pico- and femtosecond lasers, the laser 

intensity can be high enough to trigger nonlinear absorptions, including multiphoton 

absorption and tunneling ionization, generating free electrons in the conduction band 

[109]. These free electrons can further absorb laser energy through free carrier 

absorption (inverse Bremsstrahlung) to gain energy and, after gaining enough energy, 

will collide with valence band electrons to generate more free electrons, causing a 

collisional (avalanche) ionization to happen.  

Free electrons that are generated from multiphoton absorption and avalanche ionization 

processes transfer energy to nuclei by colliding. Considering the huge difference of the 

mass between electrons and nuclei, it takes many picoseconds to reach electron-phonon 

equilibrium and heat the lattice [110]. Since the pulse duration is shorter than the 

electron-phonon relaxation time, when an ultrashort laser pulse touches the material 

surface, the electrons are excited almost immediately and the electron system is fully 

thermalized while the lattice system remains nearly cold at the end of the laser pulse. 

The electronic excitation in dielectrics will disturb the interatomic bonding and may 

lead to non-thermal phase transformations such as ultrafast solid-solid phase transitions 

[111]. The build-up of positively charged ions at the material surface, caused by 

emission of highly energetic electrons, can eventually result in material removal by 

Coulomb explosion, which is a non-thermal process [112]. Nevertheless, the 

contribution of Coulomb explosion to the total material removal in the laser ablation 
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process is very small [113]. The main material removal mechanisms are 

photomechanical spallation and phase explosion [113].  

Compared to long-pulsed lasers, a major advantage of short-pulsed lasers is that the 

thermal side-effects, including thermal cracks and heat affected zone, are minimized 

during laser material processing. However, the price for a femtosecond laser system is 

much higher than for a longer pulsed laser system, such as for example a nanosecond 

laser. It should be noted that it is mainly the laser intensity, and to a lower extent the 

laser wavelength, rather than the laser pulse duration that determines the laser 

absorption mechanism. The reason for multiphoton absorption not to be the main 

absorption mechanism during nanosecond laser processing of wide band gap materials 

is the too low laser intensity in commonly available nanosecond laser systems to trigger 

this process. 

4. Laser surface texturing of zirconia-based ceramics 

4.1 Surface topography 

The surface topography plays a vital role in the osseointegration of the implant, the 

bacterial adhesion onto abutments, and the bond strength of restorations. A rougher 

implant surface is shown to have a better osseointegration compared to a smoother one 

[114]. Surface roughening of zirconia implants can be achieved by numerous methods, 

including sand blasting, acid etching, and laser processing [115-117]. Fig. 2 shows 

representative SEM images of zirconia-based ceramic surfaces after different surface 

treatment processes. A unique feature of laser texturing compared to other surface 

treatment methods is that it can produce micro-patterns with regular geometry instead 
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of random surface roughness, as shown in Fig. 2 (a), which is shown to have a favorable 

effect on osseointegration [118-121]. In laser surface texturing, the generated surfaces 

can exhibit hierarchical structures featured by the superposition of microscale textures, 

nanoscale roughness, and even laser-induced periodic surface structures (LIPSS). 

Despite the advantages of laser processing over other surface treatment methods that 

have briefly been introduced in the introduction part, there are also challenges with 

laser processing of zirconia-based ceramics, especially for dental applications where a 

long service time in a harsh environment is expected. These include thermal cracking, 

which can reduce mechanical strength, and laser induced phase transformation (LIPT), 

which may impair the long-term stability of dental implants. 

  

Fig. 2. Comparison of surface morphology after different surface treatment processes: 

(a) femtosecond laser surface texturing. Adapted with permission from [60]. 

Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. (b) Sand blasting; (c) acid 

etching after sand blasting. Adapted with permission from [117]. Copyright © 2020 

Elsevier Ltd. 

4.1.1 Microscale textures 

The microscale texture is formed by the direct removal of material by spatially 

localized laser energy deposition, such as using focused laser beam (FLB) (Fig. 3. (a) 

and (b)) [122] or through direct laser interference patterning (DLIP) (Fig. 3. (c)) [123]. 

The topography and dimension of the textures produced by FLB is influenced by 
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several parameters, including laser spot size, laser power, scan speed, and scan 

strategies [61]. The smallest feature size is limited by the laser spot size, which 

typically ranges from several micrometers to tens of micrometers. For two-beam DLIP, 

the period of the textures is described by P = λ/2sin(θ) (Fig. 3. (d)), where λ is the laser 

wavelength, and θ is the half-angle between interference beams [124]. The feature size 

of the textures produced by the DLIP method is not determined by the laser spot size but 

by the laser wavelength and the angle between the interference beams, and therefore 

smaller scale surface structures can be achieved. Besides two-beam DLIP, which can 

produce groove textures, multi-beam DLIP, which can produce more complex surface 

textures, is also possible [125]. 

 

 

Fig. 3. (a) FLB texturing with a motion platform; (b) FLB texturing with a scanning 

system. Reproduced with permission from [126]. Copyright © 2018 Riveiro, Maçon, 

del Val, Comesaña and Pou. (c) Two-beam DLIP; (d) intensity distribution for two 
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overlapping laser beams. Reproduced with permission from [127]. Copyright © 2016 

Elsevier Ltd. 

Roitero et al. [128] investigated the influence of the number of pulses and fluence per 

pulse on the laser interference patterned surface quality and topography of 3Y-TZP 

using a nanosecond laser with an output laser wavelength of 355 nm. They reported that 

the best surface quality with minimum material damage was achieved under a low 

number of pulses with high laser fluence, while deep patterns were generated with high 

number of pulses and high laser fluence. Limited by the contrast of the laser energy 

distribution in the interference patterns as well as the feature size of the structures that 

can be created, it is difficult to produce high aspect ratio surface textures with the DLIP 

method, while there is no such limitation for texturing with FLB. For a direct 

comparison, Fig. 4 shows the surface textures produced by these two approaches. 
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Fig. 4. SEM micrographs of zirconia (3Y-TZP) surfaces produced by laser texturing 

with: (a) FLB. Reproduced with permission from [61]. Copyright © 2019 Elsevier. (b) 

DLIP. Reproduced with permission from [128]. Copyright © 2016 The Academy of 

Dental Materials. Published by Elsevier Ltd. 

4.1.2 LIPSS 

The formation mechanisms of LIPSS are more complex. Existing theories include the 

interaction of incident laser light with surface electromagnetic waves [129-131], 

particularly with the laser excited surface plasmon polaritons [132, 133], for 

low-spatial frequency LIPSS (LSFL) (spatial period Λ > λ/2), and ultrafast laser 

induced material self-organization that is related to Marangoni effect for high-spatial 

frequency LIPSS (HSFL) (spatial period Λ < λ/2) [134, 135]. Temporal beam shaping 

using an interferometer and time-resolved study by pump-probe experiment are two 

common approaches for investigating the LIPSS formation mechanisms [136-138]. 

Example of LSFL generated on 3Y-TZP is shown in Fig. 5 [139]. The spatial period is 

around 730 nm, which is comparable to the laser wavelength λ = 795 nm. Fig. 5 (b) 

shows the cross-section of LSFL. The periodic ablation profile indicates the 
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non-uniform laser energy deposition due to the interaction of incident light with surface 

electromagnetic waves. The spatial period of LIPSS may also be influenced by laser 

pulse duration. Masayuki et al. [140] observed an increase of the spatial period from 

around 900 nm to 1050 nm when the pulse duration was increased from 77 fs to 327 fs 

with a Ti:Sapphire laser having a wavelength of 810 nm. 

 

Fig. 5. (a) LSFL on 3Y-TZP by a Ti:Sapphire laser with a pulse duration of 120 fs and 

wavelength λ = 795 nm; (b) cross-section of the LSFL. Adapted with permission from 

[139]. Copyright © 2017 Elsevier Ltd. 

4.2 Mechanical properties and microstructure 

4.2.1 Thermal cracks and mechanical properties 

Cracking is an intrinsic tendency of brittle materials under thermal shock loading 

during laser micromachining [73-75, 141, 142], which is influenced by the laser 

parameters and can be minimized through process optimization, such as increasing the 

scan speed while reducing the pulse energy to avoid excessive energy deposition per 

unit area [105]. It was shown that the cracking problem is more severe for long-pulsed 

laser processing than for short- and ultrashort-pulsed lasers [143]. A good compromise 

to achieve a high performance while maintaining a good processing efficiency is 

therefore to use a long pulse laser for rough machining so that a high material removal 
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rate can be achieved, and a short-pulsed laser to perform the post-processing (Fig. 6) 

[143]. 

 

Fig. 6. Nanosecond laser postprocessing (on the right) of a ms-laser cut (on the left) 

3Y-TZP surface: (a) top view; (b) cross-section. A smoother suface with smaller 

cracks was achieved with ns-laser postprocessing. Adapted with permission from 

[143]. Copyright © 2008 The American Ceramic Society. 

In laser surface texturing where only a small amount of material is removed, the heat 

affected zone is confined to a thin layer at the top of the material surface (Fig. 7 (a) and 

(c)) [144]. The thermal cracks that can be formed are very small, normally limited to a 

few micrometers in depth (Fig. 7 (b)), and will not extend into the bulk. It is claimed 

that the mechanical properties of the bulk material will not much be influenced by these 

small cracks [144-146]. However, due to the relevant research studies are very limited, 

the influence of microcracks on mechanical properties needs to be further examined. 

Besides, in the aforementioned research, only static load condition was considered. 

Since the fatigue property of a material is very sensitive to its pre-existing defects, the 

influence of microcracks on the fatigue behavior of the laser textured material should 

not be overlooked. 
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Fig. 7. (a) 3D FIB reconstruction of the sub-surface of a laser textured ATZ surface; (b) 

crack network extracted from (a) (the arrows in (a) and (b) point to the same location); 

(c) cross section extracted from (a); (d)-(h) sections parallel to the surface (orthogonal 

to (c)), showing the evolution of the different phases with depth; the sections cover 

the depth indicated by the 2 dashed lines in (c). Zirconia grains appear in white, 

alumina in grey. Reproduced with permission from [144]. Copyright © 2020 Elsevier 

Ltd. 

As mentioned in the previous section, the depth of the textures produced by DLIP is 

relatively small. The influence of the textures on the total area of the cross-section of 

the material can be neglected. However, it can still influence the mechanical strength of 

the bulk material. Roitero et al. [147] reported a minor decrease of the mechanical 

properties in terms of biaxial strength and hardness of the laser surface treated 3Y-TZP 

(Fig. 8). They attributed the reduction of the mechanical properties to the pre-existing 

defects close to the surface, which were enlarged due to the laser irradiation, rather than 

to the laser affected layer, which was too small, less than 1 µm in thickness, to be able to 

affect the bulk mechanical properties. A contradictory result was reported by Daniel et 
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al. [148], who claimed a significant improvement of the flexural strength up to 50% 

after DLIP of 8Y-FSZ and attributed this behavior to laser generated high compressive 

stress together with grain refinement on the surface of the material. However, these 

results may not be directly comparable, since neither the composition and 

microstructure of the materials, nor the laser parameters, which were used in these 

experiments were identical. 

 

Fig. 8. Weibull distributions and nanoindentation tests results of not treated (NT, grey 

triangles) and laser patterned before (LP, hollow red circles) and after thermal 

treatment (LP+TT, red circles) 3Y-TZP samples. Reproduced with permission from 

[147]. Copyright © 2018 Elsevier Ltd. 

For laser surface texturing with FLB, the laser ablation depth can be much larger than 

that produced by DLIP. The mechanical properties of materials are expected to be 

influenced more by FLB processing than DLIP. Several research works [61, 149] 

reported a decrease in flexural strength for FLB laser textured samples, and there is a 

positive correlation between the reduction in flexural strength and the laser ablation 

depth (Fig. 9). A possible explanation is that the highly roughened surface with deep 

features can provide many stress concentration points upon loading; therefore, crack 

initiation and propagation will be easier compared to a smoother surface. As a result, 

the flexural strength is lowered after laser processing. This suggests that in designing 
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surface textures for real applications, especially with a large feature depth, the influence 

of those textures on the mechanical properties of the products needs to be taken into 

account. 

 

Fig. 9. Average flexural strength data for both laser strategies (Z8 and Z16, the SEM 

images of the textures produced with different laser strategies are shown in Fig. 4), as 

a function of (a) laser power (laser passages: L1), and (b) number of laser passages 

(laser power: P1.5). The asterisk (*) indicates statistically significant diff erences (p < 

0.05). Reproduced with permission from [61]. Copyright © 2019 Elsevier B.V. 

4.2.2 LIPT and LTD 

Besides the topography modification, laser surface texturing can also lead to local 

material property changes, such as formation of a recast layer, grain refinement, 

micro-crack formation, introduction of residual stresses, and also LIPT. Even though 

these alterations might not immediately reduce the mechanical strength of the bulk 

material, they might influence the long-term stability, especially LTD, of the material 

and therefore should not be overlooked. 

Gremillard et al. [144] tested the hydrothermal aging behavior of 20 wt% ATZ after 

long-pulsed laser (pulse duration 0.4 µs) surface treatment. They found that the laser 

treatment had no significant influence on aging at high temperature (above 100°C), 

while the laser treated materials (LE2 and LE3) showed a slightly faster aging rate at 
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body temperature (37°C) compared to as received (AR) and sintered after laser treated 

(LE1) materials (Fig. 10). They concluded, however, that the hydrothermal aging 

behavior of ATZ was not much influenced by laser treatment. 

 

Fig. 10. Aging kinetics of ATZ: (a) measured at 111, 134 and 141°C and (b) 

extrapolated at 37°C. ATZ-AR: as-received (sintered), ATZ-LE1: sintered after laser 

treatment, ATZ-LE2 and ATZ-LE3: laser treatment with varying scan speed of 400 

mm/s and 50 mm/s after sintering, respectively. Reproduced with permission from 

[144]. Copyright © 2020 Elsevier Ltd. 

Silva et al. compared the phase transformation and LTD of 3Y-TZP subjected to 

Nd:YAG nanosecond laser surface treatment and sandblasting followed by acid etching 

[61, 149, 150]. They reported that the monoclinic content after laser surface treatment 

was lower than after sandblasting. The aging rate after laser treatment, even though 

higher than for pristine material, was also lower than after sandblasting and acid 

etching. A recent study using a femtosecond laser for the surface treatment reported a 

similar result [151]. Mona et al. [117] reported a significant reduction of the bending 

moment, from 4530 to 3970 Nmm, of laser grooved commercial 3Y-TZP implants 

(Z-systems
®
, Oensingen, Switzerland) after artificial aging. 
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An in-depth analysis of the LIPT and LTD behaviour of 3Y-TZP after nanosecond laser 

DLIP and the impact of an additional thermal treatment was performed by Roitero et al. 

[145, 146]. The LTD kinetics at 131°C are shown in Fig. 11, indicating that the laser 

treated material was more susceptible to LTD but with a lower aging rate than the 

untreated material. After annealing of the laser treated material, with the aim of 

reversing m-ZrO2 to t-ZrO2 as well as releasing residual stresses, aging initiation was 

delayed compared to the pristine material. The explanation, according to the authors, is: 

1) Laser treatment will induce t→m transformation, increasing the m-ZrO2 after 

laser treatment compared to the pristine material and resulting in an overall 

higher degree of LTD. 

2) Laser treatment can introduce compressive residual stress, due to the presence 

of monoclinic twins, which could hinder the LTD process, leading to a lower 

aging rate. 

3) Annealing after laser treatment can retard the initiation of m-ZrO2 due to the 

existence of a textured (ferroelastic domains) fine grained t-ZrO2 surface, but it 

will not reduce the aging rate. 

Therefore, they suggested that even though laser treatment of 3Y-TZP could decrease 

their resistance to LTD, this could be remedied by an annealing treatment at 1200°C for 

1 h afterwards. Some other studies also reported a beneficial effect of heat treatment 

after laser surface texturing on the improvement of flexural strength and suppression of 

LTD of 3Y-TZP [149, 150]. 
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Fig. 11. Kinetics of LTD in vapor at 131°C. Evolution of monoclinic volume fraction 

with time of accelerated test of not treated (NT, grey triangles), laser patterned (LT, 

hollow red circles) and laser patterned and thermal treated (LT+TT, filled red circles) 

3Y-TZP. Reproduced with permission from [146]. Copyright © 2017 Elsevier Ltd. 

4.3 Wettability 

Wettability is influenced by both surface topography and surface free energy. 

According to Young’s equation [152], a higher surface free energy of a material 

indicates a smaller water contact angle. Zirconia-based ceramics, which are held 

together by a mixed ionic-covalent bonding, have a high surface free energy, and 

normally they exhibit a hydrophilic nature [153]. In contrast, materials that are mainly 

composed of van der Waals-type bonding, such as polymers and molecular crystals, 

have a hydrophobic tendency with a lower surface free energy [153].  

The well-known Wenzel model [154] predicts that the wetting properties will be 

amplified by surface roughness, which means a hydrophilic surface will become more 

hydrophilic and a hydrophobic one will become more hydrophobic when the surface 

roughness is increased. This behavior was well demonstrated on 3Y-TZP by Moura et al. 

[150], who reported that the water contact angle (WCA) was reduced from 46.9±5° to 
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36.4±1° before and after laser surface texturing. Similar results were also obtained by 

Faria et al. [61] except that the exact WCA values were different, with 21.3±9° for a 

smooth surface and ranged from 0 to 13.2° after laser surface texturing under different 

laser processing parameters.  

Lawrence et al. [155-158] investigated the wettability of Mg-PSZ subjected to a laser 

surface treatment with a defocused CO2 laser beam. Instead of creating certain surface 

textures by material removal, the material surface mainly underwent a melting and 

resolidification process without drastic surface topography change. They found that the 

wettability of laser treated surfaces was also reduced and attributed the enhancement of 

the hydrophilicity mainly to the increase in surface energy due to a change in the 

material microstructure. Surface oxygen might also influence the wetting property to 

some degree, but surface topography did not play an important role. 

A more recent work [159] using a high pressure nitrogen gas assisted CO2 laser surface 

treatment of 3Y-TZP showed different results that cannot be explained by the Wenzel 

model. The author reported that the initial hydrophilic surface with a WCA of 51.1±5° 

turned hydrophobic with a WCA of 121.4±5° after laser treatment. According to the 

authors, there were two reasons that were responsible for this seemingly unusual 

behavior. First, the surface free energy after laser treatment was reduced due to the 

formation of ZrN due to the nitrogen environment during the laser surface treatment 

process. Second, the surface layer became porous with micro-cavity formation that 

could trap air bubbles after laser treatment and turned the droplet from a Wenzel state to 

a Cassie dominated state. Therefore, the Wenzel model failed to describe this situation 
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and the Cassie–Baxter equation [160] should be adopted. Fig. 12 shows the schematics 

of the three wetting models. 

 

Fig. 12. Wetting models of (a) Young’s model, (b) Wenzel’s model, r is the ratio of the 

true surface area over the apparent one, and (c) Cassie–Baxter’s model, fs is the 

fraction of the solid area on the contact area. 

Another research by Ji et al. [161] also realized the hydrophilic to hydrophobic 

transition by specially designed hierarchical micro-grooves machined by a picosecond 

laser rather than relying on randomly formed porous surface structures. They achieved 

a WCAs ranging from < 60° to > 100° for different groove settings, as illustrated in Fig. 

13. This suggests that it is possible to tune the wettability of the material surface in a 

more deterministic manner and also to a wider range than merely “amplifying” the 

wettability by solely modifying the surface topography without changing its surface 

chemistry. This might be useful for dental applications where a hydrophilic implant 

surface is required for better osseointegration, whereas a hydrophobic abutment surface 

is preferred to prevent bacterial adhesion. Nevertheless, the introduction of 

hydrophobicity by texturing is at the cost of increasing the surface roughness, which is 

shown to have a negative effect on preventing bacterial adhesion [162]. Therefore, the 

effectiveness of this concept is uncertain and needs to be further evaluated. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



29 

 

 

Fig. 13. The variation of wettability of laser textured surfaces with different groove 

widths: (a) CCD camera captured droplet photographs and the corresponding 

schematics; (b) the evolution of obtained contact angles with different surface textures. 

Adapted with permission from [161]. Copyright © 2019 Elsevier Ltd and Techna 

Group S.r.l. 

In addition to surface topography modification, changing the surface chemistry and 

concomitant surface free energy, will also lead to a change in surface wettability. A 

common method to make the surface of zirconia-based ceramics hydrophobic is the 

silanization process [163-165]. The mechanism of silanization is to cover the surface 

with organofunctional groups which can reduce the surface free energy and therefore 

enhance the surface hydrophobicity [166]. Superhydrophobic (WCA > 150°) surfaces 

can be generated on zirconia-based ceramics by silanization after laser surface 

texturing with optimized surface topographies [164, 165]. 

It is a common phenomenon that the surface wettability may change with time due to 

the wetting state transition from a Cassie to a Wenzel state [167] or due to the surface 

free energy change caused by contamination [168]. This phenomenon was also reported 

for zirconia-based ceramics by Pu et al. [163], who showed that an initial hydrophilic 

surface produced by laser surface texturing gradually transformed to a hydrophobic one 

after several days of exposing to ambient air condition. Ultraviolet (UV) light radiation 
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is commonly used to remove contaminations, such as hydrocarbons from titanium 

dental implants, and hence to reactivate their biological activity [169-172]. This 

process is known as photo-functionalization [173], which can also be used to treat 

zirconia-based ceramics. Plenty of research has reported that after UV light irradiation, 

zirconia surfaces regained hydrophilicity and showed a better bioactivity, in terms of 

improved cell attachment and proliferation, or an enhanced osseointegration indicated 

by a larger bone-implant contact and bone volume [174-178]. 

5. Functionality of laser textured surfaces 

5.1 Osseointegration of implants 

Osseointegration of an implant is considered to be correlated with its surface wettability. 

In general, a hydrophilic surface tends to enhance the initial cell adhesion, proliferation, 

and bone mineralization, and therefore shows a better response in terms of 

osseointegration than a hydrophobic one [179-181]. The influence of surface 

wettability on the interaction with bone cells is illustrated in Fig. 14 [182]. A 

comprehensive review about the impact of implant surface wettability on biological 

response can be found in literature [182, 183], and the influence of multiscale surface 

roughness on cell behavior was also reviewed elsewhere [184-186]. 
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Fig. 14. Schematic of the cell and substrate interactions with (A) hydrophilic and (B) 

hydrophobic surfaces at different length scales. (A) Biological fluids prefer to spread 

at a hydrophilic surface, providing more area for protein adsorption and interaction 

with cell receptors. (B) A hydrophobic surface shows limited fluid spreading. Air 

bubbles can be trapped between biological fluids and substrate, resulting in reduced 

contact area between cell and surface, and therefore in less protein adsorption. 

Reproduced with permission from [182]. Copyright © 2014 Acta Materialia Inc. 

Published by Elsevier Ltd. 

5.1.1 In vitro 

It is well known that the surface topography of implants can also influence their 

biological response through modulating cell behaviour at the tissue-implant interface 

[187, 188]. By designing regularly patterned surfaces, directional cell alignment, 

migration, and proliferation can be achieved [186, 189]. Cell responses to laser textured 

zirconia-based ceramics with different patterns, such as grooves [60, 190, 191], pits 

[139], and grids [60, 192, 193], have been reported. Fig. 15 shows representative SEM 

images of mesenchymal stem cell morphologies that were cultured on a laser textured 

20 wt% ATZ surface with regularly spaced micro-grooves [190]. For the laser textured 
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surface, the cells tended to arrange along the groove direction, while they appeared to 

be randomly distributed on the smooth surface. 

 

Fig. 15. SEM images of the hMSC morphology adhering to an ATZ and laser grooved 

ATZ after 1, 7, 14 and 21 days of culture. Reproduced with permission from [190]. 

Copyright © 2017 Elsevier B.V. 

In addition to guiding cell growth, metabolic activity and osteogenic differentiation was 

also reported to be enhanced on ordered surface patterns [60, 120, 121, 190]. This is 

supposed to be clinically beneficial for reducing implant healing time and accelerating 

bone formation [194].  

5.1.2 In vivo 

Most of the in vivo studies using animal models found some benefits of laser surface 

texturing of zirconia implants on the improvement of osseointegration [119, 195-198]. 

Delgado Ruiz et al. [119, 198] compared the performance of laser micro-grooved 

3Y-TZP dental implants with sandblasted zirconia implants and acid-etched titanium 

implants. They found that the presence of micro-grooves increased the number of 

transverse collagen fibers, and the blood vessels and bone cells were found to be able to 
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penetrate into the microgrooves. As a result, the bone-to-implant contact (BIC) and 

bone density were increased for micro-grooved zirconia implants.  

Yasuno et al. [196] investigated the influence of micro-groove direction and size on 

osseointegration and found that 3Y-TZP implants with larger groove depth and width 

showed better osseointegration. In addition, implants with grooves that were vertical to 

the thread direction were found to perform better than horizontal ones. The BIC values 

were 64.9±5.3% and 49.0±2.8% for vertical and horizontal grooves with a large depth, 

and they were 39.8±12.1% and 17.5±11% for vertical and horizontal grooves with a 

small depth, respectively. 

Masatsugu et al. [195] evaluated the influence of laser texturing on osseointegration of 

implants with different material compositions. In this research, Y-TZP and 

Ce-TZP/Al2O3 implants were laser grooved by a nanosecond-pulsed laser and 

implanted into a rat femur. For Y-TZP implants, the laser grooved implants showed an 

increased BIC compared to the control group, which were sandblasted followed by acid 

etching. Regarding the Ce-TZP/Al2O3 implants, the laser grooved implants performed 

worse than the control group with a lower BIC. They concluded that in addition to 

surface topography, surface chemistry may also play an important role in influencing 

bone formation around zirconia implants. This is reasonable since osseointegration is 

closely related to the wettability of the implants, which is influenced by both surface 

topography and surface chemistry, as discussed in previous section. 
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5.2 Bacterial adhesion and Soft tissue integration of abutments 

5.2.1 Bacterial adhesion 

Peri-implant inflammation, which is caused by subgingival biofilm formation, is a 

major factor responsible for alveolar bone loss and may eventually lead to implant 

failure [199, 200]. Reducing bacterial adhesion or enhancing soft tissue attachment to 

the abutment are two potential approaches to prevent biofilm formation [28]. 

Surface roughness, surface free energy, and material composition are the three main 

factors that can influence the initial bacterial adhesion on abutment surfaces [162]. It is 

generally considered that there is a threshold value of surface roughness of 0.2 µm, 

above which bacterial adhesion and biofilm formation will increase due to increased 

surface area [201, 202]. In terms of surface free energy, a low free energy surface, with 

a surface energy between 20 and 30 mN/m, showed the lowest bacterial adhesion [203]. 

From the material perspective, zirconia abutments were shown to have less risk of 

bacterial adhesion compared to their titanium counterparts [28]. 

Surface wettability can also influence the bacterial adhesion behavior. Many research 

studies showed that bacteria prefer to adhere onto a surface with moderate wettability 

[204-206]. Superhydrophobic and superhydrophilic surfaces tend to inhibit bacterial 

adhesion [207, 208]. However, the relationship between surface wettability and 

bacterial adhesion is complex; it is influenced by many factors such as bacteria type, 

surface charge, surface topography, and chemical composition, and contradictory 

results are often reported [209, 210]. 
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In principle, by increasing surface roughness, it is possible to induce a higher degree of 

hydrophobicity as has been discussed in a previous section. However, since surface 

roughness and hydrophobicity exert an opposite influence on bacterial adhesion, it is 

yet to be proven that laser texturing induced hydrophobicity is beneficial to reduce 

bacterial adhesion. Besides the overall surface properties, including surface roughness 

and hydrophobicity which do not provide comprehensive information about the 

microscale characteristic of the surface, the relative length scale between the surface 

texture and bacterial size is also considered to play an important role on surface 

anti-bacterial properties. It is reported that LIPSS, which have comparable or even 

smaller feature size than bacteria, could effectively reduce the bacterial adhesion and 

prevent biofilm formation on metal surfaces [63, 211]. Since LIPSS can also be created 

on zirconia-based ceramic surfaces with ultrafast lasers, it might be promising to reduce 

bacterial adhesion by ultrafast laser processing. 

Abutment surface modification through other methods is also possible, for example by 

using coatings of antibacterial polymers and polydopamine [212, 213]. Recently, 

Madeira et al. [214] presented a hybrid process that combines laser surface texturing 

with powder deposition and subsequent laser sintering to incorporate gold 

nanoparticles and silver microparticles into the 3Y-TZP surface and to form an 

antibacterial layer. They expected that the slow release of gold and silver particles 

would act as bactericide. Fig. 16 shows a SEM image of the antibacterial layer, whereas 

Fig. 17 (a) shows a schematic of the antibacterial design solution. 
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Fig. 16. SEM images of (a) zirconia texture; (b) and (c) after Ag sintering; (b1) and 

(c1) cross-section views. Reproduced with permission from [214]. Copyright © 2019 

Elsevier Ltd and Techna Group S.r.l. 

5.2.2 Soft tissue integration 

An alternative way to prevent biofilm formation is to enhance the soft tissue attachment 

to the abutment, as illustrated in Fig. 17 (b). This can be achieved through modification 

of the abutment surface characteristics, including surface topography, surface free 

energy, and surface chemistry [201], to promote adhesion, proliferation, and 

differentiation of human gingival fibroblasts, which have been identified as the main 

cells of peri-implant soft tissues [215].  

In terms of surface topography modification, microgrooved surfaces by laser texturing 

have shown an effective improvement of soft tissue attachment to the abutment surface 

and were widely reported for application in titanium implants [216-219]. However, 

research on the performance of laser microgrooved zirconia abutment surfaces, 

especially in vivo, is very limited.  

A recent study [220] by Madeira et al. investigated the bond strength between artificial 

soft tissue and laser micro-grooved 3Y-TZP surfaces. They found that the presence of 
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micro-grooves could increase the bond strength between artificial soft tissue and the 

zirconia disks. However, the static bond strength test may not be able to represent the 

real dynamic behaviour of the interaction between human gingival fibroblasts and the 

zirconia abutment surface, and therefore further in vivo evaluation is necessary to reach 

a conclusion. 

 

Fig. 17. Schematic for a (a) antibacterial design solution. Reproduced with permission 

from [214]. Copyright © 2019 Elsevier Ltd and Techna Group S.r.l. (b) soft tissue 

attachment enhancement design solution. Reproduced with permission from [220]. 

Copyright © 2020 Elsevier Ltd and Techna Group S.r.l. 

5.3 Bonding of restorations 

Bonding of zirconia restorations to tooth substrate using resin-based composite 

cements, such as bonding a zirconia crown to dentin, is often required in dental 

practices. A reliable bond of composite cement to zirconia ceramics is therefore of great 

importance for the long-term survival of the prosthesis [221]. Unlike silica-based 

ceramics, which can be hydrofluoric acid etched followed by silanization to achieve a 

durable bond, zirconia-based ceramics are chemically inert materials and are difficult to 

be acid etched [222]. Alternative solutions often rely on the increase of surface 

roughness to allow for micromechanical interlocking, for example through airborne 
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particle abrasion (ABA), also called sandblasting, with Al2O3 particles or by laser 

surface texturing [223, 224].  

The most commonly used lasers for surface treatment of zirconia ceramics for 

improving bond strength include CO2, Er:YAG, Er,Cr:YSGG, and Nd:YAG lasers 

[225]. These lasers are normally designed for surgical purposes in dentistry, and 

therefore sometimes called “dental lasers” with the following common features: long 

pulse duration, typically longer than several hundred microseconds; low laser power, in 

the order of several watts; and relatively long wavelength, in the infrared range for the 

purpose of better absorption by human tissue. However, these lasers are not well suited 

for surface texturing of zirconia-based ceramics, which require a higher laser power for 

effective material removal as well as a shorter pulse duration for minimizing heat 

affected zones.  

With long pulse duration and relatively low laser power, hardly any material is removal 

by laser ablation. Instead, the zirconia ceramics are mainly subjected to melting and 

resolidification, during which a drastic change in surface roughness, especially micro- 

and nanoscale roughness, is often not achieved. Sometimes there is even a polishing 

effect with long pulse laser treatments of originally rough surfaces. This makes the 

results of laser surface treatment of zirconia ceramics, with the aim of improving bond 

strength, highly dependent on the laser processing parameters as well as the original 

surface conditions of the material to be processed. Therefore, even though a 

considerable amount of research showed some positive effects towards an increased 

bond strength after laser surface treatment using different dental lasers, including CO2 

laser [226-236], Er:YAG laser [226, 232, 236-238], Er,Cr:YSGG laser [233, 239, 240], 
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and Nd:YAG laser [234, 237, 239, 241-244], conflicting results are frequently reported 

[245-254].  

High power lasers with much shorter pulse duration, such as nano-, pico- and 

femtosecond lasers, are recently attracting increasing attention for surface treatment of 

zirconia ceramics in order to improve their bonding receptiveness for composite 

cements. The advantages of a short over a longer pulsed laser, as discussed in the 

previous section, are the much higher peak power and reduced heat affected zone. 

Microscale material removal with minimized collateral damage at the periphery of the 

laser spot is possible, which makes surface roughening of zirconia ceramics at the 

microscale effective. Therefore, enhanced bond strength of composite cements to laser 

treated zirconia can be realized. 

Kara et al. [255] compared the influence of different laser types on surface roughening 

and bond strength enhancement for two kinds of zirconia ceramics (Zirkonzahn and 

Zirkonzahn Prettau, Zirkonzahn Worldwide). They reported that a femtosecond laser 

showed a clear advantage over Nd:YAG and Er:YAG lasers in terms of increasing 

surface roughness and bond strength. For femtosecond laser treated samples, the 

average surface roughness and bond strength were around 1 µm and 52 MPa, 

respectively, with no clear difference between the two ceramic materials; surface 

roughness ranged from 0.46 to 0.78 µm and bond strength from 40 to 43 MPa for the 

other two types of laser treated samples.  

Some studies [256-258] compared the performance of a femtosecond laser treatment 

with other surface modification methods. Prieto et al. [256] reported that femtosecond 

laser treated Y-TZP revealed the best shear bond strength (10.8 MPa) among all the 
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groups, which signified its superiority over ABA (8.1 MPa) and tribochemical silica 

coating (TSC) (9.5 MPa) methods. Similar results were reported by Ruja et al. [257]. 

Besides, they found that an ultrashort pulse laser treatment did not induce tm phase 

transformation in Y-TZP, while phase transformation was observed for ABA and TSC 

methods. Although these researches suggested femtosecond laser surface treatment 

performed better than ABA and TSC in terms of improving bond strength, no 

significant difference was found between these three methods in the study of 

García-Sanz et al. [258]. Since the principle for enhancing bond strength is surface 

roughening to allow for micromechanical interlocking, the selection of the right laser 

processing parameters, which directly determines the produced surface topography and 

microscale surface roughness, will be critical for achieving desirable outcomes. 

Several research studies investigated the influence of laser processing parameters as 

well as the generated surface topographies on bond strength. Yucel et al. and Akpinar et 

al. reported that texturing by an inclined laser beam showed a better result in terms of 

bond strength than a vertical beam [259, 260]. A smaller groove distance and a higher 

laser power led to a higher bond strength [261]. A projection surface was shown to be 

superior to a recessed one [262].  

Several papers also reported comparable results to femtosecond laser texturing using 

nanosecond or sub-nanosecond lasers, which are much cheaper than femtosecond 

lasers. Akay et al. [263] used a sub-nanosecond UV laser to process Y-TZP ceramic; 

different surface textures were produced, including holes, grooves, and grids. All 

textured samples showed a significantly higher flexural bond strength than non-treated 

samples.  
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Iwaguro et al. [264] investigated the bonding properties of a nanosecond laser textured 

microslit surface of two different zirconia ceramics. They reported that laser texturing 

was effective in enhancing the bond strength of composite cements to 3Y-TZP, while it 

did not function well for Ce-TZP/Al2O3. In addition, laser texturing did not show 

statistical benefits for bonding veneering porcelain to both of these two zirconia 

ceramics. In a most recent publication of the same group [265], Shimoe et al. 

investigated the influence of the microslit width on the bond strength of acrylic resin to 

the same two zirconia ceramics. They reported that the bond strength of the laser 

textured groups was significantly higher than that of the ABA group for both 3Y-TZP 

and Ce-TZP/ Al2O3, while the microslit width did not have any influence on the bond 

strength. Henriques et al. [266] also investigated the bond strength of veneering 

porcelain to zirconia. They found that the bond strength to laser textured surfaces was 

significantly higher than that to the ABA treated surfaces, which is different from the 

results obtained by Iwaguro et al. [264]. The surface textures generated by a laser were 

hole arrays with different diameters. However, thermal cracks were found to occur on 

the sidewall of the holes, which may be harmful to the mechanical properties of the 

material. Therefore, Henriques et al. adopted an alternative way of laser surface 

texturing to overcome this problem [267], i.e. by texturing the green zirconia compact 

before sintering. The bond strength to zirconia was much larger after laser texturing and 

sintering than after sandblasting. Besides, laser textured surfaces followed by sintering 

and then sandblasting could further increase bond strength. 

Besides early bond strength, durable adhesion of composite cements to zirconia 

ceramics is also crucial for the longevity of dental prostheses. Bond durability studies 

to laser textured zirconia ceramics are however scarce. In the case of surface treatment 
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with dental lasers, available data do not give much positive results [246, 252, 268]. 

Instead, the use of short- and ultrashort-pulsed lasers for zirconia surface texturing 

tends to result in a better performance than the existing methods employed in dentistry 

[257, 264, 265, 269]. Even though most reports show an appreciable reduction in bond 

strength after cyclic loading, at least comparable values to ABA zirconia can be 

guaranteed. However, due to the limited amount of published data, confirmation by 

further research is necessary. 

Despite the fact that research efforts on laser texturing of zirconia ceramics to enhance 

bond strength are increasing, all of the currently available studies were conducted in the 

laboratory. To the best of the authors' knowledge, there are no published in vivo studies 

available yet. A prerequisite to use lasers for surface treatment is that the shape of the 

surface to be treated should be as simple as possible, for example a flat or a cylindrical 

surface or at least a surface of known geometry. This is due to the necessity to be able to 

control the laser path during the laser surface texturing process as compared to the 

commonly used ABA and TSC methods, which are not sensitive to the direction the 

surfaces are processed. For laser surface texturing, in most cases, the laser beam 

direction should always be nearly parallel to the surface norm. However, this is difficult 

to fulfill if the prosthesis has a very complex geometry; therefore, uniform surface 

textures may not easily be achieved, which then compromises the effectiveness of the 

designed function. In this context, further research evaluating the effect of the laser 

beam incidence angle and defocusing during laser texturing will help to improve the 

lasering process for complex shape applications.  
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6. Conclusions and outlook 

Laser surface texturing is extensively explored in various areas for different 

applications, including tuning optical properties, tribological properties, wettability, 

and biological properties. In dentistry, laser surface texturing of titanium dental 

implants has long been studied and promising results in clinical trials have been shown. 

For zirconia dental implants, the use of laser surface texturing for improving 

functionality is still in the early stage of laboratory testing with limited in vivo studies 

available using animal models. Considering the distinct differences of the material 

properties of titanium and zirconia, which lead to different laser absorption 

mechanisms and material responses, many remaining questions need to be clarified 

before shifting the experiences gained on titanium to zirconia. These questions include:  

˗ Thermal cracking is a common problem in laser processing of zirconia ceramics. 

How to suppress or avoid thermal cracking? 

˗ What is the mechanism of laser induced tm phase transformation of zirconia 

ceramics? How will it influence the long-term stability of zirconia implants? 

˗ How will the laser textured multiscale surface roughness change the wettability 

of the zirconia surface and influence its biological response? 

In this review, the current status regarding the use of laser surface texturing of 

zirconia-based ceramics for dental implants, covering the above concerns, was 

examined. Some concluding remarks can be summarized as follows: 

1) The laser absorption mechanism and brittle nature of zirconia-based ceramics 

suggest that a shorter pulsed laser, which can achieve a much higher laser 
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intensity together with a smaller heat affected zone, is preferred for surface 

texturing. Dental lasers normally have low laser power, long wavelength, and 

long pulse duration, and their effectiveness for texturing of zirconia-based 

ceramics is questionable. 

2) Thermal cracks generated by laser texturing will reduce the mechanical strength 

of the bulk material and therefore should be taken into consideration when 

designing surface textures for certain functions. Thermal damage to the zirconia 

material surface can be minimized or eliminated by several approaches, such as 

optimizing the laser processing parameters, using shorter pulsed lasers, or 

applying heat treatments after laser surface texturing.  

3) Most of the research suggested LIPT is not severe in laser surface texturing of 

zirconia ceramics. However, the kinetics of LTD may change after laser 

processing, which could influence the long-term stability of the dental zirconia 

implants. Judicious heat treatments afterwards can eliminate the negative 

influence of laser processing on LTD. 

4) Wettability of laser textured zirconia surface is influenced by both surface 

topography and surface free energy. The zirconia surface is intrinsically 

hydrophilic, and it will normally become more hydrophilic after surface 

roughening. However, with properly designed surface textures, it is possible to 

make the surface hydrophobic due to the wetting transition from a Wenzel to a 

Cassie state. An initial hydrophilic surface can also change to hydrophobic due 

to surface contamination, which is common during storage. Therefore, UV laser 
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irradiation can be applied to reactivate the biological activity of the zirconia 

implants before implantation. 

5) Due to the only limited in vivo studies on the performance of laser surface 

textured zirconia implants, the real benefits of laser surface texturing on an 

improved osseointegration cannot be concluded yet. 

6) Given that zirconia abutments are generally considered superior to titanium 

ones in the prevention of bacterial adhesion, there are possible ways for further 

improvement, such as reducing bacterial adhesion by surface alloying with 

antibacterial particles and enhancing soft tissue attachment by laser grooving. 

7) Laser surface texturing for improving the bond strength between zirconia 

ceramics and composite cements is a promising technique. To this aim, short 

and ultrashort pulsed lasers, such as nano-, pico- and femtosecond lasers, are 

much better than dental lasers. Even though many positive results have been 

reported with dental laser surface treatments, contradictory results are common. 

The bond strength is also highly dependent on the topography of the laser 

textured surface, which should be designed carefully. The bond durability to 

laser textured surface seems better than for other common surface treatment 

methods. However, the available data are very limited and a concrete 

conclusion cannot be drawn. 

In summary, the current literature search results already suggest that laser surface 

texturing can be beneficial for dental zirconia implants in several aspects, including 

improving their osseointegration, reducing bacterial adhesion on abutments, and 

enhancing the retention of zirconia restorations. Since the essence of laser texturing is 
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to enhance surface functions by the introduction of surface features with defined 

dimensions, the shape and the scale of the features are therefore of vital importance to 

the performance of the textured surfaces. For implants, the optimal shape and scale of 

the features should have some connection with the size of the human cells that have 

direct contact with the implant surface; regarding restorations, they are supposed to be 

influenced by the bond strength of the resin cements. However, systematic research on 

the influence of the shape and scale of the features on the performance of laser textured 

surfaces is still lacking, requiring further research and especially in vivo evaluation and 

clinical evidence.  
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Highlights: 

 Short pulse lasers are preferred over longer pulse lasers in 

processing zirconia ceramics 

 Thermal damage should be taken into account in laser texturing 

zirconia implants 

 Heat treatment can eliminate the negative effect of laser induced 

phase transformation 

 Laser texturing can modify wettability thus influencing 

osseointegration of implants 

 Laser texturing of abutment and restoration for enhanced 

functionality are reviewed 
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