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Abstract

In this article, a novel material modelling approach to predict the anisotropic

material response of multi-phase steels is developed. The macroscopic mate-

rial behaviour of the model is characterized by the homogenized response of a

meso-scale Representative Volume Element (RVE), derived by Finite Element

(FE) simulations. The RVE holds the most relevant microstructural features of

the material under consideration, such as phase distribution, grain orientation,

morphology etc., in sufficient detail, in order to capture the anisotropy and

phase interactions. The micro-scale material models of individual phases are

described with specific plastic potential functions, the components of which are

derived from Crystal Plasticity (CP) laws. The plastic potential functions are

constructed using the Facet method for each phase in the microstructure at the

level of single grains, and are used in conjuncture with phase specific, isotropic

grain hardening laws. The proposed model is evaluated through numerical ex-

periments performed on a synthetic microstructure of Duplex steel, constructed

from statistical material parameters extracted from literature. The RVE flow

curves depicted very good correspondence with the experimental data reported

for the same grade of Duplex Stainless Steel. The anisotropy prediction was

further assessed through comparison between virtual diffraction experiments
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performed on the statistical microstructure and the actual Neutron Diffraction

(ND) experimental data of the reference material. It was found that that the

model captured the overall trend of the diffraction curves for the individual

phases with good accuracy, but obtaining an exact correspondence to the ex-

perimental values was not feasible with the performed simulations on statistical

microstructures. Finally, an approach to predict the anisotropic yield locus of

a multi-phase material is also presented.

Keywords: Multi-scale modelling, Multi-phase materials, Duplex

steel, Representative Volume Elements, Plastic potential

functions, Single Crystal Plasticity, Anisotropy, Yield locus

1. Introduction

The macroscopic material response of multi-phase steels is extensively char-

acterized by the inherent microstructural features such as phase composition

and distribution, grain orientation and morphology, crystal structure etc. To

predict a realistic response of multi-phase materials at the macro-scale, an accu-5

rate characterization of the multi-phase microstructure and homogenization of

the microstructural response, are essential. Multi-scale simulations have gained

extensive popularity in the field of material modelling over the past few decades

and new numerical techniques are constantly added to the existing set. A com-

prehensive overview of the modern day challenges in the field of multi-scale10

modelling is given in an article published by Geers et al. [1]. Multi-scale sim-

ulations have numerous advantages for a variety of applications, despite being

numerically expensive. They help in understanding the relation between the

observed macroscopic phenomena and the underlying microstructure for diverse

applications. Several works in literature have highlighted the importance of15

such hierarchical simulations in realizing the continuum behavior of materials

encompassing distinct microstructures [2, 3, 4, 5, 6]. The complexity of the

defined microstructure, in terms of their morphological features and material

laws, influence the computational efficiency of these multi-scale numerical mod-

2
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els. In this paper, we have developed a multi-scale framework to predict the20

macroscopic material behaviour of multi-phase steels, implemented in a compu-

tationally efficient manner.

The microstructure in a multi-scale simulation is often described by a Rep-

resentative Volume Element (RVE) at the meso/micro-scale, incorporating the

features of interest, with an underlying material definition to characterize the25

stress-strain response. The RVE can be described either by a discrete set of

crystals (texture) or a well-resolved FE mesh with a unique spatial distribution

of the associated features. For the latter involving RVEs with a distinct FE

mesh, a constant drive towards sophisticated morphological description of the

microstructural features is existent and there are several means in literature to30

achieve the same [7, 8, 9]. Some approaches have been translated into open

source softwares as well [10, 11]. Development of new strategies requiring less

experimental time and resources for the procurement of sufficient microstructure

characterization data is an active field of research [12]. Further complications

arise in numerical simulations of 3-Dimensional (3D) RVEs, ranging from the35

effort essential for an accurate description of the microstructural features in a

3D domain to the additional computational overhead in FE calculations. How-

ever, such additional efforts required for 3D RVE based simulations are often

justified by their ability to replicate experimental observations. Several research

works aimed at studying damage in DP steels through a coupled experimental-40

numerical approach, via 2D simulations, often report quantitative differences in

capturing sharp strain localization bands from the experiments [13, 14]. It was

often concluded to be the result of inability of the 2D microstructure based nu-

merical simulations to address the sub-surface deformation mechanisms. There

are also attempts made in this direction to capture the 3D behavior from 2D45

RVE simulations with isotropic material laws [7, 15, 16]. Also, there have been

numerous works on RVE based simulation techniques for multi-phase steels with

isotropic phases of different hardness. A unified formulation [17] to predict the

flow behavior of steel phases have been predominantly used as material laws for

such multi-phase simulations [8, 7, 18]. However, an isotropic description of the50

3
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material response at the microscopic level, would eventually fail to accurately

capture the resultant anisotropy from the crystallography and phase interac-

tions. Alternatively, with regard to Crystal Plasticity Finite Element Method

(CPFEM) for modelling material anisotropy, an exhaustive summary has been

provided in a recent review paper by Roters et al.[19]. A comprehensive overview55

of the constitutive laws that define the elasto-plastic behaviour of crystalline

matter and different homogenization approaches have been elaborated in that

article. The utilization of full field FE homogenization instead of the common

Full Constraints Taylor [20], Taylor based relaxation schemes or other reduced

homogenization methods, is deemed essential for a multi-phase material. This60

is supported by several experimental observations that ascertain the necessity

of modelling the complementary phase behavior in order to thoroughly under-

stand the microstructural effects. Such simple homogenization schemes cannot

include critical features such as the stress and strain distribution among soft and

hard phases, shear induced deformation through interactions, development of65

shear bands (strain localization) etc., observed in a multi-phase microstructure.

Despite the advantages, the usage of sophisticated meso-/micro-models with full

field CPFEM based homogenization, for a macroscopic simulation of engineer-

ing scale, would demand immense computational power and is in practice not

feasible.70

In recent times, the development of multi-scale simulation frameworks ca-

pable of addressing the aformentioned issues have gained momentum. Gawad

et al. [21] have developed a hierarchical model, which can account for tex-

ture evolution in sheet forming simulations of single phase materials, driven by

a texture dependent micro-scale plastic potential function derived via homog-75

enization schemes such as Full Constraints (FC) Taylor or Advanced LAMEL

(ALAMEL) [22]. DAMASK [23], Düsseldorf Advanced Material Simulation Kit,

is another recently developed multi-scale simulation framework which is capable

of modular CP implementations of different constitutive laws, homogenization

methods and solvers. Kalidindi [24] has put forward an ambitious effort to ad-80

dress the current challenges in multi-scale computations through a data science

4
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driven approach as well. In a multi-scale setup, incorporation of well defined

meso-scale FE simulations is computationally less efficient. Hence, such RVE

simulations based on rate-independent [25, 26, 27] or rate-dependent [28, 29, 30]

CPFEM formulations are relatively scarce [31, 32], and even less in the domain85

of multi-phase materials [33]. As the development of diverse strategies within

the context of a multi-scale simulation is always intriguing and challenging,

here, we have constructed an efficient multi-scale model capable of extracting

the macroscopic behaviour from meso-scale FE simulations coupled with a CP

driven micro-scale model.90

As elaborated above, a numerical model having the potential to capture the

microstructural phenomena that drive the macroscopic behavior (e.g. metal

forming), in sufficient detail, is of great importance. Specifically, in the case of

multi-phase steels, the need to understand the behavior of the inherent phase

components is essential. Coupling such a sophisticated approach with a CPFEM95

based material model would further enhance the complexity of a multi-scale sim-

ulation. Hence, in the present article, we aim at addressing these issues through

a powerful micro-meso-macro approach, composed of generic components capa-

ble of undergoing amendments to suit the application. The model derives the

homogenized macroscopic response of a synthetic multi-phase meso-scale RVE.100

The RVE is constructed from actual material parameters and includes a well-

defined spatial description of the underlying phases/grains, with attached ori-

entations. The material definitions that characterize the individual yield locus

and the phase response are given by micro-scale single crystal plastic potential

functions derived via the Facet approach [34]. Similar analytical expressions105

to describe the yield locus for single crystals were also reported in some earlier

works in literature [35, 36, 37]. A more recent work to derive the yield functions

of single crystals through optimization schemes was attempted by Zamiri et al.

[38] as well. The Facet method, originally developed for single phase polycrys-

talline materials, constructs a plastic potential function calibrated by statistical110

texture simulations using crystal plasticity models. It can easily be coupled

with a macroscopic domain for multi-scale simulations. A similar approach is

5
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adopted in the developed model to arrive at the plastic potential functions of sin-

gle crystals, representing the individual grain behavior with known orientation

and crystallographic slip systems, based on the fundamentals of Crystal Plas-115

ticity (CP). In a later section we describe the steps involved in the derivation

of the single crystal Facet expressions, which serve as the micro-scale material

models for FE simulations on the meso-scale RVE. The multi-scale model can

be applied on microstructures with varying crystalline phases and morphology.

As long as the effects of microstructural evolution are minor or negligible, the120

description of plastic anisotropy through the proposed model would help under-

stand the macro-scale response of the multi-phase microstructure. Eventually,

a method to construct the anisotropic yield sections of multi-phase materials

from RVE simulations, via the current model, is also discussed. There are sev-

eral earlier works in literature that aim at the construction of the yield locus125

of polycrystalline aggregates of single phase materials [39]. However, attempts

to characterize the same from microstructural FE simulations of multi-phase

materials are relatively scarce [23]. The framework demonstrated in this article

can also offer an efficient solution in this direction. It provides a powerful tool

to study and quantify the yield behaviour in terms of different microstructural130

components from full-field FE simulations on the RVE. The effects of different

parameters such as grain morphology, phase fraction and distribution, initial

texture etc. of a well defined multi-phase 3D microstructure on the yield locus

sections can be analysed. Also, such a scheme can eventually be used to con-

struct plastic potential functions of the multi-phase RVE, which can be directly135

coupled to a macro-scale simulation.

The modelling framework is demonstrated through multi-scale simulations

on a statistical microstructure of Duplex steel, consisting of Austenitic (FCC)

and Ferritic (BCC) phases. The synthetic RVE was constructed using the ma-

terial characterization information extracted from literature [40]. Due to the140

unavailability of experimental data, the authors have utilized the experimen-

tal data available from literature [40] for assessment of the numerical model.

Uniaxial tensile test simulations were performed on the microstructure and the

6
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homogenized response of the RVE was compared to the experimental data re-

ported for the same grade of Duplex Stainless Steel. The anisotropy predictions145

by the developed model were further assessed through the comparison of lat-

tice strains obtained from virtual diffraction simulations performed on the RVE,

with those obtained from in situ neutron diffraction [41] experiments from the

reference literature [40]. There are a number of similar works in literature that

have performed a comparative study of lattice strain predictions with different150

numerical models for a variety of applications [42, 43, 44, 45]. In our case, the

predicted diffraction curves for the individual phases, for different diffraction

planes, were correlated with the ND experimental data. Finally, a yield locus

section of the synthetic microstructure was also constructed.

This paper is organized as follows. An overview of the proposed model fol-155

lowed by a detailed explanation of individual components is described in Section

2. Section 3 describes the synthetic material characteristics and the FE model

parameters, along with an account of the numerical simulations performed on

the RVE. The results from the simulations are discussed in Section 4 and the im-

portant features of the framework are presented as well. Finally, the conclusive160

remarks are summarized in Section 5.

2. Multi-scale multi-phase numerical model

The proposed multi-scale numerical model is capable of predicting the macro-

scale material response, averaged from the FE simulations on a meso-scale RVE,

encapsulating a micro-scale material model derived from CP based material def-165

initions. The numerical implementation of the model was established through

an assembly of three distinct components, each corresponding to the existent

scales in the set up.

• Micro-scale: Phase specific plastic potential functions in the stress space,

at the level of individual grains, are derived from the theory of single170

crystal plasticity. For a given stress state, the plastic strain rate tensor is

readily obtained from such a plastic potential function.

7
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• Meso-scale: The RVE is constructed from the microstructural input pa-

rameters (unambiguous for a given material), incorporating the morpho-

logical features, phase information and grain orientations. The FE simu-175

lations are performed using an Abaqus VUMAT capable of handling ma-

terial anisotropy and multiple phases, with the material response at each

integration point defined by the phase specific plastic potential function.

• Macro-scale: The homogenized response of the RVE, obtained through

volume averaging of each grain and phase, is considered to characterize180

the behaviour at every material point (or the integration point) of any

macroscopic simulation.

2.1. Micro-scale: Single crystal plasticity based Facet plastic potential functions

The micro scale anisotropic material behavior of the phases in the RVE is

defined through plastic potential functions obtained via the Facet method [34]185

for the single crystals of rate insensitive materials. Always, in a given time

step of an elasto-plastic simulation, the gradient of a plastic potential function

defined in the stress space (φ(σ) with σ being the stress tensor) would return

the incremental plastic strain tensor, as

dε = dεe + dεp

dεp = dλ
∂φ

∂σ
,

(1)

where the positive scalar value dλ is a proportionality factor, with dεe and dεp190

representing the elastic and plastic strain increments of the total strain tensor

dε, respectively. In the associated flow theory based on the normality rule, such

a plastic potential function is essentially the yield function of the given material.

The calibration of such functions can be performed through mechanical tests as

well as through simulations on multilevel models. The readers are requested to195

refer to literature for further understanding of such methods [35, 46, 34, 47], as

an in depth explanation is beyond the scope of the article.

8
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For our work, the focus is on the utilization of the Facet method to derive

the plastic potential function of single crystals. For single crystals that obey the

Generalized Schmid law of crystallographic slip, it is possible to define a convex200

yield surface with an associated plastic strain rate confined to the normality

rule [48]. Starting from the laws of single crystal plasticity, we construct plastic

potential functions described with respect to the crystal reference system, and

they would eventually characterize the response of individual grains in the RVE

with attached orientations. The function will evaluate the onset of yielding and205

will return the corresponding plastic strain rate vectors at every time step of the

FE simulation, for each integration point. The establishment of such grain level

plastic potential for individual phases of the multi-phase material can facilitate

computationally faster FE simulations as compared to direct full field CPFEM

simulations.210

According to an earlier work on plastic potentials [35], from a plastic poten-

tial function Ψ(S) for a polycrystal in deviatoric stress (S) space, the plastic

strain rate can be obtained as

Dp =
1

k

∂Ψ

∂Sp
. (2)

Here the index p denotes the components in a 5D deviatoric vector space. The

plastic potential is described by a homogeneous expression of rank k as215

Ψ(ηS) = ηkΨ(S) with η > 0 and hence Dp(ηS) = ηk−1Dp(S). (3)

Equation 3 can be satisfied by choosing the plastic potential to be a homoge-

neous polynomial of the form

Ψ(S) = [Gn(S)]m such that m =
k

n
.

(4)

The degree n of the homogenous polynomial Gn(S) is always a positive even

number. For such plastic potentials, the rate of the plastic work per unit volume

(Ẇ ) is found to be equal to Ψ. Equation 3 is similar to a conventional power220

9
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law showing that the strain rate increases with the (k− 1)th power of the stress

magnitude. On comparison of Equation 3 to a stress-strain rate relationship of

the type σ ∝ Dµ, the physical meaning of k is given by k = (1 + µ)/µ, where µ

represents the strain rate sensitivity exponent. According to the Facet approach

[34], the homogeneous polynomial Gn(S) can be chosen to be of the form225

Gn(S) =

K∑
κ=1

λκ(dκpSp)
n = Ẇ

1
m with λκ ≥ 0. (5)

Here, K corresponds to the number of strain rate modes (unit strain rate vec-

tors) imposed on a CP derived model to fit the parameters λκ and dκ. It must

be noted that dκ refer to the imposed plastic strain rate vectors to calibrate

the plastic potential function but not the global plastic strain rate defined in

Equation 2. Also, dκp and Sp denote the components of the 5D deviatoric230

vectors dκ and S (Einstein summation over p), respectively. As the value of

n→∞, the plastic potential function becomes more faceted with sharp vertices

(less rounded) and has much closer resemblance to a single crystal yield surface.

For a rate-insensitive material with strain rate sensitivity exponent µ → 0, i.e.

1
m → 0, the mathematical description of the yield locus can be written from235

Equation 5 as

Gn(S) = 1. (6)

To identify the function Gn(S), the parameters λκ must be fitted using a large

number of plastic strain rate and yield stress pairs (dκ and Sκ) derived from a

strain driven CP model for a nearly equidistant grid in stress space.

Here, we have developed an alternative method, aimed specifically at ob-240

taining the function Gn(S) for single crystals. Let us now consider the yield

surface of a single crystal with just one slip system (κ). The yield surface would

then be given by the Generalized Schmid law as

Mκ : σ = ±τc with Mκ =
(nκ ⊗ bκ) + (bκ ⊗ nκ)

2
(7)

10
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where nκ and bκ (unit vectors) denote the slip plane normal and slip directions,

respectively. The tensor Mκ is symmetric and can be represented as a vector245

in the 6D stress space and from now on we always refer to its vector form.

Here, τc is the Critical Resolved Shear Stress (CRSS) and σ is the stress tensor

in the crystal reference frame. Such an yield locus with just one active slip

system would consist of two separate yield surfaces (due to ±τc), which are

essentially hyperplanes in the 6D vector space. Note that, here we talk about the250

whole stress tensor but not the deviatoric stresses, which, for an incompressible

material, can be represented in a 5D deviatoric vector space. The resulting

expression for the yield locus of such a single crystal with one slip system, in

the XX−Y Y plane is given in Equation 8, and can be represented via Figure 1.

M11
κ σXX +M22

κ σY Y = ±τc (8)

It can be shown that for a single crystal with one slip system, the coefficients of255

such an hyperplane are proportional to the components of the plastic strain rate

vector dκ. This would also pertain to the normality rule for associated plasticity

where the plastic strain rate vector for a point lying on the yield surface, here

the hyperplane, is always normal to it. In an alternate sense, a plastic strain

rate vector acting normal to the yield surface would essentially activate that260

particular slip system. Such a plastic strain rate vector can be denoted by

dκ = Mκγ̇κ. (9)

where γ̇κ is a measure of the shear strain rate in the slip system. We can thus

obtain the plastic strain rate vector corresponding to the activation of a given

slip system through Equation 9. For a known number of slip systems in a single

crystal, a set of plastic strain vectors that each correspond to the activation265

of individual slip systems can be determined. The resulting hyperplanes corre-

sponding to all these vectors would eventually define the convex yield surface of

a single crystal in the 6D vector space, with the yield locus looking much similar

to that of a “6D facet eye” with sharp vertices. Along this line of motivation,

11
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Figure 1: The yield locus of a single crystal with one slip system defined by Equation 8. The

normal plastic strain rate vectors are denoted by dκ.

we utilize these exact plastic strain rate vectors that activate the slips systems270

of a single crystal to derive the Facet plastic potential function. The test plastic

strain rates dκ of Equation 5 that calibrate the plastic potential function are

replaced by those from Equation 9 that correspond to the activation of each of

the slip system in a given single crystal. The number of terms in the resulting

Facet expression is thus equal to the number of slip systems in the given crystal275

structure. As per the Taylor theory [20] for plastic strain in metals, the fric-

tional power dissipated or the work done in the activation of a single slip system

κ can be represented by the work conjugate of the CRSS and slip system shear

strain rate, γ̇κ. Hence, the function Gn(S) of a single crystal plastic potential

12
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in terms of the work normalized plastic strain rates, is given by280

s∑
κ=1

λκ(dwκpSp)
n = 1. (10)

where s denotes the number of slip systems in a single crystal and dwκp are the

work normalized strain rate vector components in the deviatoric strain rate

space. In the above equation, the work normalized strain rate vectors are

dwκ =
Mκγ̇κ

Ẇκ

with Ẇκ = τcγ̇κ. (11)

Since work normalized strain rate vectors corresponding to the single crystal

slip systems are used, the values of the parameters λκ can be taken as 1 for all285

the terms in Equation 10 (equal weight assignment to each slip system). Such

a Facet expression, for large values of n (say n > 20) will result in a faceted

single crystal yield locus.

The xx-yy yield section of the FCC single crystals for different values of n,

generated from the Facet plastic potential are presented in Figure 2. The slip290

systems under consideration are {111}〈110〉. It can be immediately realized that

the increase in the order of the Facet expression makes the yield locus section

from the plastic potential more akin to the theoretical yield locus section. Since

the vertices of the facets are rounded, the common issue associated with the de-

termination of the plastic strain rate direction at the vertex in rate-independent295

CPFEM calculations is avoided as well.

In an earlier work in literature [36], a similar analytical expression for the

single crystal yield locus of FCC crystals involving an exponent was also derived.

However, the authors had utilized the Generalized Schmid law (Equation 7) to

derive flow surface as an inner envelope of the resulting hyperplanes from all the300

slip systems combined. A hypersurface was derived from homogeneous functions

of degree 1 (each from a hyperplane), with a real exponent, the increase in value

of which led to a closer resemblance to the actual yield locus.

13
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Figure 2: Theoretical (enclosed by the dash-dot lines) and Facet derived yield section (con-

tinuous lines) of the FCC single crystals with stress components (σXX and σY Y ) normalized

with the uniaxial yield stress (σ0). The yield section corresponds to crystals with a crystal

reference frame coinciding with the global reference frame.

2.2. Meso-scale: FE model of the multi-phase RVE

2.2.1. RVE construction305

The meso scale FE simulations are performed on an RVE capable of repre-

senting the underlying microstructure in sufficient detail. Features such as mor-

phological distribution of phases, phase volume fraction, grain sizes and shapes,

lattice orientations etc. can be included in the microstructure. The construc-

tion of the RVE is done in Dream3D (an open source microstructure generation310

software [10]). Dream3D facilitates the digital reconstruction of 3D microstruc-

tures or the translation of statistical material characterization parameters into

a representative microstructure (Figure 3). The former can be achieved via

full topological microstructural representations (like 2D serial EBSD sections)

while the latter utilizes distribution functions of grain size and aspect ratios,315

phase composition and orientation distribution function to generate synthetic

14
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microstructures. The microstructures generated can be periodic in nature too.

The output from Dream3D can be obtained as Abaqus input files of the FE mesh

with elements grouped together into several domains (referred to as ”model sec-

tion” within the Abaqus environment) that each represent an individual grain.320

An additional file containing the orientation of the grains as Euler angles along

with the phase information is also generated. A Python script is then used

to import the input files and assign phase specific material properties and ori-

entations to different grains in the microstructure, and finally set up Abaqus

simulations with appropriate boundary conditions.325

Figure 3: Microstructure construction using Dream3D from EBSD maps or statistical distri-

butions such as grain size distribution and pole figure. Please note that the above figure is a

mere graphical illustration of the actual microstructure generation process, and does not refer

to the microstructure used in further simulations.

2.2.2. FE simulations

The FE simulations are performed in Abaqus using an explicit user mate-

rial subroutine (VUMAT) within the Hierarchical Multiscale (HMS) software

[21]. The Abaqus FE mesh consists of several domains with groups of elements

(Abaqus model sections), each representing a specific grain in the microstruc-330

15
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ture. The Euler angle information of each grain, obtained from Dream3D, is

attached as a local reference frame to the corresponding grain section (Abaqus

material orientations). This ensures that the transformation of stresses/strains

from the global to the local reference frame of the VUMAT is performed inher-

ently by Abaqus. However, sufficient care must be exercised in analyzing the335

Abaqus results from the FE simulations, as the stress and strain tensor out-

puts are always returned with respect to the local (grain) reference frame. A

unique phase ID is assigned to every integration point in the FE mesh using

the information about the phase to which a given grain belongs to, and this is

eventually utilized within the VUMAT to choose the appropriate phase specific340

plastic potential function.

The HMS based VUMAT adopts a stress integration algorithm based on the

formulation of “Elastic Predictor-Plastic Corrector (Radial return mapping)

[49]” at every explicit time step. The algorithm calculates an elastic trial stress

using the fourth-rank elasticity tensor at the start of the time increment, fol-345

lowed by a plastic correction, such that the final stress tensor lies approximately

on the yield locus. A brief summary of the steps involved in the calculation of

the stress increments via the VUMAT is provided here. For a typical time

increment, the quantities before and after the time step are denoted by the su-

perscripts (t) and (t+∆t), respectively. The trial stress for an explicit time step350

is

σtr = σ(t) + Ce : ∆ε, (12)

where Ce is the fourth order elastic tangent modulus. The onset of yield is

assessed through a positive scalar value α such that σtr/α lies on the yield

surface. Ideally, α ≤ 1 for an elastic time increment and α > 1 for a plastic

time increment. For the latter, the stress at the end of the time increment355

can be obtained through a plastic correction to the trial stress by means of the

16
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incremental plastic strain ∆εp as

σ(t+∆t) = σ(tr) − Ce : ∆εp with

∆εp = ∆εpD̂p.

(13)

Here, D̂p is the unit vector in the plastic strain rate direction or the plastic strain

rate mode. The plastic strain increments are eventually determined using the

phase specific plastic potential functions as follows. From the concept of work360

conjugates, the rate of plastic work per unit volume done can be defined as

Ẇ = σ : Dp = σeqDeq
p , (14)

with the incremental form of the same being

∆W = σ(t+∆t) : ∆εp = σeq (t+∆t)∆εeq (15)

where σeq, Deq
p and ∆εeq are the equivalent stress, equivalent plastic strain rate

and equivalent plastic strain, respectively. A deviatoric stress mode Ŝ of the

trial stress, of unit magnitude, is defined as365

Ŝ =
S

‖S‖
. (16)

Using the plastic potential function defined in terms of the above stress mode

(Ψ(Ŝ)), the plastic strain rate mode can be obtained as

D̂p =
1

‖Dp‖
∂Ψ(Ŝ)

∂Ŝ
. (17)

Further a scaled plastic potential function is also defined for numerical conve-

nience, as given in:

ψ(Ŝ) =
Ŝ : D̂p

Ψ(Ŝ)
. (18)

17
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The incremental relations of the equivalent strain and equivalent stress are370

shown in the equations below. The latter is the linearized form of the grain

hardening law with H as the hardening modulus, as shown below:

∆εeq = ∆εpψ(t)(Ŝ)

σeq (t+∆t) = σeq (t) + H(t) ∆εeq.
(19)

Combining Equations 13, 15 and 19, the incremental plastic strain can immedi-

ately be derived from the relation:

∆εp =
σ(tr) : D̂p − σeq (t)ψ(t)(Ŝ)

H(t)[ψ(t)(Ŝ)]2 + (Ce : D̂p) : D̂p

. (20)

The stress tensor at the end of the time increment can thus be calculated from375

Equation 13 using the above relation. At each integration point for which the

VUMAT is evaluated, the corresponding phase specific plastic potential function

is provided as input.

2.2.3. Boundary conditions

For microstructural simulations, the usage of periodic microstructures cou-380

pled with Periodic Boundary Conditions (PBCs) would provide a better esti-

mate of the effective properties [50, 51], and hence the usage of the same is

more common nowadays. In this section, we have implemented the prescription

of PBCs within the Finite Element set up of the developed model for 3D RVE

simulations. Eventually, we have also extended the same formulation to impose385

specific stress states on the RVE. In principle, the reaction forces on the faces

of the RVE are controlled throughout the course of the simulation such that the

RVE Cauchy stress tensor is always directed along a desired path. The ability

to impose such stress BCs would help construct the yield locus from our mi-

crostructure simulations. This has been demonstrated in the following sections390

of the article.

The prescription of nodal displacements or forces as Boundary Conditions

(BCs) is possible within a general FE framework. For displacement driven sim-

ulations, it is possible to define the macroscopic deformation gradient history in

18
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the form of PBCs. In general, periodicity in BCs for two faces with translational395

symmetry can be represented as

xj − x0 = F (Xj −X0). (21)

Here the index j represents the pair of opposite faces (congruent faces) contain-

ing nodes with a pure translational symmetry along the global reference axes.

X and x are the position vectors at the initial and final configurations, respec-

tively, with F = 1 + ∇u being the large strain deformation gradient tensor. L400

is the geometrical dimension of a regular cubic RVE. For such a 3D RVE, the

displacement on the opposite faces of the RVE can be expressed as

uji − u
0
i = L ∇uij with i, j = 1 to 3. (22)

The above equations can be set up within the FE framework in Abaqus through

the introduction of 3 dummy nodes (at a distance from the faces of the RVE),

along the 3 coordinate axes with Degrees Of Freedom (DOFs) i. This can be405

established via linear constraint equations where the DOFs of the nodes on

the congruent faces are tied to the DOFs of the dummy nodes such that the

displacements of the latter would eventually represent the components of the

displacement gradient shown in Equation 22. It is worth taking note of that

the dummy nodes are essentially ghost nodes that do not have any physical410

motivation, rather, merely exist as a numerical technique to impose the PBCs.

Also, sufficient constraints were defined to prevent the rigid body translation

and rotation of the RVE. It is essential to set up additional constraint equations

for the nodes on the corners and edges of the 3D RVE in order to avoid redun-

dant conditions resulting from the equations on the common nodes on adjacent415

faces. Otherwise, the dependent boundary constraints on shared nodes will re-

sult in inconsistencies in Abaqus FE simulations [52]. It can be accomplished

by establishing a “master-slave” set of nodal constraint equations, in line with

Equation 22. A graphical representation of one such case, for the edge nodes of

a cubical RVE parallel to the Z axis, is shown in Figure 4. The master edge is420
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represented as 1, while the slave edges are represented by 2, 3 and 4. The su-

perscript denotes the edges to which the nodes belong to while the subscripts X

and Y of the ∇u term represents the perpendicular axes to the pair of opposite

faces whose displacement gradient terms are utilized. The index i is the DOFs

of the nodes.425

Figure 4: Figure showing an edge set consisting

of edges parallel to the Z axis.

u2
i − u1

i = L ∇uiY

u4
i − u1

i = L ∇uiX

u3
i − u1

i = L ∇uiY + L ∇uiX

(23)

Further, the implementation of stress BCs is done using the relation between

the element nodal reaction forces and the first Piola-Kirchoff stress tensor (also

known as the Nominal stress tensor)(P ), defined by the Cauchy stress tensor

(σ) and the deformation gradient tensor (F ). The stress tensor P , a measure

of the force acting on an element in the final configuration divided by the area430

of the respective element in the initial configuration is related to σ as

P = |F |σF−T . (24)

It must be insisted that despite the Cauchy stress being symmetric, the first

Piola-Kirchoff stress is not symmetric. The reaction forces on the element nodes

can then be established as

RKi = A PiK . (25)

where RKi and A are reaction forces on the Kth dummy node located along435
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the global coordinate axis and the the area of the RVE face over which the

force acts, respectively. The numerical set up within Abaqus to load the RVE

along specific stress paths can be achieved by defining a dummy user element

(User subroutine: VUEL), composed of the three dummy nodes carrying the

PBCs, where the nodal reactions forces of the element are set up via Equation440

25. Thus, the DOFs of the dummy nodes and in turn the dummy element are

tied implicitly to the DOFs of the nodes on the congruent faces of the RVE

boundary via the constraint equations. The user element contribution to the

external force vector in the global FE system of equations is formulated in terms

of the Cauchy stress state σ to be imposed on the RVE, as in Equations 24.445

The Cauchy stress paths can then be specified as input parameters to the user

element.

2.3. Macro-scale: Homogenized RVE response

The macroscopic material response of the meso-scale microstructure is ob-

tained through a homogenization procedure. Since the FE output is obtained450

at discrete integration points, the homogenized response can be calculated by

volume averaging the quantities over the domain of interest. The RVE response

can thus be calculated by

ζRV E =
1

VRV E

 ∑
phases

 ∑
grains

{ ∑
nodes

Q−1ζnodeQ
T−1 ∗ Vnode

}
 . (26)

Here Vnode and VRV E denote the volume associated with each node (1/8th of

an eight node brick element volume) and the total RVE volume, respectively.455

The rotation matrix Q, constructed from the Euler angle orientation of a given

grain, is used to transform the tensor ζ from the local reference frame (of a

grain) to the global reference frame. The individual phase and grain averaged

response can also be extracted via the same procedure.
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3. Material and Methods460

3.1. Microstructure of Duplex steel

The numerical simulations were performed on the synthetic Duplex steel

microstructure shown in Figure 5. The RVE was constructed using statistical

parameters extracted from literature [40], for commercial Duplex Stainless Steel,

and hence the same shall be considered as reference material to evaluate the465

model predictions. The volume fractions of austenitic and ferritic phases were

0.42 and 0.58, respectively. The grain size distributions for the individual phases

were chosen such that the average grain sizes of the former and the latter were

5.0 µm and 9.0 µm. The resulting sizes of the equiaxed grains vary over a range

of 4.5-5.5 µm for austenite and 7.0-11.0 µm for ferrite, and were distributed470

such that the resulting RVE was periodic in nature. The grain orientations were

assigned in a random manner without any specific strong texture components

akin to the reference literature [40]. The RVE, of size 80×80×80 µm3, consisted

of ∼ 2400 grains. The dimensions of the RVE were chosen such that there were

comparable number of grains with respect to the reference material with a wide475

range of grain sizes.

Figure 5: RVE showing the distribution of the grains in the synthetic microstructure. Grain

distribution and their boundaries are depicted by the color overlay.
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The material laws for the phases in the RVE were defined via single crystal

Facets derived from the procedure established in Subsection 2.1. The slip sys-

tems chosen for the austenitic and ferritic phases were that of the typical FCC

and BCC single crystals. The slip systems under consideration for the FCC and480

BCC single crystals were {111}〈110〉 and {110}〈111〉 + {112}〈111〉, respectively.

A higher order plastic potential function was able to capture the faceted nature

of the yield locus, and here an order of 50 was used for the simulations. The

resulting yield loci for both the phases are plotted along the XX-YY plane in

Figure 6. The yield stresses were normalized with respect to the uniaxial tensile485

yield stress (σ0) and the plotted sections correspond to crystals with reference

frames oriented along the global reference frame of the FE mesh. The choice of

the CRSS for each phase is not significant as they do not explicitly enter into the

calculations since the yield locus is always normalized with respect to the yield

stress from uniaxial tension. In principle, the plastic potential function provides490

the shape of the yield locus while the hardening law acts as a scaling factor on

the yield locus during plastic time increments. The hardening behavior of the

individual grains was given by a phase specific isotropic Swift hardening law

defined as a function of von Mises equivalent strain in the crystal, operating at

the level of individual grains in the RVE. The parameters of the grain hardening495

law were fitted through iterative numerical simulations of tensile tests performed

on the RVE. The initial parameters of the grain hardening law for the fitting

simulations were obtained from the phase flow curves available in literature for

the CPFEM simulations on the reference Duplex Stainless Steel microstructure

[40]. The differences between the predicted phase flow curves from the simu-500

lation and the reference phase flow curves were then applied as correction to

the grain hardening law input for the subsequent iterations. The process was

repeated until reasonable predictions were obtained for the phase flow curves.

The anisotropic single crystal elastic constants (matrix components cijkl of the

fourth order tangent modulus in the crystal reference frame) [40] and hardening505

law parameters of individual phases used in the simulations are summarized in

Table 1.
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Figure 6: The normalized XX-YY yield sections of the individual phases used in the simulation,

Austenite (left) and Ferrite (right), derived from a Facet plastic potential of order 50.

The FE mesh of the RVE consists of 40×40×40 eight node brick elements (of

C3D8 type in Abaqus), with the dimension of each element being 2×2×2 µm3.

The RVE mesh discretization was coarse enough to capture the average grain510

size of the equiaxed grains in the individual phases obtained from literature [40],

while remaining computationally efficient. The Abaqus FE model represented

in Figure 7 shows the phase distribution within the microstructure. The im-

posed loading rate during the explicit time step was controlled such that the

simulations were well within the quasi-static regime, i.e. the ratio of kinetic515

energy to total energy was less than 1%. The Abaqus computations with PBCs

(through additional constraints imposed on the FE model) took ∼ 2.5 hours for

completion, using an Intel Xeon processor without parallelization.

3.2. Tensile test simulation

Numerical simulation of a displacement controlled uniaxial tensile test was per-520

formed on the RVE by applying PBCs. The displacement boundary conditions

of the tensile test, for three pairs of opposite faces of the FE mesh are shown

1σeq = K(εeq0 + εeq)n, σeq & εeq are the equivalent stress and effective plastic strain,

respectively.
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Material properties Austenite Ferrite

Density (kg/m3) 7800 7800

ciiii (GPa) 197.5 231.4

ciijj(i 6= j) (GPa) 124.5 134.7

cijji = cijij(i 6= j) (GPa) 122 116.4

Swift hardening law parameters1

K (MPa) 1345 1796

n 0.4347 0.3370

εeq0 0.1133 0.0540

Table 1: Macroscopic material parameters [40] of individual phases used in Abaqus simula-

tions.

in Table 2. The applied displacement is imposed as a smooth function over

time. Additional BCs to prevent rigid body translation and rotation were also

defined.525

Uniaxial tension along X direction

RVE faces ‖ YZ plane: RVE faces ‖ XZ plane: RVE Faces ‖ XY plane:

uL1 − u0
1 = 10 µm uL1 − u0

1 6= 0 uL1 − u0
1 6= 0

uL2 − u0
2 = 0 uL2 − u0

2 6= 0 uL2 − u0
2 6= 0

uL3 − u0
3 = 0 uL3 − u0

3 = 0 uL3 − u0
3 6= 0

Table 2: PBCs for the uniaxial tensile test simulation. The constraint equations with a RHS

value of 0 were imposed to prevent rigid body motions.

3.3. Virtual diffraction simulation

As a test to validate the method on phase level, virtual diffraction experi-

ments were conducted on the synthetic duplex steel microstructure to measure

the lattice strains, for further comparison with the experimental data in the

reference literature [40]. The RVE was subjected to tension along X direction530
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Figure 7: Abaqus Finite Element mesh showing the phase distribution in the RVE. Austenite

and ferrite grains are colored green and white, respectively.

using the same BCs as in Table 2. The diffraction calculations were then per-

formed through a post processing routine set up in Python. The diffraction

vector (k̂) was aligned along the loading direction. In order to select the grains

that contribute to a diffraction signal in the given direction, for a given grain,

the normal to the specific diffraction plane was rotated from the local reference535

frame (n̂grain) to the global reference frame (n̂global) via the Euler rotation

matrix (Q), as shown below

n̂global = Q−1 · n̂grain. (27)

If the angle between the vectors n̂global and k̂ lies within the chosen angle spread

(here 6.5◦ was used in line with the experimental data used for evaluation),

then that particular grain was said to contribute to the diffraction peak. The540

volume averaged lattice strain of the respective grains was then compared with

the experimental results [40]. It should be noted that the lattice strains were

calculated from the total and plastic strain values from the numerical simulation,

which were written into State Dependent Variables (SDVs) from the Abaqus

VUMAT during the simulation. The diffraction planes studied include (200),545
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(311) and (111) for the austenitic phase, and (200) and (211) for the ferritic

phase.

3.4. Yield locus prediction

A numerical procedure to construct the anisotropic yield locus of multi-phase

microstructures is presented below. The RVE is loaded into specific stress (true550

stress) states, using the stress based PBC framework explained in Subsection

2.2. Here, the stress path or the stress mode [53], has the meaning of a unit

vector (which in reality is a tensor), pointing towards a specific direction in the

6D stress space. The point on the yield locus in the direction specified by a

stress mode Ŷ is given by555

σy = σyŶ . (28)

σy is the distance from the origin to the point on the yield locus, in the direction

of the stress mode (Figure 8).

Figure 8: A yield section on the xx-yy plane showing the stress modes Ŷ for different stress

states.

In an earlier work [54], a method to define a stress-strain curve for multi-axial

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

stress state was provided. For a multi-axial stress mode of the form

σ = σŶ , (29)

it is possible to define a scalar variable εp from the total plastic strain rate ε̇p560

as

εp =

∫ t

0

Ŷ : ε̇p dt. (30)

The scalars σ and εp represent a work conjugate pair. A stress strain curve, as

shown in Figure 9, can be constructed using these scalar variables corresponding

to the imposed multi-axial stress state.

Figure 9: Yield stress vs. plastic strain curve showing the yield point for a multi-axial stress

state.

From such a curve, the onset of yield can be deduced as the point σy where565

there is a transition from the linear to the non-linear part. A conventional

offset plastic strain of 0.2% (similar to the Rp0.2 offset yield strength adopted in

industrial standards) is considered to denote the transition from the elastic to

plastic regime for our calculations. To describe the yield locus along a specific

section, say XX − Y Y , a series of stress modes separated by a constant angle,570

lying on that particular section can be imposed as BCs for the FE simulations.
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Here, as shown in Figure 10 and Equation 31, stress modes obtained by changing

the value of θ such that 0◦ ≤ θ ≤ 90◦ with a spatial resolution of 5◦, were defined.

Figure 10: Figure showing a stress mode at an

angle θ to the X axis.

σ = σ


cosθ 0 0

0 sinθ 0

0 0 0

 with

σ = 1200 MPa.

(31)

Sufficient care must be taken in choosing the magnitude of the stress tensor

σ (= 1200 MPa for all the stress modes), as it is essential that the RVE is575

loaded well beyond the yield stress for all angles θ. From the homogenized RVE

responses for different stress states, stress strain curves as in Figure 9 can be

constructed, from which points lying on the yield locus section can be identified.

4. Results and Discussion

4.1. Tensile test simulations580

The homogenized response of the RVE was used to construct flow curves of

the microstructure along with those of the individual phases. The phase flow

curves are obtained from the homogenized response of the grains embedded

in the microstrcuture. The calculated flow curves are plotted in Figure 11

along with the experimental stress-strain data procurred from literature [40],585

for an uniaxial tensile test performed on the reference Duplex Stainless Steel.

It is worth mentioning that the displacement applied on the RVE was such

that the true strain values from the simulation are sufficient enough and well

within the available range of experimental data from the reference literature for

comparison.590
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Figure 11: The flow curves of the RVE and individual phases plotted alongside the experi-

mental data of the reference material [40].

The simulated stress-strain curve was in good agreement with the experi-

mental data for strain values > 0.05. At lower strains, although the differences

were not extremely large, the macroscopic stresses from the simulations de-

picted small deviations from the experimental curve. The RVE flow stresses

were a non-linear combination of that of the phases and hence, the calibra-595

tion of the individual grain hardening law is significant in obtaining an exact

match with the experimental results. This can be done through fitting the

hardening law parameters through an iterative procedure [55] or by obtaining

actual material data from micromechanical material characterization tests such

as micro-pillar compression [56]. It is also worth mentioning that since tex-600

ture evolution has not been included in the current model, the effect of texture

hardening cannot be captured by the current set up. The material response of

the RVE is somewhat dominated by the ferritic phase because of the compara-

tively greater volume fraction. The stiffer behavior of the ferritic grains under

deformation is compensated by the comparatively compliant austenitic grains.605

Hence, the austenitic phase carries a greater proportion of the strains in com-

parison with the ferritic phase, and vice versa is observed with respect to the
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stresses. The strain partitioning between the Duplex steel phases is denoted in

Figure 12. There are no extreme differences between the strains carried by the

individual phases due to homogeneous phase distribution of grains within the610

microstructure, which does not result in formation of islands/walled regions of

the harder/softer phase.

Figure 12: Strain partitioning curves of individual phases in the Duplex steel RVE.

Figure 13 provides an overview of the homogenized equivalent stress-strain be-

havior of the phases in the RVE, plotted along with the imposed isotropic grain

hardening law (Swift law). The continuous lines represent the phase hardening,615

i.e. the strain hardening in the individual phases of the synthetic microstruc-

ture, while the dashed lines are the grain hardening laws defined during the

simulation i.e. the hardening curves of free ferrite and austenite. It can be

immediately seen that the individual phase hardening is much higher than that

of the individual grain hardening curves. The difference between the respective620

phase hardening curves shows the effect of phase interaction (i.e. grains of the

phases). The comparatively coarser and harder ferritic grains undergo much

higher strain hardening than the austenitic grains [57]. Also, the deformations

in the softer austenitic grains cause stress concentration zones in the harder

ferritic phase. Several such zones can be observed in Figure 14, where a YZ625

section of the deformed synthetic microstructure is depicted. The von Mises
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stress is plotted alongside the distribution of phases. The regions of stress hot

spots (stress concentration zones) in the ferritic phase are often surrounded by

austenitic grains carrying higher strains. Also, the rate of strain hardening, i.e

the slope of the strain hardening curves in each phase was considerably different630

as well.

Figure 13: The equivalent stress-strain curves of the phases plotted along with the imposed

grain hardening law.

Figure 14: YZ sections of the synthetic microstructure showing the Von Mises stress plot

(left) and phase distribution (right). Austenite and ferrite grains are colored green and white,

respectively. The stresses are expressed in N/m2(Pa).
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4.2. Virtual diffraction simulations

The lattice strains from the numerical simulations, along the loading direc-

tion, are plotted as a function of the macroscopic RVE stresses in Figures 15a

and 15b, corresponding to the austenite and ferrite, respectively. The ND ex-635

perimental data acquired from the reference literature [40] were used for the

evaluation of numerical predictions.

(a) Austenite

(b) Ferrite

Figure 15: Lattice strains along the loading direction for different diffraction planes plotted

as a function of the macroscopic RVE stresses. The simulation and experimental curves [40]

in subfigures (a) and (b) are for the austenite and ferrite phases, respectively.
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The average number of grains contributing to each diffraction curve for the

austenitic and ferritic phases were approximately 12 and 7, respectively. In

general, the simulation curves overestimate the lattice strains for the austenitic640

phase. This is in line with the homogenized flow curves depicted in Figure 11,

where at lower strains, the macroscopic flow stresses were underpredicted as

well. Due to the lack of a definite transition from the elastic to plastic response,

the onset of yield in a lattice plane is located typically at an offset plastic strain

value, εp = 0.2%. The adopted yielding condition is also coherent with the645

RVE yield locus calculations performed further. It must be noted that the com-

mencement of plastic flow in the simulation curves is very subtle unlike the case

of experimental results. The (311) and (111) lattice strains of the austenitic

phase were in good agreement in the elastic regime, with their respective yield

strengths being ∼ 630 MPa and ∼ 730 MPa. After the onset of plasticity,650

there were deviations between the numerical and experimental outputs, which

seem to get reduced at higher stress values. The maximum difference among

the diffraction curves of the austenitic phase was observed in the case of (200)

lattice strains, with yielding at ∼ 540 MPa. There are prior instances in liter-

ature that report such deviations in the numerical-experimental comparison of655

the (200) lattice strains belonging to the austentic phase, owing to the lack of

precision in experimental measurements with low Bragg intensity [58] or from

the resulting creep at higher stresses [59], in Duplex steel with similar phase

composition. Nevertheless, the (200) lattice strains from the ferritic phase de-

note almost an exact match with the experimental observations. Even beyond660

the commencement of yield (∼ 630 MPa), the slope of the lattice strain plots

remain unaffected by the plastic deformation. This could be due to the fact

that there was no major redistribution of stresses between the phases/grains,

at least for the present diffraction plane. Also, the observation might be an

indication of strong work hardening. The plots from the case of (211) lattice665

strains (∼ 760 MPa) show that the simulation results underpredicted the actual

values. This was, however, coherent with the numerical comparisons attempted

in the reference literature [40] as well.
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Phases Austenite Ferrite

Ratio E311/E200 E111/E311 E211/E200

Experiments 1.20 1.56 1.23

Simulations 1.45 1.56 1.64

Table 3: Diffraction elastic constant ratios calculated from the lattice strain plots for both

the phases. The subscripts denote the diffraction planes.

Despite the inability of the model to capture the sensitive variations ob-

served in the experimental readings of any single diffraction curve, the overall670

changes in the diffraction elastic constant, until the 0.2% offset plastic strain,

of the studied diffraction curves for different diffraction planes were replicated

to a good extent in the numerical predictions. From Table 3 containing the

ratios of these elastic constants calculated from the lattice strain plots in Fig-

ures 15a and 15b, it can be seen that an exact correspondence is observed for675

the E111/E311 ratio of the austenitic phase while the other ratios contained a

considerable amount of error. The latter is the manifestation of the deviations

reported above for (200) and (211) lattice strains of the austenite and ferrite

phases, respectively. It can also be realised that the lattice strain predictions de-

pend on the diffraction planes under consideration. The differences in the lattice680

strain values for a given stress value implies the preferential onset of plasticity

in grains with specific orientations. The comparatively higher lattice strains in

the (200) lattice planes of both the phase, for the same stress value, indicate

the prior onset of plasticity in their counterparts ((311) and (111) planes of the

austenitic phase and the (211) plane of the ferritic phase).685

To gain a comprehensive overview of the observed differences in lattice

strains, it was also essential to ensure if the factors such as mesh discretiza-

tion and the total number of grains in the FE model affected the overall quality

of the diffraction results, as they are typically critical components from an FE

perspective. Thus, three additional RVEs were generated with the following690

features: (1) an RVE of size 100×100×100 µm3 with 50×50×50 elements and
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∼ 4000 grains, (2) an RVE of size 120 × 120 × 120 µm3 with 60 × 60 × 60 ele-

ments and ∼ 8600 grains, and (3) an RVE with a finer mesh discretization of the

original mesh from Figure 7 containing 125000 elements. These microstructures

were then subjected to virtual diffraction experiments, the results of which are695

presented in Figure 16. It can be immediately seen that larger RVEs, despite

having a larger number of grains contributing to each diffraction curve (mesh

100 × 100 × 100 µm3 has ∼ 16 austenite grains and ∼ 10 ferrite grains and

mesh 120 × 120 × 120 µm3 has ∼ 45 austenite grains and ∼ 20 ferrite grains,

contributing to the lattice strain measurements), do not significantly affect the700

observed results (Figures 16a and 16b) for the austenitic (111) plane and the

ferritic (211) plane. Nevertheless, for the other cases, with an increase in the

grain number (i.e. RVE size) the deviations in the lattice predictions seemed

to get reduced. In other words, it is possible to capture the lattice strains in

the diffraction planes using a minimal number of grains to a certain extent.705

However, the minimum grain number can eventually vary for different materi-

als. In addition, the lattice strain predictions obtained from the refined mesh

in Figures 16c and 16d are almost identical to that of the initial coarser mesh.

The effect of stair-stepping (jagged edges) resulting from the voxel elements are

negated while calculating the overall homogenized response of a collection of710

grains. This is also relevant to recent studies which support the aforementioned

observation [60, 32]. Nevertheless, it is essential to state that the effect of mesh

refinement can be more pronounced in certain applications (like grain boundary

effects). In a general sense, since the adopted mesh size directly correlates to

the computational efficiency, it must be selected with care. An investigation of715

the grain number and mesh size sensitivity is beyond the scope of this article

and can be an object of interest for the future.

Another important parameter that needs to be addressed is the choice of

an explicit FE Abaqus solver for the developed numerical model. Typically,

the usage of implicit solvers for multi-scale simulations with CPFE framework720

is hugely time consuming and often, not feasible. There can be severe prob-

lems related to the numerical convergence of integration algorithms for complex
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constitutive material laws in an implicit solver. However, explicit solvers can of-

fer reasonable results for quasi-static deformation modes with sufficiently small

time stepping in each increment by negating the need for the computation of725

consistent tangent moduli. Abaqus has the ability to fix a stable time incre-

ment inherently from the minimum element size in the FE model, based on the

dilatational wave speed of the underlying material calculated from its stiffness.

(a) Austenite (b) Ferrite

(c) Austenite (d) Ferrite

Figure 16: Lattice strains along the loading direction for different diffraction planes plotted

as a function of the macroscopic RVE stresses. The subfigures (a) and (b) were obtained from

RVE simulations of different RVE sizes while subfigures (c) and (d) were from the simulations

with different mesh element sizes. In the legend, sim large dimension and sim refined denote

a larger RVE and an RVE with finer mesh, respectively.

Also, dynamic explicit analyses can be used for quasi-static problems provided

the kinetic energy only represents a small fraction (for example less than 5%) of730

the total energy. To ensure this, the total time over which the simulations were
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performed was sufficiently large enough to negate any dynamic effects. From

prior knowledge, such explicit simulations are known to handle elastoplastic

material behavior with competence and there are several works that highlight

the importance of the same with relevance to CPFEM simulations of complex735

deformation modes [61, 21, 62]. Hence, it can be stated with confidence that

the adopted explicit integration framework does not influence the results of the

simulations performed.

On the whole, the observed deviations can primarily be attributed to the

difference between the morphology of the actual Duplex Stainless Steel mi-740

crostructure used as a reference (experimental data from literature) and the

synthetic RVE used in simulations, where the former had a complicated banded

phase distribution while the latter has a more random distribution of phases.

Hence, the intergranular stresses developed within the phases can eventually

vary for loading along/across such a morphological alignment. Also, another745

predominant reason for such variations could be the usage of isotropic grain

hardening laws in the present work. There exists no defferential hardening from

the mutual interaction of the slip systems and the hardening law parameters are

independent of the texture effect. The usage of sophisticated anisotropic grain

hardening laws can facilitate parametric fitting based on the simulated diffrac-750

tions curves, for better correspondence [41, 58]. The experimental evidence from

an earlier work on Duplex steel [59] also revealed the dependence of lattice strain

evolution on preferential grain orientations, besides their reliance on the elastic

and plastic anisotropy. The effect of grain-orientation dependent stresses at the

microscopic scale were dominant in the elasto-plastic regime of Duplex steels.755

In addition, an RVE consisting of larger number of grains contributing to each

lattice strain curve seemed to improve the results for specific diffraction planes

as well. Since our numerical model does not consider the evolution of texture,

the effect of these stresses due to the changes in texture, on lattice strains, are

eventually not captured. Also, the issue of preferential orientations or texture,760

and its evolution is inherently related to the morphology: the higher the volume

fraction of a certain orientation of fibre, the higher the chance of connectivity,
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and thus lesser impact of weaker or stronger phases included as islands in a

connected matrix.

The observed discrepancies thus emphasize the importance of detailed 3D765

characterization of the actual material along with material specific plasticity

mechanisms in order to obtain an accurate material response from the numer-

ical model. Also, for multi-phase steels, such characterization is of paramount

importance as the influence of grain-grain and grain-phase interactions play a

significant role in determining the overall response.770

4.3. Yield locus simulations

A numerical method to construct the anisotropic yield locus from 3D multi-

phase RVE simulations was explained in Sections 2.2 and 3.4. Here, a method

to construct the yield locus of the Duplex steel RVE using the elaborated pro-

cedure is presented. FE simulations to load the meso-scale RVE into specific775

stress states, with an angular resolution of 5◦ (Figure 10), were performed. The

flow curves (σ-εp) extracted from these numerical experiments are presented in

Figure 17. The maximum magnitude of the imposed stress tensor was constant

for all the simulations. There are also earlier works in literature that construct

such flow curves as a function of the total plastic slip [63]. However, in our780

work, we use the plastic strain measure (εp from Equation 30) for the same

purpose, since it is more aligned towards the macroscopic scale. On the onset

of plasticity, the stress tensor (σy) is calculated using Equation 28. It needs to

be emphasized that the choice of the offset strain value would eventually influ-

ence the shape of the yield locus and hence, sufficient care must be exercised in785

choosing the appropriate value of interest.
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Figure 17: Flow curves extracted from RVE simulations for different stress directions in the

XX-YY plane. The θ value here represents the angular resolution of the stress mode (Equation

31) with respect to the global X direction.

The initial yield locus (εp = 0.2%) constructed along the XX-YY plane of the

Duplex steel RVE is given in Figure 18. An absence of perfect symmetry (yet

negligible) about the σXX = σY Y line is manifested and ascribed to the mate-

rial anisotropy under different bi-axial stress states. In a multi-phase material,790

similar stress ratios imposed along different directions can result it different flow

behaviour (Figure 17) as a result of the phase interactions. Direction depen-

dent morphological features at the micro level, such as elongated grains from

rolling, lath grains, matrix-fibre type arrangement etc., can significantly alter

the shape of the yield locus unlike in our case with a homogeneous distribution795

of equiaxed grains. The approach can further be extended to the entire stress

space to arrive at the full anisotropic yield locus of the multi-phase material.
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Figure 18: The normalized XX-YY yield section of Duplex steel RVE.

4.4. Other remarks

There have been several contributions in literature along the line of RVE

based simulations of multi-phase materials, incorporating material anisotropy,800

employing different material laws and homogenization techniques, in conjunc-

ture with different FE solvers. DAMASK [23] is one such promising open

source multi-scale simulation framework. However, the RVE based simulations

in DAMASK are performed either as direct CPFEM simulations or using the

isostrain homogenization scheme (FC Taylor) with a single grain at every in-805

tegration point. Also, computational efficiency is increased using a spectral

solver, which has its own limitations such as the need for the microstructure

to be representative (periodic in nature) and the boundary conditions to be

periodic [64]. Also, the number of iterations for the solver, which is problem

and grid specific, tends to influence the fulfilment of equilibrium causing the810

error to increase monotonically beyond the optimal limit. The optimal itera-

tions are influenced by the contrast in local properties and hence, a very good
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understanding of the underlying problem is essential to utilize such solvers.

The multi-scale set up demonstrated by Srivastava et al. [2] focuses on RVE

based methods for multi-phase materials, through rate-dependent phenomeno-815

logical power law based CPFEM simulations. The RVE response is then used

to calibrate macroscopic material definitions. The usage of CPFEM based RVE

simulations of Dual Phase steels (DP) have gained momentum over the recent

years as well [41, 65]. Such direct CPFEM simulations can be numerically ex-

pensive and coupling them with a macroscopic model in a multi-scale set up820

is virtually impossible. For example, in a study conducted by Dumoulin et al.

[61] on different rate-dependent CPFEM algorithms, the total simulation time

for a mesh containing ∼ 13000 elements was nearly 21 hours. The elements

were cubic 8-node elements and the simulations were conducted on 8-equivalent

CPUs. This, in comparison to our simulation time of 2 hour for a mesh contain-825

ing 64000 elements in a Intel Xeon 2.8GHz processor without parallelization,

is much higher. Thus, the aforementioned disadvantages are mitigated through

our current approach based on plastic potential functions and the model can

provide a somewhat elegant solution to couple a multi-phase 3D meso-scale rep-

resentative microstructure to a macroscopic model. By defining plastic potential830

functions in the stress space, a yield locus expression is readily available and

this can speed up the calculation time in elasto-plastic FEM. However, it has to

be noted that the evolution of grain orientations has not yet been implemented

in this model and hence it cannot predict texture changes.

The current model eventually supplements different options to couple the835

meso-scale RVE to macroscopic simulations: (1) The yield locus extracted from

the multi-phase RVE can be used as inputs for the macroscopic model, (2) The

macro- and meso-scale simulations can be coupled through a one-way approach

(like submodelling in Abaqus) with the output from the former serving as the

input for the latter, (3) The meso-scale simulations can be used to calibrate840

anisotropic yield functions or plastic potential functions which would then func-

tion as material laws for the macroscopic model, and (4) Direct FE2 [66, 67]

multi-scale simulations can also be performed.
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5. Conclusion

A novel and efficient method to perform meso-scale simulations on the 3D mi-845

crostructure of multi-phase steel was presented in this article. The homogenized

response from the meso-scale would then characterize the macroscopic material

behaviour. The model was evaluated by performing numerical simulations on

a synthetic Duplex steel microstructure generated using parameters procured

from literature. The simulated results were assessed with the experimental data850

from uniaxial tensile test and Neutron Diffraction studies of the same reference

material. Finally, a method to construct the anisotropic yield section of the

microstructure was demonstrated. The following are the important highlights

from the study performed:

1. Single crystal plastic potential functions were derived via the Facet method.855

The increase in order of the function results in a yield locus which is in

very good agreement with the theoretical one.

2. The flow curves predicted by the numerical model were in good correspon-

dence with the experimental data. The small deviations at lower strains

were primarily due to the fitted grain hardening laws. Hence, the choice860

of the grain hardening curve is crucial to get reasonable macroscopic pre-

dictions.

3. The numerical anisotropy calculations of the lattice strains along differ-

ent diffraction planes, from the simulations were presented. The austenite

diffraction curves were overestimated by the numerical model. For the865

ferritic phase, the (200) case showed an exact match while the (211) re-

sults were underestimated. These deviations are primarily due to the

morphological differences in phase distribution of the reference and syn-

thetic microstructure and the negation of texture evolution effects in the

current model. Also, by increasing the number of grains contributing to870

the lattice strain calculations (i.e. using larger RVEs), the deviations in

the predictions seemed to get reduced for some diffraction planes.
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4. The construction of an yield section of the synthetic multi-phase mi-

crostructure was demonstrated within the current framework. The steps

followed are easily adaptable and can serve as a valuable tool in under-875

standing the influence of different microstructural features on the macro-

scopic material anisotropy.

The ability to predict texture shall be implemented in the future so that

the model has the ability to predict orientation changes due to large rotations

during crystal deformations. It is also required to study the developed model880

further with different multi-phase materials of varied morphology and strong

texture components to better understand its capabilities and limitations.
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