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Abstract The ongoing progress in (nuclear) many-body
theory is accompanied by an ever-rising increase in com-
plexity of the underlying formalisms used to solve the sta-
tionary Schrödinger equation. The associated working equa-
tions at play in state-of-the-art ab initio nuclear many-body
methods can be analytically reduced with respect to angular-
momentum, i.e. SU (2), quantum numbers whenever they
are effectively employed in a symmetry-restricted context.
The corresponding procedure constitutes a tedious and error-
prone but yet an integral part of the implementation of those
many-body frameworks. Indeed, this symmetry reduction is
a key step to advance modern simulations to higher accu-
racy since the use of symmetry-adapted tensors can decrease
the computational complexity by orders of magnitude. While
attempts have been made in the past to automate the (anti-)
commutation rules linked to Fermionic and Bosonic alge-
bras at play in the derivation of the working equations,
there is no systematic account to achieve the same goal for
their symmetry reduction. In this work, the first version of
an automated tool performing graph-theory-based angular-
momentum reduction is presented. Taking the symmetry-
unrestricted expressions of a generic tensor network as an
input, the code provides their angular-momentum-reduced
form in an error-safe way in a matter of seconds. Several
state-of-the-art many-body methods serve as examples to
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demonstrate the generality of the approach and to highlight
the potential impact on the many-body community.

PROGRAM SUMMARY

Program title: AMC
Licensing provisions: GNU General Public License Version
3 or later
Programming language: Python 3
Repository and DOI: http://www.github.com/radnut/amc
https://doi.org/10.5281/zenodo.3788328
Nature of problem: Numerical implementations of state-
of-the-art many-body approaches require extensive use of
angular-momentum algebra to derive the spherically reduced
form of working equations. This derivation takes a lot of
effort and is prone to errors.
Solution method:Angular-momentum objects are simplified
via identification of subgraphs in a suitably defined network
called Yutsis graph. With this, a spherical reduction of a
tensor network is obtained and all quantities are expressed
in terms of their m-independent, reduced analogues. The
reduction process is fully automated, limiting the potential
for human error.
Additional comments: The reduction is formulated as a
transformation of abstract syntax trees that facilitates post-
processing into different output formats, as well as auto-
mated code generation.
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1 Introduction

In recent years, ab initio nuclear many-body theory has
undergone a major renewal. In this process, expansion meth-
ods have become prominent in large-scale applications to
mid-mass nuclei. The success obtained within the last two
decades is leading to the design of more and more advanced
approaches to continuously refine the accuracy of the cal-
culations and extend them systematically to an even larger
portion of the nuclear chart. This rise in the degree of sophis-
tication of state-of-the-art many-body expansion schemes is
leading to an increase of the formal complexity that is now
at the edge of what is humanly processable.

When following the ab initio philosophy to solve the sta-
tionary Schrödinger equation, quasi-exact approaches based
on Monte Carlo techniques [1–4] or configuration interac-
tion (CI) [5,6] are limited by their computational scaling to
the lightest systems. Moving to the realm of medium- and
heavy-mass nuclei involves the use of expansion many-body
techniques building a wave-function parametrization on top
of a conveniently chosen reference state. These methods dis-
play a polynomial scaling with system size, the degree of the
polynomial increasing with the targeted accuracy, i.e., with
the order at which the expansion is truncated. This com-
putational advantage typically comes at the price of being
restricted to working in a non-variational scheme. Exam-
ples of such approaches are many-body perturbation theory
(MBPT) [7–16], coupled-cluster (CC) theory [17–23], self-
consistent Green’s function (SCGF) theory [24–28] or the in-
medium similarity renormalization group (IMSRG) method
[29–37], all of which provide a consistent description of (at
least) ground-state observables in nuclear many-body sys-
tems. In quantum chemistry in particular, MBPT and CC
theories have a long tradition and both frameworks have been
derived and implemented at very high truncation orders [8].
Although every member of the aforementioned approaches
can be applied to much higher masses and larger system
sizes than exact methods, the truncation levels needed for
high-accuracy calculations require substantial effort in the
derivation of the formalisms and for their numerical imple-
mentations.

While in earlier works the working equations were derived
by hand, the rising computational power and the development
of computer-aided algebraic manipulation tools have facili-
tated the derivation of more advanced truncation schemes in
modern many-body approaches, many of which have under-
gone their pioneering studies in quantum chemistry [38–
42]. A shining example is the tensor contraction engine that
was developed in close collaboration with computer scien-
tists and has been one of the most powerful tools to extend
quantum-chemistry calculations to higher accuracy by gen-
erating working equations and source code for large-scale
distributed implementations [43].

Even though large progress has been made in the develop-
ment of software supporting the formal developments at play
in quantum many-body research, only few are directly dedi-
cated to the nuclear many-body problem [44]. While sharing
many formal similarities with its electronic counterpart the
nuclear many-body problem differs in two key points requir-
ing a dedicated attention

(1) At the mean-field level, single-nucleon states carry good
total angular momentum j = l+ s, i.e., one must employ
the so-called j-coupling scheme to define appropriate
one-nucleon states. Contrarily, electrons carry a well-
defined projection sz of the intrinsic spin and are, thus,
best described on the basis of the so-called ls-coupling.
The main consequence is that nucleons orbit in energy
shells characterized by a greater degree of degeneracy,
thus leading to the large dominance of open-shell ground-
states, i.e., degenerate systems, over the nuclear chart.

(2) The inclusion of three-body forces in a realistic nuclear
Hamiltonian is mandatory to ensure a quantitatively cor-
rect description of nuclear observables, i.e. one is bound
to use

H = T + V + W + ... , (1)

where T is the kinetic energy operator whereas V and W
are two- and three-body potentials, respectively.

While expansion many-body methods are first formulated
in terms of a generic single-particle basis, their actual imple-
mentations typically exploit symmetry properties of the basis
functions and of the targeted many-body state, e.g., with
respect to angular-momentum or parity quantum numbers.
The adaptation of the generic formalism to a specific symme-
try group defines a symmetry reduction of the many-body for-
malism. The goal is to use reduced many-body tensors associ-
ated to irreducible representations (IRREPs) of the symmetry
group to pre-process a subset of the summations at play in
the tensor networks defining the working equations.

A simple, yet representative, example is the pre-process-
ing of spin summations in spin-restricted quantum chem-
istry calculations. The counterpart in nuclear structure the-
ory relates to the exploitation of rotational invariance asso-
ciated with the conservation of total angular momentum and
encoded in terms of the SU (2) nonabelian Lie group. In this
particular case the reduction scheme will be referred as the
angular-momentum reduction (AMR).

Eventually, it turns out that the AMR poses a nontrivial
problem requiring the same amount of effort as the deriva-
tion of the initial working equations. However, there exists
a highly systematic and elegant way to deal with this task
that is close in spirit to the use of Feynman’s diagrams as a
mnemonic device to represent physical processes.
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Consequently, it is highly desirable to parallel the efforts
done to automatize the generation of working equations by
devising a framework that automatically performs the tedious
symmetry reduction in an error-safe way. Currently, there is
– to the best of our knowledge – no open-source library that
can deal with the requirements imposed by nuclear structure
many-body methods to perform symbolic manipulations of
angular-momentum algebra. Typically, existing software is
restricted to the numerical evaluation of coupling coefficients
instead of performing symbolic manipulations including the
simplification of complex tensor networks. There have been
similar attempts for symbolic simplifications of angular-
momentum expressions before without formally connecting
it to many-body theory [45].

Therefore, the goal of the source code accompanying
the present document is to support the implementation of
advanced many-body frameworks in nuclear structure in an
error-free way. Of course, this does not resolve the problem
of writing an efficient and error-free numerical implemen-
tation of the symmetry-reduced formalism itself. While the
generation of the source code is envisioned, it is, however,
beyond the scope of the present work.

The document is organized as follows. In Sect. 2 the notion
of symmetry in the context of many-body theory is intro-
duced using a group theory formulation. Section 3 focuses
on the angular-momentum algebra and its relation to states
and operators. In Sect. 4 the diagrammatic allowing for the
handling of the SU (2) algebra is laid out and the simpli-
fication rules for the graph theory reformulation of tensor
networks are presented. Section 5 discusses several state-
of-the-art many-body approaches that serve as pedagogical
examples to demonstrate the generality of the approach. Ulti-
mately, an outlook is provided in Sect. 6.

2 Symmetries and many-body theory

2.1 Symmetry group

Physical symmetries impact many-body formalisms at var-
ious stages of their elaboration. The existence of symme-
tries in finite systems is intimately connected to conserva-
tion laws, e.g., the existence of U (1) global gauge symmetry
corresponds to particle-number conservation while SU (2)

symmetry corresponds to angular momentum conservation.
Mathematically, the invariance of a quantum system, charac-
terized by its Hamiltonian H , is encoded in terms of transfor-
mation properties imposed by a symmetry groupGHam whose
action leaves the physical system invariant or, equivalently,
the existence of a unitary linear representation U acting on
the space of states such that

H = U (g)HU †(g) (∀g ∈ G) , (2)

which can be rewritten as

[H,U (g)] = 0 (∀g ∈ G) . (3)

Given the eigenstates of the Hamiltonian

H |Ψk〉 = Ek |Ψk〉, (4)

Eqs. (2, 3) stipulate that the transformed states

|Ψk(g)〉 ≡ U (g)|Ψk〉 (∀g ∈ G) , (5)

are also eigenstates with the same eigenvalues.
In the case of discrete symmetries such as parity or time

reversal the corresponding symmetry group is finite, e.g. Z2.
Contrarily, continuous symmetries correspond to Lie groups
allowing for a continuous parametrization of the (infinite
number of) group elements in terms of a finite set of param-
eters. The present focus is on the nonabelian SU (2) Lie
group associated with rotational invariance of nuclear sys-
tems. Relevant details about this symmetry group are pro-
vided in Sect. 3.3.

Eventually, symmetries enter the formulation of (nuclear)
quantum many-body methods at three different levels

(1) the symmetry group of the Hamiltonian GHam specify-
ing the invariance of the physical system under a given
set of transformations along with the symmetry quantum
numbers carried by its many-body eigenstates,

(2) the symmetry group of the single-particle basis Gbas

specifying the symmetry properties of the computational
basis,

(3) the symmetry group of the reference state Gref employed
in expansion methods specifying the symmetries of the
auxiliary many-body problem that is solved to construct
the reference state.

While the symmetry group of the Hamiltonian is fixed by the
physical system under consideration, the symmetry proper-
ties of the single-particle basis and the reference state result
from a choice such that various combinations of Gbas and
Gref can be employed.

2.2 Symmetries of the single-particle basis

Given H and its symmetry group GHam, there is infinitely
many different single-particle bases spanning the one-body
Hilbert space H1 that can be used to represent the operator
in second-quantized form. The single-particle basis functions
are typically obtained as eigenstates of an auxiliary one-body
Hamiltonian Hbas whose symmetries are characterized by

[Hbas,U (g)] = 0 (∀g ∈ Gbas). (6)
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When choosing Gbas = SU (2), one-body basis states are
eigenstates of the squared total angular-momentum operator1

J2 ≡ J 2
x + J 2

y + J 2
z , (7)

where Jx , Jy and Jz denote the Cartesian components
of the total angular-momentum vector. In most ab initio
nuclear structure applications such a one-body basis is indeed
employed, e.g., the eigenbasis of the three-dimensional
spherical harmonic oscillator (sHO) Hamiltonian

HsHO ≡ p2

2m
+ 1

2
mω2r2 , (8)

where m denotes the average nucleon mass and ω the HO
frequency. It can be shown that

[HsHO, J2] = 0 , (9a)

[HsHO, Jz] = 0 , (9b)

such that the one-body eigenstates of HsHO are propor-
tional to spherical Harmonics. In other frameworks, e.g.
nuclear energy density functional calculations, the single-
particle basis is possibly taken as eigenfunctions of the axi-
ally deformed HO Hamiltonian that breaks rotational invari-
ance and, thus, displays a smaller symmetry group Gbas than
HsHO.

2.3 Symmetries of the reference state

The rationale of expansion methods relies on the definition of
a conveniently chosen A-body reference state |Φ〉 that serves
as starting point for the correlation expansion. Acting on the
vacuum, the wave operator W yields the exact, e.g., ground
state

|Ψ0〉 = W |Φ〉 . (10)

The wave operator is expanded and truncated according to
a given many-body scheme, e.g., in MBPT, SCGF or CC
theory. The resulting equations are symmetry-unrestricted
and therefore make no use of symmetry properties of many-
body operators.

In practice, the reference state is typically obtained as the
ground state of an ’unperturbed’ Hamiltonian Href capturing
the average behavior of the system’s dynamics and charac-
terized by a symmetry group Gref

[Href,U (g)] = 0 (∀g ∈ Gref) , (11)

such that |Φ〉 typically belongs to the trivial IRREP of Gref.
In the following, the reference state |ΦGref〉, thus, carries a

1 Vectors are represented in bold face.

subscript specifying the symmetry group of the Hamiltonian
it is the ground state of.

In the simplest case, the vacuum is chosen to be a Slater
determinant |ΦGHam〉 obtained from a symmetry-restricted
Hartree-Fock mean-field calculation, i.e.

Gref = GHam . (12)

In nuclear systems, |ΦGHam〉 typically belongs to the triv-
ial IRREP of SU (2) and U (1), i.e., it carries good angular
momentum J = 0 and a fixed number of particles. Dynamic
correlations are introduced via the action of the wave opera-
tor that generates summations over elementary particle-hole
excitations.

In open-shell systems, the above reference state is improper
due to the partial filling of the last occupied shell. This
leads to a degeneracy with respect to particle-hole excita-
tions, thus, signalling the existence of a Goldstone mode and
the ill-definition of the previously performed expansion of
W . This problem can be circumvented by lowering the sym-
metry group of Href, i.e. by taking a well-chosen subgroup
Gref ⊂ GHam. This typically leads to breaking U (1) sym-
metry in singly open-shell nuclei and/or SU (2) in doubly
open-shell nuclei. The lower symmetry of Href induces a
lower reference energy due to the enlarged variational space

E[|ΦGref〉] ≤ E[|ΦGHam〉] . (13)

More importantly, this lowering is accompanied by a lift-
ing of the degeneracy of |ΦGHam〉 with respect to elementary
excitations such that W can be expanded safely. In this case,
however, the wave operator must not only capture dynam-
ical correlations but also restore the symmetry GHam asso-
ciated with the exact eigenstates of H . Because of the nec-
essary truncation, a standard expansion of W is not capable
of restoring the symmetry such that the symmetry contam-
ination needs to be retrieved by the explicit inclusion of a
symmetry projector in the definition of W [21–23].

2.4 Reduction schemes and groups

While the symmetry group of the Hamiltonian is fixed from
the outset, the choice of the single-particle basis and reference
states leaves tremendous freedom to adapt Gbas and Gref in
order to deal with a specific situation.

A case of particular interest arises when the symmetry
groups of the Hamiltonian, the single-particle basis and the
reference state coincide, i.e.,

Gsym ≡ GHam = Gbas = Gref . (14)

In this setting, the common algebraic structure can be
exploited to simplify the many-body formalism by express-
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ing all working equations in terms of Gsym-reduced tensors,
thus, potentially providing a tremendous gain in the required
runtime and memory resources. In the present paper, this situ-
ation is exploited relative to the SU (2) group (independently
of the treatment of other symmetries such as U (1)).

2.5 Tensors and tensor networks

Due to the large variety of expansion schemes built to retrieve
the solution of the many-body problem, it is desirable to
introduce a unifying language for the various frameworks.
This common ground is provided by the language of tensors
and tensor networks.

A mode-k symmetry-unrestricted tensor (SU-T)

Ti1...ik (15)

is a multi-variate data array carrying k indices with (possibly
different) index ranges I1, ..., Ik . Tensors constitute the basic
building blocks of many-body expansion methods. Given a
set of SU-T’s A, B,C, ... a contraction is defined as a sum-
mation over a common index, e.g.,

∑

k

A...k...B...k...C...k... ,

where the ellipses indicate indices that are not summed over2.
A symmetry-unrestricted tensor network (SU-TN) denotes

a set of SU-T’s combined according to a given contraction
scheme specifying the way the tensors are contracted with
each other. Furthermore, a SU-TN is said to be closed if all
tensor indices are summed over and is said to be open other-
wise.

In many-body applications tensors typically appear in two
broad classes

(1) input tensors that are known prior to addressing the actual
solution of the Schrödinger equation in a given many-
body framework,

(2) output tensors that are specific to a given many-body
approach and are typically the objects being solved for.

Examples for input tensors are matrix elements of many-
body operators like the Hamiltonian whereas examples of
output tensors are CC amplitudes or dressed propagators in
SCGF theory. In most non-perturbative many-body frame-
works, like CC, IMSRG or SCGF, open TN’s specify the
working equations required to determine the unknown output
tensors while the calculation of observables, e.g. the energy,
relates to the evaluation of closed TNs.

2 Indices may appear more than twice, a feature uncommon for tradi-
tional contractions as in the theory of general relativity.

2.6 Symmetry-reduced tensor networks

The goal of this work is to transform an initial SU-TN into
a symmetry-reduced tensor network (SR-TN) encapsulating
the symmetry reduction according to the associated symme-
try group. To do so, the SU-T’s must be replaced by their
symmetry-reduced counterparts. Given an initial SU-T, the
corresponding symmetry-reduced tensor (SR-T) is obtained
from a transformation fGsym

Tk1...kn

fGsym−−−→ T̃ λ

k̃1...k̃n
, (16)

mediating the symmetry reduction related to the group Gsym.
Here, the symbol λ denotes the relevant IRREP labels of the
symmetry-reduced tensor. In the following, quantities with a
tilde indicate symmetry-reduced objects. Note that the con-
tent of the indices themselves change, such that the set of
quantum numbers labelling a SU-T and its SR-T counter-
part are different. Thus, the SR-TN denotes the end product
obtained via the replacement of the SU-T’s by their SR-T
counterparts and via the adjustment of the contraction pattern

∑

k

A...k...B...k...C...k...
fGsym−−−→

∑

λk̃

Ãλ

...k̃...
B̃λ

...k̃...
C̃λ

...k̃...
.

3 Angular-momentum algebra

3.1 Rationale

While the discussion on symmetry-reduction and SR-TN’s
has been generic so far, the present paper focus on the SU (2)

group. The goal is, thus, to obtain angular-momentum-re-
duced tensor networks (AMR-TN’s) from SU-TN ones. The
procedure requires to

(1) replace all the SU-T’s by their AMR-T counterparts
according to the transformation fSU (2),

(2) constrain the contraction pattern to only be left with sum-
mations over the reduced set of quantum numbers.

In practice, step (1) involves a set of substitution rules for
every many-body tensor at play that specify how the sym-
metry reduction is performed. The resulting SR-TN—and
its computational complexity—may strongly depend on the
choice made to perform this initial step3. From this point of
view at least a minimum level of human input (and expe-
rience) is necessary to come up with the most convenient
choice. This does not pose a severe limitation in any of the
examples discussed below.

3 This step is not uniquely defined as several choices for the same group
can be envisioned.
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3.2 Other symmetries

While presently focusing on rotational symmetry, other sym-
metries can be exploited in the same way. A key exam-
ple relates to intrinsic spin in quantum chemistry that is
analogous to the total angular-momentum when using a
ls-coupling scheme. The spin projection being only two-
fold degenerate, i.e. ms = ± 1

2 , spin-restricted many-body
theories benefit less from the symmetry reduction than in
the j-coupling scheme. Still, pre-processing the sums over
spin projections is an important tool to reduce the computa-
tional cost and advance state-of-the-art expansion methods
in strongly correlated electronic systems. Finite symmetry
groups, e.g., the dihedral groups Dn , may also arise in quan-
tum molecules whereas cubic groups play an important role
in the computation of homogeneous matter, e.g., the infinite
electron gas or infinite nuclear matter, since periodic bound-
ary conditions are employed to facilitate the calculation. In
solid-state physics, symmetry properties of the many-body
systems, e.g., helical symmetries in nano tubes, can also be
exploited to reduce computational complexity.

All the aforementioned examples correspond to a reduc-
tion of exact symmetries of a many-body system. In recent
years, exploiting emergent approximate symmetries has also
been shown to be highly beneficial, in particular in the context
of nuclear CI-based approaches. In this case, the symmetry
group of the configuration basis Gbas is larger than the actual
symmetry group of the Hamiltonian,

GHam ⊂ Gbas , (17)

thus, exploiting algebraic properties that are not strictly real-
ized in nature. A prime example is the symplectic symme-
try group Sp(3,R) that is not an exact symmetry of the
nuclear Hamiltonian but of the kinetic energy operator. In
the symmetry-adapted no-core shell model (SA-NCSM) an
A-body configuration basis is constructed from the Casimir
operators of the approximate symmetry group SU (3) ⊂
Sp(3,R). The use of symplectic algebra was shown to pro-
vide an efficient selection of many-body basis states, thus,
yielding computational savings in the diagonalization of the
many-body Hamiltonian at the price of a more involved hand-
ling of many-body operators [46].

3.3 SU (2) group

In order to move closer to a concrete implementation of the
above procedure, let us introduce details about the nonabelian
compact SU (2) ≡ {R(Ω),Ω ∈ DSU (2)} Lie group associ-
ated with the rotation of a A-body fermion system character-
ized by an integer or a half-integer angular momentum. The
group is parametrized by three Euler angles Ω ≡ (α, β, γ )

whose domain of definition is

DSU (2) ≡ Dα×Dβ ×Dγ = [0, 4π ]×[0, π ]×[0, 2π ] . (18)

As SU (2) is considered to be a symmetry group of H , the
commutation relations

[H, R(Ω)] = [T, R(Ω)] = [V, R(Ω)] = 0 , (19)

hold for Ω ∈ DSU (2).
Subsequently, the unitary representation of SU (2)on Fock

space is utilized

R(Ω) = e− i
h̄ α Jz e− i

h̄ β Jy e− i
h̄ γ Jz . (20)

The components of the total angular-momentum vector make
up the Lie algebra

[Ji , J j ] = εi jk i h̄ Jk , (21)

where εi jk denotes the Levi-Civita tensor. The Casimir oper-
ator of the group built from the infinitesimal generators
through a non-degenerate invariant bilinear form is the total
angular momentum

J2 ≡
∑

i=x,y,z

J 2
i . (22)

Matrix elements of the irreducible representations (IRREPs)
of SU (2) are given by the so-called Wigner D functions [47]

〈ξ JM |R(Ω)|ξ ′ J ′M ′〉 ≡ δξξ ′δJ J ′ DJ
MM ′(Ω) , (23)

where |ξ JM〉 is an eigenstate of J2 and Jz

J2|ξ JM〉 = J (J + 1)h̄2|ξ JM〉 , (24a)

Jz |ξ JM〉 = Mh̄|ξ JM〉 , (24b)

with 2J ∈ N, 2M ∈ Z, J − M ∈ N and −J ≤ M ≤ +J .
The index ξ collects all quantum numbers but J and M .
The (2J+1)-dimensional IRREPs are labelled by J and are
spanned by the set of states {|ξ JM〉} for fixed J and ξ .

An irreducible tensor operator TJ of rank J is made of
2J + 1 operators T J

K transforming under rotation as

R(Ω) T J
K R(Ω)−1 =

∑

M

T J
M DJ

MK (Ω) , (25a)

or, equivalently, fulfilling

[Jz, T J
K ] = h̄K T J

K , (26a)

[J±, T J
K ] = h̄

√
(J ± K + 1)(J ∓ K ) T J

K±1 , (26b)

where J± = Jx ± i Jy denotes the usual raising (lowering)
operators. The nuclear Hamiltonian is an example of a spher-
ical tensor operator of rank zero. Such operators are denoted
as scalar.
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A powerful tool to treat spherical tensor operators is the
celebrated Wigner-Eckart theorem (WET)

〈ξ1 j1m1|T J
M |ξ2 j2m2〉

= (−1)2J 1

ĵ1

(
j2 J j1
m2 M m1

)
(ξ1 j1|TJ |ξ2 j2) , (27)

where ĵ ≡ √
2 j + 1. The theorem states that matrix ele-

ments of a given component of a spherical tensor in the basis
spanning the IRREPs can be written as a product of a geo-
metric part independent of the spherical tensor at play and
of a reduced matrix element independent on the particular
component of the spherical tensor and the members of the
IRREPs under consideration [48].

In the special case of a scalar operator one has

〈ξ1 j1m1|T 0
0 |ξ2 j2m2〉 = δ j1 j2

1

ĵ1
(ξ1 j1|T0|ξ2 j2) , (28)

such that both the initial and reduced matrix elements are
independent of any projection quantum number. In this par-
ticular case, the notion of reduced matrix element is thus
irrelevant.

3.4 Fermionic algebra

One of the building blocks of quantum many-body theory are
second-quantized operators

Oi j = 1

i ! j !
∑

k1...ki+ j

ōk1...ki+ j c
†
k1

· · · c†
ki
cki+ j · · · cki+1 , (29)

where c† (c) denote single-particle creation (annihilation)
operators associated with a basis B1 of the one-body Hilbert
space

H1 ≡ Hr
1 ⊗ Hs

1 ⊗ Ht
1 (30)

that is the tensor product of a spatial part, a spin part and
an isospin part. Anti-symmetrized matrix elements ōk1...ki+ j

carrying (i + j) one-body indices constitute a mode-(i + j)
SU-T. Creation and annihilation operators are assumed to
fulfil the canonical anti-commutation rules

{ck1 , ck2} = 0 , (31a)

{c†
k1

, c†
k2

} = 0 , (31b)

{ck1 , c
†
k2

} = δk1k2 , (31c)

defining the Fermionic algebra4. Processing many-body
matrix elements of strings of such operators via various forms

4 When breaking U (1) symmetry, one employs the quasi-particle alge-
bra associated with the Bogoliubov transformation [49]

βk ≡
∑

p

U∗
pkcp + V ∗

pkc
†
p, β

†
k ≡

∑

p

Upkc
†
p + Vpkcp , (32)

of Wick’s theorem is at the core of quantum many-body
methods and gives rise to the multitude of TN’s at play in
expansion methods.

3.5 SU (2) symmetry and basis states

In the following, B1 is taken to be the eigenbasis of a SU (2)-
invariant Hamiltonian Hbas such that basis states are conve-
niently labeled as

|k〉 = |nklk jkm jk tk〉 , (33)

where nk denotes the radial quantum number, lk the orbital
quantum number, jk the total angular-momentum quantum
number, m jk its projection and tk the isospin projection. This
constitutes a so-called j-coupled basis, i.e. it is not a direct
product of bases of Hr

1 and Hs
1 but a coupled basis whose

members are eigenstates of the total angular momentum j2.
While the eigenstates of the aforementioned sHO Hamil-
tonian provide an example of practical interest, eigenbases
of other one-body Hamiltonians characterized by rotational
symmetry are equally valid.

Later on, the AMR-T’s employed throughout the symme-
try reduction will carry reduced labels k̃ characterized by

k̃ ≡ (nk, lk, jk, tk) , (34)

where the angular-momentum projection, i.e. the magnetic
quantum number mk , is explicitly excluded compared to the
definition of k through the given of the basis in Eq. (33).

The tensor product of two one-body states defines a basis
state of the two-body Hilbert space H2

|k1k2〉 ≡ |k1〉 ⊗ |k2〉 . (35)

Contrarily, in the coupled representation the two total angular
momenta jk1 and jk2 are coupled to a total two-body angular
momentum J with projection5 M ,

|k̃1k̃2(J )〉 ≡
∑

mk1mk2

(
jk1 jk2 J
mk1 mk2 M

)
|k1k2〉 , (36)

where the vector space inner product

(
jk1 jk2 J
mk1 mk2 M

)
≡ 〈k1k2|k̃1k̃2(J )〉 (37)

Footnote 4 continued
such that operators are expressed in this basis and that the indices of
the associated matrix elements relate to quasi-particles. This feature
does not change fundamentally what follows regarding the handling of
SU (2) symmetry.
5 While coupled two-body states do indeed depend on M , the label is
omitted for brevity given that the M-dependence of the reduced tensors
is completely specified by the WET.
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denotes the Clebsch-Gordan (CG) coefficient mediating the
transformation from the uncoupled to the coupled basis. The
left-hand side of Eq. (36) defines two-body eigenstates of J2,
the Casimir operator of the group. The inverse transformation
of Eq. (36) is given by

|k1k2〉 =
jk1+ jk2∑

J=| jk1− jk2 |

J∑

M=−J

(
jk1 jk2 J
mk1 mk2 M

)
|k̃1k̃2(J )〉 . (38)

Along the same lines, the uncoupled three-body basis
states of H3, i.e., the tensor product of three single-particle
states

|k1k2k3〉 ≡ |k1〉 ⊗ |k2〉 ⊗ |k3〉 (39)

is defined. Performing the angular-momentum coupling
requires fixing the coupling order which is subsequently cho-
sen to be

|[k̃1k̃2(J12)]k̃3(J )〉
=

∑

mk1mk2
mk3 M12

(
jk1 jk2 J12

mk1 mk2 M12

) (
J12 jk3 J
M12 mk3 M

)
|k1k2k3〉 , (40)

i.e., the first two single-particle states are coupled to an inter-
mediate two-body angular-momentum quantum number J12,
which is further coupled to the third state to yield the overall
(half-integer) three-body angular-momentum J . In analogy
to the two-particle case, Eq. (40) defines three-body eigen-
states of J2.

The choice of the coupling order for three-body states
employed in Eq. (40) is arbitrary such that an alternative
coupling scheme is given by

|[k̃1[k̃2k̃3(J23)](J )〉
=

∑

mk1mk2
mk3 M12

(
jk2 jk3 J23

mk2 mk3 M23

) (
J23 jk1 J
M23 mk1 M

)
|k1k2k3〉 , (41)

where the second and third single-particle states are cou-
pled to an intermediate angular momentum J23 that is sub-
sequently coupled with jk1 to an overall J . Both coupling
schemes enable for the construction of a basis of H3 that
is an eigenbasis of J2. The transformation between the two
representations is given by

|[k̃1k̃2(J12)]k̃3(J )〉
= (−1) j1+ j2+ j3+J

∑

J23

Ĵ12 Ĵ23

{
j1 j2 J12

j3 J J23

}

× |k̃1[k̃2k̃3(J23)](J )〉 , (42)

where the Wigner 6 j-symbol was introduced.
Recursively, N -body states can be introduced for N ≥ 3,

e.g. for the uncoupled representation

|k1 · · · kN 〉 ≡
N⊗

i=1

|ki 〉 . (43)

Since in current ab initio implementations four- and higher-
body operators play no dominant role yet, this extension is
not discussed here.

3.6 Many-body matrix elements

With the operator O being the μ component of a spherical
tensor of rank λ, its uncoupled matrix elements are defined
by

ōk1...ki ki+1...ki+ j ≡ 〈k1...ki |Oλ
μ|ki+1...ki+ j 〉 , (44)

where it is not assumed that the numbers of indices labelling
the bra and the ket states coincide. By means of the trans-
formations between uncoupled and coupled representation
of the bra and ket states, coupled expressions for matrix
elements can be derived. Focusing on a two-body operator
characterized by uncoupled matrix elements ōk1k2k3k4 , their
angular-momentum-coupled counterparts are6

Õ JM J ′M ′
k̃1k̃2 k̃3k̃4

=
∑

mk1mk2
mk3mk4

ōk1k2k3k4

(
jk1 jk2 J
mk1 mk2 M

) (
jk3 jk4 J ′
mk3 mk4 M ′

)
,

(45)

Analogously, coupled three-body matrix elements are obtained
as

Õ J12 JM J45 J ′M ′
k̃1k̃2 k̃3k̃4 k̃5k̃6

=
∑

mk1mk2mk3 M12
mk4mk5mk6 M45

(
jk1 jk2 J12

mk1 mk2 M12

)(
J12 jk3 J
M12 mk3 M

)

×
(

jk4 jk5 J45

mk4 mk5 M45

) (
J45 jk6 J ′
M45 mk6 M ′

)

× ōk1k2k3k4k5k6 . (46)

Neither Eq. (45) nor Eq. (46) assume the underlying oper-
ator to be scalar. If it is indeed the case, the selection rules
J = J ′ and M = M ′ hold and the coupled matrix element
is additionally independent of M . For the three-body opera-
tor, however, the intermediate couplings do not necessarily
coincide, i.e., J12 �= J45 in general.

6 The transformation can in principle be accompanied by an additional
phase factor.
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4 Diagrammatic method

Even though all manipulations necessary to simplify angular-
momentum expressions can be performed solely in terms
of the expressions introduced in Sect. 3 it is at the heart
of this work to introduce a more convenient representation
of the involved algebraic steps that, additionally, allows for
computer-aided derivations. As Feynman or Goldstone dia-
grams are used to efficiently capture the results of cumber-
some applications of Wick’s theorem, diagrams can be intro-
duced to restate complicated identities associated with angu-
lar momentum algebra [47]. A modern account of the under-
lying group-theoretic properties is provided in Ref. [45]. An
introduction in the context of many-body theory can be found
in Ref. [50]. Similar frameworks can be introduced to tackle
other (more involved) symmetry groups. 7 The interested
reader is referred to Ref. [51] for an extensive discussion.

4.1 Preliminaries

As seen in Sect. 3, CG coefficients constitute the basic build-
ing blocks of angular-momentum theory. However, CG coef-
ficients are somewhat inconvenient due to their asymmetry
with respect to the involved angular-momenta. A more sym-
metric representation can be obtained in terms of Wigner
3 jm-symbols8

(
j1 j2 j3
m1 m2 m3

)
≡ 1

ĵ1
(−1) j2− j3−m1

(
j1 j2 j3

−m1 m2 m3

)
. (47)

Wigner 3 jm-symbols are invariant under cyclic column per-
mutations,

(
j1 j2 j3
m1 m2 m3

)
=

(
j3 j1 j2
m3 m1 m2

)
=

(
j2 j3 j1
m2 m3 m1

)
, (48)

whereas anti-cyclic permutations induce a phase factor

(
j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j2 j1 j3
m2 m1 m3

)
. (49)

Wigner 3 jm-symbols with opposite magnetic quantum num-
bers are related via the identity

(
j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
. (50)

7 Groups (e.g. SU (n), n > 2) for which a given IRREP may appear
several times in the process of reducing the product of two IRREPs
require the introduction of a multiplicity label for each IRREP.
8 Although the 3 jm-symbols are usually referred to as 3 j-symbols in
the literature, this terminology is used here in order to distinguish them
from the 3 j-, 6 j- and 9 j-symbols appearing in the remainder of this
document.

Furthermore, 3 jm-symbols with one vanishing ( j,m) pair
simplify according to

(
j1 j2 0
m1 −m2 0

)
= (−1) j1−m1

1

ĵ1
δ j1 j2δm1m2 . (51)

4.2 Vertices

Wigner 3 jm-symbols provide the building blocks of the dia-
grammatic formalism. They are represented by vertices in
the so-called Yutsis graphs. 9 More specifically, a vertex car-
rying three outgoing lines, each labelled by a tuple ( jk,mk),
represents the 3 jm-symbol

The vertex sign denotes a convention specifying the column
order that must be used to write the corresponding 3 jm-
symbol, i.e., a plus (minus) sign stipulates that the lines and
the associated angular-momentum labels must be read coun-
terclockwise (clockwise).

Furthermore, the vertex with one ingoing line represents

Starting from the two above definitions, the vertices with
two and three ingoing lines are obtained by applying the
operation consisting of inverting the directions of all three
lines at once. Starting for example from the vertex with three
outgoing lines, one obtains the vertex with three ingoing lines

whose expression is given by

(−1) j1−m1+ j2−m2+ j3−m3

(
j1 j2 j3

−m1 −m2 −m3

)
, (52)

9 Named after Lithuanian Adolfas Jucys, these are also known as Jucys
graphs. Since many of his works were initially published in Russian,
the transliteration of the name from Russian, Yutsis graph, is the better-
known one.
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as a testimony of Eq. (50) and where the magnetic quantum
numbers have been added to the phase at no cost given that
m1 + m2 + m3 = 0 holds. Through this operation, the sign
is not altered. Additionally, performing the operation twice
does give back the original vertex thanks to the identity

(−1)2( j1−m1+ j2−m2+ j3−m3) = 1 . (53)

Changing the sign carried by the vertex can be performed
at the price of the phase factor

Φns = (−1) j1+ j2+ j3 , (54)

where the lower index ’ns’ stipulates the node sign reversal.
Indeed, moving from a clockwise to a counterclockwise (or
vice versa) reading of the vertex corresponds to performing
one column inversion in the 3 jm-symbol whose effect is
characterized by Eq. (49). Notice that changing the vertex
sign is equivalent to moving one line across another one.

4.3 Yutsis graphs

The network of 3 jm-symbols generated via step (1) of the
angular-momentum reduction of a SU-TN (see Sect. 3.1)
is represented by a Yutsis graph. Those graphs are, thus,
obtained by contracting a set of vertices through their edges
in a way that consistently represent the network of 3 jm-
symbols.

Contracting the edges of two vertices is possible if both
lines carry the same angular momentum quantum numbers
( j,m) and go in the same direction, i.e., one must be going
out of the first vertex while the other one must be going into
the second vertex

The contraction itself corresponds to summing over the
common magnetic quantum number such that the internal
line does not carry it anymore

Reading the vertices according to the definitions given
previously, the algebraic expression resulting from the con-
traction reads as

∑

m3

(−1) j3−m3

(
j1 j2 j3
m1 m2 m3

)(
j1′ j2′ j3
m1′ m2′ −m3

)
. (55)

Given a Yutsis graph, the direction of an internal line car-
rying angular momentum j can be reversed at the price of
accounting for the phase factor

Φrev = (−1)2 j . (56)

An example of practical interest relates to fully contracting
the two vertices

to generate the closed Yutsis graph

actually corresponding to the so-called Wigner 3 j -symbol{
j1 j2 j3

}
, also called triangular delta or triangular inequal-

ity. The corresponding algebraic expression is given by

{
j1 j2 j3

} =
∑

m1m2m3

(−1) j1−m1+ j2−m2+ j3−m3

×
(

j1 j2 j3
m1 m2 m3

) (
j1 j2 j3

−m1 −m2 −m3

)

=
{

1, if | j1 − j2| ≤ j3 ≤ j1 + j2
0, otherwise

, (57)

which vanishes unless the inequalities are satisfied.

4.4 Unfactorizable graphs

Wigner 3nj-symbols provide relevant examples of Yutsis
graphs that cannot be simplified via factorization rules. The
first example is theWigner 6 j-symbol that is graphically rep-
resented as a tetrahedral structure

Translating the central vertex to the upper right corner and
accounting for the change in the ordering of the lines attached
to the upper-left and the lower-right vertices, the diagram can
be equally represented as a square with two diagonal lines
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Independently of which of the two diagrams is used, the
corresponding algebraic expression is

{
j1 j2 j3
j4 j5 j6

}
≡

∑

m1...m6

(−1)
∑6

k=1( jk−mk )

×
(

j1 j2 j3
m1 m2 m3

) (
j1 j5 j6

−m1 −m5 m6

)

×
(

j4 j2 j6
m4 −m2 −m6

)(
j4 j5 j3

−m4 m5 −m3

)
(58)

The case n = 3 yields the Wigner 9 j-symbol whose alge-
braic expression

⎧
⎨

⎩

j1 j2 j3
j4 j5 j6
j7 j8 j9

⎫
⎬

⎭ ≡
∑

m1...m9

(
j1 j2 j3
m1 m2 m3

)(
j4 j5 j6
m4 m5 m6

)

×
(

j7 j8 j9
m7 m8 m9

) (
j1 j4 j7
m1 m4 m7

)

×
(

j2 j5 j8
m2 m5 m8

)(
j3 j6 j9
m3 m6 m9

)
, (59)

can be represented by the Yutsis graph given by the following
hexagon

involving six vertices and nine lines by inverting the signs
of the magnetic quantum numbers in the last three 3 jm-
symbols. While higher-order 3nj-symbols only rarely arise
in nuclear many-body theory, they can be equally represented
by an unfactorizable Yutsis graph. They do in fact naturally
enter in the partial-wave decomposition of nuclear k-body
Hamiltonians for k ≥ 4.

In practice, Wigner 3nj-symbols play an important role
given that they can be pre-calculated and stored in cache
in large-scale applications. This is typically done for 6 j-
symbols and if necessary for (a subset of) 9 j-symbols. Since
the number of 9 j-symbols is very large for a selected model

space it is often useful to re-express 9 j-symbols as sums of
products of 6 j-symbols and resort to much smaller 6 j-caches
if the structure of the angular-momentum networks supports
such a strategy.

4.5 From tensor networks to Yutsis graphs

The crucial first step consists of extracting the Yutsis graph
associated with the SU-TN of interest. Following step (1) in
Sect. 3.1, this is achieved by expressing the original SU-T’s in
terms of SR-T’s and a set of CG coefficients that are consec-
utively replaced by their 3 jm-symbol equivalents. The next
step consists of splitting each involved summation according
to

∑

k

→
∑

nklk jk tkmk

→
∑

k̃

∑

mk

. (60)

In doing so, one can isolate the networks of 3 jm-symbols
along with the sums over the magnetic quantum numbers.
This corresponds to extracting the associated Yutsis graph.

4.6 Factorization rules

Having the Yutsis graph at hand, the goal is to simplify it
as much as possible. This corresponds to identifying specific
subparts in the graph that can be reduced via the application of
identities satisfied by appropriate (sub)sets of 3 jm-symbols.
Once this is completed, one is left with an expression involv-
ing irreducible Wigner 3nj-symbols (see Sect. 4.4) and no
magnetic quantum number dependence anymore.

The benefit of using Yutsis graphs is that the search for
reducible parts can be automated while their actual reduction
can be realized by applying systematic factorization rules on
the graph. The rules are characterized by the length of the
cycles involved in the factorization process. Below, the fac-
torization rules are introduced one after another with increas-
ing degree of complexity, i.e., cycle length. For the proofs of
the factorization formula, the reader is referred to Ref. [45].
A more extensive list of angular-momentum-algebra identi-
ties that can be used to define factorization rules can be found
in Ref. [47].

4.7 Zero-line rule

The most elementary simplification rule relates to the han-
dling of a 3 jm-symbol with one vanishing ( j,m) pair, called
zero line. The corresponding vertex is represented as10

10 The zero-line does not carry a direction given that the corresponding
magnetic quantum number is neither positive nor negative.
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Fig. 1 Factorization rule for a 2-cycle giving rise to two Kronecker
deltas plus a 3 j-symbol

and, with resort to Eq. (51), could be reduced to a simple
edge.

4.7.1 Cycles of length two

The next simplest factorization corresponds to the reduc-
tion of a 2-cycle. Algebraically, the corresponding identity
is the orthogonality relation

YG2c ≡
∑

m1m2

(
j1 j2 j3
m1 m2 m3

) (
j1 j2 j3′
m1 m2 m3′

)

=
∑

m1m2

(−1)
∑3

k=1( jk−mk )

(
j1 j2 j3

−m1 −m2 −m3

)

×
(

j1 j2 j3′
m1 m2 m3′

)

= 1

ĵ2
3

δ j3 j3′ δm3m3′
{
j1 j2 j3

}
. (61)

Figure 1 provides the diagrammatic representation of the
identity stated in Eq. (61). Thus, the 2-cycle rule replaces
two vertices connected by two lines by a single line in a
Yutsis graph.

4.7.2 Cycles of length three

The simplest factorization rule leading to a non-trivial
Wigner 3nj-symbol corresponds to the factorization of a 3-
cycle as displayed in Fig. 2. Algebraically, the factorization
corresponds to the identity

YG3c ≡
∑

m4m5m6

(−1)
∑6

k=4( jk−mk )

(
j5 j1 j6
m5 m1 −m6

)

×
(

j6 j2 j4
m6 m2 −m4

)(
j4 j3 j5
m4 m3 −m5

)

= (−1) j1+ j2+ j3

(
j1 j2 j3
m1 m2 m3

) {
j1 j2 j3
j4 j5 j6

}
. (62)

Fig. 2 Factorization rule for a 3-cycle giving rise to a single vertex
plus a 6 j-symbol

Equation (62) allows one to factorize a topology involving
three vertices into an irreducible part, i.e. the 6 j-symbol, and
a single vertex. Therefore, the resulting graph contains two
vertices and three lines less than the initial one.

4.7.3 Cycles of length four

The most involved factorization rule employed in this
work corresponds to a cycle of length four as displayed in
Fig. 3. The underlying algebraic identity is given by

YG4c ≡
∑

m5m6
m7m8

(−1) j5−m5+ j6−m6+ j7−m7+ j8−m8

×
(

j8 j1 j5
m8 m1 −m5

) (
j5 j2 j6
m5 m2 −m6

)

×
(

j6 j3 j7
m6 m3 −m7

) (
j7 j4 j8
m7 m4 −m8

)

= (−1) j7− j1− j4− j5
∑

jxmx

(−1) jx−mx ĵ2
x

×
(

j1 jx j4
m1 −mx m4

) (
j2 jx j3
m2 mx m3

)

×
{
j1 jx j4
j7 j8 j5

} {
j2 jx j3
j7 j6 j5

}
. (63)

Equation (63) allows to factorize the topology involving four
vertices into an irreducible part made of two 6 j-symbols
and two vertices. Therefore, the resulting graph contains two
vertices and three lines less than the initial one.

Note that the Yutsis graph in Fig. 3 has the symmetry
of a square: rotations by multiples of 90◦ leave it invariant.
The rotation is equivalent to relabeling the edges, and leads
to a different equivalent factorization for rotation angles of
90◦ and 270◦. The handling of cycles of length four is thus
nonunique.
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Fig. 3 Factorization rule for a 4-cycle giving rise to a sum of terms with two 6 j-symbols multiplying a Yutsis graph containing two vertices

Fig. 4 Schematic picture of a generic higher-order topology that can-
not be simplified in terms of the triangle or the quadrilateral rules. Vertex
signs are left out for simplicity

4.7.4 Cycles beyond length four

While the present code supports factorizations involving up
to cycles of length four, there exist topologies, sketched in
Fig. 4, which cannot be simplified through the above stated
rules but require more involved identities. In principle, this
restricts the range of applicability to topologies that do not
contain cycles of length five or higher. The smallest cubic
graph involving a cycle of length five is the so-calledPeterson
graph containing ten vertices and 15 edges. Consequently,
the simplest many-body diagram potentially leading to this
topology must contain at least five two-body vertices, e.g.,
corresponding to a fifth-order MBPT diagram or a CC dia-
gram with T3 amplitudes.

In the testing phase of the current version of the code, the
factorization rules were applied to hundreds of many-body
diagrams including topologies that are far beyond current
state-of-the-art applications. In none of these test cases a Yut-
sis graph involving a cycle of length five or higher appeared.
Future versions of the program will be extended along these
lines by including factorizations of more complex topologies,
or including more elaborate techniques such as the inter-
change rule [52].

5 Applications

A number of different many-body formalisms are now used
to exemplify the steps at play in the symmetry reduction pro-
cess of SU-TNs. The emphasis is on the angular-momentum
reduction and details of the formalisms themselves are not
within the scope of the present work. All considered exam-
ples are typical of state-of-the-art nuclear structure applica-
tions.

The formulae derived below are not in the computationally
most optimized form. For instance, below parity- and isospin-
conservation can be further exploited to yield more efficient
implementations. However, processing SU (2)-symmetry
yields by far the highest computational benefit due to larger
dimensionality of the associated IRREPs.

Even with the symmetry-restricted tensor networks at
hand, a reasonably fast implementation relies on an efficient
handling of prestored recoupling symbols. One library that
particularly suits the needs of nuclear many-body physicists
is described in Ref. [53].

5.1 Many-body perturbation theory

In many-body perturbation theory (MBPT) an infinite power
series is taken as an ansatz for the exact ground-state energy
and wave function [8]

Ek(λ) = E (0)
k + λE (1)

k + λ2E (2)
k + ... , (64a)

|Ψk(λ)〉 = |Φ〉 + λ|Ψ (1)
k 〉 + λ2|Ψ (2)

k 〉 + ... , (64b)

where the lower index k enumerates excited states in the
spectrum and |Φ〉 ≡ |Ψ (0)

k 〉 denotes the unperturbed refer-
ence state. The expansions in Eq. (64) are evaluated at λ = 1
to obtain the quantities corresponding to the original prob-
lem of interest. Since the following is exclusively concerned
with the description of nuclear ground states, i.e., k = 0, the
subscript is dropped for simplicity.
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The starting point is given by the definition of a splitting
of the full Hamiltonian

H = H0 + λH1 , (65)

into an unperturbed part H0 and a perturbation H1 such that
the reference energy is given by

Eref ≡ 〈Φ|H |Φ〉 = E (0)
0 + E (1)

0 . (66)

The first contribution to the correlation energy

ΔE ≡ E0 − Eref (67)

is, thus, obtained at second order. The simplest choice is to
take |Φ〉 as a Slater determinant, typically obtained as the
solution of a SU (2)-restricted Hartree-Fock (HF) calcula-
tion. In recent years, more sophisticated vacua have been
used in order to account for so-called static correlations
in open-shell systems. Both multi-configurational reference
states obtained from a configuration interaction (CI) diago-
nalization in a small model space [13] and particle-number-
broken HFB vacua [12] have shown to provide computa-
tionally cheap benchmarks without loss in accuracy when
employing softened chiral potentials. For a recent review,
see Ref. [15].

Presently, the simplest single-reference case of low-order
canonical HF-MBPT is discussed11. Examples are worked
out in detail to enable a deeper understanding of each of the
individual algorithmic steps.

5.1.1 Second-order energy correction

The second-order energy correction reads as12

E (2)
0 = −1

4

∑

abi j

Habi j Hi jab

εabi j

, (68)

where a, b and i, j denote particle and hole states, respec-
tively, i.e., states that are unoccupied and occupied in the ref-
erence Slater determinant, respectively. Additionally, a short-

11 Even though ΔE defined in Eq. (67) is usually referred to as corre-
lation energy it does not mean that Eref does not contain correlations
effects, e.g., when using a symmetry-broken or multi-configurational
vacuum. In the case of a HF vacuum, however, there is indeed no corre-
lations contained in |Φ〉 beyond those associated with Pauli’s exclusion
principle.
12 In this section a canonical HF vacuum is assumed throughout all
derivations. More general choices give rise to one additional diagram
at second order and eight additional diagrams at third order [8]. In any
case the computational complexity is always driven by the canonical
diagrams included in this discussion.

hand notation for the energy denominator is used

εab...i j... ≡ εa + εb + ... − εi − ε j − ... , (69)

where εk denotes HF single-particle energies. According to
the previous definitions Eq. (68) provides a closed SU-TN
involving two mode-4 tensors, i.e. Hi jab and εabi j .

Expressing the two involved tensors in Eq. (68) in terms
of their AMR-T counterparts according to (the inverse of)
Eq. (45) yields

E (2)
0 = −1

4

∑

ãb̃ĩ j̃

1

εãb̃
ĩ j̃

∑

J1 J2
M1M2

H J1

ãb̃ĩ j̃
H J2

ĩ j̃ ãb̃

∑

mamb
mim j

(
ja jb J1

ma mb M1

)

×
(

ji j j J1

mi m j M1

) (
ji j j J2

mi m j M2

) (
ja jb J2

ma mb M2

)
, (70)

where the fact was used that εabi j = εãb̃
ĩ j̃

is already an AMR-T

given that the single-particle energies arem-independent, i.e.,
εk̃ = εk . The tensor network in Eq. (70) is split into an SU (2)-
invariant part that does not depend on single-particle angular-
momentum projection quantum numbers and a part carrying
the full dependence of magnetic quantum numbers that will
be subsequently simplified. In a first step, CG coefficients
are converted into 3 jm-symbols yielding

E (2)
0 = −1

4

∑

ãb̃ĩ j̃

1

εãb̃
ĩ j̃

∑

J1 J2

H J1

ãb̃ĩ j̃
H J2

ĩ j̃ ãb̃
Ĵ 2

1 Ĵ
2
2

×
∑

M1M2

∑

mamb
mim j

(−1)−2 ja+2 jb−2M1(−1)−2 ji+2 j j−2M2

×
(

ja jb J1

ma mb −M1

) (
ji j j J1

mi m j −M1

)

×
(

ji j j J2

mi m j −M2

) (
ja jb J2

ma mb −M2

)
, (71)

where each phase factor gives in fact

(−1)−2 ja+2 jb−2M1 = (−1)−2 ja+2 jb−2(ma+mb)

= (−1)2( ja−ma)(−1)2( jb−mb)

= 1 . (72)

Focusing on the 3 jm-symbols network in Eq. (71), the sec-
ond step consists of reversing all m quantum numbers in the
second and fourth 3 jm-symbols

∑

M1M2

∑

mamb
mim j

(−1) ja−ma+ jb−mb+ ji−mi+ j j−m j+J1−M1+J2−M2

×
(

ja jb J1

ma mb −M1

) (
ji j j J1

−mi −m j M1

)
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×
(

ji j j J2

mi m j −M2

) (
ja jb J2

−ma −mb M2

)
, (73)

at the price of an extra phase factor, where the magnetic
quantum numbers have been added to the phase at no cost
given that mi +m j − M1 = 0 and ma +mb − M2 = 0 hold
and that M1 and M2 are integers. The expression in Eq. (73)
is now in the proper form to allow for its identification with
an appropriate Yutsis graph

Now that the working graph has been built, the next
step consists in simplifying it via the application of appro-
priate factorization rules. The application of the 2-cycle
rule, see Fig. 1, requires the direction of the edges car-
rying ja and jb to be reversed, thus bringing the phase
Φlr = (−1)2 ja (−1)2 jb = (−1)2 = 1 and yielding the dia-
gram

where the red box indicates the subpart of the diagram that is
factorizated in the next step. Factorizing the 2-cycle provides
the intermediate factor

1

Ĵ 2
1

{
ja jb J1

}
δJ1 J2 (74)

and leaves the diagram

In the last step, the 3 j-symbol is identified after reversing
the orientation of the edges carrying ji and j j

leading to the additional phase Φlr = (−1)2 ji+2 j j =
(−1)2 = 1 and providing the overall result

1

Ĵ 2
1

{
ja jb J1

} {
ji j j J1

}
δJ1 J2 . (75)

Replacing them-dependent part of Eq. (71) by Eq. (75) finally
provides the AMR form of the second-order energy correc-

tion

E (2)
0 = −1

4

∑

J

Ĵ 2
∑

ãb̃ĩ j̃

H J
ãb̃ĩ j̃

H J
ĩ j̃ ãb̃

εãb̃
ĩ j̃

, (76)

where triangular inequalities coming from 3 j-symbols are
assumed. While the initial SU-TN is of N 4 complexity, the
AMR-TN is of Ñ 4 · (Jmax + 1) complexity, where Ñ is the
number of reduced basis states k̃ and Jmax corresponds to
the maximum number of channels (i.e. allowed values) of
the two-body angular-momentum given the maximum one-
body angular momentum retained in the (truncated) basis
B1. For large model spaces the runtime is reduced by several
orders of magnitude even for this very simple example.

5.1.2 Third-order energy correction

A more elaborate example is given by the third-order energy
correction to the ground-state binding energy

E (3)
0 ≡ E (3)

pp + E (3)
hh + E (3)

ph , (77)

which is divided into three contributions [8]

E (3)
pp = 1

8

∑

abcdi j

Hi jabHabcd Hcdi j

εabi j εcdi j

, (78a)

E (3)
hh = 1

8

∑

abi jkl

Hi jabHkli j Habkl

εabi j εabkl

, (78b)

E (3)
ph = −

∑

abci jk

Hi jabHkbicHack j

εabi j εack j

. (78c)

Following the same procedure as for E (2)
0 , one obtains the

Yutsis graph associated with the particle-particle contribution
(i.e. E (3)

pp ) is given by

and, similarly, the one extracted from the hole-hole contri-
bution (i.e. E (3)

hh )
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which are topologically identical. Due to the presence of one
more Hamiltonian matrix element compared to the second-
order energy correction, the number of 3 jm-symbols, i.e.
the number of nodes, is increased by two. In both cases,
the red boxes indicate the subgraphs that are factorized by
the application of the 2-cycle rule. Applying it twice and
identifying the resulting Yutsis graph as a 3 j-symbol leads
to the result

1

Ĵ 4
1

{
ja jb J1

} {
jc jd J1

} {
ji j j J1

}
δJ1 J2δJ2 J3 . (79)

Considering the Ĵ 2
1 Ĵ

2
2 Ĵ

2
3 factor coming from the prior con-

version of CG coefficients into 3 jm-symbols, the final AMR
form of the two contributions is

E (3)
pp = 1

8

∑

J

Ĵ 2
∑

ãb̃c̃d̃ ĩ j̃

H J
ĩ j̃ ãb̃

H J
ãb̃c̃d̃

H J
c̃d̃ ĩ j̃

εãb̃
ĩ j̃

ε c̃d̃
ĩ j̃

, (80a)

E (3)
hh = 1

8

∑

J

Ĵ 2
∑

ãb̃ĩ j̃ k̃l̃

H J
ĩ j̃ ãb̃

H J
k̃l̃ ĩ j̃

H J
ãb̃k̃l̃

εãb̃
ĩ j̃

εãb̃
k̃l̃

, (80b)

which can be read as simple matrix-matrix products within
each J channel.

The symmetry reduction of the particle-hole term (i.e.
E (3)
ph ) is more involved such that, following the same steps,

the associated Yutsis graph is

and can be re-arranged in a more convenient way as

which is nothing but a 9 j-symbol. Consequently, the AMC
form of the particle-hole term leads to the algebraic expres-
sion

E (3)
ph = −

∑

K

K̂ 2
∑

J1 J2 J3

Ĵ 2
1 Ĵ

2
2 Ĵ

2
3

⎧
⎨

⎩

J1 ja j j
ji J2 j6
jb jk J3

⎫
⎬

⎭

×
∑

ãb̃c̃ĩ j̃ k̃

H J1

ĩ j̃ ãb̃
H J2

k̃b̃ĩ c̃
H J3

ãc̃k̃ j̃

ε
ĩ j̃

ãb̃
ε
k̃ j̃
ãc̃

. (81)

In practical applications, Eq. (81) is conveniently re-written
by expressing the 9 j-symbols as a sum of products of three
6 j-symbols

E (3)
ph = −

∑

K

K̂ 2
∑

J1 J2 J3

Ĵ 2
1 Ĵ

2
2 Ĵ

2
3

×
∑

ãb̃c̃ĩ j̃ k̃

H J1

ĩ j̃ ãb̃
H J2

k̃b̃ĩ c̃
H J3

ãc̃k̃ j̃

ε
ĩ j̃

ãb̃
ε
k̃ j̃
ãc̃

×
{
ji jb J1

ja j j K

}{
ji jb J2

jk jc K

}{
jk jc J3

ja j j K

}
, (82)

which can be obtained graphically by a successive applica-
tion of the 4-cycle rule, the 3-cycle rule and finally the identi-
fication of a redundant 3 j-symbol. Based on the introduction
of so-called Pandya-transformed matrix elements [48]

Ŏ J1
pqrs ≡ −

∑

J2

Ĵ 2
2

{
jp jq J1

jr js J2

}
OJ2

psrq , (83)

Eq. (82) can eventually be written as

E (3)
ph =

∑

J

Ĵ 2
∑

ãb̃c̃ĩ j̃ k̃

H̆ J
ĩ b̃ã j̃

H̆ J
ã j̃ k̃c̃

H̆ J
k̃c̃ĩ b̃

ε
ĩ j̃

ãb̃
ε
k̃ j̃
ãc̃

, (84)

which reads as the trace of a two-fold matrix-matrix product
of Pandya-transformed Hamiltonian matrix elements. Equa-
tion (84) clearly shows the computational benefit of an appro-
priate choice of the coupling order which in practice is not
at all obvious.

5.2 Coupled-cluster theory

Contrary to a simple power series ansatz, coupled-cluster the-
ory aims at a non-perturbative resummation of large classes
of MBPT diagrams.
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5.2.1 General formalism

The starting point in the CC framework is an exponential
ansatz to parameterize the exact ground state [8],

|Ψ 〉 = eT |Φ〉 , (85)

in terms of the connected cluster operator T defined as

T ≡ T1 + T2 + ... + TA . (86)

The second-quantized form of the individual terms in Eq. 86
is given by

Tn ≡ 1

(n!)2

∑

a1...an

∑

i1...in

ta1...an
i1...in

c†
a1

· · · c†
an cin · · · ci1 , (87)

with ta1...an
i1...in

the n-tuple cluster amplitudes characterizing a
mode-2n tensor. Thanks to the exponential form for the wave
operator, the CC approach is manifestly size-extensize. In
actual applications, T is truncated at a fixed truncation level
defining a particular CC model, e.g.,

TCCSD ≡ T1 + T2 (88a)

TCCSDT ≡ T1 + T2 + T3

... (88b)

where the acronyms S,D,T,... indicate inclusion of single
(S), double (D), triple (T), ... excitations. Working equations
can conveniently be re-expressed in terms of the similarity-
transformed Hamiltonian

H̄ ≡ e−T HeT

= (HeT )c , (89)

where the lower index c stipulates the connected character
of the expansion.

5.2.2 Energy equation

In the absence of three-body operators in the input Hamilto-
nian, the correlation energy is given for arbitrary CC trunca-
tions by

ΔECC = 〈Φ|H̄ |Φ〉
=

∑

ai

tai fia +
∑

abi j

Habi j tai tbj + 1

4

∑

abi j

Habi j ti jab .

(90)

Equation (90) defines a closed TN involving at most four
internal contractions. Note that higher-order amplitudes

affect the energy only implicitly by relaxing T1 and T2 with-
out entering the energy equation explicitly.

Contrary to canonical MBPT, the CC energy equation
involves mode-2 tensors associated with one-body operators,
i.e. the T1 amplitudes and the matrix elements f pq of the Fock
operator. The Fock operator is SU (2)-invariant as long as the
mean-field calculation is performed in a symmetry-restricted
way. As the reference Slater determinant is presently charac-
terized by J = 0, cluster amplitudes are irreducible SU (2)

tensors of rank J = 0 such that a similarity-transformed
operator Ō has the same irreducible SU (2) tensor rank as
its non-transformed counterpart O . Hence, Wigner-Eckart’s
theorem trivially enables the introduction of reduced matrix
elements

〈p|T1|q〉 = 1

ĵp
s

(
jq 0 jp
mq 0 mp

)
( p̃|T1|q̃)

= (−1) jp−mp

(
jp 0 jq

−mp 0mq

)
( p̃|T1|q̃) , (91a)

〈p|F |q〉 = 1

ĵp

(
jq 0 jp
mq 0 mp

)
( p̃|F|q̃)

= (−1) jp−mp

(
jp 0 jq

−mp 0mq

)
( p̃|F|q̃) . (91b)

Inserting such forms into the first contribution to the CC the
energy yields

∑

ai

fiatai =
∑

ãĩ

(ĩ |F|ã)(ã|T1|ĩ)
∑

mami

(−1) ji−mi+ ja−ma

×
(

ji 0 ja
mi 0 −ma

) (
ja 0 ji
ma 0 −mi

)
, (92)

from which the m-dependent part can be extracted to yield
the Yutsis graph

Reversing the direction of the ja edge (Φlr = (−1)2 ja = −1)
together with changing the sign of the leftmost node (Φns =
(−1) ja+ ji ) allows to make use of the 2-cycle rule which leads
to

−(−1) ja+ ji
{
ja ji 0

} = −(−1) ja+ ji δ ja ji = δ ja ji , (93)

such that one obtains the final AMR form

∑

ai

fiatai =
∑

ãĩ

δ ja ji (ĩ |F|ã)(ã|T1|ĩ) . (94)

For the second term of the energy equation, one has

∑

abi j

Hi jabtai tbj
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=
∑

ãb̃ĩ j̃

∑

J

Ĵ 2 H J
ĩ j̃ ãb̃

(ã|T1|ĩ) (b̃|T1| j̃)
∑

mamb
mim j

∑

M

× (−1)( ji− j j+M)+( ja− jb+M)

(
ji j j J
mi m j −M

) (
ja jb J
ma mb −M

)

× (−1)( ja−ma)+( jb−mb)

(
ja 0 ji
ma 0 −mi

) (
jb 0 j j
mb 0 −m j

)
. (95)

Reversing the signs of m quantum numbers in the second
3 jm-symbol, the m-dependent part of Eq. (95) delivers the
Yutsis graph

with two external edges carrying zero angular momentum.
Applying twice the zero-line rule, one ends up with the graph-
ical representation of a 3 j-symbol, such that them-dependent
part of Eq. (95) reduces to

1

ĵa ĵb
δ ja ji δ jb j j

{
ja jb J

}
, (96)

thus providing the final closed AMR-TN under the form

∑

abi j

Hi jabtai tbj =
∑

ãb̃ĩ j̃

∑

J

δ ja ji δ jb j j
Ĵ 2

ĵa ĵb
H J
ĩ j̃ ãb̃

× (ã|T1|ĩ) (b̃|T1| j̃) . (97)

The detailed derivation of the last contribution to the energy
equation is omitted given that it is formally identical to the
derivation of the second-order MBPT correction, i.e. the
appropriate Yutsis graph is the one displayed in Sect. 5.1.1.
The final result reads as

1

4

∑

abi j

Hi jabtabi j = 1

4

∑

J

Ĵ 2
∑

ãb̃ĩ j̃

H J
ĩ j̃ ãb̃

t J
ãb̃ĩ j̃

. (98)

5.2.3 Amplitude equations

The unknown cluster amplitudes are obtained by solving a
set of CC amplitude equations

0 = 〈Φa
i |H̄ |Φ〉 , (99a)

0 = 〈Φab
i j |H̄ |Φ〉 ,

... (99b)

Equations (99) constitute a set of coupled non-linear equa-
tions that must be solved iteratively for every external index

combination. They also provide typical examples of open
SU-TNs containing external indices that are not summed
over13.

In order to perform the symmetry reduction, one must
sum over all magnetic quantum numbers, and in particular
the external ones. This will lead to a closed Yutsis graph.
To do so, an external coupling order has to be fixed. The
coupling

1

ĵ2
a

∑

mami

(
ja 0 ji
ma 0 mi

)
(100)

is used in the case of the T1 amplitude equations and is such
that

1

ĵ2
a

∑

mami

(
ja 0 ji
ma 0 mi

)
tai = δ ja ji

1

ĵa
(ã|T1|ĩ) , (101)

whereas the coupling

1

Ĵ 2

∑

mambmim j M

(
ja jb J
ma mb M

)(
ji j j J
mi m j M

)
(102)

is used in the case of the T2 amplitude equations and is such
that

1

Ĵ 2

∑

mambmim j M

(
ja jb J
ma mb M

)(
ji j j J
mi m j M

)
tabi j = t J

ãb̃ĩ j̃
.

(103)

The alternative couplings14

1

Ĵ 2

∑

mambmim j M

(
ja ji J
ma mi M

)(
jb j j J
mb m j M

)
(104)

or even

1

Ĵ 2

∑

mambmim j M

(
ja j j J
ma m j M

) (
jb ji J
mb mi M

)
(105)

can be used equally well. However, it turns out that the result-
ing equation will be much simpler when the first option is
employed since the coupling order is consistent with the cou-
pling order used for the Hamiltonian matrix elements. This is

13 In Ref. [54], the AMR of the triple BCC amplitudes evaluated at sec-
ond order in perturbation theory was performed. It constituted the first
application of the presently introduced numerical tool. The analytical
expressions of the open AMR-TN’s corresponding to the 20 different
contributions were provided as a testimony of the complexity at play.
14 Such a choice is sometimes referred to as cross coupling since it
involves angular-momentum coupling of bra and ket single-particle
states.
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an example where prior experience provides a strong guid-
ance for the proper choice of the angular-momentum cou-
pling scheme even though ultimately all choices yield equiv-
alent results.

To exemplify the coupling of open SU-TNs, one particu-
lar contribution to the CCSD doubles amplitude equation is
chosen

Dabi j ≡
∑

kl

∑

cd

Hklcd td j tak tcbil , (106)

where (k, l, c, d) denote internal indices that are summed
over while (a, b, i, j) characterize the external indices. The
construction of the angular-momentum network originating
from the application of the external coupling, defined in
Eq. (102), to Eq. (106) requires to sum over a product of

(i) two 3 jm-symbols coming from the external coupling of
a, b and i, j ,

(ii) two 3 jm-symbols with zero-edges coming from the
application of Wigner-Eckart theorem to the T1 ampli-
tudes,

(iii) four 3 jm-symbols coming from the coupling of H and
T2 matrix elements,

yielding eight 3 jm-symbols and eleven summations over
magnetic quantum numbers, eight corresponding to one-
body indices (ma,mb,mc,md ,mi ,m j ,mk,ml ), two origi-
nating from the decoupling of H and T2 (M1,M2) and one
(M) coming from the external coupling of the double ampli-
tude equation. The corresponding Yutsis graph is given by

The red box indicates a subgraph to which the 4-cycle factor-
ization rule can be applied. However, first applying twice the
zero-line rule to the leftmost and rightmost nodes (ĵ−1

a δ ja jk
and ĵ−1

i δ j j jd ) directly yields a Yutsis graph that is topo-
logically equivalent to the one of the third-order particle-
hole contribution in MBPT, i.e., which corresponds to a 9 j-
symbol. The final expression reads as

DJ
ãb̃ĩ j̃

=
∑

J1 J2K

Ĵ 2
1 Ĵ

2
2 K̂

2

ĵa ĵ j

∑

k̃l̃ c̃d̃

δ jd j j δ jk ja H
J1

k̃l̃ c̃d̃
(d̃|T1| j̃)(ã|T1|k̃)

t J2

c̃b̃ĩ l̃

{
ji jb K
ja j j J

}{
jc jl K
ja j j J1

}{
jl ji J2

jb jc K

}
. (107)

5.3 In-medium similarity renormalization group

As a final example, the IMSRG approach is considered pro-
viding a non-perturbative alternative to CC theory. Through-
out the last decade, IMSRG has been successfully applied
to various nuclear observables, including low-lying excited
states and electromagnetic transitions whose treatments were
pioneered and applied to mid-mass closed-shell nuclei in Ref.
[55]. Without the use of angular-momentum reduction, such
studies in the mid-mass regime would have been impossible
from a computational point of view. Thus, non-scalar opera-
tors associated with, e.g., electromagnetic transitions consti-
tute an excellent playground to yet extend the application of
our automated treatment of angular-momentum reduction.

5.3.1 General formalism

The IMSRG formalism is based on a unitary transformation
U (s) of operators parametrized by a continuous variable s ∈
[0,∞) such that

O(s) = U (s)O(0)U †(s) . (108)

Equation (108) can be recast into a first-order ordinary dif-
ferential equation (ODE)

d

ds
O(s) = [η(s), O(s)] , (109)

involving an anti-Hermitian generator η that can be chosen
conveniently to obtain a desired decoupling pattern. A stan-
dard choice is given by the Wegner generator

η(s) = [Hod(s), Hd(s)] , (110)

defined as the commutator of the suitably chosen ’diagonal’
and ’off-diagonal’ parts of H , the end result being that Hod(s)
is eventually driven to zero. Even though the initial opera-
tor may contain up to two-body parts only, the evaluation
of the commutator in Eq. (109) increases the particle rank
of the operator, thus, inducing many-body operators up to
the A-body level. In practice, the IMSRG(2) truncation is
typically employed in which operators of higher rank than
two-body operators are discarded. As discussed in Ref. [56],
the IMSRG(2) approximation is exact up to third order in
MBPT for the ground-state energy while resumming large
classes of higher-order diagrams.

5.3.2 Evolution of non-scalar operators

The form to Eq. (109) is completely generic and valid for an
arbitrary Hermitian operator O , independently of its trans-
formation properties with respect to SU (2) symmetry. For
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practical applications, the specific tensorial properties of O
need however to be taken into account. The evaluation of the
ground-state energy provides the simplest case since both
O = H and the generator are scalar operators in this case.

In the general case where O is a spherical tensor operator
of rank λ, the evaluation of the AMR form of the commutator
appearing in Eq. (109) is key. The associated form can be
generically written as

Cλ
μ ≡ [Sλ1 ,Tλ2 ]λμ = [Sλ1Tλ2 ]λμ − [Tλ2Sλ1 ]λμ , (111)

where Sλ1
μ1 and T λ2

μ2 are spherical tensor operators of rank λ1

and λ2, respectively, which are subsequently coupled to give
a tensor of rank λ. This coupling is obtained via spherical
tensor product defined through

[Sλ1Tλ2 ]λμ ≡
∑

μ1μ2

(
λ1 λ2 λ

μ1 μ2 μ

)
Sλ1
μ1
T λ2

μ2
, (112)

where the left-hand-side is indeed a spherical tensor operator
of rank λ.

While the complete list of contributions can be found in
Ref. [55], the so-called particle-particle contribution to the
two-body part of the evolved operator is considered as an
example. The associated SU-TN expression is given by

Cλμ
pqrs = 1

2

∑

tu

n̄t n̄u
∑

μ1μ2

(
λ1 λ2 λ

μ1 μ2 μ

)
Sλ1μ1
pqtu T

λ2μ2
turs , (113)

where n p ∈ {0, 1} denotes the occupation number of the state
|p〉 and n̄ p ≡ 1−n p. The occupation number is independent
of the projection quantum number, i.e., n p = n p̃ as well as
n̄ p = n̄ p̃.

Applying WET to the left-hand-side of Eq. (113) provides

Cλμ
pqrs =

∑

J1 J2M1M2

1

Ĵ1

(
jp jq J1

mp mq M1

) (
jr js J2

mr ms M2

)

×
(
J2 λ J1

M2 μ M1

)
( p̃q̃ J1|Cλ|r̃ s̃ J2) , (114)

and similarly for the tensors operators arising from commu-
tator expansion

Sλ1μ1
pqtu =

∑

J3 J4M3M4

1

Ĵ3

(
jp jq J3

mp mq M3

) (
jt ju J4

mt mu M4

)

×
(
J4 λ1 J3

M4 μ1 M3

)
( p̃q̃ J3|Sλ1 |t̃ ũ J4) , (115a)

T λ2μ2
turs =

∑

J5 J6M5M6

1

Ĵ5

(
jt ju J5

mt mu M5

) (
jr js J6

mr ms M6

)

×
(
J6 λ2 J5

M6 μ2 M5

)
(t̃ ũ J5|Tλ2 |r̃ s̃ J6) . (115b)

In the following the standard external coupling of a tensor
operator (see Eq. (102) for the scalar case) is employed

1

Ĵ1

∑

mamb
mim j

∑

M1M2μ

(
jp jq J1

mp mq M1

) (
jr js J2

mr ms M2

)(
J2 λ J1

M2 μ M1

)
.

(116)

Applying Eq. (116) to Eq. (113) and inserting all the trans-
formations displayed in Eqs. (115) yields

( p̃q̃ J1|Cλ|r̃ s̃ J2)

= 1

2

∑

μ1μ2μ

∑

{mi }

∑

J1,...,J6
M1,...,M6

1

Ĵ1 Ĵ3 Ĵ5

(
λ1 λ2 λ

μ1 μ2 μ

)

×
(

jp jq J1

mp mq M1

)(
jr js J2

mr ms M2

) (
J2 λ J1

M2 μ M1

)

×
(

jp jq J3

mp mq M3

)(
jt ju J4

mt mu M4

) (
J4 λ1 J3

M4 μ1 M3

)

×
(

jt ju J5

mt mu M5

) (
jr js J6

mr ms M6

) (
J6 λ2 J5

M6 μ2 M5

)

× n̄t̃ n̄ũ( p̃q̃ J3|Sλ1 |t̃ ũ J4)(t̃ ũ J5|Tλ2 |r̃ s̃ J6) . (117)

After transforming CG coefficients into 3 jm-symbols, the
angular-momentum network appearing in Eq. (117) can be
identified with the following Yutsis graph

in which the red boxes indicate the subgraphs to which the 2-
cycle factorization rule is applied. The residual Yutsis graph
corresponds to a 6 j-symbol and a phase factor, such that one
eventually obtains the reduced for of Eq. (117) as

( p̃q̃ J1|Cλ|r̃ s̃ J2)

= 1

2
λ̂(−1)J1+J2+λ

∑

J3

{
λ1 λ2 λ

J2 J1 J3

} ∑

t̃ ũ

× n̄t̃ n̄ũ( p̃q̃ J1|Sλ1 |t̃ ũ J3)(t̃ ũ J3|Tλ2 |r̃ s̃ J2) . (118)
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In the special case of scalar operator, i.e., λ = λ1 = λ2 = 0,
the AMC form of the commutator simplifies to

( p̃q̃ J |Cλ|r̃ s̃ J )

= 1

2 Ĵ

∑

t̃ ũ

n̄t̃ n̄ũ( p̃q̃ J |S0|t̃ ũ J )(t̃ ũ J |T0|r̃ s̃ J ) , (119)

where the following property of the 6 j-symbol

{
0 0 0
j1 j2 j3

}
= (−1)2 j1 1

ĵ1
δ j1 j2δ j2 j3 (120)

has been used. Equation (119) can be rewritten in terms
of angular-momentum-coupled matrix elements (Eq. (45))
instead of reduced matrix elements giving

C J
p̃q̃r̃ s̃ = 1

2

∑

t̃ ũ

n̄t̃ n̄ũ S
J
p̃q̃ t̃ ũ T

J
t̃ ũr̃ s̃ . (121)

6 Conclusions

In the present work, an automated tool to perform symbolic
angular-momentum algebra operations has been designed.
This tool relates to the fact that the working equations, i.e.
the symmetry-unrestricted tensor networks, at play in state-
of-the-art nuclear many-body methods can be analytically
reduced with respect to angular-momentum quantum num-
bers whenever they are effectively employed in a symmetry-
restricted context. The corresponding time-consuming and
error-prone derivation of the angular-momentum-reduced
form of the tensor networks is thus performed in a matter
of seconds. The design of the tool is based on the use of
Yutsis graph representing networks of Wigner 3 jm-symbols
and fulfilling sets of factorization rules whose repeated appli-
cation eventually provides the angular-momentum-reduced
form of the equations. While examples of applications have
been provided for many-body perturbation theory, coupled
cluster theory and the in-medium similarity renormalization
group method, the code can be interfaced with any many-
body formalism of interest.

While the present paper focuses on SU (2) symmetry,
extensions are envisioned for the future, e.g. to the subgroup
of SU (2) at play in axially deformed nuclei, or to other sym-
metry groups.

In view of obtaining the error-free, fast and numeri-
cally optimized implementation of involved many-body for-
malisms, the present code serves as the missing link between
an automated tool used to generate the initial symmetry-
unrestricted equations and an automated tool used to produce
the efficient source code dedicated to numerical applications.

7 Command-Line Interface and Input Files

For simple usage of the code, the amc program is provided.
The amc program is a command-line interface to the code
that can be used to reduce a set of equations and output
the reduced equations to a LaTeX document. The unreduced
equations are supplied as an AMC file, in a domain-specific
language described in Sect. 7.2.

7.1 Command-Line Options

There are a few options, which can be passed to amc, that
modify the behavior of the program:

-o OUTPUT, --output OUTPUT Write the resulting
LaTeX document to OUTPUT. By default the code strips
the extension from the input file, adds a .tex extension,
and creates a file of that name in the same directory as
the input file.

--collect-ninejs Try to reconstruct Wigner 9 j-symbols
from products of 6 j-symbols in the reduced expressions.
This results in shorter expressions, but might obscure
opportunities to identify intermediates, e.g., when some
of the 6 j-symbols only depend on the indices of single
tensors.

--keep-threejs Keep 3 j-symbols generated during
the reduction process. Most often, these inequality con-
straints are implicitly contained in tensor variables, so
removing them does not generate any loss of informa-
tion. Constraints that are implicit in 6 j- or 9 j-symbols
are never shown.

--wet-convention CONVENTION Switch the conven-
tion used for reduced matrix elements. Currently, the code
supports two conventions: the wigner convention

〈p|T J
M |q〉 = (−1)2J 1

ĵp

(
jq J jp
mq M mp

)
( p̃|TJ |q̃), (122)

which has been adopted in the body of the paper, and the
sakurai convention

〈p|T J
M |q〉 = 1

ĵq

(
jq J jp
mq M mp

)
( p̃|TJ |q̃). (123)

The wigner convention is used by default.

7.2 Angular-Momentum Coupling Language

To facilitate the use of the code the AMC language is pro-
vided to specify the tensors and their coupling schemes
as well as to enter the equations to be coupled. The basic
building blocks of the language are integers and frac-
tions ((i/j), strings ("abc"), booleans (true, false), and tuples
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[(x1, x2, ...)]. Comments are introduced by the pound sign
(#) and last until the end of the line.

The tensors and equations are defined in a plain text file
consisting of tensor declaration and equation statements. The
statement

declare tensor {
key = value ,
. . .

}

declares a tensor with properties specified by the key-value
pairs inside the curly braces. The following keys are accepted:

mode The number of indices of the tensor. The mode is
either specified as an even integer, e.g. 2 for a one-
body operator or 4 for a two-body operator, or as a
tuple of two numbers (x,y) to specify x creator and
y annihilator indices.

scalar A boolean indicating that the tensor is scalar (rank
0). The code exploits additional angular-momentum
constraints for scalar tensors, and uses the unre-
duced matrix elements by default.

reduce A boolean indicating that this scalar tensor uses
Wigner-Eckart reduced matrix elements. This key
is ignored for nonscalar tensors, which always use
reduced matrix elements. The default value is false,
so unreduced matrix elements are assumed.

diagonal A boolean value that specifies whether the tensor
is diagonal. Diagonal tensors have half the number
of indices, i.e., a mode-2 diagonal tensor has one
index.

scheme The coupling scheme of the tensor. There are multi-
ple ways to couple the angular momenta of the ten-
sor indices. By default, the angular momenta of the
first two creator indices are coupled, the resulting
angular momentum is coupled with the third, etc.,
until all angular momenta have been coupled, and
the process is repeated for the annihilator indices.
This key accepts nested tuples that specify the cou-
pling order of the tensor indices. Creator indices are
numbered from 1 to x , annihilator indices from x+1
to x+ y. The elements of each tuple are either tuples
themselves or index numbers. Index numbers may
be negated to request coupling of the time-reversed
state.

latex The LaTeX command used to typeset the tensor in
the program output. By default, the name of the ten-
sor is used.

To give an example,

declare X {
mode = (2 ,2) ,

scheme = ((1,−4),(3,−2)),
scalar = true

}

declares a scalar tensor X with two creator and two annihila-
tor indices, whose m-scheme, i.e. SU (2) uncoupled, matrix
elements can be recovered via

X pqrs = (−1) js−ms+ jq−mq

×
∑

JM

(
jp js J
m p −ms M

)(
jr jq J
mr −mq M

)
X J

p̃q̃r̃ s̃ . (124)

Equations are declared as

variable = expression ;

The variable on the left-hand side is a declared tensor with
index subscripts, such as X_pqrs. Indices consisting of more
than one character can be used by enclosing the subscript
with braces and separating the indices with spaces, like in 1
k2 k3 k4X_k. Index names can consist of letters, numbers,
and underscore characters. The expression on the right-hand
side consists of sums of products of tensor variables, denoted
by + and∗operators. Two special operators are available: sum
and P. The sum operator lists the indices to be summed over.
It is used in the following way:

Z_abcd = sum_pq(X_abpq ∗ Y_pqcd) ;

The subscript lists the indices. The same rules apply as for
tensor variables. All indices have to be mentioned exactly
once either on the left-hand side of the equation or in the
subscript of the sum operator.

The other operator is the permutation operator P. It sup-
ports two modes of operation: used as P(i j), it permutes
indices i and j in the expression to its right. Used as

P(i1 . . . im/j1 . . . jn/ . . . /k1 . . . kp) ,

it generates all distinct permutations between the index sets
separated by slashes. Concretely, P(i/j) = 1 − P(i j),
P(i j/k) = 1−P(ik)−P( jk), and P(i/j/k) = 1−P(i j)−
P(ik) − P( jk) + P(i j)P( jk) + P(ik)P( jk).

As an example, an equation arising from the three-body
part C3 of the commutator of a normal-ordered two-body
operator A2 with a three-body operator B3, needed for the
IMSRG(3), can be entered like this:

C3_pqrstu = 1/2 ∗ sum_ab(
(nbar_a∗nbar_b − n_a∗n_b) ∗
(P(pq/ r)∗A2_pqab∗B3_abrstu
− P( st /u)∗B3_pqrabu∗A2_abst)

+ (nbar_a∗n_b − n_a∗nbar_b) ∗
P(pq/ r ) ∗ P( st /u) ∗
B3_pqastb ∗ A2_brau) ;
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The tensors n and nbar are diagonal one-body tensors con-
taining occupation numbers.

8 Organization of the code

The AMC code is organized into five modules: ast,
output, parser, reduction, and yutsis. The ast
module defines classes whose instances make up the abstract
syntax trees that are processed by the package, along with
some helper classes that simplify working with the trees
themselves. The output module contains functions that
turn abstract syntax trees back into other formats. Currently,
it only contains a module for LaTeX output. The parser
module provides a parser based on the PLY parser gen-
erator [57] that produces abstract syntax trees from AMC
files. The reduction module contains functions to per-
form the angular-momentum reduction itself. Finally, the
yutsis module contains classes and functions for building
and manipulating Yutsis graphs, as well as for simplifying
the resulting expressions.

The AMC package is directly executable, and the installer
creates a wrapper named amc for convenience. Executing
the package provides a command-line interface for parsing
an AMC file, reduction of the contained expressions, and
output of a LaTeX file.

The program flow is the following:

First, the AMC file is parsed into an abstract syntax tree.
The tree of each equation is expanded until it consists of a
sum of products. For each term, a Yutsis graph is constructed
according to the coupling schemes of the mentioned ten-
sors. The reduction procedure looks for 2-, 3- and 4-cycles
in the graph and applies the rules discussed in Sect. 4.6, itera-
tively factorizing the graph until it is completely expressed in
terms of Kronecker deltas, triangular deltas, and 6 j-symbols.
If enabled, a post-processing step tries to reconstruct 9 j-
symbols by combining sets of three 6 j-symbols. The result-
ing abstract syntax tree is constructed by replacing all tensor
variables with reduced ones and adding the objects resulting
from the reduction of the Yutsis graph. This syntax tree rep-
resents the reduced equation, and is subsequently converted
to a LaTeX expression and written to the output document.

8.1 Testing files

The AMC package contains 7 example input files along with
the outputs generated by the amc program. The examples
cover all applications discussed in Sect. 5. Additionally, a
more complex example is provided in the form of commuta-

tors of three-body operators that appear in IMSRG(3), and a
file showing how to derive the Pandya transform of a scalar
and a non-scalar tensor in a few lines of AMC code.

8.2 Methods

In this section only a pointer to the central methods is pro-
vided. See the API documentation that accompanies the
package for more information.

parser.Parser.parse (instance method) Parse a string
into an abstract syntax tree according to the AMC lan-
guage grammar.

reduction.reduce_equation Reduce an equation,
given as an abstract syntax tree, to symmetry-restricted
form.

output.latex.equations_to_document Turn a list
of equations into a LaTeX document. The equations can
be in symmetry-reduced or unreduced form.
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9 Appendix A: Fundamentals of graph theory

As alluded before the core concept of angular-momentum
network is the correspondence between 3 jm-symbols and
vertices with three attached lines that are joined with each
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other by contracting common angular-momentum states. The
proper mathematical description is given in terms of graphs.

A graph is a triplet G = (E, V, I ) consisting of a set of
vertices V and a set of edges E with an incidence relation
I specifying which vertices are connected via which edges.
In this paper the sets V and E are assumed to be finite. Let
v1, v2 ∈ V be two distinct vertices, then v1 and v2 are called
adjacent if there is a edge e ∈ E connecting v1 and v2.
Additionally, an edge e ∈ E is called incident to v if it
starts or ends at v. Given a vertex v ∈ V its degree deg(v)

denotes the number of incident edges. If all vertices v ∈ V
deg(v) = k then the graph is called k-regular. In the special
case of 3-regularity the graph is called cubic.

Starting from a general string of coupling symbols every
3 jm-symbol yields a vertex of degree three in the graph.
Performing all contractions, i.e., joining disjoint vertices that
have a common angular-momentum quantum number one
obtains a connected graph. Since every column of a 3 jm-
symbol corresponds to an incident edge the final graph is
cubic.
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