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Abstract

Recent years have seen a significant increase in the adoption of electric vehi-
cles, and investments in electric vehicle charging infrastructure and rooftop
photo-voltaic installations. The ability to delay electric vehicle charging pro-
vides inherent flexibility that can be used to compensate for the intermittency
of photo-voltaic generation and optimize against fluctuating electricity prices.
Exploiting this flexibility, however, requires smart control algorithms capable
of handling uncertainties from photo-voltaic generation, electric vehicle en-
ergy demand and user’s behaviour. This paper proposes a control framework
combining the advantages of reinforcement learning and rule-based control
to coordinate the charging of a fleet of electric vehicles in an office building.
The control objective is to maximize self-consumption of locally generated
electricity and consequently, minimize the electricity cost of electric vehi-
cle charging. The performance of the proposed framework is evaluated on
a real-world data set from EnergyVille, a Belgian research institute. Sim-
ulation results show that the proposed control framework achieves a 62.5%
electricity cost reduction compared to a business-as-usual or passive charging
strategy. In addition, only a 5% performance gap is achieved in comparison
to a theoretical near-optimal strategy that assumes perfect knowledge on the
required energy and user behaviour of each electric vehicle.
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List of symbols1

A Action space

at Action at time step t

Ci anx
t Anxiety cost of EVi at time step t

Ccons
t,m Consumption cost in minute m during time step t

Celec
t,m Electricity cost (consumption + injection) in minute m of t

Cinj Electricity injection cost

E Expected value

Ei ch
t Energy used to charge EVi during time step t

Ei ch,ses
t Total energy charged in the session of EVi up to time step t

Ei rem
t Remaining energy [kWh] for EVi in the RTC algorithm, i.e. the

energy that still needs to be charged before the end of time step
t

Ei req
t,m Required energy [kWh], i.e. energy that still needs to be charged

before departure, of EVi in minute m of time step t

G Expected (discounted) return

K1, K2, K3 Coefficients in anxiety cost function Ci anx
t

Lc Length of a control time step [minutes]

LCLIP Clipped loss function in PPO

LCLIP2 Augmented, clipped loss function in PPO

LORIG Unconstrained loss function in PPO

m Minute index in a control slot

Mi end
t Index of last minute of EVi in time step t

Mi start
t Index of first minute of EVi in time step t

Nev Fleet size, i.e. number of EVs controlled by the agent

Nfut Number of future time steps in state vectors for PV and electricity
price forecasts

Npar Number of power partitions in the heuristic dispatch algorithm in
the aggregate MDP

Npast Number of past time steps in state vectors of the PV forecast

P a
t Aggregate fleet charging power [kW] action (denormalised output

of the actor network in the aggregate MDP) at time step t

Pi t Charging power [kW] action (denormalised output of the actor
network in the base and hidden MDPs) of EVi at time step t

2
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Pi b
t Clipped charging power [kW] (output of the backup controller or

heuristic dispatch) of EVi at time step t

Pi b,max
t Maximum charging power [kW] for backup controller or heuristic

dispatch of EVi at time step t

Pi b,min
t Minimum charging power [kW] for backup controller or heuristic

dispatch of EVi at time step t

P cons Historical grid power consumption [kW]

P inj Historical grid power injection [kW]

Pi lim Absolute maximum charging power [kW] of EVi

PPP fpv
t State vector at time t of PV power forecast [kW]

PPP fpv,fut
t State vector at time t of future PV power forecasts [kW] (after t)

PPP fpv,past
t State vector at time t of past PV power forecasts [kW] (before t)

P fpv,rest
t State parameter containing the average PV power forecast [kW]

of the rest of the day after PPP fpv,fut
t

Pmax,Σ
m Total maximum charging power [kW] in the RTC algorithm for

minute m

Pmin,Σ
m Total minimum charging power [kW] in the RTC algorithm for

minute m

P pv
t PV power generation [kW] at time t, minute 0 (P pv

t,m=0)

PPP pv
t State vector of PV power generation [kW] at time step t

P pv
t,m PV power generation [kW] in minute m of time step t

P pv,net Historic net PV power generation [kW] available for charging the
EV fleet

PPP pv,past
t State vector of past PV power generation [kW] at time step t

P pv,scaled Scaled PV power generation [kW], P pv,scaled ≡ 0.2× P pv,tot

P pv,tot Historic PV power generation [kW]

PPPi r
t Vector with the charging powers [kW] of EVi in each minute m

of time step t
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Pi r
t,m Charging power [kW] of EVi in minute m of time step t

Pi r,max
m Maximum charging power [kW] in the RTC algorithm for EVi in

minute m in time step t

Pi r,min
m Minimum charging power [kW] in the RTC algorithm for EVi in

minute m in time step t

pr Probability ratio in PPO algorithm

Q Action-value function

ρ Reward function

S State space

st State at time t

t Time step index in an episode

T Final time step or number of time steps in an episodic environ-
ment

f Transition function

Ti arr Arrival time of EVi (unit = time slot)

Ti dep Departure time of EVi (unit = time slot)

V State-value function

XXXi t State vector of EVi at time step t

ZZZt Vector containing the aggregated fleet state parameters at time
step t

α Learning rate

γ Discount factor

∆ Ti dep Time left until departure for EVi at time t (unit = time steps)

θ Function approximator parameters (e.g. neural network weights)

κ Flexibility factor in the RTC algorithm

λBelpex Belpex day-ahead electricity price [AC/kWh]

λ̄cons Average TOU grid consumption price in the current day (between
7:00 and 20:00)

λλλconst State vector of TOU grid consumption price [AC/kWh] at time
step t
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λconst,m TOU grid consumption price [AC/kWh] in minute m of time step
t

λλλcons,futt State vector at time step t of future TOU grid consumption prices
[AC/kWh] (after t)

λcons,restt State parameter containing the average TOU grid consumption
prices [AC/kWh] of the rest of the day after λλλcons,futt

λinj Electricity injection price [AC/kWh]

Λ Advantage function

π Policy function

τi Flexibility of EVi in the heuristic dispatch algorithm of MDPagg

∇ Nabla-operator
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1. Introduction6

The increasing concern on the effects of greenhouse gas emissions has7

led to an increase in the use of renewable energy sources (RESs) and the8

electrification of transport. While the decreasing cost of photo-voltaic (PV)9

installations has led to an increase in the number of buildings with rooftop10

PV installations, the electrification of transport has led to several incentive11

programs to encourage the use of electric vehicles (EVs). For example, the12

EV30@30 campaign has set a target of at least 30% market share of EVs in13

the Electric Vehicle Initiative member states by 2030 [1]. The increase in the14

number of EVs, however, significantly alters the electricity demand curve [2].15

A typical example of an alteration of the electricity demand curve can be16

seen in office buildings with EV charging infrastructure where EVs tend to17

arrive at the same time, see Fig. 1.18
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Figure 1: The typical power demand caused by EV charging in the morning can have a
significant impact on the total power consumption of an office building. For example, on
the morning of June 3rd, 2019, at the EnergyVille building.

In the past years, EV charging has mainly been passive or uncontrolled19

i.e. charging is activated immediately and at maximum charging power when20

an EV is plugged into a charging station. In this paper, this type of charging21

is referred to as business-as-usual (BAU) charging. Such uncontrolled EV22
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charging does not exploit the inherent flexibility1 of EV charging; typically23

an EV is plugged in longer than the time needed to fully charge its battery.24

If EV fleet charging is controlled, the flexibility harnessed can be used for a25

range of objectives.26

Recently, several control methods have emerged for controlling the charg-27

ing of EVs in order to harness flexibility for objectives such as: avoiding grid28

congestion problems [3], maximising self-consumption of local electricity gen-29

eration [4] and load flattening [5]. These methods range from rule-based to30

model-based and model-free (data-driven). Rule-based methods rely on pre-31

defined rules and conditions expressed in the form “if condition, do action”32

statements to determine a control policy for the control agent. These rules33

are typically handcrafted and to guarantee an adequate performance of a34

rule-based controller, considerable expert knowledge is required to correctly35

set the threshold values, and tune the system parameters. Rule-based control36

has been widely used in EV charging due to its simplicity and computational37

efficiency for uninterrupted EV charging [6] and prevention of grid overload-38

ing [7]. However, since the rules are tailored towards a specific system and39

objective, the method cannot be easily generalised.40

Model-based control methods, on the other hand, require an explicit def-41

inition of the system dynamics in order to establish a control policy. Model42

predictive control, for instance, has been extensively applied in literature43

for EV charging to minimize energy costs [8] and for voltage control [9, 10].44

While successful, their performance relies on the accuracy of the model, and45

a mismatch between the model and the real system will result in sub-optimal46

operation. In the EV charging context, identifying a (sufficiently) accurate47

model is challenged by the heterogeneity of EV models and unpredictability48

of EV-user behavior.49

In contrast to model-based methods, model-free methods do not rely on50

explicit knowledge of a system model. Instead, they learn a control pol-51

icy from system observations collected a-priori (batch or offline learning) or52

through online interactions with the system. These methods are therefore53

data-driven, which renders them flexible and more generalisable compared54

to model-based and rule-based methods. The most popular model-free tech-55

1The available EV flexibility can be described based on the number of hours that the
EV charging can be delayed while meeting the user’s departure deadline and respecting
the constraints on battery capacity, maximum charging rate, and additional constraints
of the charging infrastructure.
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nique in EV charging literature is reinforcement learning (RL) [11, 12]. Fitted56

Q-iteration, a batch RL technique, has been used to control EV charging for57

load flattening purposes [5], electricity cost savings based on day-ahead mar-58

ket prices [13] and long-term cost optimization [14]. Wang et al. [15] used59

an online RL algorithm, SARSA, to schedule EV charging for minimizing60

electricity cost. Deep Q-learning, another RL algorithm, has been used to61

minimize electricity cost based on real-time electricity pricing [16], minimize62

long-term operating cost [16], as well as for load flattening purposes [17].63

The above mentioned RL algorithms are based on the standard Q-learning64

algorithm [18], which relies on Q-values (of state-action pairs) for the evalu-65

ation and selection of control actions, and consequently, learning of a control66

policy. To efficiently compute these Q-values, the action space for the learn-67

ing agent is required to be finite and discrete to avoid a heavy computational68

burden and the curse of dimensionality. Even though the above mentioned69

methods employ regression algorithms such as neural networks to approxi-70

mate the Q-values through a Q-function, fine-grained discrete actions lead to71

large (continuous) action spaces, which in turn lead to an intractable com-72

putation of Q-values. In the context of EV charging, discretizing the action73

space limits full exploitation of EV flexibility since the charging powers are74

continuous values. To allow the learning of control policies in systems with75

large or continuous action spaces, policy gradient methods were introduced76

[11].77

Policy gradient techniques directly optimize a control policy without a78

need for Q-values to select control actions. Several policy gradient methods79

have been employed in EV charging literature. Yu et al. [19] used deep80

deterministic policy gradient to minimize electricity costs in a smart home81

with electricity generation from RES and multiple loads including EVs and82

HVAC systems. In [20], the authors proposed prioritised deep deterministic83

policy gradient for the coordination of EV fleet charging by an aggregator84

with the aim of maximizing profit (through vehicle-to-grid capabilities) and85

minimizing EV charging electricity costs. The authors showed that priori-86

tised deep deterministic policy gradient outperforms standard Q-learning and87

deep Q-learning. Trust region policy optimization was used for home energy88

management in which the charging of an EV was controlled to minimize elec-89

tricity cost [21]. Moonens and Nowé [22] used policy proximal optimization90

(PPO) to coordinate charging of an EV fleet for load balancing purposes. The91

authors showed that this method outperformed the BAU scheme by reducing92

the number of electricity consumption peaks caused by EV charging.93
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Motivated by the success of RL, and particularly policy gradient tech-94

niques for EV charging, this work builds on existing literature and proposes95

a novel control framework for EV charging in a work environment with the96

objective of maximising self-consumption of local electricity generation and97

minimizing electricity cost. The proposed control framework combines PPO98

and rule-based control allowing a quick response of the control agent to the99

stochastic PV generation. The main contributions of this work are sum-100

marised as follows:101

• A novel control framework is proposed combining the strengths of PPO102

(model-free, data-driven, ability to deal with continuous actions) with103

those of rule-based control (low computational complexity). In the104

proposed framework, a RL agent learns a control policy in a low time105

resolution (60 minutes, 15 minutes or 5 minutes), which is refined by106

a rule-based controller during real-time operation (one minute time107

step) to ensure a more optimal real-time control. This contrasts with108

existing literature in which control actions are predominantly taken at109

an hourly resolution [5, 21].110

• A demonstration of the scalability of the proposed framework by using111

the three-step approach introduced by Vandael et al [23] in which a112

RL agent learns the optimal aggregate charging power for an entire EV113

fleet. In contrast to the original work, this paper uses PPO to learn114

the aggregate charging power.115

• Case study demonstrating that the proposed control method achieves116

an increase in self-consumption of local electricity generation and reduc-117

tions in the net electricity costs compared to the BAU scheme. Com-118

pared to a “perfect information optimum” (PIO) strategy, the proposed119

control method is slightly less performant. The PIO strategy is based120

on sequential quadratic programming [24] and assumes full knowledge121

of the EV user behaviour and PV electricity generation.122

The performance of the proposed framework is evaluated on a real-world123

data set from EnergyVille2, a research institute in Belgium. The EV charg-124

ing infrastructure at EnergyVille contains charging stations from 7 different125

2www.energyville.be
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brands, totalling in 27 connection points. While most charging stations are126

conventional 22kW AC charging stations, the setup includes an AC/DC fast-127

charger and a vehicle-to-grid (V2G) charging station. In total the charging128

stations amount to an installed EV charging power of 530kVA, while the ca-129

pacity at the electrical cabinet is only 436kVA. At the moment, 12 charging130

stations are fully monitored and controllable via OCPP version 1.63, and131

more are expected in the short term. A custom IT infrastructure has been132

deployed to monitor and control the charging sessions at EnergyVille. It pro-133

vides the following data: the arrival time detected when an EV is plugged134

in to a charging station, the maximum charging power measured three min-135

utes into the charging session, and estimates of the departure time and total136

energy needed to fully charge the EV are collected as user input via a web137

app. A data set of all OCPP-controlled charging sessions since August 2018138

is available. In addition, a 368kWp PV system is installed on the rooftop139

of the EnergyVille building. The energy yield of this installation can either140

be used for consumption within the building or injected into the grid. For141

the latter, a fixed fee is paid per kWh; on the other hand, consumption142

from the grid has a dynamic component with hourly periodicity based on143

the day-ahead market price. A data set is available for the PV production144

at EnergyVille (since April 2016). Finally, the work described in this paper145

also relies on the availability of day-ahead market prices and a regional PV146

production forecast prior to a charging session.147

3Open Charge Point Protocol, www.openchargealliance.org/protocols/ocpp-16/
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2. Problem description and Markov decision process148

This work considers the problem of coordinating the charging of a fleet of149

EVs in an office building with a rooftop PV installation. The following prob-150

lem description aims to be generic for this type of buildings, but employs151

some specific details of the EnergyVille building where needed. Charging152

transactions are characterised by: the arrival time T arr, the departure time153

T dep, the energy Ereq[kWh] required to fully charge the EV, and the maxi-154

mum charging power P lim[kW] of the EV. The objective is to charge a fleet155

of Nev EVs while maximising self-consumption of the locally generated elec-156

tricity - from the PV installation - and minimising electricity cost; the EVs157

can be charged using locally generated electricity or directly from the grid.158

To achieve this objective, the charging power of each connected EV has to be159

decided at every time step based on the PV electricity generation, the elec-160

tricity price, and estimates on the departure time of the EV and the energy161

required to fully charge the EV by that time. This decision making problem162

encountered at every time step can be expressed as a Markov decision process163

(MDP), which is the basis for formulating RL problems. However, the deci-164

sion making problem is challenged by the uncertainty in the PV generation,165

and the arrival and departure times of the EVs.166

2.1. Markov decision process formulation167

A Markov decision process is characterized by: (i) a state space S de-168

scribing the finite set of states that the system can be in, (ii) an action space169

A consisting of a finite set of possible actions that can change the state170

of the system, (iii) transition function f representing the system dynamics171

or probabilities for a stochastic state evolution, and (iv) a reward function,172

ρ, evaluating each state transition. Three MDP formulations - MDPbase,173

MDPhid and MDPagg - are presented in the following subsections. The base174

MDP, MDPbase, formulates the EV fleet charging problem described in the175

previous paragraph. The hidden MDP, MDPhid, is similar to MDPbase but176

does not include information on the estimates of the departure time and en-177

ergy required to fully charge the EV. The aggregate MDP, MDPagg, builds178

on MDPbase to improve scalability to larger fleet sizes using the three-step179

approach introduced by Vandael et al. [23].180

2.2. Base Markov decision process181

The base Markov decision process, MDPbase, aims at providing optimal182

charging schedules for individual EVs and assumes the widest range of infor-183
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mation to be available.184

State space185

The state space has three components:186

• PV component : consists of the current PV generation PPP pv, and a fore-
cast of the PV generation PPP fpv. PPP pv

t contains: (i) PPP pv,past
t a vector with

the average4 over each hour of the measured PV generation of the pre-
vious Npast hours, as shown in (1); and (ii) P pv

t , the PV measurement
at time stamp t.

PPP pv = (PPP pv,past
t , P pv

t ),

PPP pv,past
t =

[
av5

(
P pv, t− j × 60

Lc
, t− (j − 1)× 60

Lc

)
, j = Npast, . . . , 1

]
,

(1)
with Lc representing the length of a control time step in minutes.187

As shown in (2), the vector PPP fpv
t contains a forecast on the PV genera-188

tion in terms of PPP fpv,fut
t (the average over each hour6 of the forecasted189

PV generation P fpv for the next Nfut hours), and P fpv,rest
t the aver-190

age of P fpv for the rest of the day, and information on the forecast191

of the PV generation for the past Npast hours, PPP fpv,past
t . In this work,192

Nfut and Npast are set to a value of 2 through manual tuning and ex-193

perimentation by considering the trade-off between training time of the194

control agent and gains in electricity cost and self-consumption. Setting195

Nfut to larger values increases the uncertainty on the variables and also196

increases the state space dimension leading to curse of dimensionality197

issues and an increase in the training time.198

PPP fpv
t = (PPP fpv,past

t ,PPP fpv,fut
t , P fpv,rest

t ), (2)

with PPP fpv,past
t =

[
av
(
P fpv, t− j 60

Lc
, t− (j − 1) 60

Lc

)
, j = Npast, ..., 1

]
,199

PPP fpv,fut
t =

[
av
(
P fpv, t+ 1 + (j − 1) 60

Lc
, t+ 1 + j 60

Lc

)
, j = 1, ..., Nfut

]
,200

4The average is used instead of the actual values for dimensionality reduction purposes.
5av(x,t1,t2) returns the mean value of x(t) between t=t1 and t=t2 and returns

x(t2) if t1≥t2
6The PV forecast values have a periodicity of 15 minutes.

13



Figure 2: Example of state parameter vectors PPP pv
t (triangles + circle) and PPP fpv

t (dia-
monds) with Npast = Nfut = 2 and Lc = 30 minutes

and P fpv,rest
t = av

(
P fpv, t+ 1 +Nfut

60
Lc
, T
)

, with T the final time201

step in the optimization horizon.202

An example of PPP pv and PPP fpv is shown in Fig. 2.203

• Price component λλλcons: represents the price of importing a kilowatt-204

hour of energy from the grid at time t. λλλcons as shown in (3) contains205

the price at time step t and information on the forecasted price (λλλcons,futt206

and λcons,restt , defined in a similar manner as PPP fpv,fut
t and P fpv,rest

t ).207

λλλconst = (λconst , λλλcons,futt , λcons,restt ), (3)

λλλcons,futt =
[
av
(
λcons, t+ 1 + (j − 1) 60

Lc
, t+ 1 + j 60

Lc

)
, j = 1, . . . , Nfut

]
208

and λcons,restt = av
(
λcons, t+ 1 +Nfut × 60

Lc
, T
)

.209

It is important to note that in the event where a price, λinj, is set for210

injecting power to the grid, this price would become part of the price211

component of the state space. However, in this work a constant price212

for injecting power to the grid is considered.213

• EV transaction component XXXi t contains three parameters directly re-214

lated to an EV charging transaction as shown in (4): (i) Ei req
t the215

energy required left to fully charge EV i (EVi) at time t before its216

departure; (ii) Pi lim the maximum charging power for EVi and (iii)217

∆ Ti dep
t = Ti dep

t − t the time left until departure (in number of control218

time steps) for EVi at time t.219
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XXXi t =

{
(0, 0, 0), if station i is unused at time t,(
Ei req
t , Pi lim,∆ Ti dep

t

)
, otherwise.

(4)

In summary, at any time t, the state of the system is defined as follows:220

∀st ∈ S, st =
(
XXX1 t, ..., XXXNev

t, t,PPP
pv
t ,PPP

fpv
t ,λλλconst

)
(5)

Action space221

At any time step, t, an action at ∈ A is a vector containing the charging222

powers Pi t [kW] for all the connected EVs as shown below:223

∀at ∈ A, at =
(
P1 t, ..., PNev

t

)
. (6)

224

Reward function225

The reward function consists of two components Ccons and Cinj represent-226

ing the cost incurred for charging the EVs from the grid and for injecting227

power to the grid respectively. This reward function is based on the electric-228

ity price λcons and a grid injection price λinj at time t. The total electricity229

cost during minute m in control time step t is given as follows:230

Celec
t,m =

Ccons
t,m =

∑NEV
i=1 Pi t,m−P pvt,m

60
× λconst,m , if

∑NEV
i=1 Pi t,m − P pv

t,m ≥ 0,

Cinj
t,m =

∑NEV
i=1 Pi t,m−P pvt,m

60
× λinj, otherwise,

(7)

where Pi t,m is the charging power for EVi and P pv
t,m is the PV generation at231

minute m of time step t.232

Based on the cost incurred per minute, the negative reward function for233

each state transition is defined as shown in (8).234

ρ(st, at, st+1) = −
Lc−1∑
m=0

Celec
t,m (8)

In this work, we focus on a data-driven RL algorithm, as such, the defini-235

tion of a transition function for the system dynamics is not required. How-236

ever, the state of each connected EV is updated as follows:237
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Ei ch
t =

Mi end
t∑

m= Mi start
t

Pi t,m/60 (9)

XXXi t+1 =

{
(0, 0, 0), if Ei req

t − Ei ch
t ≤ 0 or ∆ Ti dep

t − 1 ≤ 0,(
Ei req
t − Ei ch

t , P
i lim,∆ Ti dep

t − 1
)
, otherwise,

(10)

where Ei ch
t is the energy charged by EVi during time step t. New EVs that238

arrived between t and t+ 1 are added to XXXi t+1. The remaining state param-239

eters PPP pv
t ,PPP

fpv
t ,λλλconst are updated by reading the data from the database.240

2.3. MDP with unknown SoC and departure time241

As mentioned earlier, the availability of estimates of T dep and Ereq is based242

on the willingness of the EV users to provide these inputs in practice. They243

can be termed as hidden parameters as they cannot be measured directly244

without user interaction, and as such, are hidden from the learning agent.245

Therefore, to allow learning adequate control policies in scenarios without246

user interaction, MDPhid is proposed in this section. The definition of MDPhid247

is similar to that of MDPbase. However, the state space is different since Ei req
t248

and Ti dep
t are not included.249

State space250

Compared to MDPbase, the hidden state parameters Ei req
t and Ti dep

t in251

the state st are replaced by two known state parameters: (i) Ei ch,ses
t the total252

energy already charged in the current session of EVi at time t, and (ii) the253

arrival time Ti arr. The state at time t, st, is now defined as:254

st = ( XXX1 t, ..., XXXNev
t, t,PPP

pv
t ,PPP

fpv
t ,λλλconst ) (11)

with XXXi t =

{
(0, 0, 0), if station i empty at time t

( Ei ch,ses
t , Pi lim, Ti arr), otherwise.

(12)

The remaining state parameters Pi lim, t,PPP pv
t ,PPP

fpv
t ,λλλconst are the same as in255

MDPbase.256

16



Action space257

The action space is the same as MDPbase.258

Reward function259

The reward function consists of two terms as shown in (13).260

ρ(st, at, st+1) = −
Lc−1∑
m=0

Celec
t,m −

Nev∑
i=1

Ci anx
t (13)

with Ci anx
t =

{
0, if ∆ Ti dep

t > 0,

K1 × ( Ei req
t )K2

( Ei req)K3
× λ̄cons, if ∆ Ti dep

t = 0,
(14)

where
∑Lc−1

m=0 C
elec
t,m is the electricity cost in (7) and Ci anx

t is the “range anx-261

iety” cost, a penalty for not charging EVi with its Ei req [25].
Ei req
t

Ei req is the262

fraction of uncharged energy at time t. The coefficients K1, K2 and K3 are263

hyperparameters and λ̄cons is the average of the (dynamic) electricity con-264

sumption price profile of the current day. In this case, the objective of the265

RL algorithm is to minimize the charging cost and the uncharged energy266

fraction in each session.267

The coefficient K1 weighs the trade-off between the charging cost and268

the average amount of uncharged energy. The coefficients K2 and K3 are269

exponents that allow testing the performance with different types of the270

anxiety function. For example, the anxiety cost with K2 = 2 and K3 = 2271

is proportional to the square of the fraction of the uncharged energy, while272

with K2 = 1 and K3 = 1 the relationship is linear. Notice that, to compute273

the anxiety at time t, knowledge of Ei req
t and Ti dep

t is required. However,274

that knowledge is only required in the training phase of the RL algorithm275

when Ei req
t and Ti dep

t are readily available from historical data. During policy276

execution, computation of the reward is not required - since we will focus on277

a policy gradient RL algorithm. Thus, knowledge of Ei req
t and Ti dep

t is not278

required during policy execution.279

For each connected EV, its state is updated as follows:280

XXXi t+1 =

{
(0, 0, 0), if battery full or EVi has departed,(
Ei ch,ses
t + Ei ch

t , P
i lim,∆ Ti arr

)
, otherwise,

(15)
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where Ei ch
t is the energy charged by EVi during slot t as defined in (9).281

Similar to the base MDP, new EVs that arrive between t and t + 1 are282

added to XXXi t+1, and the remaining state parameters t,PPP pv
t ,PPP

fpv
t ,λλλconst are283

also updated.284

2.4. MDP with aggregated state-action space285

To improve the scalability of the base MDP for larger fleet sizes, MDPagg is286

proposed. This MDP builds on the three-step method for smart EV charging287

proposed in [23]. This approach consists of three steps: (i) an aggregation288

step in which the individual EV charging constraints are established in the289

form of priorities and aggregated; (ii) an optimization step that uses the290

aggregated constraints to compute a collective charging plan for all the EVs,291

with the aim of maximizing self-consumption and minimising electricity costs;292

and (iii) a real-time control step dividing and dispatching the charging plan293

to all the EVs. In this aggregate MDP, the reward function is the same as294

that in Section 2.2, therefore only the state and action spaces are described295

below.296

State space297

The state st at time t is defined as:

st = (ZZZt, t,PPP
pv
t ,PPP

fpv
t ,λλλconst ), (16)

where ZZZt, as shown in (17), is the aggregated fleet state, which is obtained298

through manual feature extraction consisting of the total fleet required energy299

and the total fleet maximum charging power with Pi lim = 0 if station i is300

unused. The state parameters t,PPP pv
t ,PPP

fpv
t ,λλλconst are the same as those in the301

base MDP.302

ZZZt =

(
Nev∑
i=1

Ei req
t ,

Nev∑
i=1

Pi lim

)
(17)

It is important to note that even though we do not consider the dynamics303

of the system, the aggregate fleet state can be updated as follows:304

ZZZt+1 =

(
Nev∑
i=1

Ei req
t − Ei ch

t ,

Nev∑
i=1

Pi lim

)
, (18)

where Ei ch
t is the energy charged by EVi during slot t as defined in (9). New305

EVs that arrive between t and t + 1 are added to ZZZt+1, and the remaining306
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state parameters t,PPP pv
t ,PPP

fpv
t ,λλλconst are also updated by reading the values307

from the database.308

Action space309

An action at ∈ A at time step t represents an aggregate charging power310

P a for the entire fleet as shown in (19).311

∀at ∈ A, at = P a
t =

Nev∑
i=1

Pi t (19)

This aggregate charging power is divided and dispatched to all the EVs312

using a heuristic dispatch described below.313

Heuristic dispatch314

The aggregate charging power is divided to all the EVs in the fleet using315

a heuristic dispatch based on (20). This dispatch also ensures that each316

EV leaves with its required energy charged and is not charged with a power317

greater than its maximum charging power.318

PPP b
t =

(
P1 b
t , ..., PNev b

t

)
(20)

s.t Pi b,min
t ≤ Pi b

t ≤ Pi b,max
t , ∀i ∈ [1, Nev] (21)

Pi b,min
t = max

(
0, ( Ei req

t − (∆ Ti dep
t − 1)× Pi lim)× 60

Mi end
t − Mi start

t

)
,

(22)

with Pi b,max
t = min

(
Pi lim, Ei req

t ×
60

Mi end
t − Mi start

t

)
(23)

Pi b,min
t is the minimum charging power required to guarantee that EVi319

leaves with its battery fully charged, i.e. to guarantee Ei req
t = 0 when320

∆ Ti dep
t = 0. Overcharging - charging above maximum charging power -321

is prevented by the maximum charging power Pi b,max
t , which is limited by322

Pi lim and Ei req
t . Mi start

t and Mi end
t are the first minute and last minute re-323

spectively of EVi in time step t where 0 ≤ Mi start
t < Lc and 0 < Mi end

t ≤ Lc324

and are computed as follows:325
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Mi start
t =

{
b( Ti arr − t)× Lcc, if t ≤ Ti arr < t+ 1,

0, otherwise.
(24)

Mi end
t =

{
d( Ti dep − t)× Lce, if t ≤ Ti dep < t+ 1,

Lc, otherwise.
(25)

The operation of this heuristic dispatch can be described as “least-flexible326

first” scheduling. EVs are assigned partitions of the aggregate charging power327

P a in order of priority. EVs with a lower flexibility are given a higher priority.328

The flexibility τi of each EVi is calculated according to (26).329

τi := ∆ Ti dep − 1− Ei req − Ei ch

Pi lim
× 60

Lc
. (26)

This priority represents the number of time steps until the next time330

step t+1+ τi at which Pi b,min
t+1+ τi

> 0 (to ensure EVi leaves with Ei req
t = 0),331

assuming EVi charges Ei ch at time step t. To illustrate this priority computa-332

tion for Lc = 60 minutes, consider an EV with ∆ Ti dep = 8 time steps, Ei req =333

10 kWh, Ei ch = 0 kWh, Pi lim = 5 kW that needs exactly 2 time steps to fully334

charge at a power of Pi lim. The earliest time step when its Pi b,min
t+1+ τi

> 0 is335

thus τi = 8−1−2 = 5 slots from t+1. The dispatch algorithm assigns par-336

titions of P a
t heuristically with the aim to maximize the minimum value of337

τi :338

maximize min
i

τi . (27)

Reward function339

The reward function is the same as that of MDPbase.340

341

It is important to note that even though the MDPs described above do342

not explicitly take into account the system constraints, which come in the343

form of ensuring that the EV is fully charged before its departure and that344

the EV is not charged at a power greater than its maximum charging power,345

this work proposes using a backup controller to ensure these constraints are346

respected. This backup controller is described in the next section.347
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3. Algorithms348

To solve the EV fleet charging problem described in Section 2, a policy349

gradient RL algorithm, proximal policy optimization (PPO) [26], is used.350

The goal of the learning agent is to find a (parameterised) control policy π351

(i.e. a mapping from a given or perceived state to the action that has to352

be taken in that state, π : S → A), which maximises the return over the353

optimization horizon from some initial state s0 as shown in (28).354

Gπ(s0) =
T−1∑
t=1

γtρ(s, π(s)), (28)

where γ ∈ [0; 1] is a discount factor that takes into account the uncertainty355

in the future reward and T is the length of the finite optimisation horizon.356

This return is the discounted cumulative reward along a trajectory generated357

by the policy.358

3.1. Proximal policy optimization359

Proximal policy optimization is a policy gradient RL algorithm based360

on the actor-critic algorithm [11] that directly optimises a parameterised361

and differentiable policy. The policy must be differentiable with respect to362

its parameters to allow computation of the gradient required for the policy363

parameter updates. Typically, the policy is represented by a neural network364

and is expressed as follows:365

π(a|s, θ) = Pr(a|s, θ), (29)

where θ represents the weights of the neural network. The goal is therefore366

to find the values of θ that maximise the return G.367

The algorithm uses the clipped surrogate objective - the probability ratio368

pr of the old policy and new policy - with the aim of providing a more stable369

update of the policy parameters [26]. The unconstrained objective function370

that PPO aims to maximize is as shown in (30).371

LORIG(θ) = Et
[
πθ(at|st)
πθold(at|st)

Λ̂t

]
= E

[
prt(θ)Ât

]
, (30)

where prt(θ) = πθ(at|st)
πθold (at|st) and Λ̂t is an estimate of the advantage (Λ(st, at) =372

Q(s, a)−V (s), Q(s, a) is the state-action value function and V (s) is the state373
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value function). LORIG(θ) can still lead to large gradient updates and con-374

sequently, instability during learning. This is remedied by using the clipped375

surrogate objective shown in (31).376

LCLIPt (θ) = Et
[
min

(
ρt(θ)Λ̂t, clip (ρt(θ), 1− δ, 1 + δ) Λ̂t

)]
, (31)

where δ ∈ [0.1, 0.3] according to [26].377

The clipped surrogate objective is further augmented for applying it to378

a neural network architecture with shared parameters for representing the379

policy and value functions7. Typically, the policy and value network share380

the first few hidden layers, which perform feature extraction of the state381

space. Additionally, an entropy term is included to the objective to increase382

exploration and as such more coverage of the state space. The new objective383

is as shown in (32).384

LCLIP2
t (θ) = Et

[
LCLIPt (θ)− c1

(
Vθ(st)− V targ

t

)2
+ c2H[πθ](st)

]
, (32)

where c1 and c2 are hyper-parameters and H is an entropy measure. The385

resulting PPO algorithm is described in Algorithm 1. The algorithm par-386

allelises the sampling of the agent-environment interactions - by using N387

parallel actors - and uses multiple epochs of stochastic gradient ascent per388

policy update. Parallel sampling significantly speeds up training times by us-389

ing parallel processors while the ability to use multiple epochs when updating390

the neural network increases sample efficiency.391

3.2. Backup controller392

The backup controller is an overrule mechanism that ensures that the393

system constraints are respected. Recall that in the context of this paper,394

these constraints are the charging power limits of the EV, and the need to395

fully charge the EV before its departure. The backup controller therefore396

clips Pi t - the charging power or action suggested by the RL agent - at each397

time step t for each EVi according to (33).398

7The value function is represented by a neural network for function approximation to
make it more generalisable over unseen state(-action pairs).
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Algorithm 1: Proximal policy optimization [26]

Input : policy parameters θ0, clipping threshold δ, initial
network parameters θ0

1 for k := 0, 1, ... do
2 for actor := 1, ..., N do
3 Run policy πk in environment for T time steps;
4 Compute rewards r̂t;

5 Compute advantage estimates Λ̂t;

6 Compute policy update θk+1 := arg maxθ L
CLIP2(θ)

7 with K epochs of mini-batch stochastic gradient ascent, where

8 LCLIP2(θ) := Eτ∼πk [
∑T

t=0 L
CLIP2
t (θ)];

Pi b
t =


Pi b,min
t , if Pi t ≤ Pi b,min

t ,

Pi t, if Pi b,min
t < Pi t ≤ Pi b,max

t ,

Pi b,max
t , if Pi t > Pi b,max

t .

(33)

Recall that Pi b,min
t is the minimum charging power required to guaran-399

tee that EVi leaves with the required energy charged, i.e. Ei req
t = 0 when400

∆ Ti dep
t = 0, as shown in (22), and Pi b,max

t is limited by Pi lim and Ei req
t , as401

shown in (23).402

It is important to note that when EVi, arrives in control slot t (t ≤403

Ti arr < t+ 1), it is entirely controlled by the backup controller starting from404

Ti arr up to t + 1. No action is taken by the agent ( Pi = 0), and Mi start
t405

is set to b( Ti arr − t) × Lcc (24). The backup controller determines Pi b by406

clipping the Pi = 0 using (33) to ensure EVi can still charge its required407

energy during the remainder of the session starting from t + 1. Therefore,408

the backup controller ensures that the charging power for EV does not exceed409

Pi lim and that each EVi is charged with exactly its Ei req at departure.410

3.3. Real-time controller411

The output of the backup controller, Pi b
t for i = 1...Nev, is a charging412

power for each EV for control time step t. On cloudy days the PV electricity413

generation can fluctuate rapidly during the entire time step. As a result, even414

when the total charging power in a control time step,
∑Nev

i=1 Pi b
t , is equal to415

the mean PV generation in the same control time step, av(P pv, t, t+ 1), the416
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total charging cost for that slot Celec
t is not zero because the PV generation417

fluctuations incur extra electricity consumption and injection costs. Hence,418

an algorithm that can learn on a fine timescale and can adapt the charging419

power to the rapidly fluctuating PV generation has a lower bound on the420

minimum charging cost it can achieve than an algorithm that learns on a421

lower time resolution. One solution is to learn on a fine timescale by reducing422

Lc, which results in charging decisions being taken more frequently. However,423

the time to simulate each episode is inversely proportional to Lc. A decrease424

in Lc thus leads to an increase in training time.425

Instead of decreasing Lc, we propose a hybrid solution in which the con-426

trol period Lc is set relatively large (e.g. 60 minutes) and the RL algorithm427

is combined with a rule-based real-time controller (RTC) that dynamically428

adapts the charging powers from the low resolution RL algorithm to the cur-429

rent real-time PV generation on a higher resolution of one minute. The RTC430

takes the output of the backup controller, Pi b
t for i = 1...Nev, and for each431

minute m of time step t determines a real-time charging power Pi r
t,m for each432

EVi by solving the following optimization problem:433

min
Lc−1∑
m=0

∣∣∣∣∣P pv
t,m −

Nev∑
i=1

Pi r
t,m

∣∣∣∣∣ ,
s.t.

Lc−1∑
m=0

Pi r
t,m/Lc = Pi b

t ∀i ∈ [1, Nev],

Pi r
t,m ≤ Pi lim∀i ∈ [1, Nev], ∀m ∈ [0, Lc − 1].

(34)

By solving the above optimization problem through a set of manually434

defined rules, the RTC computes the power schedule for each EVi for each435

minute m throughout the duration of time step t according to (35).436

PPPi r
t =

(
Pi r
t,m = Pi b

t for Mi start
t ≤ m < Mi end

t

)
. (35)

This ensures that the total charging power stays as close as possible to the437

PV generation in each minute of the time step while ensuring that the total438

energy for charging the EV during that time step is equal to the energy439

suggested by the backup controller. The RTC also ensures that the charging440

power for each EV in each minute m does not exceed the absolute maximum441

charging power Pi lim for that EV.442

The RTC algorithm is described in Algorithm 2. For readability, the443

subscript t is dropped for most variables in the algorithm. For each EV to444
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be charged, Pi r,min, Pi r,max and Ei rem are calculated. The variables Pi r,min
445

and Pi r,max are minimum and maximum charging powers that apply to each446

minute m during time step t, while Ei rem is the remaining energy to be447

charged in the current control time step as specified by Pi b (the backup448

controller output ). Pi r,min and Pi r,max are limited by the charging flexibility449

factor κ, a hyper-parameter that dictates by how much the charging power450

in each minute can deviate from Pi b. A value of κ = 1 is equivalent to not451

using the RTC.452

Figure 3 illustrates the interactions between the different algorithms in453

the proposed control scheme.454

Figure 3: An illustration of the interaction between the different algorithms. The agent
uses the PPO algorithm for action selection. Everything outside the agent is considered
as its environment.
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Algorithm 2: Real-Time Controller

Input :
(
Pi b, Mi start, Mi end for i = 1...Nev

)
,

P pv
m for m = 0...Lc − 1

Parameter: Charging flexibility κ
Output : PPPi r

t = ( Pi r
t,0, ..., P

i r
t,Lc−1)

1 EVsToCharge := set of all i where Pi b > 0;
2 for i in EVsToCharge do
3 Pi r,max := min( Pi lim, Pi b × κ);
4 Pi r,min := Pi b/κ;
5 Ei rem := Pi b × ( Mi end − Mi start)/60;

6 for m := 0...Lc − 1 do
7 EVsThisMinute := set of all i where Mi start ≤ m < Mi end ;
8 for i in EVsToCharge ∩ EVsThisMinute do
9 Pi r,max

m := min ( Ei rem×60, Pi r,max);
10 Pi r,min

m :=

clip
(
Ei rem×60−( Mi end−m−1)× Pi r,max, Pi r,min, Pi r,max

m

)
;

11 Pmin,Σ
m :=

∑Nev
i=1 Pi r,min

m ;

12 Pmax,Σ
m :=

∑Nev
i=1 Pi r,max

m ;
13 for i in EVsToCharge ∩ EVsThisMinute do
14 if Pmax,Σ

m − Pmin,Σ
m == 0 then

15 Pi r
t,m := P r,min

m ;

16 else
17 Pi r

t,m :=

clip
(
Pi r,min
m + P pvm −Pmin,Σm

Pmax,Σm −Pmin,Σm
( Pi r,max

m − Pi r,min
m ), Pi r,min

m , Pi r,max
m

)
;

18 Ei rem := Ei rem − Pi r
t,m/60 ;

19 return PPPi r
t ;
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4. Case study and simulation results455

The proposed framework is evaluated using the EnergyVille office building456

as a case study. The various MDPs are evaluated on (i) self-consumption of457

local PV-generated electricity and net electricity costs, and (ii) scalability in458

terms of fleet size.459

4.1. Case study460

This work considers real-world data sets on energy consumption and gen-461

eration at EnergyVille, complemented with data from Belgian electricity mar-462

kets and regional PV forecasts. More specifically:463

• PV generation measurements P pv,tot of the EnergyVille rooftop PV464

installation measured at 5 minute intervals465

• PV forecast with a 15 minute time step for the province of Limburg,466

Belgium (location of EnergyVille)8
467

• EV charging transactions at EnergyVille: 586 valid historical charging468

sessions across 171 days collected between 08/08/2018 and 20/09/2019.469

For each EV transaction, Tarr is known when the EV is plugged in, P lim
470

is detected during the first few minutes of charging, T dep and Ereq are471

extracted from the historical data set.472

• EV power consumption Pi hist of each historical charging session at473

EnergyVille, measured every 20 seconds474

• Historical grid consumption P cons and injection P inj9 of the EnergyVille475

building, collected every 15 minutes476

• A grid injection tariff of λinj = 1.46AC /MWh as the rooftop PV instal-477

lation at EnergyVille is larger than 10kVA.478

• A TOU grid consumption price10 λBelpex with a one hour periodicity is479

used to compute the grid consumption prices λcons as shown in (36).480

8Solar-PV power forecasting for Belgium: https://www.elia.be/en/grid-data/

power-generation/solar-pv-power-generation-data
9P inj is the surplus PV generation injected to the grid.

10Belgian day-ahead market prices: https://transparency.entsoe.eu/

transmission-domain/r2/dayAheadPrices/show
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λcons = (λBelpex + 0.045 AC /kWh)× 1.21, (36)

where 0.045 AC /kWh are the estimated grid tariffs, and a 21% VAT481

is charged. By including taxes in λcons an estimate of the actual cost482

savings for EnergyVille is obtained in the experiments.483

It is worth noting that in our simulations a scaled version of the PV484

generation, P pv = P pv,scaled ≡ 0.2 × P pv,tot is used to filter out the influence485

of the stochastic electricity consumption of the rest of the building. This486

scaling expresses a hypothetical scenario where a small PV installation is487

available solely for EV charging.488

Also, 98% of the charging transactions in the data set occur between 7:00489

and 20:00. Therefore, 7:00 and 20:00 are set as the start and end times of each490

episode respectively. The algorithms are tested using three control time steps:491

Lc = 5, Lc = 15 and Lc = 60 minutes. These control time steps have been492

selected by considering the 15 minutes time step for the imbalance electricity493

market, the 60 minutes time step of the day-ahead electricity market, and in494

order to approach real-time operation, a time step of 5 minutes.495

To evaluate the performance of the proposed control framework the sim-496

ulation results are compared with those from the business as usual (BAU)497

and “perfect information optimum” (PIO) strategies. Recall that the BAU498

strategy is equivalent to passive charging, where each EV is charged imme-499

diately when it is plugged in to the charging station at its maximum power500

Pi lim until the required energy Ei req
t reaches zero. The PIO strategy as-501

sumes complete knowledge for the entire day of all EV arrival and departure502

times, required energy, maximum power and the PV generation and electric-503

ity prices. The problem is formulated as a constrained nonlinear optimisa-504

tion problem as shown in (37) and solved using the sequential least-squares505

quadratic programming algorithm [24, 27]. Due to limited computational506

resources, Lc = 15 minutes is used. The BAU and PIO are selected as the507

baselines because; (i) the BAU is the strategy that is used in most charg-508

ing stations, and (ii) the PIO provides a theoretical baseline considering a509

scenario in which all the information on the different system variables is510

available. These baselines provide a best- and worst-case comparison.511
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min
PPP r

Cday =
T−1∑
t=0

Celec
t

s.t Celec
t =

{
Ccons
t =

∑NEV
i=1 ( Pi r

t−P
pv
t )×(Lc/60)×λconst , if

∑NEV
i=1 Pi r

t − P
pv
t ≥ 0,

Cinj
t =

∑NEV
i=1 (P pv

t − Pi r
t )× (Lc/60)× λinjt , otherwise,

0 ≤ Pi r
t ≤ Pi lim ∀i ∈ [1, Nev], ∀t ∈ [0, T − 1],

Nev∑
i=1

Ti dep∑
t= Ti arr

Pi r
t × (Lc/60) = Ei req.

(37)
512

The neural network used to represent the actor-critic in the PPO algo-513

rithm consists of a first hidden layer with 128 nodes, shared between the514

actor and the critic. Both networks contain two hidden layers with 64 nodes515

each. The number of layers and nodes are obtained based on [22] and [26].516

The tanh activation function is used. A representation of the actor-critic517

network is shown in Fig. 4.518

4.2. Simulation results519

The performance of the proposed control strategy is evaluated by consid-520

ering two simulation experiments. The first experiment evaluates the perfor-521

mance of the control strategy for the different MDP formulations while the522

second experiment investigates the scalability of the control framework. The523

net electricity cost per day (an optimisation horizon of one day is used) is524

considered as the key performance indicator.525

4.2.1. Experiment 1: performance evaluation of MDPs526

This experiment compares the performance of the control framework for527

the three MDP formulations and investigates the influence of the time step528

Lc and the RTC on the performance. The MDPs are tested for Lc=5, Lc=15529

and Lc=60 minutes, and each of these instances is tested without the RTC530

and with the RTC (for κ = 1.5 and with κ = 5.0). For each instance, the531

training/testing loop is executed for 5×107 agent-environment interactions.532

The remaining MDP hyper-parameters are set as follows: Npast =Nfut = 2,533

K1 =5.0× 104, K2 =1, K3 =1 (MDPhid).534
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s

Figure 4: Illustration of the actor-critic network. This network is used for action selection
- the policy by the actor - and for estimating the value function - critic.

The simulation results are presented in Fig. 5. These results are expressed535

in terms of the total cost Ctot =Ccons+Cinj+Canx and the electricity cost536

Celec=Ccons+Cinj. For MDPbase and MDPagg, Canx = 0. MDPagg obtains the537

lowest electricity cost and has the most stable learning curve while MDPbase538

tends to converge quickly to a sub-optimal local minimum. The resulting539

electricity cost for MDPagg is 0.2AC lower than that of MDPbase (for Lc =540

60). For MDPhid, the trade-off between electricity cost and the fraction of541

uncharged energy (Fig. 5c and 5d) depends heavily on Lc. When Lc = 60542

minutes, there is a 0.2AC increase in electricity cost compared to MDPbase, and543

2% of the EVs leave with 25% of their required energy not met. It is worth544

noting that the EVs leave fully charged in the case of MDPbase and MDPagg545

as knowledge of the required energy and departure times of the EVs allows546

the agent to obtain (near) optimal schedules. Moreover, this knowledge of547

required energy and departure times allows the backup controller to override548

the actions of the learning agent and ensure that the EVs are fully charged549

before departure.550
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Figure 5: Learning curves for the main experiment comparing the three MDPs, three
values of Lc and investigating the impact of the RTC on performance
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When comparing the influence of the value of Lc when no RTC is used,551

for Lc = 15 minutes MDPhid obtains the best performance as it shifts charg-552

ing priority towards minimizing electricity cost rather than minimizing the553

fraction of uncharged energy as previously mentioned. For Lc=60 minutes554

with no RTC, the algorithm performs worse compared to the case for Lc=15555

minutes with or without the RTC for MDPbase and MDPagg. This is due to556

the length of the control time step, which makes the control agent unable557

to learn the fluctuations in the PV electricity generation. Recall that, using558

the RTC allows to mitigate against the rapidly fluctuating PV generation559

especially when learning at a low time resolution. At Lc = 5 minutes, the560

high time resolution results in unstable learning for MDPbase and MDPhid.561

In MDPhid, the total cost and the fraction of uncharged energy increase dur-562

ing training, while the electricity cost drops below that of the PIO. The RL563

algorithm hence has lost the ability to learn an effective policy. On the other564

hand, the lower dimension of the state-action space in MDPagg allows the565

RL algorithm to maintain its ability to learn (albeit slower than Lc = 15) an566

effective policy at Lc = 5 minutes, obtaining an electricity cost that is 0.1AC567

higher compared to that obtained when Lc = 15 minutes. It may be possible568

that the electricity cost decreases further for MDPagg and Lc = 5, possibly569

even dropping below that obtained for Lc = 15, after the measured 5 × 107
570

iterations. However, the CPU time required for testing this hypothesis would571

be impractical, with 5× 107 iterations already requiring ≈ 24 hours.572

The influence of the RTC is most noticeable at Lc = 60 minutes, resulting573

in a decrease in the electricity cost by on average 0.08AC (κ = 1.5) and 0.10AC574

(κ = 5.0) compared to the MDPs with Lc = 60 minutes without RTC. For575

Lc = 15 and Lc = 5 minutes the performance gain from the RTC is lower since576

those instances already learn on a high time resolution. The lowest electricity577

cost, Celec = 1.03AC , is obtained by MDPagg with RTC and κ = 5.0. This578

value is only 0.05AC above the electricity cost obtained by the PIO. Moreover,579

MDPagg with Lc = 60, with RTC and κ = 5.0 converges approximately two580

times faster and obtains an electricity cost of 0.1AC lower than MDPagg with581

Lc = 15 and without the RTC, which is the second best performing instance.582

Figures 6 to 8 show examples of charging schedules for three sample583

days in the test set: a sunny day (Fig. 6), a day with variable sunshine584

(Fig. 7), and an overcast day (Fig. 8). The figures clearly show how the585

proposed framework moves the charging of EVs to later moments in the day586

when more PV-generated power is available and grid consumption prices are587

typically lower. This is a substantial improvement compared to the worst-588
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case scenarios of the BAU strategy. The figures also show that, because of589

its prior knowledge, the PIO strategy is able to spread the actual charging590

over the entire time the EV is plugged in, resulting in less volatile charging591

power levels. It however does not always find the most optimal solution, as592

shown in Figure 7, where it is outperformed by the MDPagg that is able to593

avoid a small fraction of charging from the grid in the morning.594

The behavior of the trained MDP instances on the sunny day is very595

similar, with all instances deferring charging to the middle of the day. With596

Ereq and T dep unknown to the agent in MDPhid, it favours charging the EVs597

sooner - at a higher electricity cost - compared to MDPbase to avoid an EV598

leaving with its battery not fully charged. However, as shown on the figure,599

EV7 (gray) still leaves with an uncharged energy fraction of 0.117 due to its600

unusually short session around noon. The difference between MDPbase and601

MDPagg is the order in which they charge the EVs. The heuristic dispatch602

in MDPagg prioritizes charging EV2 (orange) in the morning since it has the603

lowest flexibility (due to its early departure time). In contrast, MDPbase does604

not exhibit any logical charging priority.605

On the test day with variable sunshine (Fig. 7), the benefit of using a606

smaller Lc or using the RTC is clearly visible. MDPagg with Lc = 60 and607

with the RTC obtains a perfect schedule (Ccons = 0) by being able to learn608

an effective policy on a broad timescale and adapting the charging power to609

the rapidly varying PV generation using the RTC. MDPagg without the RTC610

and Lc = 5 obtains a near perfect schedule. MDPhid fails to fully charge611

an EV with an unusually short session occurring around noon; EV2 (yellow)612

leaves with an uncharged energy fraction of 0.212.613
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Figure 6: Timeline for a sunny test day for the BAU strategy and several instances of
the RL algorithm
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Figure 7: Timeline for a variable sunshine test day for the BAU strategy and several
instances of the RL algorithm 35



Figure 8: Timeline for an overcast test day for the BAU strategy and several instances
of the RL algorithm
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Finally, the optimal charging strategy on an overcast day (Fig. 8) would614

be to self-consume all of the PV generation and charge the remaining required615

energy during periods of low electricity prices. MDPagg with Lc = 60 and616

with the RTC obtains the lowest electricity cost, self-consuming 100% of617

the PV-generation (Cinj = 0) and showing a trend towards charging the618

remaining energy during low λcons. The major downside of the RTC is that619

it is more volatile to EV charging power as can be seen in the figure. This620

volatility can be lowered by using a smaller value of κ, thereby trading the621

electricity cost for a slightly lower battery degradation. MDPhid prioritizes622

charging earlier and this time manages to charge all EVs with their respective623

required energy. The instances with Lc = 15 and Lc = 5 minutes obtain the624

highest electricity costs, struggling to follow the PV generation and relying625

on the backup controller to charge the EVs at the end of their session.626

The results from this experiment clearly show that the PPO algorithm627

can achieve an effective charging policy, and a careful design of the MDPs628

makes a significant difference in the performance of the algorithm. Com-629

bining the three-step method in MDPagg and the RTC, results in a signif-630

icantly lower electricity cost (0.2AC lower) compared to the straightforward631

design MDPbase. The resulting daily electricity cost is 1.03AC , which is 1.71AC632

(62.5%) lower than the BAU strategy, and approaches the PIO within 0.05AC633

(5%). When Ereq and T dep are unknown, the choice of K1 must be done634

carefully such that it results in the desired trade-off between electricity cost635

and the amount of uncharged energy. For example, if for 2% of the sessions,636

the EV leaves with a fraction of uncharged energy greater than 25%, a daily637

electricity cost improvement over BAU of 1.31AC (48%) is obtained. This638

value of the electricity cost is 0.4AC (39%) higher compared to the best per-639

forming instance when the departure time and energy require to fully charge640

the EV are known.641

4.2.2. Experiment 2: scalability in terms of fleet size642

This experiment evaluates the scalability of the proposed control frame-643

work to larger fleet sizes for the three MDPs. The historical data at Ener-644

gyVille containing measurements for Nev = 8, is used to generate training645

and testing data for other fleet sizes. The BAU strategy, PIO strategy and646

the RL algorithm with the three MDPs are tested for Nev = {2, 8, 16, 32}.647

The MDP hyper-parameters are Lc = 60, Npast = Nfut = 2 and Npar =648

20 × Nev/8 (MDPagg). For Nev = 2, the actor-critic network is modified to649

one shared layer with 64 nodes and two layers with 32 nodes each for the650
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actor and the critic networks. Additionally, for Nev = 2, the learning rate651

PPO hyper-parameter is set to 0.0004 (four times higher than before). Due652

to the limited computational resources, the PIO strategy is trained with653

Lc = {15, 15, 30, 60} [minutes] for Nev = {2, 8, 16, 32}.654

The resulting learning curves are shown in Fig. 9 and numerical results,655

shown in Table 1, contain for each instance the mean value of the electricity656

cost between time steps 9.6 × 106 and 14.4 × 106. The RL algorithm learns657

an effective policy for all three MDPs and for all tested fleet sizes with a658

reduction in electricity cost between 46% and 63%.659

Figure 9: Mean daily Celec[AC ] measured on test set for BAU, PIO and the three MDPs
for several simulated fleet sizes Nev

Compared to MDPagg, MDPbase converges faster but obtains a higher final660

cost. At Nev = 2 both MDPs obtain a similar performance. For larger fleet661

sizes, the absolute difference in electricity cost between the MDPs increases,662
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Nev = 2 8 16 32
MDPbase 0.515 1.238 2.058 4.208
MDPhid 0.583 1.506 2.740 5.698
MDPagg 0.505 1.051 1.871 3.968
BAU 1.179 2.739 4.988 10.525
PIO 0.398 0.972 1.824 4.059

Table 1: Mean daily Celec[AC ] measured on test set for BAU, PIO, and the three MDPs
for several simulated fleet sizes Nev

for example a difference of 0.187AC for Nev = 8 and 0.240AC for Nev = 32.663

The curse of dimensionality makes learning more difficult in high dimensional664

state-action spaces, and is noticeable for MDPbase. Due to the state-action665

space aggregation, MDPagg is able to mitigate the curse of dimensionality.666

At Nev = 32, the electricity cost for MDPbase is less than that obtained by667

the PIO. This is mainly due to the ability to take an aggregate action for the668

whole fleet rather than individual actions making it more computationally669

feasible.670

The simulation results presented above show that the proposed RL con-671

trol framework is suitable for coordinating the charging of a fleet of EVs.672

When knowledge on the departure time of the EV and the energy required673

to fully charge the EV before its departure are available, the proposed con-674

trol framework has limited scalability issues especially when the aggregate675

MDP formulation is used. Even though the proposed control framework676

outperforms the BAU model when knowledge on departure time and energy677

required to fully charge the EV are not available, there is no guarantee of the678

EV being fully charged before departure. Furthermore, it is worth mention-679

ing that scalability is expected beyond the tested fleet sizes, especially when680

MDPagg is used as has been shown in [23].681

In summary, to learn a cost effective control policy to efficiently coordi-682

nate the charging of large EV fleets, it is necessary to invest in a charging683

infrastructure that allows obtaining information on the departure time of684

the EVs and the energy required to fully charge the EVs before departure.685

The proposed control framework with the aggregate MDP, the real-time con-686

troller, and a control time step of 60 minutes would be a suitable choice for687

coordinated charging of large EV fleets.688
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5. Conclusion689

This paper proposes a hybrid control framework that combines the strengths690

of reinforcement learning and rule-based control for coordinating the charg-691

ing of an electric vehicle fleet in an office building. Specifically, the framework692

applies proximal policy optimization, a policy-gradient based reinforcement693

learning algorithm, to provide a charging schedule with coarse time gran-694

ularity, which is refined by a rule-based controller to per minute real-time695

control actions. The control objective is to maximise self-consumption of the696

local electricity generation and minimize electricity cost. The performance of697

the proposed framework was evaluated using real-world data from an office698

building.699

The simulation results show that the proposed control framework success-700

fully schedules the charging of an electric vehicle fleet to achieve the control701

objective. It largely outperforms a business-as-usual strategy and approaches702

a near-optimal strategy with a 5% performance gap when charging sessions703

are aggregated before optimization. Simulation results equally show per-704

formance improvements when information on departure time and required705

energy is available, and when real-time information on local photo-voltaic706

electricity generation is used to optimize on a fine time scale.707

Future work aims to investigate hierarchical reinforcement learning as a708

replacement for the proposed hybrid method. A downside of the proposed709

rule-based real-time controller is that it requires expert knowledge and is not710

generalisable to other settings with a different objective function, such as711

peak shaving. Hierarchical reinforcement learning may provide a generalis-712

able and scalable solution for learning on both coarse and fine timescales.713

Additionally, the proposed framework will be evaluated, and where needed714

adapted, to better serve the existing range of charging modalities. Specifi-715

cally the support of fast-charging and vehicle-to-grid charging is of interest716

to better support the available charging infrastructure at EnergyVille.717

Acknowledgement718

This research is funded by the Flemish Institute for Technological Re-719

search (VITO) through a PhD scholarship, and the ROLECS project –720

Flux50-VLAIO-HBC.2018.0527.721

40



References722

[1] International Energy Agency, Global EV Outlook 2019, https://www.723

iea.org/reports/global-ev-outlook-2019, 2019. Accessed: 2020-724

08-07.725

[2] M. Blonsky, A. Nagarajan, S. Ghosh, K. McKenna, S. Veda, B. Kro-726

poski, Potential impacts of transportation and building electrification on727

the grid: A review of electrification projections and their effects on grid728

infrastructure, operation, and planning, Current Sustainable/Renewable729

Energy Reports 6 (2019) 169–176. doi:10.1007/s40518-019-00140-5.730

[3] J. Hu, S. You, M. Lind, J. Østergaard, Coordinated charging of elec-731

tric vehicles for congestion prevention in the distribution grid, IEEE732

Transactions on Smart Grid 5 (2013) 703–711. doi:10.1109/TSG.2013.733

2279007.734

[4] M. Van Der Kam, W. van Sark, Smart charging of electric vehicles735

with photovoltaic power and vehicle-to-grid technology in a microgrid; a736

case study, Applied energy 152 (2015) 20–30. doi:10.1016/j.apenergy.737

2015.04.092.738

[5] N. Sadeghianpourhamami, J. Deleu, C. Develder, Definition and evalu-739

ation of model-free coordination of electrical vehicle charging with rein-740

forcement learning, IEEE Transactions on Smart Grid 11 (2020) 203–741

214. doi:10.1109/TSG.2019.2920320.742

[6] A. R. Bhatti, Z. Salam, A rule-based energy management scheme743

for uninterrupted electric vehicles charging at constant price using744

photovoltaic-grid system, Renewable energy 125 (2018) 384–400. doi:10.745

1016/j.renene.2018.02.126.746

[7] D. Wang, F. Locment, M. Sechilariu, Modelling, simulation, and man-747

agement strategy of an electric vehicle charging station based on a DC748

microgrid, Applied Sciences 10 (2020) 2053. doi:https://doi.org/10.749

3390/app10062053.750

[8] A. Di Giorgio, F. Liberati, S. Canale, Electric vehicles charging control751

in a smart grid: A model predictive control approach, Control Engi-752

neering Practice 22 (2014) 147–162. doi:10.1016/j.conengprac.2013.753

10.005.754

41

https://www.iea.org/reports/global-ev-outlook-2019
https://www.iea.org/reports/global-ev-outlook-2019
https://www.iea.org/reports/global-ev-outlook-2019
http://dx.doi.org/10.1007/s40518-019-00140-5
http://dx.doi.org/10.1109/TSG.2013.2279007
http://dx.doi.org/10.1109/TSG.2013.2279007
http://dx.doi.org/10.1109/TSG.2013.2279007
http://dx.doi.org/10.1016/j.apenergy.2015.04.092
http://dx.doi.org/10.1016/j.apenergy.2015.04.092
http://dx.doi.org/10.1016/j.apenergy.2015.04.092
http://dx.doi.org/10.1109/TSG.2019.2920320
http://dx.doi.org/10.1016/j.renene.2018.02.126
http://dx.doi.org/10.1016/j.renene.2018.02.126
http://dx.doi.org/10.1016/j.renene.2018.02.126
http://dx.doi.org/https://doi.org/10.3390/app10062053
http://dx.doi.org/https://doi.org/10.3390/app10062053
http://dx.doi.org/https://doi.org/10.3390/app10062053
http://dx.doi.org/10.1016/j.conengprac.2013.10.005
http://dx.doi.org/10.1016/j.conengprac.2013.10.005
http://dx.doi.org/10.1016/j.conengprac.2013.10.005


[9] S. Bansal, M. N. Zeilinger, C. J. Tomlin, Plug-and-play model predictive755

control for electric vehicle charging and voltage control in smart grids,756

in: 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp.757

5894–5900. doi:10.1109/CDC.2014.7040312.758

[10] B.-R. Choi, W.-P. Lee, D.-J. Won, Optimal charging strategy based759

on model predictive control in electric vehicle parking lots considering760

voltage stability, Energies 11 (2018) 1812. doi:10.3390/en11071812.761

[11] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,762

MIT press, 2018.763

[12] J. R. Vázquez-Canteli, Z. Nagy, Reinforcement learning for demand764

response: A review of algorithms and modeling techniques, Applied En-765

ergy 235 (2019) 1072 – 1089. doi:10.1016/j.apenergy.2018.11.002.766

[13] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, G. Deconinck, Rein-767

forcement learning of heuristic EV fleet charging in a day-ahead elec-768

tricity market, IEEE Transactions on Smart Grid 6 (2015) 1795–1805.769

doi:10.1109/TSG.2015.2393059.770
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