
KATHOLIEKE 
UNIVERSITEIT 

LEUVEN 

DEPARTEMENT TOEGEPASTE 
ECONOMISCHE WETENSCHAPPEN 

RESEARCH REPORT 0202 

THE BREAKDOWN BEHAVIOR OF THE MAXIMUM 
LIKELIHOOD ESTIMATOR IN THE LOGISTIC 

REGRESSION MODEL 
by 

C.CROUX 
C. FLANDRE 

G. HAESBROECK 

D/2002/2376/02 



The Breakdown Behavior of the Maximum Likelihood 

Estimator in the Logistic Regression Model 

Christophe Croux* Cecile Flandre t Gentiane Haesbroeck+ 

Abstract: In this note we discuss the breakdown behavior of the Maximum Likelihood 

(ML) estimator in the logistic regression model. We formally prove that the ML­

estimator never explodes to infinity, but rather breaks down to zero when adding severe 

outliers to a data set. Numerical experiments confirm this behavior. As a more robust 

alternative, a Weighted Maximum Likelihood (WML) estimator will be considered. 

Keywords: Breakdown Point, Logistic Regression, Maximum Likelihood, Robust Esti­

mation, Weighted Maximum Likelihood. 

AMS subject classification: 62F35, 62G35. 

'Dept. of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, B-3000 Leuven, 

Belgium, Email: Christophe.Croux@econ.kuleuven.ac.be. 

tCardif Vie B.A., Chaussjle de la Hulpe 150, B-1l70 Bruxelles, Belgium, Email: Ce-

cile.Flandre@cardif.be. 

IDept. of Mathematics, University of Liege (B37), Grande Traverse 12, B-4000 Liege, Belgium, 

Email: G.Haesbroeck@ulg.ac.be. 



1 Introduction 

One aim in robust statistics is to build high breakdown point estimators. The breakdown 

point of an estimator tells us which percentage of the data may be corrupted before the 

estimator becomes completely unreliable. In linear regression models, the breakdown 

points of many robust estimators have been calculated. Robust estimators have also 

been introduced for the logistic regression model, but their breakdown points are not 

well established. In fact, even the study of the breakdown behavior of the classical 

Maximum Likelihood estimator has not been completed yet. 

Christmann (1994) showed that any sensible estimator in the logistic model, robust 

or not, will tend to infinity if one replaces a certain number of observations to well chosen 

positions. The replacement breakdown point of Donoho and Huber (1983) seems there­

fore not to be appropriate for measuring robustness of estimators in logistic regression 

1. This has also been noticed by Kiinsch, Stefanski and Carroll (1989, section 4) who 

therefore proposed to investigate what happens when outliers are added to a sample. 

First, we prove in Section 2 that the classical Maximum Likelihood estimator (ML) 

stays uniformly bounded if one adds outliers to the original sample. This contradicts 

the assertion of Kiinsch et al (1989, Section 4), who claimed that ML-estimator could 

tend to infinity when extreme outliers are added. On the other hand, it is shown in 

Section 3 that the norm of the ML-estimator always tends to zero, when adding only a 

few badly placed outlying observations. These results motivated a new definition of the 

finite sample breakdown point for an estimator in the logistic regression model. 

Section 4 considers a robustified version of the ML method based on reweighting. 

The weighting step is based on detection and deletion of leverage points by the Minimum 

Covariance Determinant estimator of Rousseeuw (1985). It can be easily added to the 

1 An exception is the logistic regression model with large strata where replacement breakdown points 

can still be computed, e.g. see MUller and Neykov (2001). 



classical ML procedure, yielding a highly robust estimator. An example and a small 

scale simulation study compare the breakdown behavior of these two estimators (Section 

5). 

2 Explosion Robustness of the ML-Estimator 

Let Z; = (xl, yilt E lRP- 1 X lR (i = 1, ... , n) be realizations of independent p­

dimensional random vectors Z; = (X;, 1';*)t, following the model 

1';* = a + X;{3 + Ci (2.1) 

where Ci follows a symmetric distribution with a strictly increasing cumulative distrib­

ution function F. Taking F(u) = 1/(1 + exp( -u)) results in the logit model, while the 

probit is obtained using the normal cumulative distribution function for F. Typically, 

in the logistic model with binary data, the underlying dependent variable y* is non 

observable, and only the dummy variable Y obtained by taking 

can be recorded. Therefore, we get 

Oify;::;O 

1 if y; > 0 
(2.2) 

P(Y; = Yi I Xi = Xi) = F(a + xl{3)Yi {I - F(a + xl{3)} 1-Yi for Yi = 0,1. (2.3) 

In what follows, Zn = {Z1, ... , zn} denotes the observed sample, and we will use the 

notations I = (a., {3t)t and Xi = (1, x/)t for all 1 ::; i ::; n. An estimator for 'Y computed 

from the sample Zn is denoted by i(Zn) or simply in. The ML-estimator i:!L is defined 

as 
n 

i:!L = argmax log L( 'Y; Zn) = argmin L d( 'Y; Zi) 
"'I "'I i=1 
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where log Lb; Zn) is the log-likelihood function calculated ill'"Y and db; Zi) = -y;log F(i;,)­

(1 - Yi) log {I - F(i;,)} stands for the deviance at observation i. 

We will assume throughout the paper the existence of the ML-estimator at the ob­

served sample, yielding a finite Ili~L II, where 11.11 denotes the Euclidean norm. The 

latter condition leads to the overlap situation described by Albert and Anderson (1984) 

and Santner and Duffy (1986), excluding complete or quasi-complete separation be­

tween the observations with Yi = 0 and Yi = 1. This means that if we denote II = 

{i E {I, ... , n}IYi = I} and its complement IO = {i E {I, ... , n}IYi = O}, we cannot find 

any I E IRP such that 

(2.4) 

In particular, this condition excludes the situation where all Yi are equal. 

To study the robustness of estimators, we will introduce data contamination by 

adding m potential outliers to the original data set Zn. These added observations 

Zi = (xl, Yilt may have completely arbitrary values for the explicative variables, meaning 

that we allow for leverage points in the contaminated sample. The Yi values are of course 

restricted to be one or zero, otherwise they are immediately identifiable as typing errors. 

In the following, i(Z~+m) denotes the estimator computed from the contaminated sam­

ple Z~+m = {ZI, ... , Zn, Zn+l, ... , zn+m}' The explosion breakdown point c+(in; Zn) of the 

estimator in at the sample Zn is then defined as the minimal fraction of outliers that 

need to be added to the original sample before the estimator tends to infinity: 

sup 
Zn+l,.·. ,Zn+m 

(If the set over which we take the minimum is empty, then we set c+(in; Zn) = 1.) 

If we add outliers to Zn, then the contaminated data set Z~+m remains in the overlap 

situation, so every i(Z~+m) remains finite. The next Theorem shows that the ML-
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estimator even remains uniformly bounded when adding outliers (The proof is given in 

the Appendix). 

Theorem 1. Suppose that IliML(Zn)11 < 00. For every finite number m of outliers, 

there exists a real positive constant M(Zn, m) such that 

sup lIiML(Z~+m)11 :::: M(Zn, m). 
Zn+l",.,Zn+m 

As a corrolary we have E+(i;;aL; Zn) = 1. We will call this property the explosion robust­

ness of the ML-estimator in logistic regression. This is quite different from the behavior 

of the classical estimators in linear regression, which can become arbitrarily large just 

by adding one single outlier. 

Instead of adding outliers, one could also think of replacing good observations by 

contaminants. Christmann (1994) showed that the minimal number of observations 

that need to be replaced before the estimator tends to infinity equals the number of 

observations in "overlap." This number depends only on the sample and is the same for 

every sensible estimator. The effect of replacing good observations by outliers is quite 

different from the impact of adding outliers, which distinguishes the logistic regression 

model from the usual linear regression model. In the next section we will motivate a 

new definition of breakdown point for the logistic regression model. 

3 Breakdown Point in Logistic Regression 

We will focus on the slope parameter /3. This parameter can be written as /3 = 1I~1I11/311 = 

B/a with IIBII = 1 and a = 1/11/311. We interpret the vector B as the direction in which 

we move the "fastest" from the observations in [0 to these from [1, whereas a measures 

this "fastness". Since the parameter B belongs to Sp-2 = {B E lRp- 1
1 IIBII = I} which 

has no border, an estimator of B never breaks down. On the contrary, the parameter a 
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belongs to [0, +00], including two types of possible breakdown for an estimator (jn. We 

will say that an estimator (jn of (]" implodes if it tends to 0 and explodes if it becomes 

infinite. This corresponds to an explosion of ~n' respectively an implosion of (the norm 

of) ~n. A discussion of these two extremal cases is presented below. 

Case 1: If ~n explodes, then only the sign of X;1'n matters. The fitted probabilities 

will all be zero or one. We can therefore say, as in Stromberg and Ruppert (1992), that 

the fitted values break down. 

Case 2: If II~nll decreases to 0, the error term in (2.1) dominates. Explanatory vari­

ables have then no influence on the dummy variable Yi, so the model becomes obviously 

senseless. The fitted probabilities are all equal. 

The addition breakdown point of ~n is now defined as the smallest proportion of 

contamination that can cause the estimator to grow to infinity or to vanish into zero. 

Definition 1. The breakdown point of an estimator ~n for the logistic regression model 

(2.3) at the sample Zn is given by r;;*(~n; Zn) = m* j(n + m*) with m* = min(m+, m-), 

min{m E lNol sup 

m min{m E lNol inf 11~(Z~+m)11 = O}, 
Zn+l, ... ,Zn+m. 

where Z~+m is obtained by adding m arbitrary points to Zn. 

In the previous section it was shown that the ML-estimator never explodes, but the 

next theorem shows that it is always possible to find 2(p - 1) outliers such that the ML 

slope estimator tends to zero while adding these well chosen points (The proof can be 

found in the Appendix). 

Theorem 2. At any sample Znl the breakdown point of the ML-estimator satisfies 

r;;*((3'ML. Z ) < 2(p -1) . 
In -n+2(p-1) 
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It follows that the asymptotic breakdown point limn c*(,BML; Zn) equals zero. The 

above theorem formally shows the non robustness of the ML-estimator. Not because it 

explodes to infinity (as is often believed), but because it can implode to zero when adding 

outliers to the data set. It can be checked that the standard errors of the ML-estimator 

explode together with the estimator, but this is not true for implosion to zero. The 

latter type of breakdown is therefore harder to detect. The most dangerous outliers, as 

can be seen from the proof of Theorem 2, are misclassified observations (meaning that 

an + x;,Bn and Yi have different signs) being at the same time outlying in the space of 

explicative variables. We will call them bad leverage points. 

It might be a bit strange to speak of breakdown when the estimator tends to a central 

point in the parameter space. A similar phenomenom is seen in the autoregressive model 

of order one, where the Least Squares estimator is driven to zero in presence of badly 

placed outliers. This example motivated Genton and Lucas (2000) to introduce a very 

general notion of breakdown point, which depends on the type of outlier constellation one 

considers and on a certain badness measure (measuring how bad an estimated parameter 

fits the data). When applying their definition to the logistic regression model, using bad 

leverage points as outlier constellation and the sum of deviances as badness measure, we 

obtain an expression equivalent to the implosion breakdown point considered above. 

While we were able to obtain a result for the ML-estimator, the computation of the 

breakdown point for other estimators is much harder and will depend heavily on the 

sample Zn. In the next section, we will compare the breakdown behavior of the ML­

estimator with a robust estimator by means of a numerical experiment and a simulation 

study. 

Remark: Theorem 1 implies that the intercept estimator is explosion robust. On the 

other hand if the slope estimator tends to zero, &~L will return F- 1(Pn+m), where 

o < Pn+m < 1 is the frequency of observations in Z~+m with Yi = 1, which will in general 

6 



be different from O. 

4 A Weighted Maximum Likelihood estimator 

In applications, it is important to know whether a parameter estimate reflects the general 

structure in the data cloud and that the fitted model has not been corrupted by a few 

influential data points. Therefore, many authors have proposed robust procedures for 

the logistic regression model, e.g. Pregibon (1982), Copas (1988), Kiinsch et al. (1989), 

Morgenthaler (1992), Carroll and Pederson (1993), Bianco and Yohai (1996). In this 

section we focus on a very simple Weighted Maximum Likelihood (WML) procedure. 

As we saw in Section 3, the most influential points on the ML-estimator are bad 

leverage points. We will try to detect these points to give them less weight. The classi­

cal approach for identifying points outlying in the space of the explanatory variables is to 
1 

compute the Mahalanobis distances MDi = {(Xi - T(X))tC(X)-l(Xi - T(X))P based 

on the arithmetic mean T(X) and on the covariance estimator C(X). As this approach 

is not robust since T(X) and C(X) are extremely sensitive to outliers, Rousseeuw and 

van Zomeren (1990) suggest to replace them by robust estimators of multivariate loca­

tion and scale. The resulting "robust Mahalanobis" distances will then be denoted by 

RDi (1 ::; i ::; n). Herefore, we will use the Minimum Covariance Determinant (MCD) 

estimator (Rousseeuw 1985). This estimator selects the subset of h observations out of 

n minimizing the determinant of the covariance matrix computed from these h points. 

Then, the usual average and sample covariance matrix computed from this optimal sub­

set give the multivariate location and scale MCD estimators. It has become standard 

to take h ~ [3n/4], yielding a 25% breakdown point estimator of multivariate location 

and scatter. The MCD estimator is, using the algorithm of Rousseeuw and Van Driessen 

(1999) fast to compute and implemented in some of the major software packages. More­

over, it has a reasonable efficiency (Croux and Haesbroeck, 1999). 

7 



A weighted maximum likelihood estimator can now be defined as 

i;;ML = argmin L Widi(r; Zi) 
I i=l 

where the weights Wi are derived as follows: 

if RD;:S XCP-l),O.975 

else 

(4.1) 

(4.2) 

Note that this procedure also downweights the good leverage points, which are well 

classified observations being outlying in x-space. Since these good leverage points yield 

very small deviances d(" Zi), they have a negligible influence on the ML-estimator. 

Downweighting them seems therefore not necessary. However, this may discard some 

computational problems arising when computing the ML estimator. Indeed, most al­

gorithms divide at a certain point by (1 - F(Xit,))F(x/,), which may give numerical 

problems for all leverage points. 

We do not claim that this WML-estimator has any optimality properties. Its main 

attractivity is that it can easily be computed using existing software. For example, in 

the S-plus language it is sufficient to type, with obvious names for the objects 

robustcov<cov.mcd(x, quan=floor (3*n!4)+1) 

rdsquared<mahalanobis(x, center=robustcov$center, cov=robus tcov$cov) 

weights«rdsquared<=qchisq(O.975,p-l») 

wml<glm(y-x,family=binomial,subset=weights,data=data) 

Moreover, an expression for the covariance matrix of the estimator is immediately avail-

able as 

8 



5 Numerical Experiments 

Consider the well-known Vaso Constriction data set of Finney (1947), see also Pregibon 

(1982). The binary outcomes (presence or absence of vaso-constriction of the skin of the 

digits after air inspiration) are explained by two explanatory variables: Xl the volume of 

air inspired and X2 the inspiration rate (both in logarithms). Figure la gives the scatter 

plot of these data in the covariate space, together with the y-value. To assess the effect 

of contamination on the estimators, we added one outlier with (Xl, X2, y) = (8,8,1) to 

the n = 39 observations of the sample, and computed an estimator /3(8) based on these 

40 data points. By letting 8 move along the real line, the outlier follows the dotted line 

of Figure 1a. We see from the figure that for large values of 8 the added observation will 

be correctly classified and will therefore be a good leverage point. For large negative 

values of 8 we get a bad leverage point. 

To visualize the influence of the contaminant (8,8,1) on the estimates, we plotted 

the values of /3(8) with respect to 8 for the ML- and the WML-estimators in Figures Ib 

and 1c. Since /3;::L = (5.220,4.631), we see that good leverage points do not perturb 

the fit obtained by the ML procedure (reason why we call them "good"). On the other 

hand, for s tending to -00, a bad leverage point breaks the slope estimator towards zero. 

For the WML estimator, both good and bad leverage points have hardly any influence, 

illustrating its robustness. This is not surprising, since leverage points have received a 

zero weight. The WML is only sensible to the added point if it is close to the original 

sample, so looking like a regular observation. If we look at the robustness in terms of 

the percentage of correctly classified observations (Figure Id), the estimator WML is 

better than ML for this example. In presence of a bad leverage point, the percentage of 

well classified observations can even get close to 50%, which is the same success rate as 

a random classification rule can attain. 
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Instead of adding only one outlier to a real data set, we will now look at the effect 

of adding multiple outliers by means of a modest simulation study. We simulated 1000 

samples of 100 observations, following the model equations (2.1) and (2.2) with p = 3. 

The explanatory variables were generated from a normal N(O, 1012), and the error terms 

Ci are according to a logistic distribution. The parameters a and f3 were set to 0.2 and 

(0.1414,0.1414)t. 

Introduce now a cloud of 11 contaminants, which leads to a sample with 10% addi­

tional contamination. These 11 outliers have values for the explanatory variables coming 

from a N(O, 10012), and the dependent variable is first generated according to the model, 

but then its sign is reversed. The outliers are therefore generated as bad leverage points. 

The mean values as well as the mean squared errors of the ML- and WML estimators 

were computed over the 1000 simulation runs, once in the uncontaminated case, and 

once in presence of 10% of bad leverage points. Results in Table 1 show that the two 

procedures are almost equivalent when there is no contamination, even if the weighted 

estimator has somewhat bigger MSEs than ML. Under 10% of contamination, the plain 

ML fails in terms of bias while the weighted estimator remains almost unbiased. Under 

contamination, the MSE measures of WML are stable whereas the MSEs of ML increases 

significantly. Finally, the average number of original observations which are well classi­

fied by ML deteriorates, while this number is unchanged for WML. The WML-estimator, 

as well as other robust estimators introduced in the literature, is thus not only useful 

for estimation in contaminated samples, in which the ML-estimator becomes completely 

unreliable, but it also has good properties when no outliers are present. 

As a conclusion, we may say that the numerical experiments confirmed the theoretical 

results. Moreover, a straightforward and feasible robust method is available in logistic 

regression models. 

Acknowledgment: We wish to thank Andreas Christmann for very helpful remarks. 
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Appendix 

Proof of Theorem 1: 

For every /, define 

5(,)" Zn) = inf {p > 01 3i E II such that xl! < -p or 3i E 1° such that xli > p} . 

Due to (2.4), 0 < 5(,)" Zn) < +00. Indeed, if 5(,)" Zn) is not finite we would have xli' ~ ° 
Vi E II and xl! ::; 0 Vi E 1°, which contradicts the overlap supposition. Consider 

the compact set Sp-l = hE lRPI IIrII = I}. Since the application / -+ 5(,)" Zn) is 

continuous in /, we have 

Denote in+m the ML-estimator in the logistic regression based on a contaminated sample 

Z~+m where arbitrary points Zn+l, ... ,Zn+m have been added. Since l'n+m minimizes the 

sum of the deviances d(')'; Zi) of the sample points, we set 

n+m 
D(in+m; Z~+m) := min L d(')'; Zi)' 

-y i=1 

Putting Do the total deviance for / = 0, and using symmetry of F, we have that 

n+m 
Do := D(O, Z~+m) = L d(O; Zi) = (n + m) log2. 

i=l 

Take z = exp( - Do) and define 

(5.1) 

which is a constant only depending on the original sample Zn and on the number m of 

observations added to Zn. Suppose now that in+m satisfies 

(5.2) 
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First of all, for each i'n+m E IRP, we know that there exists at least one 1 ~ io ~ n such 

that 

or 

These two cases have to be studied separately: 

Case 1: For io verifying (5.3), it follows from (5.1) and (5.2) that 

n+m 
L d(i'n+m, Zi) 
i=l 

2: d(i'n+m; Zio) 

-log [1 - F (11i'n+mllx;o II~:::II) ] 
2: -log [1 - F (11i'n+mIW(Zn))] 

> -log [1 - F (M(Zn' m)c5*(Zn))] 

-log(z) = Do. 

Case 2: For io satisfying (5.4), we obtain in a similar way 

n+m 
L d( i'n+m' Zi) 
i=l 

2: d(i'n+m, Zio) 

-log [F (lIi'n+mIIX;o II~:::II)] 
-log [1- F (-IIi'n+mllx;o Ilt::II)] 

2: -log [1 - F (11i'n+mllc5*(Zn))] 
> -log [1 - F (M(Zn' m)c5*(Zn))] 

-log(z) = Do. 
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We conclude that D(in+m, Z~+m) > Do = D(O, Z~+m) implying that in+m cannot be the 

ML-estimator. Therefore, equation (5.2) does not hold which proves the theorem. 0 

Proof of Theorem 2: 

Let <5 > 0 be fixed and denote Zn = {(1,xi,Yi)11::; i::; n} the observed sample. It is 

always possible to find a positive constant ~ such that -log F( -0 = Do = (n+m) log 2. 

Furthermore, set M = maxlSiSn Ilxill, N = %, A = (p -1)~ (2N + M) and m = 2(p-1). 

Take {el, ... , ep-l} the canonical basis of IRP- 1 and add the set of m outliers 

{zf = (l,vi'O),z; = (l,vi,l), with Vi = Aei, for i = 1, ... ,p -I} 

to Zn. We will prove that for all (3 with 11(311 > 8 and every 0: 

(5.5) 

yielding that the ML-estimator verifies 

II~~~II < 8. (5.6) 

Since (5.6) will hold for every 8 > 0, we have proven the theorem, since it implies that 

we can make II~~~II arbitrary small by adding m = 2(p - 1) outliers. 

In order to prove (5.5), take 11(311 > <5 and 0: arbitrarily, and define the (p - 2) di­

mensional hyperplane H8 = {x E IRP- 1 ; 0: + xt (3 = O}. The Euclidean distance between 

a vector x E IRP- 1 and H8 equals dist(x, H8) = Ixt& + II~III. First, suppose that there 

exists an 1::; io :::; p-l such that dist(Vio, H8) > N. If (3tVio +0: > 0, consider the outlier 

z?o. We obtain readily that (3tVio + 0: > NII(311 > N8 = ~ and 

d ((o:,(3),z?o) -log (1- F((3tVio + 0:)) 

> -log (1 - F(~)) 

-log F( -~) = Do. (5.7) 
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For (3tVio + a < 0, the outlier zlo will verify 

since - ((3tvio + a) > ( 

-log (F((3tVio + a)) 

> -logF(-~) = Do (5.8) 

On the other hand, suppose that dist(vj, H8) ::; N for all 1 ::; ) ::; p - 1. Denote)o 

the index such that l(3jol = max19Sp-l l(3jl· We have (p - 1)~ l(3jo 1 2': 11(311. First suppose 

that (3jo > 0. Then, 

yielding a ::; NII(311 - (3joA and therefore 

-a 2': (3joA - NII(311 2': (_A_l - N) 11(311 = (M + N)II(3II. 
(p-1)2 

Take now an observation Zio from Zn with Yio = 1. Then we obtain 

a + (3tXio ::; a + Ilxio 1111(311 ::; -(M + N) 11(311 + MII(311 = -NII(311 < -No = -~. 

The latter inequality implies as above that 

d ((a, (3), Zio) -log (F(a + (3tXio)) 

> -log F( -~) = Do. (5.9) 

For (3jo < 0, we can prove in a similar way that there exists an observation Zio satisfying 

d((a,(3),Zio) > Do· 

From (5.7), (5.8), and (5.9), we conclude that we can always find an observation in 

Z~+m which contributes at least Do to the total deviance. This proves (5.5) and ends 

the proof. o 
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Table 1: Simulated Bias, Mean Squared Errors, and average % of well classified obser­

vations for the ML and WML estimators over 1000 runs, once according to the model 

and once in the presence of 10% contamination. 

no contamination 10% contamination 

estimates ML WML ML WML 

& Bias 0.0047 0.0091 -0.0411 -0.0041 

MSE 0.0453 0.0590 0.0400 0.0525 

/31 Bias 0.0033 0.0059 -0.1188 -0.0053 

MSE 0.0055 0.Q103 0.0169 0.0083 

/32 Bias 0.0071 0.0096 -0.1164 -0.0063 

MSE 0.0048 0.0094 0.0161 0.0078 

% well classified 63.76 63.39 59.35 63.46 
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Figure 1: Stability experiment for the "Vaso Constriction" data: (a) Scatterplot of 

the observations (Xli,X2i), indicated by their Yi value. (b) Estimates of the first slope 

parameter, (c) estimates of the second slope parameter, (d) % of correctly classified 

observations, when adding (s, s, 1) to the data set for the ML-estimator (solid line) and 

the WML-estimator (dashed line), as a function of s. 
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