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Highlights
A Large Displacement Model for Superelastic Material Side-Notched Tube Instruments
Julie Legrand,Mouloud Ourak,Tom Vandebroek,Emmanuel Vander Poorten

• Superelasticity of a material modelled using an equivalent, strain dependent, linear elastic modulus.
• Non-constant curvature deformation modeled by calculating the deformation of each separate section successively.
• Static friction plays an important role in superelastic material side-notched tube instruments.
• Static model solution for the loading and unloading cases.
• Heat-treatment of the NiTi to reduce the NiTi stress plateau and decrease the required load.
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ABSTRACT
Side-notched tube structures made of superelastic material are increasingly being studied in surgical
robotics as they can easily be integrated into surgical instruments and offer the surgeon enhanced
dexterity. Their simple design and ability to achieve large bending angles and small bending radii
make them particularly suited for use in constrainedworkspace surgery. Up to now, however, nomodel
has been able to accurately predict the behavior of such types of structures for large bending angles.
This study, therefore, proposes a novel approach to model large displacements of side-notched tubes
taking into account the superelasticity of the material, the non-constant curvature of the side-notched
structure, as well as the friction induced by the actuating wire. More specifically, an equivalent,
strain dependent, linear elastic modulus is used to model the superelastic behavior of the instrument’s
material. The deformation of each separate section of the side-notched tube is calculated successively
to capture the non-constant curvature of the NiTi backbone. The capstan equation is used to model
cable friction. The model was tested on four samples of 2.3mm diameter and was able to predict the
bending angle of the side-notched tubes with a root mean square error (RMSE) of as low as 5.4◦ (3.1%)
and the position of each notch with an RMSE of as low as 0.33mm (2.5%) across its entire bending
range (0◦ to 180◦). The model was demonstrated for both tension and relaxation of the actuating wire.

1. Introduction
A notched tube structure or backbone consists of a tube

into which notches have been cut in order to reduce its stiff-
ness and allow the structure to bend when it is externally
actuated by a wire. Figure 1 provides an example of such
structures. Notched tubes are usually made out of a (su-
per)elastic material like Nitinol (NiTi) or PolyEther Ether
Ketone (PEEK) [1, 2, 3]. Notched tube backbones can be
easily manufactured and miniaturized thanks to their simple
shape. They can also withstand large bending angles and
small bending radii, and are able to return to their rest con-
figuration. However, the friction existing between the wire
and the (super)elastic structure is known to affect its control-
lability [4]. For superelastic NiTi backbones, a hysteretic ef-
fect is also present when loading and unloading the structure.
This complicates the control, the reachable bandwidth, and
the precision. Compared to steel, NiTi can take larger strains
and is biocompatible, which makes it particularly suited for
use in constrained workspace surgery in which high flexibil-
ity is desired [5]. NiTi notched tubes have been proposed
for various surgical applications such as laparoscopy [6, 7],
neurodendoscopy [8, 9, 10], treatment of osteolytic lesions
[11, 12] and inspection of the middle ear [13]. Table 1 pro-
vides an extensive overview of such works. For each con-
cept, the shape of the notches (pattern), the Degrees of Free-
dom (DoFs) unidirectional (ud) or bidirectional (bd), the
outer diameter (OD), the wall thickness (WT) and the length
(L) of the flexible structure are presented. The maximum
bending angle (BA), the minimum bending radius (BR) and
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Figure 1: Side-notched NiTi backbone undergoing an increas-
ing actuation force from the pull wire. The backbone shows a
non-constant curvature as it bends: the first notch is deformed
before the last one.

the characteristic strain (CS), which is defined as the ratio
between the outer diameter and the minimum bending ra-
dius, are also indicated. Figure 2 visualises these last three
geometric parameters. The characteristic strain corresponds
to the maximum strain undergone by the structure’s outer
fiber. The reported load that has to be applied to the wire
to reach the maximum bending angle is listed in the next to
last column. Finally, the main physical law that was used to
model the static behavior of each backbone is mentioned in
the last column.
What is noteworthy in Table 1 is that the pattern used by
York et al. [15] and Eastwood et al. [8], i.e. a side-notched
pattern, can reach large bending angles while keeping the
bending radius small, especially in comparison to the other
reported patterns. This type of side-notched backbone is
therefore worth investigating as it might also be of use for
the design of surgical instruments with large bending angles
(reaching up to 180◦) and small bending radii (typically be-
low 3mm). The fact that this simple pattern only allows for
one unidirectional bending DoF is not necessarily a prob-
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Table 1
Extensive state of the art of NiTi notched backbone designs and their corresponding static
models

Author Pattern DoF (OD, WT, L) [mm] (BA [◦], BR [mm], CS) Max. load [N] Quasi-static model

Fisher (1999) [6] 1ud (10.5, 0.17, 60) (90, 17.5*, 0.6*) 4.4 -

Peirs (2002) [14] 2 (4.7, 0.4, 37) (96, 25*, 0.19*) 8 -

Kutzer (2011) [11] 1bd (5.99, 1, 40*) (135, 20.4*, 0.29*) 44 -

Wei (2012) [7] 1bd (8, 0.5, 20*) (17, - , - ) 15 Timoshenko’s beam theory

Murphy (2014) [12] 1bd (6, 1, 35) (90, - , - ) 22.2 Energy minimization

York (2015) [15] 1ud (1.16, 0.15, 5.61) (90, 3.1*, 0.37*) 5 Castigliano’s 1st theorem

Eastwood (2016) [8] 1ud (1.8, 0.2, 7.66) (90, 3.5*, 0.51*) 20 Castigliano’s 2nd theorem

Eastwood (2017) [9] 1ud (1.24, 0.1, 80*) (80, 4.5*, 0.28*) 1.5 Castigliano’s 1st theorem

Fichera (2017) [13] 1ud (1.8, 0.1, 155) (180, - , - ) - Castigliano’s 1st theorem

Francis (2017) [16] 2 (1.37, 0.22, - ) (70, 10, 0.14) 10 -

Chitalia (2020) [10] 1bd (1.93, 0.22, 5.5 ) (60, 3.5*, 0.55*) 6.5 Castigliano’s 1st theorem

*Values deduced from provided instrument pictures.

CS 
OD 

=
BR

OD

BR

L
BA

Figure 2: Bending angle (BA), bending radius (BR), charac-
teristic strain (CS), outer diameter (OD) and bendable length
(L) of non-protrusible continuous (super)elastic structures.

lem in many surgical procedures. In fact, complex endo-
scopic instruments with multiple degrees of freedom have
been shown to impede the surgeon’s task performance [17].
By limiting the configuration space, the surgeon’s mental
workload can be reduced so that they can focus on more
critical aspects of the procedure itself [17]. However, it is
important to note that the characteristic strain (CS) of such a
side-notched pattern is larger than for other types of patterns
(see Fisher, York and Eastwood (2016) in Table 1). This
means that the strain on the structure’s outer fiber (the max-
imum strain) is expected to be high, and the backbone will
undergo large displacements.
Table 1 shows that, so far, the models used for the quasi-
static modeling of the notched NiTi backbones are either

based on beam theory, which considers the whole backbone
as a beam to which the first or second Castigliano’s theorem
is applied [7, 15, 8, 9, 13], or solved as a constrained energy
minimization problem [12]. These models have shown ad-
equate controllability for low bending angles (i.e. from 0◦
to 90◦). Fichera et al. reported a model capable of accu-
rately predicting the instrument’s bending angle up to 160◦,
but the instrument is long and contains a large number of
small notches. The bending radius is therefore expected to
be large and the deformation of each notch to be small [13].
All models listed in Table 1 make strong assumptions that
do not hold for the large displacements that occur when driv-
ing side-notched instruments over large bending angles and
small bending radii. Moreover, NiTi is a superelastic mate-
rial with a highly nonlinear stress-strain curve and, as such,
it differs significantly from materials with mainly linear be-
havior such as steel (Fig. 3). Hence, the linear material hy-
potheses made byWei et al. [7] and Eastwood et al. [8] can-
not be applied when researching NiTi large displacements.
Also, the constant curvature bending assumption made by
York et al. [15], Eastwood et al. [9] and Fichera et al. [13]
is not valid either. Indeed, it was experimentally observed
during this study that, for approximately equal sized side-
notches, the first distal notch of the NiTi backbone bends
substantially before the last one starts bending. (Fig. 1).
This phenomenon is caused by manufacturing inaccuracies
and friction.
In order to overcome the limitations of the previous approaches,
this paper proposes a static model for large displacements of
side-notched tube instruments. This model takes the mate-
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Figure 3: Stress-strain curve of steel (grey) and superelastic
NiTi (blue). NiTi shows a linear behavior at small strains and
a superelastic behavior at higher strains as well as hysteresis.

rial’s superelasticity into account as well as the backbone’s
non-constant curvature bending. Additionally, it takes into
consideration the friction that is present between the pull
wire and the backbone. This kind of static model which
uses only a limited number of hypotheses has, to the best
of the authors’ knowledge, never been reported before. The
presented model only requires the geometrical dimensions
of the side-notched backbone, its material properties and an
estimate of the friction coefficient between the wire and the
backbone as input. It provides an accurate estimate of the
shape of the instrument under loading and unloading from
the pull wire. The model can be used to design side-notched
tube portions or wrists for limited workspace surgical proce-
dures as well as to improve the precision of controllers.

The paper is structured as follows: in Section 2, the static
model for large displacements of side-notched tube instru-
ments is described. The model is then validated by compar-
ing its output to experiments in Section 3. More specifically,
four different notched backbone geometries are tested under
loading from the pull wire. The unloading case is also as-
sessed for one of the samples. In Section 4, the factors in-
fluencing the accuracy of the static model are discussed and
possible applications of the model are proposed. Finally, in
Section 5, conclusions regarding the present study are made
and some directions for future research are provided.

2. Static model
The side-notched NiTi backbone is manufactured by cut-

ting notches with a depth gj from a tube of external radius
Ro and internal radius Ri. This particular structure can be
seen as a concatenation of j rigid teeth portions (part 1 in

Fig. 4b) of height ℎtj , and j flexible beam portions (part 2 in
Fig. 4b) of height Lj (j ∈ [1, n], with n, the total number of
notches). The beam and tooth portion situated most distally
correspond to j = 1. A wire is attached to the extremity of
the backbone, on the first tooth (Fig. 4). The structure can
thus be deflected by increasing or releasing the tension in the
wire.
Even though the proposed approach is more general than in
prior studies, some general hypotheses are still adopted to
keep the model’s complexity manageable. In the following
model, it is assumed that:

1. the superelastic stress-strain curve of the material can
be approximated by an equivalent, strain dependent,
linear elastic modulus;

2. the deformation of the backbone’s teeth (part 1 in Fig.
4) can be ignored due to the specific aspect ratio;

3. the deformations are strictly planar;
4. the effect of the shear stress on the deformation can be

neglected;
5. the buckling caused by the axial load on the beam por-

tions can be neglected;
6. the normal forces exerted by the cable on the backbone

have a negligible effect on the bending of the beam
sections;

7. the friction present between the tension wire and the
backbone can be modeled using the Capstan equation.

The validity of each of these seven hypotheses is further dis-
cussed in Appendix A.

The structure of this section is as follows. First, the su-
perelasticity of thematerial, as well as the deformation of the

part 2

part 1

y

z

z

y

Ro

Ri

gj

htj

Lj

V V

W W

V-V

W-W

a) b)

y

x

z
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c)

wire

part 1
part 2

Figure 4: Actuation of a side-notched NiTi backbone via a
tension wire with a tension force Ft; part 1 indicates a rigid
tooth; part 2 indicates a flexible beam; a) cross-sectional view;
b) rest position; c) deflected configuration.
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flexible beams of which the backbone consists will be tack-
led in subsection 2.1. Subsequently, one complete section
of the notched backbone (i.e. composed of one rigid tooth
and one flexible beam) will be analyzed in 2.3. This will
then be followed in 2.3 by the presentation of the static equa-
tions of the entire notched backbone. Finally, in subsection
2.4, a method based on the Capstan equation is introduced
to model cable friction.
2.1. Large displacement of the superelastic flexible

beams of the notched backbone.
Each flexible beam portion j (with j ∈ [1, n]) of the NiTi

backbone can be seen as a cantilever beam of length Lj withan annular segment section. In the case of the top section
(j = 1), the pull wire applies a load Fapp1 at the tooth ex-
tremity as well as a normal force N1 and friction f1 (Fig.
5). Those applied forces on the first tooth extremity can be
represented by a bending momentM1 that is applied to the
top of the beam portion (Fig. 5). As hypothesis 5 states, it is
assumed that the axial forces will not cause deformation of
the beam portion. Moreover, the normal forces Nj appliedby the cable are significantly smaller than Fapp1. Therefore,it is assumed that the bending of the beam portions caused
by these normal forces is insignificant in comparison to the
bending caused by Mj (hypothesis 6). For the lower sec-
tions, as explained further in the text, the bending moment
Mj applied to the jtℎ beam portion extremity follows from
the moments upon the upper sections as well as the cable
normal force and friction applied to the jtℎ tooth.

2.1.1. Material superelasticity
Large displacements of the beam portion are expected since
the aim is to create large bending angles across the whole
backbonewhile keeping the bending radius small. It is there-
fore expected that the material will reach strains that are sit-
uated in the superelastic part of the NiTi stress-strain curve
(Fig. 3).
In order to model this superelastic behavior, an equivalent,
strain dependent, linear elastic modulus is proposed. To find
this equivalent elastic modulus, the equation of the inner
bending moment can first be expressed according to the nor-
mal stress �:

M = ∫AT
�y dA = ∬AT

�y dy dz, (1)

where y is the coordinate normal to the neutral axis and dA
is an infinitesimal area on the flexible beam cross-section
AT . Then, the standard strain-curvature expression for an
infinitesimal element dy can be used , i.e.,

dy = �(s)d�, (2)
with the radius of curvature �(s) ≥ 0 for all s (where 0 ≤
s ≤ L). By using (2) in (1), the following equation can be

obtained:

M = �(s)2 ∫

zmax

zmin
∫

�max

�min
�� d� dz, (3)

with zmin and zmax representing the area bounds in the z di-rection, and �max and �min representing the maximum and
minimum strain undergone by the beam, respectively, i.e.
the strain at its outer fiber. The parameter s represents the
curvilinear coordinate along the neutral axis measured from
the proximal base of the instrument (Fig. 5).
Under the assumption that the compression and tension of
the material show symmetry in the �-� plane, one can de-
rive that �min = −�max (see Fig. 6). By using this extra
hypothesis, (3) can be written as:

M = 2�(s)2 ∫

zmax

zmin
∫

�max

0
�� d� dz, (4)

Eq. (4) is a general equation holding for any kind of material
of known stress function �(�) showing symmetry in the �-�
plane. In the case of a linear material of Young modulus E,
(4) takes the following form:

M = 2�(s)2 ∫

zmax

zmin

E�3max
3

dz. (5)

Equalizing the expressions of the bending moment for a su-
perelastic material (Eq. 4) and for a linear material (Eq. 5)
allows us to obtain the same radius of curvature (�(s)) for a
linear material as for a superelastic material of stress func-
tion �(�). More specifically, this means that an equivalent,
strain dependant Young modulus E can be defined that can

Fapp1

(xtooth1,ytooth1)

θ1(s)

s

L1

(xD1,yD1)

Neutral axis

y0

x0

x1

y1

M1

x2

y2

lc1
CA1

Ro

f1N1

Figure 5: Deformed section of the upper notch (j = 1) of
the side-notched backbone resulting from a force Fapp applied
to the tooth tip by the pull wire. The friction between the
backbone and the pull wire is not taken into consideration in
this figure.
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Figure 6: Graphic representation of the equivalent, strain de-
pendent, linear elastic modulus Eeq; a) stress-strain loading
curve of the superelastic material (left) used to calculate the
Eeq (right) based on a specific �max by means of (7); b) cross-
section of a deformed flexible backbone beam.

represent the same beam’s radius of curvature as a supere-
lastic material of stress function �(�).
In (4) and (5), the integral in z is a constant and only depends
on the beam geometry. Therefore, equalizing both Eqs. (4)
and (5) gives:

E�3max
3

= ∫

�max

0
�� d�. (6)

Finally, by introducing the equivalent Young modulus E,
now expressed as Eeq , it becomes possible to obtain a linear
approximation of a specific bending for a superelastic mate-
rial with a stress function �(�) (Fig. 6). Eeq can be expressedby rearranging (6) :

Eeq(�max) =
3
�3max ∫

�max

0
�� d�. (7)

The calculation of the integral in (7) can be obtained by us-
ing experimental data from the superelastic material.
Adopting this Eeq now allows us to use linear equations for
large beam displacements. Therefore, Eq. (1) can first be
rewritten as:

M = ∬AT
Eeq(�max)�y dy dz. (8)

Then, by inserting (2) in (8), the following equation can be
obtained:

M =
Eeq(�max)
�(s) ∬AT

y2 dy dz. (9)

Co CA Ci

Ro

Ri

AT

φi

AiAo=A+Ai

φo

C
R

φ

a)

b)

A

y

z

ymax

Figure 7: Geometrical scheme used to calculate the centroid of
the NiTi backbone beam section; a) general case for a circular
segment A; b) cross section of the NiTi backbone flexible beam
obtained by subtraction of the circular segments Ai from Ao.

Finally, (9) can be written in terms of the second moment of
area of the flexible beam:

M =
Eeq(�max)ICA

�(s)
, (10)

where ICA is the second moment of area of the flexible beam
portion, which is calculated as described in Section 2.1.2.

2.1.2. Second moment of area of the flexible beam
portion

The centroid C of a circular segment A, delimited by its
spanning angles ' and radius R (Fig. 7a), can be expressed
as:

C =
4Rsin3('2 )
3(' − sin') . (11)

As Roark et al. [18] describe, the moment of inertia of this
circular segment A, with respect to its centroid C is given
by:

IC=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

R4

4

(

'
2 − sin'2 cos'2+

2sin3 '2 cos'2 −
16sin6 '2

9( '2 −sin '2 cos '2 )
)

if '2 ≥ �
4

0.01143R4('2 )
7
(

1 − 0.3491('2 )
2+

0.045('2 )
4
)

if '2 < �
4 .

(12)
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ICi, the second moment of area of the inner circular segment
Ai (see Fig. 7b) is defined by (12) with R = Ri and ' = 'i,whereas ICo, the second moment of area of the outer circular
segment Ao is defined by (12) with R = Ro and ' = 'o.Using (12), the second moment of area of these segments
with respect to the center of the tube is obtained using the
parallel-axis theorem:

{

Ii = ICi + AiC2i
Io = ICo + AoC2o

(13)
with Ai, Ao, AT , Ci and Co, the areas and centroids, respec-tively, which follow from the geometry of the beam (Fig.
7b):

⎧

⎪

⎨

⎪

⎩

Ai = 1
2R

2
i ('i − sin('i))

Ao = 1
2R

2
o('o − sin('o))

AT = Ao − Ai.
(14)

Because Io and Ii have now the same reference, i.e. the cen-
ter of the tube, they can be used to calculate the second mo-
ment of area of the flexible beam determined by the differ-
ence between the outer and inner area:

ICA = ICo − ICi. (15)
Now that ICA has been defined, it can be used in (10) in order
to derive the large displacement equations of the beams.
2.1.3. Large displacement of the flexible beams
Using the following expression for the bending curvature of
the beam:

1
�(s)

=
d�(s)
ds

(16)
with �(s), the angle between the positive x-axis and the tan-
gent to the neutral axis at the specific point s (Fig. 5). By
combining Eqs. (10) and (16) we can obtain:

d�(s)
ds

= M
Eeq(�max)ICA

, (17)

where � = 0 is chosen as initial condition at the base of the
beam, thus for s = 0. The value of �(s) can be found by
integration on s:

�(s) = M
Eeq(�max)ICA

s. (18)

The following geometric relations can be used to obtain the
Cartesian coordinates of any point situated on the neutral
axis of the deflected beam at any arc length s from the base.

{

dx
ds = cos(�(s))
dy
ds = sin(�(s)). (19)

The position of the deformed top of the beam of a section j
(indicated as xDj and yDj , with j = 1 in Fig. 5) can thereforebe calculated by integrating over the beam length from s = 0
to s = Lj . For x = 0 and y = 0 as initial condition at the
base of the beam, this gives:

xDj =
EeqjICAj
Mj

sin
( Mj

EeqjICAj
Lj

)

(20)

yDj =
−EeqjICAj

Mj
cos

( Mj

EeqjICAj
Lj

)

+
EeqjICAj
Mj

.

(21)
From (20) and (21), the transformation matrix that expresses
the position and orientation of the frame 1 with respect to the
frame 0 of a section j (Fig. 5) can be found as:

T 0,j1,j =

⎡

⎢

⎢

⎢

⎢

⎣

cos(�j(Lj)) −sin(�j(Lj)) 0 xDjsin(�j(Lj)) cos(�j(Lj)) 0 yDj
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (22)

Since the teeth do not undergo any deformation (hypothesis
2 in Appendix A), the tooth tip position of a section j (i.e.
xtootℎj and ytootℎj , illustrated for j = 1 in Fig. 5) can be
obtained by simple trigonometry, which gives:

⎡

⎢

⎢

⎢

⎢

⎣

xtootℎj
ytootℎj
0
1

⎤

⎥

⎥

⎥

⎥

⎦

= T 0,j1,j ·
⎡

⎢

⎢

⎢

⎣

0
lcj
0
1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−lcj sin(�j(Lj)) + xDj
lcj cos(�j(Lj)) + yDj

0
1

⎤

⎥

⎥

⎥

⎥

⎦

(23)

with lcj = (Ro+CAj ), the distance between the tooth extrem-
ity and the neutral axis CAj , as shown in Fig. 5 for j = 1.
In order to choose the correct Eeq in Eq. (18), �max needs tobe calculated. To do so, Eqs. (2) and (10) can be combined
to form the following expression for a given flexible beam j:

Mj =
Eeqj (�maxj )ICAj �maxj

ymaxj
, (24)

where ymaxj is the location of the maximum strain, i.e. at the
outer fiber (Fig. 7) of the beam j, and is equal to Ro − CAj .Eq. (24) is solved for a given input torqueMj to find �maxjby numerical methods.
2.2. Large displacement model of an arbitrary

individual NiTi side-notched backbone section
In this subsection, the deformation model for an arbi-

trary section of the backbone is described. Three different
cases are analyzed. First, the case of the most distal notch is
discussed. This notch will behave differently from the oth-
ers since its tooth portion serves as a lever to transmit the
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moment to the beam portion. Second, all the other notches
are considered. In this case, the bending moment is caused
by the moment transferred from the upper sections. Third,
the limit case is elaborated on, with the deformation being
so large that the adjacent teeth come into contact with each
other.

2.2.1. Deformation of the top section
If a forceFapp1 is applied to the first tooth by the wire, theflexible beam of the first top section will bend. This bending

will induce a normal force between the wire and the toothN1(Fig. 8) which, in turn, will induce friction f1 (Fig. 8). Both
N1 and f1 depend on the section bending �1. Details aboutthe calculation ofN1 and f1 can be found in subsection 2.4.The torqueM1 applied to the beam end of the backbone sec-
tion can therefore be expressed as:

M1 = Fapp1 lc1 +N1(�1)
ℎt1
2
+ f1(�1)lc1 . (25)

This torque,M1, can be used in Eqs. (20) and (21) in order
to find the first tooth tip position by using (23).

2.2.2. Deformation of the next sections without contact
For each section, frames can be allocated to key points on the
beam and tooth of the section. Four frames can be defined
for a section j: frames {0, j}, {1, j}, {2, j} and {3, j} (Fig.
8).

The torque M2 applied to the beam top of the second
section is the sum of the torque M1 and the effect of the
bending of the second section, i.e. the effect of the normal
force between the wire and the toothN2 and the consequentfriction force f2 (Fig. 8):

M2 =M1 +N2(�2)
ℎt2
2
+ f2(�2)lc2 . (26)

By extending and generalizing this procedure, the torqueMj
applied to the top beam of the jtℎ section can therefore be
calculated as:

Mj =Mj−1 +Nj(�j)
ℎtj
2
+ fj(�j)lcj . (27)

By combining Eqs. (23) and (27), the position of the differ-
ent jtℎ tooth extremities, i.e. xtootℎj and ytootℎj can be found.

2.2.3. Deformation in case of teeth contact
If the torqueMj , applied to the beam top of the jtℎ sec-

tion, is large, the (j +1)tℎ and the jtℎ teeth could touch each
other (Fig. 9). In order to model this phenomenon, the limit
torqueMlimitj , causing the tooth of the jtℎ section to touch
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Figure 8: Force and torque distribution on the NiTi backbone
to calculate the position of the tooth extremity of all the suc-
cessive sections.

section j

Mj > Mlimitj

y 1,j

x1,j

x0,j

y0,j

(0,l cj)

l cj θmaxj=Lj/lcj

Figure 9: Side-notched backbone section j in case of teeth
contact as a result of the bending moment Mj being larger
than Mlimitj .

the tooth of the (j + 1)tℎ teeth, can be found by imposing
xtootℎj = 0, and inserting Eq. (18) in (23), which gives:

Mlimitj =
EeqjICAj

lcj
. (28)

If the torqueMj is larger or equal toMlimitj , then xtootℎj and
ytootℎj are respectively set equal to 0 and lcj in frame {1, j}.
The bending angle is set to �maxj = Lj∕lcj , which can be
found by inserting Eq. (28) in (18).
2.3. Large displacement model of a NiTi

side-notched backbone
In order to obtain the overall shape of the NiTi backbone,
each section can be concatenated using transformation ma-
trices linking frames {0, j − 1} and {0, j}. The transfor-
mation matrix that expresses the position and orientation of
frame {0, j−1}with respect to frame {0, j} (Fig. 8) is given
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by:

T 0,j0,j−1 =

⎡

⎢

⎢

⎢

⎢

⎣

cos(�j) −sin(�j) 0 xDj + ℎtj cos(�i)sin(�j) cos(�j) 0 yDj + ℎtj sin(�j)
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (29)

By defining frame 0 (Fig. 8) of the most proximal section as
the base frame (i.e, frame n), the overall shape of the instru-
ment can be derived by identifying the beam end positions
(the origins of frame 0 and 1 in Fig. 8) as well as the position
of the teeth extremities (the origins of frame 2 and 3 in Fig.
8) for each section relative to the base frame.
The origin of frame {0, j} is defined as

O0,n0,j =
2
∏

m=j

(

T 0,m0,m−1

)

·
⎡

⎢

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎥

⎦

. (30)

The origin of frame {1, j} is found as

O0,n1,j =
2
∏

m=j

(

T 0,m0,m−1

)

·
⎡

⎢

⎢

⎢

⎢

⎣

xDj
yDj
0
1

⎤

⎥

⎥

⎥

⎥

⎦

. (31)

The origin of frame {2, j} is found using (22):

O0,n2,j =
2
∏

m=j

(

T 0,m0,m−1

)

· T 0,j1,j ·
⎡

⎢

⎢

⎢

⎣

0
lcj
0
1

⎤

⎥

⎥

⎥

⎦

. (32)

Finally, the origin of frame {3, j} is defined by

O0,n3,j =
2
∏

m=j

(

T 0,m0,m−1

)

· T 0,j1,j ·
⎡

⎢

⎢

⎢

⎢

⎣

ℎtj
lcj
0
1

⎤

⎥

⎥

⎥

⎥

⎦

. (33)

In order to calculate the overall bending angle of the side-
notched backbone, the bending angle of each notch, �j , cansimply be added. The overall bending angle can therefore be
expressed as:

Θ =
n
∑

j=1
�j . (34)

All the �j can easily be found by using Eq. (18).
Eqs. (25), (27) and (28) can then be used to compute the
bending angles of each notch, �j .
2.4. Friction between the wire and the backbone

The force Fapp1 applied to the first tooth extremity dif-
fers from the proximal force applied to the wire by an exter-
nal actuator. This difference is due to friction resulting from
the normal force applied by the pull wire to the backbone
teeth. In order to model this phenomenon, the Capstan equa-
tion is proposed. This equation has, amongst others, been
used to model the tendon transmission system of robotic fin-
gers [19]. The Capstan equation relates the incoming tension
force F1 to the outgoing tension force F2 (with F2 > F1) ofa flexible cable wound around a drum (Fig. 10a) [20]. Due
to the interaction of frictional forces and tension, the ten-
sion is different on each side of the drum. This difference is
characterized by:

F2 = F1e�� (35)
with �, the friction coefficient of the cable on the drum,
and � the slip angle (Fig. 10a). The Capstan equation (35)
can be applied to one section of the notched backbone. In-
deed, when the wire is tensioned and the backbone section
deforms, the wire presses on the backbone’s inner wall and
follows its shape. Locally, this can be approached like a cir-
cular arc (Fig. 10b), as the circle defined by this circular arc
can be seen as the Capstan drum of radius R. The slip angle
is the angle delimiting the tooth of the jtℎ section, i.e. the
circle segment delimited by the points O0,j3,j and O0,j2,j in Fig.
10b.
The normal forceNj applied by the wire to the backbone jtℎtooth (Fig. 10b) can be calculated by summing the forces in
the y-direction in Fig. 10a:

Nj(�j) = Frj�j(�j), (36)
where Frj represents the tension in the rope below the jtℎ

F2 F1

μdN

dN
β

βj

Rj

a) b) Fapp1
Neutral axis: C

y0,j
x0,jSection j

F2 > F1

o0,j3,j

o0,j2,j

o0,j2,j+1

cable

fj

Ft 

Nj

Frj

Figure 10: Friction model based on the Capstan equation; a)
illustration of a capstan drive mechanism; b) Capstan drive
applied to a notched backbone section j.
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tooth (Fig. 10b). This force can be calculated using Eq. (35)
in its static form (i.e. when f ≤ �N):

Frj ≥ Frj−1e
�s�j , (37)

where �s is the coefficient of static friction and Fr0 = Fapp1.The static friction force applied by the wire to a backbone
tooth can therefore be expressed as:

fj(�j) ≤ �sNj(�j). (38)
Eqs. (36) and (38) depend on �j :

�j = ℎtj∕Rj , (39)
where ℎtj is the thickness of the jtℎ tooth and Rj is the ra-
dius of the circle passing through three teeth extremities of
section j, namely the points O0,j3,j , O0,j2,j and O0,j2,j+1 in Fig.
10b. The coordinates of these three points can be derived as
follows in the frame of the jtℎ section:

O0,j3,j = T
0,j
1,j ·

⎡

⎢

⎢

⎢

⎢

⎣

ℎtj
lcj
0
1

⎤

⎥

⎥

⎥

⎥

⎦

(40)

O0,j2,j = T
0,j
1,j ·

⎡

⎢

⎢

⎢

⎣

0
lcj
0
1

⎤

⎥

⎥

⎥

⎦

(41)

O0,j2,j+1 =

⎡

⎢

⎢

⎢

⎢

⎣

−ℎtj+1
lcj+1
0
1

⎤

⎥

⎥

⎥

⎥

⎦

. (42)

�j is a function of �j by using Eqs. (40), (41) and (42).
�j is a function ofMj by (18). Therefore, by inserting Eqs.
(36) and (38) in (27),Mj is found usingMatlab’s fzero func-
tion (MathWorks, Natick, USA)with a termination tolerance
of 2.2204e–16 (default value) and an initial point equal to 0.
A force Ft applied proximally to the wire creates a reaction
force Fapp1 on the tooth extremity of the first section that is
smaller than Ft because all the friction forces fj work on
the wire and oppose the wire’s movement (Fig. 10). The
equivalent slip angle of the entire backbone is obtained by
summing the slip angles of the individual sections. Ft istherefore linked to Fapp1 by using the Capstan equation in
its static form:

Ft ≥ Fapp1e
�s

n
∑

j=1
�j (43)

The computational method to find Ft in function of Fapp1 isdescribed in detail in Algorithm 1 and goes as follows. From
a known tension force Ft, Fapp1 needs to be found in order toapply the proposed static model (Eqs. (25) - (27)). However,
the angles �j depend on the bending angles of each notch,
�j , and therefore on Fapp1. The angles �j in Eq. (43) will
therefore be expressed as a function of Fapp1. Eq. (43) is
solved using the Matlab’s fsolve function (MathWorks, Nat-
ick, USA) with a Levenberg-Marquardt optimization algo-
rithm, a termination tolerance on the function value of 1e-6,
a maximum number of iterations of 400, and an initial point
equal to Ft. More specifically, �j is a function of �j by usingEqs. (40), (41) and (42). �j is a function of Mj by using
(18), andMj is a function of Fapp1 by using Eqs. (25), (27)
and (28). Eq. (25) is used for the first notch. For the other
notches, either Eq. (27) or (28) are used depending on the
state of the previous notch. IfMj−1 is larger thanMlimitj−1 ,Eq. (28) will be used. Otherwise Eq. (27) is used.

3. Experiments
In order to evaluate and validate the complete staticmodel

for large displacements of side-notched tube instrumentswith
integrated friction modeling, four NiTi samples were manu-
factured in-house usingwire Electrical DischargeMachining
(EDM) (Fig. 11). The first sample was manufactured from a
2.3mm outer diameter, 1.8mm inner diameter tube with six
equal depth notches. The second, third and fourth samples
were machined from a 2.3mm outer diameter, 2mm inner
diameter tube with equal, increasing-size and decreasing-

Algorithm 1: Expressing Ft in function of Fapp1
Input : Ft
j ← 1;
while j ≤ n do

if j = 1 then
Mj = Fappj lcj +Nj(�j)

ℎtj
2 + fj(�j)lcj ;

else
if Mj−1 > Mlimitj−1 then

Mj =
Eeqj ICAj

lcj
;

else
Mj =Mj−1 +Nj(�j)

ℎtj
2 + fj(�j)lcj ;

end
end
�j =

MjLj
Eeqj (�maxj )ICAj

;
�j ← Eq.(40), (41), (42) ← Eq.(22);
j ← j + 1;

end

Ft = Fapp1e
�s

n
∑

j=1
�j ;

Output: Ft(�j(�j(Mj(Fapp1 ))))
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size depth notches respectively (Table 2). Note that choos-
ing larger notch depths for the distal notches than for the
proximal ones allows reaching small bending radii during
bending, since the distal notches will bend first. The result-
ing backbone is therefore promising for limited workspace
surgery. Even if preferential distal bending is observed when
using equal-depth notches, this property is amplified when
the depth of the distal notches is larger. This technique,
called tip-first bending, was introduced by Swaney et al. [21].
However, until now, no model has been introduced that takes
into account non-constant curvature bending to model tip-
first bending backbones.
The employed NiTi was heat-treated prior to manufactur-
ing. More specifically, the sample was annealed at 550◦C
for 10min. This heat treatment causes a decrease of the stress
plateau by approximately 20% (Fig. 12) [22], which, in turn,
leads to a decrease in the load required to bend the NiTi back-
bone.

1 2 3 4

Figure 11: Samples used to evaluate the static model, with
enlargement of the perforation used to attach the wire to the
tube. 1. 2.3mm outer diameter, 1.8mm inner diameter equal
notches backbone; 2. 2.3mm outer diameter, 2mm inner diam-
eter equal notches backbone; 3. 2.3mm outer diameter, 2mm
inner diameter increasing-size notches backbone; 4. 2.3mm
outer diameter, 2mm inner diameter decreasing-size notches
backbone.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

Figure 12: Stress-strain tensile curve of an annealed and an
original NiTi tube sample.

Table 2
Notch depth gj and length Lj and tooth thickness ℎtj of the
four samples

j Sample 1 Sample 2 Sample 3 Sample 4

(gj ,Lj ,ℎtj ) [mm]

1 (2.14,1.14,2.19) (2.15,1.11,1.7) (1.94,1.06,1.87) (2.25,1.24,2.16)

2 (2.14,1.14,0.77) (2.15,1.18,0.67) (2.02,1.07,0.76) (2.13,1.19,0.74)

3 (2.14,1.17,0.75) (2.16,1.18,0.69) (2.05,1.21,0.72) (2.05,1.24,0.73)

4 (2.15,1.3,0.79) (2.13,1.28,0.76) (2.08,1.14,0.74) (2.01,1.2,0.7)

5 (2.08,1.29,0.77) (2.13,1.2,0.69) (2.12,1.23,0.71) (1.89,1.17,0.78)

6 (1.97,1.32,0.81) (2.03,1.21,0.76) (2.14,1.23,0.76) (1.86,1.12,0.74)

3.1. Set-up
In order to evaluate the static model experimentally, the

backbone shape was recorded in function of the force ap-
plied to the wire. To do so, the set-up depicted in Fig. 13
was used. The four NiTi samples (Fig. 11) were clamped
onto a support piece with a hole drilled into so that a wire
can freely pass through the backbone. The wire, a 200µm
diameter stainless-steel single thread cable, was attached to
a load cell BCM 16687(S) 1kg (BCM sensor, Antwerpen,
Belgium) at one end. The other end of the wire was at-
tached to the most distal tooth of the backbone by making
a simple knot around a small hole manufactured in the first
tooth (Fig. 11). The load cell was clamped on a linear stage
M-423 (Newport Corporation, California, USA). The force
applied to the wire could be regulated using a micrometer
SM-25 (Newport Corporation, California, USA) mounted
on the linear slide. The force value was measured using
a cRIO-9067 and a Labview module NI9237 (National In-
struments, Texas, USA). In order to experimentally register
the points O0,n2,j and O0,n3,j (Fig. 8), an Andonstar V160 digi-
tal microscope was used (Andonstar, Guang Dong, China).
The microscope was first calibrated using the open source
’Camera Calibration Toolbox for Matlab’. Then, a Matlab
(MathWorks, Natick, USA) program was developed to com-
pute the location of the manually selected points on the pic-
ture. The accuracy and precision of this manual selection
point program was measured to be 0.05mm and 0.17mm, re-
spectively. By applying an arbitrary force to the pull wire
and manually selecting the points’ position O0,n2,j and O0,n3,j onthe bent backbone, the side-notched instrument bending be-
haviour could be experimentally measured and compared to
the static model.
3.2. Model Parameters definition

The dimensions of the notches of the four samples are
reported in Table 2. Due to inaccuracies in the manufactur-
ing process, all these dimensions were precisely remeasured
using the open access image processing program Image J. In
Table 2, the notch number corresponds to the parameter j de-
fined in subsection 2.2. Note that the depth of some notches
is so large that the flexible beam cross section becomes a cir-
cular segment. These notches are characterized by a depth
gj ≥ Ro+Ri. For these notches, the second moment of area
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1

2

3

4

5

Figure 13: Set-up used to evaluate the static model of the
NiTi side-notched backbone. 1. sample; 2. sample support
piece; 3. load cell; 4. linear stage; 5. microscope.

of a circular segment was used (Fig. 7a). The static coeffi-
cient of friction was experimentally obtained by fitting the
model curve on the experimental one.
The material properties of the used NiTi tubes were also
measured. More specifically, the stress-strain curve of the
used NiTi was measured using a universal testing machine
Instron 5567 (Instron, Massachusetts, USA). The hysteresis
curve and the load to failure test were obtained by using a
speed of 0.4mm∕min for two samples, one annealed and one
original, coming from the same production tube (Fig. 12).
Based on the experimental curve of the annealed NiTi, the
equivalent, strain dependent, linear elastic modulus Eeq canbe calculated in function of �max. Eq. (24) can then be used
to find the corresponding �max to a torque inputMj , whichcan therefore lead to an Eeq matching the deformation.
In addition to being superelastic, NiTi shows hysteresis dur-
ing tension and release (Fig. 12). Thus, in order to calculate
Eeq , the loading and unloading cases need to be analyzed.
3.2.1. Eeq - loading case

By solving (7) for different values of �max, the curve of
Eeq(�max) can be obtained (Fig. 14). From 0 to 1.5% strain,
the Eeq varies around 3.4 × 104MPa. This strain range cor-
responds to the linear domain of the NiTi. However, it is
important to note that the slope of the experimental stress-
strain curve slightly varies in this range, therefore, the Eeqvaries accordingly. Between 1.5 and 6.5% strain, which cor-
responds to the plateau range of the NiTi, Eeq decreases.
From 6.5% strain, Eeq is constant around 0.75 × 104MPa

since the stress-strain curve of the NiTi is linear once again.
3.2.2. Eeq - unloading case

Since NiTi shows hysteresis, the NiTi unloading curve
needs to be used to calculate the Eeq of the unloading case.
The unloading Eeq is not only dependent on the strain, but
also on the maximum strain reached just before unloading.
From this specific strain, the stress-strain profile of the back-
bone flexible beam section takes the form of the loading
curve with a maximum strain corresponding to the unload-
ing curve (decreasing blue curves in Fig. 15)) in accordance
with (2). Those stress-strain profiles were used to calculate
the integral in (7), and the unloading Eeq could be obtained
in function of �max and �max before unloading (b.u.) (Fig.
14). In Fig 14 Eeq is showed for �max b.u. equals to 10%.
If �max b.u. < 10%, it is assumed that Eeq decreases at thesame pace as Eeq for �max b.u. = 10% until the unloading
Eeq curve is reached (Fig. 14).
3.3. Results

The experiments were conducted five times for different
applied forces ranging from 0 to 2N for the first sample, 0
to 1.2N for the second, and 0 to 4N for the third and fourth
samples. In order to test the model’s validity for the unload-
ing case, an unloading test was also performed on the second
sample in which loads ranging 1.2 to 0N were applied onto
the pull wire.
Themodel was implemented inMatlabR2017a (Math-Works,
Natick, USA) and can calculate the backbone position for
one tension force in 1.87s on average using a processor In-
tel(R) Core(TM)i7-7600U and a CPU of 2.8GHz. This test
was conducted by using the program coded in Matlab with
50 randomly applied tension forces. The execution time of
the program was not the focus of this work and is currently
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Figure 14: Eeq obtained by solving (7) for the loading and
unloading curve (blue) and stress-strain loading and unloading
curve of the NiTi (orange) with �max before unloading (b.u.)
equal to 10%. Example of Eeq for �max b.u. equal to 6%.
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σ

ε

εmax before unloading

Figure 15: Stress-strain profiles (blue curves) of a backbone
flexible beam section during unloading.

too high for use in a real-time control scheme. However,
there is still some room for speed up e.g. by coding themodel
in a lower level language.
Figure 16 depicts the bending angle and the notch positions
of the four different samples for different forces applied to
the pull wire. The figure shows both the angles and positions
that were obtained experimentally and those predicted by the
static model. For the bending angles, the mean and stan-
dard deviation (SD) of the five experimental tests are plotted
and the RMSE between the mean of the experiments and the
model is indicated. For the notches positions (i.e. the points
O0,n2,j and O0,n3,j defined in Section 2), the mean position over
the five tests is depicted and the mean RMSE of the notch
positions is also indicated. In order to calculate this position
RMSE, the mean of the Euclidean distance between the 12
modeled and experimental points was considered to calcu-
late the RMSE for different applied forces. The RMSE was
then normalized in function of the height of the NiTi back-
bone at rest.
For the first sample, a static friction coefficient of 0.31 shows
the best results. To draw a comparison, Kusyet al. [23] re-
ported a coefficient of dry static friction between stainless-
steel dental brackets and NiTi wires equal to 0.302. The
model can estimate its bending angle with an RMSE of 3.1%
and the position of its notches with a mean RMSE of 2.7%
over a range of 2N applied force.
The model approximates the bending angle of the second
sample in its loading phase with an RMSE of 6.1%, and the
notch positions with a mean RMSE of 4.8% over a range of
1.2N applied force. For these results, a static friction co-
efficient of 0.42 was chosen. The model shows some dis-
crepancy at small applied forces (Fig. 16B). In the unload-
ing phase, the model predicts the deflection angle with an
RMSE of 5.7% and the notch positions with a mean RMSE
of 5%. Deflection angle deviations similar to those of the
loading case are observed at small applied forces (Fig. 16C).
By comparing the deflection angles of both loading and un-
loading cases (Fig. 16B and C), the hysteresis intrinsic to
the NiTi material becomes noticable. One can see that the

tube starts straightening only after reducing the load below
1N.
An RMSE of 4.5% was calculated for the bending angles of
the third sample. The model approximated the notch posi-
tions with a mean RMSE of 3% across a range of 4N applied
force. For the third sample, a static friction coefficient of 0.2
showed the best results.
Finally, a static friction coefficient of 0.2 was chosen for the
last sample. The model replicates the bending angle of the
fourth sample with an RMSE of 3.7% and the position of its
notches with a mean RMSE of 2.5% across a range of 4N
applied force.

4. Discussion
The developed static model can predict the bending an-

gle and the notch positions of a NiTi side-notched backbone
with a reasonable RMSE across a large bending angle range
(i.e. up to 180◦), even for unequally sized notches. This
model, computing the deformation of each notch individu-
ally and using an equivalent linear E-modulus to model the
superelasticity of the material, addresses the limitations of
the currently existing models which can only model the de-
formation of NiTi backbones with identical notches up to
maximum 90◦ [15, 8]. However, a couple of factors influ-
ence the accuracy of the proposed model, like the equiva-
lent linear E-modulus and the friction coefficient between
the wire and the NiTi backbone. In this section, these factors
as well as their effect on the static model are discussed. The
integration of such a model in the development framework
of steerable instruments for constrained workspace surgery
is also discussed.
4.1. Equivalent linear E-modulus

The equivalent linear E-modulus represents a way to deal
with the superelasticity of the material while being able to
use linear deformation equations. This equivalent linear E-
modulus (Eeq) is an approximation of thematerial properties
at a given elongation. Therefore, inaccuracies are expected
in the NiTi backbone deflection especially at higher strain
(i.e. above 1.5%), where the deformation is no longer lin-
ear. In the unloading case, in which the equivalent linear
E-modulus does not only depend on the strain but also on
the maximum strain reached just before unloading, inaccu-
racies may arise due to the assumption that Eeq decreases atthe same pace asEeq for �max b.u. = 10% until the unloading
Eeq curve is reached (Fig. 14).
4.2. Friction coefficient

The coefficient of friction depends on various factors such
as the microstructure of the different materials, the surface
finish (manufacturing history, process parameters) and the
geometry. Sample 1 (2.3mm outer diameter and 1.8mm in-
ner diameter) comes from a different batch than samples 2,
3 and 4 (2.3mm outer diameter and 2mm inner diameter).
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Figure 16: Comparison of the model’s and experimental NiTi side-notched backbone’s
bending angle Θ (left) and notch positions (right) for different forces applied to the pull
wire; A. first sample: 2.3mm outer diameter, 1.8mm inner diameter backbone with equal
notches; B. second sample: 2.3mm outer diameter, 2mm inner diameter backbone with
equal notches (loading case); C. second sample (unloading case); D. 2.3mm outer diameter,
2mm inner diameter backbone with increasing-size notches; E. 2.3mm outer diameter, 2mm
inner diameter backbone with decreasing-size notches.
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Moreover, all the samples have been heat-treated together.
Since Sample 1 has a larger wall thickness than the other
samples, Sample 1 potentially presents a differentmicrostruc-
ture after heat-treatment than the rest of the samples. There-
fore, a different coefficient of friction was found for Sample
1 (0.31) compared to the rest of the samples.
In order to manufacture the notches in the samples, the wire-
EDM manufacturing technique was used. With wire-EDM,
thematerial microstructure is modified locally at the cutouts.
Samples 2, 3, and 4 have a different cutout geometry (see Ta-
ble 2). Therefore, the microstructure profile along each tube
(Sample 2, 3 and 4) is expected to be different. That is why
a different friction coefficient was found for Sample 2 (0.42)
than for Sample 3 and Sample 4 (0.2). Eq. (37) was used to
model the friction. This equation was used with an equality
to plot the results. The coefficient of static friction �s waschosen by fitting the model on the experiments. By doing
so, it appeared that the model for Sample 3 and 4 showed
results that were the closest to the experimental ones with a
friction coefficient of 0.2 for both samples.
Note that without friction modeling, the RMSE of the model
deflection angle would increase by 17.6% on average. This
observation forms a strongmotivation as towhy frictionmod-
eling is needed.
4.3. Model integration

The proposed static model can be used to design and
control steerable surgical instruments consisting of a NiTi
side-notched backbone. Such instruments are particularly
well suited for constrainedworkspace surgery, in which large
bending angles and small bending radii are required. Vocal
cord laser surgery is an example where acute bending can
be very helpful. When removing polyps or a tumor on the
vocal cords, the only view a surgeon has is from above the
vocal cords through a straight rigid endoscope [24]. How-
ever, a view from underneath the vocal cords would help the
surgeon to better identify the tumor and reduce the resec-
tion margins, which would increase the patient’s chance of
retaining some form of speech after surgery. A flexible NiTi
side-notched instrument inserted through the buccal cavity
down to underneath the vocal cords, equipped with a chip-
on-tip camera, and capable of bending up to 180◦ would pro-
vide the surgeon with the desired extra view. The instru-
ment needs to be able to bend within the dimensions of the
larynx. The NiTi side-notched instrument can be designed
for this purpose using the proposed static model by impos-
ing a minimum bending angle and maximum bending radius
computed from the patient’s anatomy. The maximum bend-
ing angle of the side-notched backbone is found by adding
the maximum bending angle of each backbone section. The
maximum bending angle of one section is found by insert-
ing (28) in (18). Hence, the maximum bending angle of the

backbone is given by,

Θmax =
n
∑

j=1

Lj
lcj
. (44)

The parameters Lj and lcj = CA + Ro, i.e. the height of
the flexible beam portion and distance between the beam
neutral axis and the extremity of the tooth portion respec-
tively, can thus be chosen to meet the minimum required
bending angle. In order for the instrument to bend within
the lumen involved in the targeted surgical procedure, a con-
dition can be expressed on the y component of the points
O0,n2,j and O0,n3,j , defined by (32) and (33). The y component
of both points needs to be smaller than the diameter of this
lumen for all loads applied to the pull wire. It is not straight-
forward to derive the geometric parameters meeting such a
condition. However, the proposed static model does allow
checking whether the bending properties are satisfied for a
certain parameter choice.
Vocal cord laser surgery is only one of the many concrete
applications in which large bending of thin steerable instru-
ments in constrained spaces is necessary. Other examples
are inspection and/or tumor removal in the maxillary sinus
cavity via the nasal cavity, endoscopic skull base surgery via
the nasal cavity, and endoscopic middle ear surgery. This
way, the developed static model can find direct application
in the design and control of NiTi side-notched tube instru-
ments used in these and other surgical procedures in which
a surgeon needs to maintain high dexterity in a constrained
space.

5. Conclusions
This study has presented a static model capable of mod-

elling large displacements of side-notched tube backbones
made out of a superelastic material, i.e. NiTi. These type of
instruments find application in constrainedworkspace surgery.
The method, based on the beam deformation linear equa-
tions, makes it possible to calculate the successive deforma-
tion of each separate section of the backbone, taking the non-
constant curvature bending of the backbone into account.
The superelastic stress-strain curve of the material was ap-
proximated by an equivalent, strain dependent,linear elas-
tic modulus. Such a technique makes it possible to model
the NiTi in its elastic and superelastic regions. The study
also adopts the capstan equation as a method to incorpo-
rate friction between the pull wire and the NiTi backbone.
The static model can replicate the bending angle of the NiTi
side-notched backbone with an RMSE as low as 3.1% and
the backbone notch positions with an RMSE as low as 2.5%.
The main concepts presented in this paper, i.e. the use of an
equivalent, strain dependent, linear elastic modulus to repre-
sent the superelastic deformation of the NiTi, the calculation
of the successive deformation of each separate section of the
backbone and the friction model based on the Capstan equa-
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tion can also be used in other NiTi notched tube designs.
Future work will focus on implementing the developed static
model in order to control such an NiTi side-notched tube
backbone. Applying this model in control schemes will al-
low to determine if the proposed static model is accurate
enough to control this kind of backbone. Insertion of devices
like a camera and surgical tools inside the backbone may al-
ter the performance of the developed static model. That is
why, in the future, dedicated experiments will need to be
performed in order to quantify the effect of these inserted
devices, and adapt the model if needed.

A. Justification of applicability of the seven
hypotheses
This appendix provides some arguments to support the

validity of the hypotheses that were made on the large dis-
placement model for the superelastic material side-notched
backbone. These hypotheses were listed in Section 2.
A.1. The superelasticity of the material can be

approximated by an equivalent, strain
dependent, linear elastic modulus

It was experimentally demonstrated in Section 3.3 that
using such an equivalent, strain dependent, linear elasticmod-
ulus to approximate the NiTi stress-strain curve leads to an
RMSE as low as 5.4◦ (3.1%) for the bending angle and an
RMSE as low as 0.33mm (2.5%) for the position of each
backbone notch across its entire bending range (0 to 180◦).
Therefore, it is reasonable to validate the use of an equiva-
lent, strain dependent, linear elastic modulus to approximate
the NiTi mechanical properties.
A.2. The backbone’s teeth do not deform

In order to justify the applicability of this hypothesis, the
second moment of area of the beam portion (Eq. (15)) was
compared to that of the tooth portion.
Second moment of area of a tooth portion
The geometry of the cross section in the yz-plane of a tooth is
an annulus (Fig. 4a). Its second moment of area with respect
to its center is given by:

Itootℎ =
�
4
(R4o − R

4
i ). (45)

This expression can also be formulated with respect to the
centroid of the flexible beam CA (Fig. 7b):

ICtootℎ =
�
4
(R4o − R

4
i ) + �(R

2
o − R

2
i )C

2
A (46)

with,

CA =
AoCo − AiCi
Ao − Ai

. (47)

Numerical example beam versus tooth second moment
of area

For the first tube used in Section 3, i.e. a 2.3mm outer
diameter and 1.8mm inner diameter tube, the calculated sec-
ond moment of area of the tooth (2.4mm4) represents more
than eight times that of the beam (0.29mm4) for a cutting
depth of 2mm. For the second tube used in Section 3, i.e. a
2.3mm outer diameter and 2mm inner diameter tube, the sec-
ond moment of area of the tooth (1.6mm4) represents more
than seven times that of the beam (0.21mm4) for the same
cutting depth as for the first example. The tooth portion will
thus show substantial resistance to bending compared to the
beam portion. Therefore, it is reasonable to assume that the
tooth portion of the NiTi side-notched backbone will not de-
form under (un)loading from the pull wire.
A.3. The deformations are strictly planar

The bending deformation of the NiTi side-notched back-
bone was supposed to be strictly planar in the x-y plan (Fig.
4), since the wire is supposed to be placed at the backbone
extremity in that same plan, and the notches are supposed to
be precisely cut in the x-y plan. No significant lateral defor-
mations were noted during experimentation.
A.4. The effect of shear stress on the deformation

is neglected
This hypothesis falls within the hypotheses of the Eu-

ler–Bernoulli beam theory. This theory was used to predict
the deflection of the flexible beam portions of the NiTi back-
bone. The Euler-Bernoulli beam theory for large displace-
ment has shown to accurately predict the bending of various
beams, even though it neglects shear stress [25, 26].
A.5. The buckling caused by the axial load on the

beam portions can be neglected
The Euler’s critical load at which a slender column will

bend or buckle is given by the following formula:

Pcr =
�2EI
(KL)2

,

where, Pcr is the Euler’s critical load,E is the Young’s mod-
ulus of the column material, I is the minimum area mo-
ment of inertia of the cross section of the column, L is un-
supported length of column and K is the column’s effective
length factor. In the case of the studied backbone, Pcr ≃
1.47×104N, which is significantly higher than the loads ap-
plied to the backbone in this study. Therefore, the axial loads
will not cause the beam sections to bend or buckle. For this
calculation, K = 2 was chosen in accordance with the rec-
ommended value in [27].
A.6. The normal forces applied by the cable to the

backbone have a negligible effect on the
bending of the beam sections

It was calculated that the deflection of the beam portion
caused by the momentsMj was more than ten times higher
than the deflection caused by the normal forces Nj applied
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by the cable to the backbone. As a quick check, the small
deflections of a cantilever beam subjected to an end load F
and an end momentM , i.e. �F and �M , respectively, can be
calculated:

�F =
FL3

3EI

�M = ML2

3EI

From the model, values of the normal forcesNj and bendingmomentMj were calculated and �F and �M were compared.
Here is an example: N = 0.38NandM = 0.0058N/m, gives
�F = 2.4 × 10−5mm and �M = 4.8 × 10−4mm. Therefore,
it is considered that the normal forces applied by the cable
onto the backbone have a negligible effect on the bending of
the beam sections.
A.7. The friction present between the pull wire

and the backbone are modeled using the
Capstan equation

Section 4 demonstrates the importance of friction mod-
eling. The results in accuracy of the quasi-analytical model
that were presented in Section 3, i.e. an RMSE as low as
3.1% for the backbone bending angle and an RMSE as low
as 2.5% for the backbone notch positions, allow to validate
the use of the Capstan equation for friction modeling.
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