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Highlights 

✓ A general framework of the slack-based surrogate robustness measures is proposed 

✓ The best surrogate measures are found for two kinds of uncertain environments 

✓ The improvement is 13.79% under the environment of stochastic activity durations 

✓ The impact of parameters on the performance of the robustness measure is analyzed 

✓ The time buffering strategies are different under the two uncertain environments 
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A computational experiment to explore better robustness measures 

for project scheduling under two types of uncertain environments 

Abstract This paper addresses the proactive resource-constrained project scheduling problem, 

aiming to explore better surrogate robustness measures for project managers that want to generate 

robust baseline schedules under uncertain environments. The contribution of this paper is threefold. 

First, we propose a general framework of slack-based surrogate robustness measures and introduce 

three parameters to distinguish different alternative calculations of the measure. A computational 

experiment based on reactive simulation is constructed where the performance of the surrogate 

measures is evaluated by the reactive cost and two types of uncertain environments, i.e. stochastic 

resource availabilities and stochastic activity durations, are taken into account. Second, we analyze 

the impact of the three parameters as well as the two uncertain environments on the surrogate 

robustness measures and find the best measures for different situations. The proposed surrogate 

robustness measures are shown to be effective. Compared with benchmark measures, the 

improvements are respectively 2.67% and 13.79% under the two uncertain environments. Third, we 

investigate the difference of buffering strategies between the two uncertain environments. For the 

environment of stochastic resource availabilities, it turns out to be better to have a uniform 

distribution of time buffers throughout the schedule, while the reverse is true for the environment 

of stochastic activity durations.  

 

Keywords   Proactive project scheduling; Solution robustness; Surrogate robustness measure; 

Stochastic resource availabilities; Stochastic activity durations 

 

1. Introduction 

It is a well-known fact that project activities are subject to considerable uncertainties, which may 

lead to numerous schedule disruptions during project execution. Accordingly, proactive project 

scheduling has been the subject of many research efforts, aiming to generate robust baseline 

schedules that are protected against disruptions that may occur during project execution (Leus, 

2003). Proactive scheduling plays an important role in robust project scheduling and has gained 
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much attention during the last two decades (Herroelen and Leus, 2004a; Herroelen and Leus, 2005; 

Van de Vonder et al., 2007b; Demeulemeester and Herroelen, 2011). For the proactive scheduling 

literature in production scheduling under uncertain environments, we refer the interested readers to 

Aytug et al. (2005), Sabuncuoglu and Goren (2009), Liu et al. (2017) and Cui et al. (2018). 

    In a scheduling environment, many kinds of schedule disruptions may occur (Zhu et al., 2005), 

such as new activity disruptions, precedence disruptions, activity duration disruptions, activity 

resource requirement disruptions, resource availability disruptions, and milestone disruptions. 

Among them, two types of disruptions, i.e., resource availability disruptions and activity duration 

disruptions, are typically considered in proactive project scheduling. Regarding resource availability 

disruptions, resources randomly break down, which may result in the infeasibility of the baseline 

schedule during project execution. Lambrechts et al. (2008a) define this uncertain environment as 

stochastic resource availabilities and introduce two parameters, i.e., 𝑀𝑇𝑇𝐹𝑘 (mean time to failure 

of resource type 𝑘 ) and 𝑀𝑇𝑇𝑅𝑘  (mean time to repair of resource type 𝑘 ), to model resource 

breakdowns. As for activity duration disruptions, Van de Vonder et al. (2008) define the 

environment as stochastic activity durations with a right-skewed beta-distribution and distinguish 

between low, medium and high duration variability.  

To deal with the above disruptions, two types of robustness are considered in proactive project 

scheduling, i.e., quality robustness and solution robustness (Van de Vonder et al., 2005). Quality 

robustness is defined as the insensitivity of the project makespan to schedule disruptions while 

solution robustness is defined as the insensitivity of planned activity starting times to schedule 

disruptions. With regard to quality robustness, we refer to Hazır et al. (2010, 2011) who introduce 

and solve the robust multi-mode discrete time/cost trade-off problem with exact and heuristic 

algorithms, and we refer the interested readers to Al-Fawzan and Haouari (2005), Van de Vonder 

et al. (2006) and Chtourou and Haouari (2008) for the trade-off problem between quality robustness 

and solution robustness. As for solution robustness, many mathematical models and heuristics are 

developed to solve the proactive scheduling problem under two types of uncertain environments, 

i.e., stochastic resource availabilities and stochastic activity durations, which will be summarized 

next. 
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    About activity duration disruptions, for example, Herroelen and Leus (2004b) propose exact 

methods to construct solution robust baseline schedules for the case in which only one duration 

disruption occurs. Leus and Herroelen (2004) develop a branch-and-bound algorithm to solve a 

resource allocation model that protects a given baseline schedule against activity duration variability. 

Van de Vonder et al. (2006) develop a heuristic algorithm named RFDFF (resource flow-dependent 

float factor), while Van de Vonder et al. (2008) develop new heuristic procedures such as the starting 

time criticality (STC) heuristic to solve the proactive RCPSP. In addition, Schatteman et al. (2008) 

develop an integrated methodology for planning construction projects under uncertainty, which 

relies on a computer-supported risk management system for the identification, analysis and 

quantification of the major risks. Lamas and Demeulemeester (2016) define a new robustness 

measure that is completely independent of the applied reactive policy and then introduce a branch-

and-cut algorithm to solve a sample average approximation of the original problem. When it comes 

to resource availability disruptions, a direct effective way to improve schedule robustness is to insert 

resource buffers throughout the baseline schedule (Lambrechts et al., 2008a). However, it is also 

possible to employ time buffers, that are generally used for protection against activity duration 

disruptions, to deal with resource availability disruptions (Lambrechts et al., 2008b; Lambrechts et 

al., 2011). 

    Typically, solution robustness is measured by the weighted sum of the expected absolute 

deviations between the start times in the realized schedule and those in the baseline schedule. 

Because the analytic evaluation is very cumbersome, the scheduling problem for robustness 

maximization with the above measure is generally solved by simulation, which is computationally 

demanding. Even though this approach is feasible for small project networks, the computational 

demands quickly increase with project size to an unpractical level, which is why surrogate measures 

(such as slack-based functions) are necessary. The slack-based surrogate robustness measure is first 

proposed by Al-Fawzan and Haouari (2005) in project scheduling who define the free slack of one 

activity as the total amount of time this activity can be delayed without causing any precedence or 

resource constraint violations and measure schedule robustness as the sum of free slacks over all 

activities. Kobylański and Kuchta (2007) discuss a limitation of this surrogate measure and propose 

to use the minimum of free slacks or the minimum of free slack/duration ratios. However, Hazır et 
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al. (2010) point out that focusing on the minimum values has the weakness that two schedules with 

the same minimum values may have different slack patterns and the measures proposed by 

Kobylański and Kuchta (2007) fail to differentiate between these schedules. On the other hand, 

Chtourou and Haouari (2008) formulate twelve predictive indicators for the robustness 

maximization purpose, and Lambrechts et al. (2008b) introduce a free slack utility function for each 

activity with diminishing returns per extra unit of its free slack, which is partly adopted by Hazır et 

al. (2010) and Lambrechts et al. (2011). To sum up, the above proposed slack-based robustness 

measures are generally made up of two parts, i.e., the slack utility function of each activity and the 

instability coefficient for weighting the utilities of different activities. Considering the first part, one 

important difference among the existing measures is whether the marginal utility of free slacks is 

set to be decreasing. As for the second part, the important difference is whether to take into account 

the impact of a delay of one activity on its direct and indirect successors when calculating the 

instability coefficient. 

The performance of the surrogate robustness measures can be evaluated by the simulated reactive 

cost, which is incurred when the planned starting times of activities have to be adjusted to cope with 

unexpected disruptions. The lower the reactive cost that is incurred, the better the performance of 

the surrogate robustness measure. Reactive scheduling aims at finding the best policy to react to 

schedule disruptions when they render the baseline schedule infeasible, whose typical objective is 

to generate a feasible reactive schedule that deviates as little as possible from the original baseline 

schedule, i.e., with the lowest possible reactive cost. With regard to the reactive scheduling that 

copes with resource availability disruptions, we cite Lambrechts et al. (2008a) and Chakrabortty et 

al. (2016). With regard to the disruptions related to activity durations, we refer to Van de Vonder et 

al. (2007a), Deblaere et al. (2007) and Hu et al. (2017). Particularly, we refer the interested readers 

to Deblaere et al. (2011) who consider the two kinds of disruptions at the same time. 

To summarize, many surrogate robustness measures have been proposed, which can measure 

solution robustness efficiently. However, the effectiveness of these measures is still an open 

question. Furthermore, we still do not know which kind of robustness measure performs best and 

what is the most effective surrogate robustness measure for proactive scheduling under uncertain 

environments. To bridge this gap, in this paper, we focus on solution robustness and propose a 
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general framework of slack-based surrogate robustness measures, which includes two parts, i.e., the 

slack utility function of each activity and the instability coefficient for weighting the utilities of 

different activities. In this framework, we introduce three parameters to distinguish different 

alternative calculations of the surrogate robustness measure. More specifically, the first parameter 

determines whether the marginal slack utility is decreasing, the second one measures the average 

impact of a delay of one activity on its direct and indirect successors, and the third parameter reflects 

the importance of protecting the starting time of the dummy end activity. Using computational 

experiments based on reactive simulations, the performance of the proposed surrogate robustness 

measures is evaluated in terms of the reactive cost. In this paper, two types of uncertain 

environments that are typically investigated in proactive project scheduling, i.e., stochastic resource 

availabilities and stochastic activity durations, are taken into account. The aim of this study is to 

analyze the impact of the three parameters as well as the two uncertain environments on the 

surrogate robustness measures and to determine the best measures for different situations. Then the 

proposed surrogate robustness measures can be used by project managers to generate robust baseline 

schedules under uncertain environments. Through a comparison, we can also investigate the 

difference between the characteristics of the two uncertain environments and find the best buffering 

strategies for each of them. We believe that the proposed problem, which to the best of our 

knowledge has not thus far been investigated, is of great significance because it is a fundamental 

problem in proactive scheduling and is worthwhile to be further investigated. More details about 

the differences and the similarities between this paper and the literature on proactive project 

scheduling can be found in Table 1. 

The rest of this paper is organized as follows. In Section 2, we define the studied robust 

scheduling problem, propose different calculations of surrogate robustness measures and explain 

how to evaluate the performance of the measures. Section 3 is devoted to describing the 

computational experiment, in which two types of uncertain environments are considered, i.e., 

stochastic resource availabilities and stochastic activity durations. In Section 4, we analyze the 

experimental results, from which we try to explore the best robustness measures to cope with the 

two different environments. Section 5 is devoted to a discussion about the uncertain environment in 
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which both resource availability disruptions and activity duration disruptions occur. Finally, general 

conclusions and directions for further research are presented in Section 6. 

Table 1 Differences and similarities between this paper and existing proactive works 

References 

Reference 

type 

Objective 

Resource 

availability 

variability 

Activity 

duration 

variability 

Slack-based 

surrogate robustness 

measure 

The three 

parameters in the 

general framework 

Algorithm 

Leus (2003) PhD thesis Robustness × √ × × Multiple algorithms 

Herroelen and Leus (2004a) Review  / / / / / / 

Herroelen and Leus (2004b) Research Robustness × √ × × EWD1 

Al-Fawzan and Haouari (2005) Research Trade-off × √ √ × Tabu search 

Herroelen and Leus (2005) Review  / / / / / / 

Van de Vonder et al. (2005) Research Trade-off × √ × × Multiple algorithms 

Van de Vonder et al. (2006) Research Trade-off × √ × × RFDFF 

Kobylański and Kuchta (2007) Note Robustness × √ √ × ILOG OPL 

Van de Vonder et al. (2007b) Review  / / / / / / 

Chtourou and Haouari (2008) Research Trade-off × √ √ × Priority rule based 

Lambrechts et al. (2008a) Research Robustness √ × × × Priority rule based 

Lambrechts et al. (2008b) Research Robustness √ × √ × Tabu search 

Schatteman et al. (2008) Research Trade-off × √ × × Integrated method 

Van de Vonder et al. (2008) Research Robustness × √ × × Multiple algorithms 

Hazır et al. (2010) Research Robustness × √ √ × Two-stage algorithm 

Demeulemeester and Herroelen ( 2011) Book / / / / / / 

Hazır et al. (2011) Research Time/cost × × × × Multiple algorithms 

Lamas and Demeulemeester (2016) Research Robustness × √ × × Branch-and-cut 

Lambrechts et al. (2011) Research Robustness √ × √ × Multiple algorithms 

Ma et al. (2019) Research Robustness × √ √ × Genetic algorithm 

This paper Research Robustness √ √ √ √ Tabu search 

2. Problem definition 

2.1 Proactive scheduling model 

Consider a project represented in activity-on-the-node (AoN) format by means of a digraph 𝐺 =

(𝑁, 𝐴), where the set of nodes 𝑁 represents the activities and the set of arcs 𝐴 the finish-start, zero-

lag precedence relations. The activities are numbered from the dummy start activity 1 to the dummy 

end activity 𝑛, and each activity 𝑖 has a duration 𝑑𝑖 and requires 𝑟𝑖𝑘 units of resource type 𝑘 during 

each period in which it is processed. The project deadline is denoted as 𝐷. There are 𝐾 different 

resource types with an availability in each period [𝑡, 𝑡 + 1), (𝑡 = 0,1, ⋯ , 𝐷) , of 𝑅𝑘  units, 𝑘 =

1,2, ⋯ , 𝐾. Parameter 𝑤𝑖 denotes the activity weight of activity 𝑖.  

For such a project, we aim to generate a robust baseline schedule by solving the presented 

proactive scheduling model below. The objective function is solution robustness maximization 
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which is measured by formula (1) where 𝑠𝑖
𝐵 represents the planned starting time of activity 𝑖 and 

𝐸(𝑠𝑖
𝑅) represents the expected starting time of activity 𝑖  during project execution. To sum up, 

solution robustness 𝑅𝑜𝑏𝑢 is measured by the weighted sum of the expected absolute deviations 

between the start times in the realized schedule and those in the baseline schedule. The reason why 

an expected value is calculated here for 𝑠𝑖
𝑅  is that it is an uncertain environment during project 

execution where schedule disruptions may occur on resource availabilities 𝑅𝑘  or on activity 

durations 𝑑𝑖, which are respectively corresponding to the two types of uncertain environments, i.e., 

stochastic resource availabilities and stochastic activity durations. In this proactive scheduling 

model, 𝑑𝑖  is the expected duration of activity 𝑖, while 𝑅𝑘  represents the resource availability of 

resource type 𝑘 without disruptions. 

Maximize  𝑅𝑜𝑏𝑢 = ∑ 𝑤𝑖|𝐸(𝑠𝑖
𝑅) − 𝑠𝑖

𝐵|𝑖∈𝑁  (1) 

subject to  𝑠𝑖
𝐵 + 𝑑𝑖 ≤ 𝑠𝑗

𝐵    ∀(𝑖, 𝑗) ∈ 𝐴 (2) 

                 ∑ 𝑟𝑖𝑘 ≤ 𝑅𝑘𝑖∈𝑆𝑡
    ∀𝑡, ∀𝑘 (3) 

                 𝑠𝑛
𝐵 ≤ 𝐷 (4) 

                 𝑠𝑖
𝐵 is a non-negative integer (5) 

With regard to the constraints, formula (2) describes the precedence constraints, while formula 

(4) represents the project deadline constraint. As 𝑆𝑡 is defined to represent the set of activities that 

are in progress during time interval [𝑡, 𝑡 + 1) , formula (3) enforces the renewable resource 

constraints, which imply that there does not exist a time period 𝑡 and a resource type 𝑘 for which 

the cumulative resource requirements of the active activities exceed the per-period availability of 

the considered resource type. Besides, the range of values for 𝑠𝑖
𝐵  is given in constraint (5).  

2.2 Surrogate robustness measures 

As mentioned before, project execution is subject to resource availability disruptions or activity 

duration disruptions, which results in a cumbersome analytic evaluation of formula (1). For this 

reason, 𝐸(𝑠𝑖
𝑅) is typically calculated through simulation and it will take much time to calculate the 

objective function value for each feasible solution. Therefore, it is necessary to use surrogate 

measures to replace formula (1) in order to improve the efficiency of the calculation. This is just 

what many researchers did in the literature, such as Al-Fawzan and Haouari (2005), Kobylański and 
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Kuchta (2007), Chtourou and Haouari (2008) and Lambrechts et al. (2008b).  

In this paper, we propose a general framework of the slack-based surrogate robustness measures 

and intend to use surrogate robustness measures to replace formula (1) in the proactive scheduling 

model. We formulate the general framework with two parts, i.e., the slack utility function of each 

activity and the instability coefficient for weighting the utilities of different activities, and introduce 

three parameters to generate different alternative calculations of the surrogate robustness measure. 

Concerning the first part of the general framework of surrogate robustness measures, we adopt an 

exponential function ∑ exp (𝜆 ∙ 𝑗)
𝐹𝑆𝑖
𝑗=1  as the slack utility function in which a non-positive parameter 

𝜆 is introduced and 𝐹𝑆𝑖 denotes the amount of free slack of activity 𝑖. It can be observed that the 

utility function for each activity is with diminishing returns per extra unit of free slack that is 

allocated to that activity, i.e., the utility of the latter slack unit of one activity is 𝑒λ(𝑒λ ≤ 1) times 

that of the former one. For example, if λ is set to be negative one and activity 3 has a free slack of 

two units, i.e., λ = −1 and 𝐹𝑆3 = 2, then the utility of the first slack unit equals 𝑒−1 = 0.37 while 

the utility of the second one is only 𝑒−2 = 0.14. This indicates that the first slack is more beneficial 

to schedule robustness, which is just corresponding to the practice in project management. 

Simply maximizing the sum of slack utilities as a surrogate robustness measure would assume 

the contribution of free slack values to schedule robustness to be equivalent for each activity 

whereas our real objective function consists of a weighted sum. Let 𝑊𝑖  denote the instability 

coefficient for weighting the utility of activity 𝑖, then schedule robustness 𝑅𝑜𝑏𝑢 can be formulated 

as follows to replace formula (1): 

𝑅𝑜𝑏𝑢 = ∑ 𝑊𝑖 ∑ exp (𝜆 ∙ 𝑗)
𝐹𝑆𝑖
𝑗=1

𝑛
𝑖=1                                                                                                    (6) 

    With respect to the calculation of the instability coefficients 𝑊𝑖, we employ 𝑆𝑖
∗ to denote the set 

of direct and indirect successors of activity 𝑖 and use a parameter 𝜑𝑖(0 ≤ 𝜑𝑖 ≤ 1) to represent the 

average percentage of activities in 𝑆𝑖
∗ that are expected to be postponed due to the delay of activity 

𝑖. In other words, the parameter 𝜑𝑖 represents the average impact of the delay of activity 𝑖 on its 

direct and indirect successors. Taking this average impact into account, one way to calculate 𝑊𝑖 is 

as follows: 

𝑊𝑖 = 𝑤𝑖 + 𝜑𝑖 ∑ 𝑤𝑗𝑗∈𝑆𝑖
∗ ,     0 ≤ 𝜑𝑖 ≤ 1.                                                                                          (7) 
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As the free slacks after the activities serve to protect the starting times of their successors, it seems 

more reasonable to exclude 𝑤𝑖  in the calculation of 𝑊𝑖 . Besides, it seems more reasonable to 

increase the relative instability coefficients of the predecessors of the dummy end activity so that 

enough project buffers can be added to protect the dummy end activity. Based on the above analysis, 

we now remove 𝑤𝑖 from formula (7) and set 𝜑𝑖 as 1 for each direct predecessor of the dummy end 

activity. This indicates another way of calculating 𝑊𝑖:  

𝑊𝑖 = 𝜑𝑖 ∑ 𝑤𝑗𝑗∈𝑆𝑖
∗ ,   0 < 𝜑𝑖 ≤ 1 for (𝑖, 𝑛) ∉ 𝐴; 𝜑𝑖 = 1 for (𝑖, 𝑛) ∈ 𝐴                                          (8) 

Table 2   Surrogate robustness measures 

𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑊𝑖 

𝜑𝑖   𝜆  

level(𝜑𝑖) value(𝜑𝑖) 
q  level(𝜆) value(𝜆)  

1 

𝑊𝑖 = 𝑤𝑖 + 𝜑𝑖 ∑ 𝑤𝑗𝑗∈𝑆𝑖
∗ , 

0 ≤ 𝜑𝑖 ≤ 1 

1 0  1 -2  

2 [0.1,0.3]  2 -1  

3 [0.4,0.6]  3 -1/2  

4 [0.7,0.9]  4 -1/4  

5 1  5 0  

2 

𝑊𝑖 = 𝜑𝑖 ∑ 𝑤𝑗𝑗∈𝑆𝑖
∗ , 

0 < 𝜑𝑖 ≤ 1 for (𝑖, 𝑛) ∉ 𝐴 

𝜑𝑖 = 1 for (𝑖, 𝑛) ∈ 𝐴 

/ /  1 -2  

2 [0.1,0.3]  2 -1  

3 [0.4,0.6]  3 -1/2  

4 

5 

[0.7,0.9] 

1 

 4 -1/4  

5 0  

q  For levels 2, 3 and 4, 𝜑𝑖 will be randomly generated from the intervals. 

Because this is a new way of calculating 𝑊𝑖, we introduce a parameter 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 to distinguish it 

from the original calculation. Accordingly, there are two levels of parameter 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 in total. With 

regard to parameters 𝜆 and 𝜑𝑖, we generate each of them in five levels. Note that the combination 

of the three parameters is just one specific robustness measure, and there are 5*5+4*5=45 different 

calculations of the robustness measure, just as Table 2 shows. For the sake of description, we choose 

to use the format RM𝑎𝑏𝑐 to represent the robustness measure RM with 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑎, level(𝜑𝑖) = 𝑏 

and level(𝜆) = c. It can be observed that the measure RM152 is just the one proposed by Lambrechts 

et al. (2008b), which can serve as a benchmark to test the effectiveness of the robustness measures.  
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2.3 Evaluation of the surrogate robustness measures 

The performance of the surrogate robustness measures can be evaluated by the reactive cost, 

which is obtained through solving the reactive scheduling model. Since there are two kinds of 

uncertain environments, i.e., stochastic resource availabilities and stochastic activity durations, two 

reactive scheduling models are presented to calculate the reactive cost under each uncertain 

environment, just as Table 3 shows. Note that we consider resource availability disruptions and 

activity duration disruptions separately, which means that in each environment only one kind of 

disruptions is considered. For the sake of description, in the following, we use E1 to represent the 

environment of stochastic resource availabilities and E2 to denote the environment of stochastic 

activity durations. The uncertain environment in which both resource availability disruptions and 

activity duration disruptions occur will be discussed in Section 5. 

Table 3   The reactive scheduling models under two types of uncertain environments 

E1 (stochastic resource availabilities) E2 (stochastic activity durations) 

Minimize  𝐿𝑜𝑠𝑠 = ∑ 𝑤𝑖(𝑠𝑖
𝑅 − 𝑠𝑖

𝐵)𝑖∈𝑁  (9)     Minimize  𝐿𝑜𝑠𝑠 = ∑ 𝑤𝑖(𝑠𝑖
𝑅 − 𝑠𝑖

𝐵)𝑖∈𝑁  (14)     

subject to   𝑠𝑖
𝑅 + 𝑑𝑖 ≤ 𝑠𝑗

𝑅     ∀(𝑖, 𝑗) ∈ 𝐴 (10) subject to   𝑠𝑖
𝑅 + 𝑑𝑖

′ ≤ 𝑠𝑗
𝑅     ∀(𝑖, 𝑗) ∈ 𝐴 (15) 

 ∑ 𝑟𝑖𝑘 ≤ 𝑅𝑘𝑡
′

𝑖∈𝑆𝑡
    ∀𝑡, ∀𝑘 (11)  ∑ 𝑟𝑖𝑘 ≤ 𝑅𝑘𝑖∈𝑆𝑡

    ∀𝑡, ∀𝑘 (16) 

 𝑠𝑖
𝐵 ≤ 𝑠𝑖

𝑅   ∀𝑖 (12)  𝑠𝑖
𝐵 ≤ 𝑠𝑖

𝑅   ∀𝑖 (17) 

 𝑠𝑖
𝑅 is a non-negative integer  (13)  𝑠𝑖

𝑅 is a non-negative integer  (18) 

In the reactive scheduling models, the minimized reactive cost 𝐿𝑜𝑠𝑠, shown in formulas (9) and 

(14), is used to evaluate the performance of the robustness measures. The lower the reactive cost 

that is incurred, the better the surrogate robustness measure. In reactive scheduling, referring to 

Lambrechts et al. (2008b) and Van de Vonder et al. (2008), we assume that an activity can never 

start before its baseline starting time, just as constraints (12) and (17) describe. This means that we 

choose railroad scheduling rather than the roadrunner mentality for reactive simulations. The reason 

is that implementing the roadrunner mentality during project execution implies that the inserted time 

buffers are disregarded, which is likely to result in a serious deviation from the baseline schedule. 

In contrast, railroad scheduling is more beneficial to reduce the reactive costs since it can make 

good use of inserted buffers to cope with disruptions. The range of values for 𝑠𝑖
𝑅 is given in 

constraints (13) and (18). We can find that the two reactive scheduling models are different in the 
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precedence and resource constraints, which are related to the two types of schedule disruptions. 

Under the environment E1, 𝑅𝑘𝑡
′  represents the stochastic resource availability of resource type 𝑘 at 

time 𝑡 and formula (11) describes the resource constraints during project execution. On the other 

hand, under the environment E2, 𝑑𝑖
′ denotes the stochastic activity duration of activity 𝑖 and formula 

(15) presents the precedence constraints during project execution. It is noteworthy that in reactive 

scheduling models, 𝑅𝑘𝑡
′  and 𝑑𝑖

′ are stochastic variables, but for each simulation the values of them 

are generated and therefore known in advance.  

3. Experimental design 

    The aims of the computational experiment are to investigate the performance of different 

surrogate robustness measures and to explore the best surrogate measure for uncertain environments 

of stochastic resource availabilities and stochastic activity durations. In this section, more details 

about the computational experiment, such as the tested instance sets, the data generation, the 

proactive scheduling heuristic and the reactive policy, will be presented. 

Concerning the instance sets, we use the 480 30-activity RCPSP instances of the well-known 

PSPLIB (Kolisch and Sprecher, 1996), which includes the information of the project network, the 

activity durations, the activity resource requirements and the resource availabilities. With regard to 

activity weight 𝑤𝑖  for all non-dummy activities, we refer to Van de Vonder et al. (2008) and 

generate them from a discrete, triangularly shaped distribution between 1 and 10 with 𝑃(𝑤𝑖 = 𝑥) =

0.21 − 0.02𝑥. This setting corresponds to what is expected in real-life projects, namely that most 

activities will have a low activity weight whereas only a minority are heavily penalized for being 

started later than planned. As it is really important to meet the project due date, the activity weight 

of the dummy end activity is set to be 10 times the average of the activity weight distribution 

function, which is 3.85 for 𝑃(𝑤𝑖 = 𝑥). In our experiment, the project due date 𝐷 of each instance is 

set at 𝐶max
RCPSP(1 + 𝛼) where 𝐶max

RCPSP  represents the optimal makespan that is solved by CPLEX 

under a deterministic environment, and the due date factor 𝛼 is a parameter that is chosen by the 

project  manager and constitutes the trade-off between project stability and project duration. In this 

paper, we have three levels of 𝛼, i.e., 10%, 20% and 30%. 

With regard to the schedule disruptions, we generate stochastic resource availabilities and 
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stochastic activity durations as suggested in existing studies (Lambrechts et al., 2008a; Van de 

Vonder et al., 2008). Specifically, with respect to stochastic resource availabilities, two parameters, 

i.e., 𝑀𝑇𝑇𝑅𝑘 and 𝑀𝑇𝑇𝐹𝑘, are used to model resource breakdowns. The 𝑀𝑇𝑇𝑅𝑘 values are drawn 

from a uniform discrete distribution between 1 and 5, while the values of 𝑀𝑇𝑇𝐹𝑘 are drawn from a 

uniform discrete distribution between 50% and 150% of the optimal makespan 𝐶max
RCPSP of the project. 

In the simulation, with five levels of 𝑀𝑇𝑇𝑅𝑘 and thirty levels of 𝑀𝑇𝑇𝐹𝑘, we draw different resource 

availabilities from the availability probability function and simulate 5*30=150 times for each 

problem. As for stochastic activity durations, we generate activity durations from a right-skewed 

beta-distribution with parameters 2 and 5. Parameter 𝜎 is introduced to represent activity duration 

variability and we distinguish between low, medium and high duration variability. More details of 

the variability setting are shown in Table 4. Similarly, for each problem, 150 executions (50 ones 

for each duration variability) are simulated by drawing different activity durations from the 

described distribution functions. 

Table 4   Variability settings of stochastic activity durations 

 Level Minimum duration Mean duration Maximum duration 

Variability 𝜎 

low 0.75𝐸(𝑑𝑖) 𝐸(𝑑𝑖) 1.625𝐸(𝑑𝑖) 

medium 0.5𝐸(𝑑𝑖) 𝐸(𝑑𝑖) 2.25𝐸(𝑑𝑖) 

high 0.25𝐸(𝑑𝑖) 𝐸(𝑑𝑖) 2.875𝐸(𝑑𝑖) 

With respect to the proactive scheduling, we use the surrogate robustness measure proposed in 

Section 2.2 as the objective function for maximization. This proactive scheduling problem has been 

proven to be NP-hard in the strong sense (Ma et al., 2019), which makes the achievement of optimal 

solutions a computationally difficult proposition, especially for large projects. For this reason, we 

apply a heuristic algorithm, the tabu search algorithm proposed by Lambrechts et al. (2008b), to 

solve the problem to generate a robust schedule. In this algorithm, a solution is represented by means 

of a priority activity list coupled with a buffer list. Accordingly, two types of neighborhoods, i.e., 

an activity list neighborhood and a buffer list neighborhood, are defined. As for the algorithm 

structure, we first consider 𝑛I iterations of activity list move (type I), then 𝑛II iterations of buffer 

list move (type II). When the set of 𝑛I + 𝑛II iterations is finished, we start again with an iteration of 

type I. In the process of iterative search, two types of tabu lists are introduced to respectively store 
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two types of moves that are forbidden for a certain number 𝑁𝑢𝑚 of iterations. The algorithm is 

terminated after having been executed for a preset time period 𝑡max. In this paper, we keep all the 

parameter settings unchanged, i.e., 𝑛I = 𝑛II = 1  and 𝑁𝑢𝑚 = 32 , but increase 𝑡max  from 10 

seconds to 15 seconds to obtain a more robust solution. 

    With respect to the reactive scheduling, for the environment of stochastic resource availabilities, 

we apply the tabu search based improvement heuristic on the scheduled order priority list. This 

procedure is proposed by Lambrechts et al. (2008a) who try to improve the starting solution by 

iteratively executing the best precedence feasible adjacent interchange of two activities in the 

priority list until a maximum number of iterations 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 is reached. The difference is that we 

set 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 as 1000 instead of 50 in order to generate a better reactive schedule. As for the 

reactive scheduling under the environment of stochastic activity durations, we refer to Van de 

Vonder et al. (2008) and construct the reactive schedule by applying a parallel schedule generation 

scheme to a predefined activity list based on the actual activity durations. The predefined activity 

list is deduced from the baseline schedule by ordering the activities in increasing order of their 

starting time (tiebreakers are the highest activity weight and the lowest activity number). Similarly 

to the reactive policy under stochastic resource availabilities, we further apply a tabu search based 

improvement heuristic on the predefined activity list and set 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 to be 1000 as the stopping 

criterion. 

In our experiment, the above proactive and reactive algorithms are programmed in the C++ 

language, implemented in Microsoft Visual Studio 2013 and executed on a DELL OptiPlex 3040MT 

with 3.20 GHz clock-pulse and 8G RAM. 

4. Experimental results 

In this section, we present the obtained experimental results, from which we not only obtain the 

best robustness measures for the two uncertain environments, but also investigate the impact of 

parameters on the performance of the surrogate robustness measures. 

4.1 The performance of the robustness measures under the two uncertain environments 

In order to detect significant differences between the performance of the robustness measures, 

we first order the robustness measures in the non-decreasing order of their average reactive cost 

𝐿𝑜𝑠𝑠, and then, perform for each measure and the next best one a pairwise comparison with the 



14 

 

Table 5   Performance of the robustness measures under two uncertain environments 

Environment Order Measure 𝐿𝑜𝑠𝑠 Order Measure q 𝐿𝑜𝑠𝑠 Order Measure 𝐿𝑜𝑠𝑠 

E1 

1 RM241 157.32  16 RM242 161.62  31 RM244 165.53  

2 RM131 158.00  17 RM152  161.63  32 RM234 165.84  

3 RM251 158.63  18 RM253 161.63  33 RM223 166.33  

4 RM121 158.71  19 RM233 161.72  34 RM113   167.92*  

5 RM232 158.97  20 RM143 162.43  35 RM114   170.73*  

6 RM141 159.00  21 RM124 162.46  36 RM224   173.58*  

7 RM231 159.59  22 RM153 162.49  37 RM155 175.93  

8 RM111 159.61  23 RM112 162.79  38 RM255 177.14  

9 RM142 160.27  24 RM144 163.11   39 RM145 178.67  

10 RM132 160.31  25 RM122   163.13* 40 RM245 180.08  

11 RM252 160.45  26 RM222 163.75  41 RM135   182.23*  

12 RM133 160.94  27 RM123 163.80  42 RM125   185.68*  

13 RM151 161.22  28 RM134 164.53  43 RM235   194.42*  

14 RM243 161.35  29 RM154 164.94  44 RM115   195.51*  

15 RM221 161.39  30 RM254 165.22  45 RM225 239.85  

E2 

1 RM224   212.81*  16 RM241 243.52  31 RM133 251.16  

2 RM225 219.47  17 RM121 244.39  32 RM153 251.22  

3 RM223   220.43*  18 RM141 244.76  33 RM244 251.29  

4 RM222   227.22*  19 RM132 246.10  34 RM253 252.80  

5 RM221   231.98*  20 RM151 246.13  35 RM144 252.86  

6 RM233 236.27  21 RM131 246.14  36 RM134 252.96  

7 RM113 236.35  22 RM251 246.19  37 RM154 254.16  

8 RM112 236.66 23 RM152 246.85 38 RM115 254.32 

9 RM234 237.03  24 RM252 247.72  39 RM254   255.55*  

10 RM111 237.73  25 RM142 248.05  40 RM125 262.00  

11 RM114 238.32  26 RM123 248.32  41 RM245   263.11*  

12 RM232 238.72  27 RM243 248.91  42 RM135 268.47  

13 RM231   239.84*  28 RM143 249.44  43 RM145  268.74*  

14 RM242 242.81  29 RM235 249.60  44 RM255 273.02  

15 RM122 243.32  30 RM124 250.84  45 RM155 273.13  

q  The benchmark robustness measure RM152 is given in bold. 
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Wilcoxon signed-rank test using SPSS. A significant difference in performance at the 5%  

confidence level will be marked with a star (*). From the results shown in Table 5, the following 

phenomena can be observed. 

Under the environment of stochastic resource availabilities, the best robustness measure is 

RM241 with the lowest reactive cost of 157.32. This means that the robustness measure with 

𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 2, 𝜑𝑖 ∈ [0.7,0.9] and 𝜆 = −2 performs the best. Under the environment of stochastic 

activity durations, the best robustness measure is RM224 with the lowest reactive cost of 212.81. 

This means that the robustness measure with 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 2, 𝜑𝑖 ∈ [0.1,0.3] and 𝜆 = −1/4 performs 

the best. It will be discussed in Section 4.2 why RM241 and RM224 perform the best respectively 

for the two uncertain environments. 

Compared with the benchmark robustness measure RM152, the improvements are respectively 

2.67% and 13.79% under the two uncertain environments. It can be observed that there is a big 

improvement under the environment E2, which indicates the effectiveness of the new proposed 

robustness measure. As for the environment E1, although the reactive cost decreases compared with 

that of the measure RM152, the improvement is small. This is mainly due to the fact that time buffers 

have a limited protection for activities against resource availability disruptions. The mechanism of 

time buffers is the inclusion of slack time in front of activities, in order to absorb potential 

disruptions caused by earlier resource breakdowns and the resulting activity shifts. However, even 

though enough time buffers are added in front of activities, the activities will still be delayed if 

resources break down at exactly their planned starting times. Therefore, it is reasonable to find a 

small improvement under the environment of stochastic resource availabilities. For this uncertain 

environment, resource buffers might be more beneficial to improve the schedule robustness 

(Lambrechts et al., 2008a; Lambrechts et al., 2008b). As the project is planned using a resource 

availability 𝑅𝑘
∗  that is lower than the deterministic availability 𝑅𝑘 , a breakdown of one or more 

resource units at the starting times of activities will not always lead to a disruption of the schedule. 

4.2 The impact of parameters on the performance of the robustness measure 

In this part,  we perform an analysis of the parameters 𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝜑𝑖 and λ on the performance of 

the robustness measure, which will explain why RM241 and RM224 are respectively the best 

robustness measures for the two uncertain environments. We apply SPSS to conduct the multivariate 
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regression analysis and obtain the results as presented in Table 6. The table provides for each 

uncertain environment the resulting R2-value, the constant (Const) and the coefficient of each 

parameter. A value of “0” indicates that the coefficient is not significant at the 5% confidence level, 

while a star (*) implies the coefficient to be significant at the 1% confidence level. From the table, 

we can find that the impact of the parameters is different under the two uncertain environments. For 

this reason, we will analyze the results for each environment separately. 

Table 6   Results of the multivariate regression of the parameters related to the robustness measure 

Environment R2 Const 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝜑𝑖 λ 

E1 0.436 148.171* 0 0 6.613* 

E2 0.603 233.243* -10.984* 5.604* 3.675* 

4.2.1 The impact of the parameters under the environment E1 

    The resulting R2-value is 0.436, and only the coefficient of parameter λ, with a value of 6.613, is 

significant at the 5% confidence level. This indicates that the parameter λ has a big impact on the 

performance of the robustness measure. With a decrease of parameter λ, the reactive cost of the 

robustness measure is expected to decrease, which means the robustness measure will perform better. 

This result is not surprising because under the environment of stochastic resource availabilities, 

even though there are enough time buffers in front of one activity, the activity will still be delayed 

if resources break down at its planned starting time. For this reason, it may not be wise to add many 

time buffers in front of one specific activity. Instead, it is better to have a uniform distribution of 

time buffers throughout the schedule. The smaller the value of parameter λ is, the faster the marginal 

slack utility decreases, and then a more uniform distribution of time buffers will result. In other 

words, the robustness measure performs better with a decrease of the value of λ, i.e., it is best to 

have λ = −2 and it is worst to have λ = 0. 

    In a similar vein to this conclusion, two interesting phenomena can also be observed from the 

results in Table 5. Firstly, the robustness measure with λ = −2, i.e., in the form of RMab1, always 

performs better than the benchmark measure RM152. Additionally, there are nine robustness 

measures in the form of RMab1, of which seven are positioned among the eight best measures. 

These strongly verify the big impact of parameter 𝜆 on the performance of the robustness measure 
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and it is best to have λ = −2. The second interesting phenomenon is that the robustness measure 

with λ = 0, i.e., in the form of RMab5, incurs a much higher reactive cost than the measure with 

λ = −1/4, i.e., in the form of RMab4. We average the gaps between the reactive costs of the 

robustness measures RMab4 and RMab5 and find that the reactive cost on average increases by 

14.50% when changing λ = −1/4 into λ = 0. This is an important finding, which indicates that the 

robustness measure with a constant marginal slack utility performs really bad and thus, it is 

necessary to have a decreasing marginal utility function of free slacks. 

4.2.2 The impact of the parameters under the environment E2 

    The resulting R2-value is 0.603 and the coefficients of the three parameter are all significant at 

the 1% confidence level, which indicates that 𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝜑𝑖  and λ all have a big impact on the 

performance of the robustness measure. 

    The impact of parameter 𝒗𝒆𝒓𝒔𝒊𝒐𝒏. The coefficient of this parameter is -10.984, showing that 

the reactive cost is expected to decrease with an increase of the value of 𝑣𝑒𝑟𝑠𝑖𝑜𝑛. From the results 

in Table 5, we can also find that in the first six best robustness measures, the value of 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is 

always 2. Accordingly, we can draw the conclusion that the second way of calculating the instability 

coefficients is better. This is reasonable because under this setting the starting time of the dummy 

end activity can be well protected. As the activity weight of the dummy end activity is much bigger 

than that of the other activities, in the second way of calculating the instability coefficients, the 

reactive cost is likely to be lower. To demonstrate this more clearly, we introduce three indices as 

follows.  

⬧ ARW: the ratio of the average instability coefficient of the predecessors of the dummy end 

activity to that of the other non-dummy activities. For example, for a project 𝐺 = (𝑁, 𝐴) where 

𝑁 = {1,2,3,4,5} and 𝐴 = {(1,2), (2,3), (3,4), (4,5)}, ARW = 2𝑊4/(𝑊2 + 𝑊3). 

⬧ ATS: the average amount of time the dummy end activity can be shifted forward in the baseline 

schedule without causing any precedence or resource constraint violations. 

⬧ ATD: the average amount of time the dummy end activity is delayed in reactive simulation. 

We average the results over different levels of the other parameters and obtain the results shown 

in Table 7. As the index ARW shows, compared with that of 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1, the average instability 

coefficient of the predecessors of the dummy end activity under the case of 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 2 is much 
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bigger than that of the other non-dummy activities. Accordingly, for maximizing the objective 

function, there will be more free slacks after the predecessors of the dummy end activity. In other 

words, there will be more added time buffers in front of the dummy end activity, just as the indicator 

ATS shows. Because the dummy end activity can be well protected with enough time buffers, it is 

less likely for it to be delayed. From the result of the index ATD, we observe that the average amount 

of time the dummy end activity is delayed decreases by 0.247 when changing 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 into 

𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 2. As a result, the average cost that is incurred by the delay of the dummy end activity 

will on average decrease by 0.247*38=9.386. In other words, the second way of calculating the 

instability coefficients is better and it is beneficial to increase the relative instability coefficients of 

the predecessors of the dummy end activity. 

Table 7   The comparison between 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 and 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 2 

𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ARW ATS ATD 

1 69.64% 0.602 1.602 

2 138.80% 1.453 1.355 

The impact of parameter 𝝋𝒊. The coefficient of parameter 𝜑𝑖 is 5.604, which implies that the 

bigger the value of 𝜑𝑖 , the higher the resulting reactive cost. In other words, a bigger 𝜑𝑖  has a 

negative influence on the performance of the robustness measure. From the results in Table 5, we 

can also find that in the first five best robustness measures, the level of 𝜑𝑖 is always the lowest, i.e., 

𝜑𝑖 ∈ [0.1, 0.3]. This can be explained as follows. Under the environment of stochastic activity 

durations, resource availabilities are constant and the activity durations are uncertain. If there are 

enough time buffers in front of one activity, the activity will be well protected so that it is less likely 

to be postponed due to the delay of the direct and indirect predecessors of the activity. For 

maximizing the objective function, the starting times of the activities with high activity weights 

should be first well protected by adding enough time buffers in front of them. In other words, it is a 

good choice to add time buffers in front of specific activities and the distribution of time buffers 

will be less uniform. To achieve this, the distribution of the instability coefficients of activities 

should not be uniform as well, which requires the parameter 𝜑𝑖  to be small. Therefore, the 
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performance of the robustness measure becomes better with a decrease of the value of 𝜑𝑖, i.e., it is 

best to have  𝜑𝑖 = [0.1,0.3] under the environment of stochastic activity durations. 

The impact of parameter 𝝀. The coefficient of parameter 𝜆 is 3.675, which means that the 

robustness measure becomes better with a decrease of the value of 𝜆. Note that this is an average 

trend based on the multivariate regression analysis, and the result may be a little different for 

different values of 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 and 𝜑𝑖. 

4.3 The impact of other parameters on the reactive cost 

In this part, we try to investigate the impact of the parameters related to the design of the problem 

set and the schedule disruptions on the reactive cost. The coefficient of the parameters may be a 

little different for different robustness measures, but the conclusion is almost identical. For the sake 

of brevity, here we only present the results of the best robustness measures, i.e., measure RM241 

for environment E1 and measure RM224 for environment E2. 

Table 8   Results of the multivariate regression of the parameters related to the design of the problem 

set and the schedule disruptions 

Environment R2 Const NC RF RS 𝛼 𝑀𝑇𝑇𝑅𝑘 𝑀𝑇𝑇𝐹𝑘 𝜎 

E1 0.367 331.680* -8.118* 57.458* -104.921* -81.497* 51.194* -5.525* / 

E2 0.086 204.264* 8.048* -2.377* -5.035* -21.149* / / 53.916* 

The results are shown in Table 8. It can be observed from the table that the resulting R2-value is 

0.367 under environment E1 and 0.086 under E2, which indicates that the parameters related to the 

design of the problem set and the schedule disruptions do not explain much of the variance of the 

reactive cost, especially under the environment of stochastic activity durations. Nevertheless, some 

interesting observations can be made. 

We first discuss the impact of the parameters related to the design of the problem set, i.e., the 

network complexity NC, the resource factor RF, the resource strength RS and the due date factor 𝛼. 

The impact of parameter NC is small under the two uncertain environments and the impacts of the 

parameters RF and RS are much bigger for environment E1 than for E2. This is because the two 

parameters are related to resource availability, and thus they have a big impact on the schedule 

disruptions under the environment of stochastic resource availabilities. With an increase of RF and 

a decrease of RS, activities need more resource types to be executed and the resource constraints 
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become stricter. At the same levels of 𝑀𝑇𝑇𝑅𝑘  and 𝑀𝑇𝑇𝐹𝑘 , the resource availabilities are more 

likely to be insufficient and the reactive cost will increase. Therefore, the reactive cost will increase 

with an increase of RF and a decrease of RS. As for the due date factor 𝛼, the coefficients under the 

two environments are both smaller than zero, which implies that the reactive cost will decrease with 

an increase of the value of 𝛼. This is reasonable because a big value of 𝛼 indicates a less strict 

project deadline constraint, which allows adding more time buffers to protect the starting times of 

activities. As a result, fewer efforts are needed in the reactive scheduling stage and the reactive cost 

will decrease. 

With regard to the impact of the parameters related to schedule disruptions, two parameters, i.e., 

𝑀𝑇𝑇𝑅𝑘  and 𝑀𝑇𝑇𝐹𝑘 , are analyzed under environment E1, while only parameter 𝜎 is considered 

under environment E2. With a decrease of 𝑀𝑇𝑇𝐹𝑘  and an increase of 𝑀𝑇𝑇𝑅𝑘 , resources break 

down more frequently and more time is needed for repairing them. Accordingly, resources become 

less available and the reactive cost increases. Similarly, with an increase of parameter 𝜎, the duration 

variability is bigger, which causes that more efforts are needed to adjust the starting times of the 

activities and thus the reactive cost increases. 

5. Discussion 

    In this section, we will discuss the consideration of the uncertain environment E3 in which both 

resource availability disruptions and activity duration disruptions occur. This type of environment 

is possible in practice and it is just the combination of the two uncertain environments considered 

in this paper. In the following, we will briefly explain how such a “combination” scenario can be 

modelled as well as its impact on the experimental design. The expected results of the computational 

experiment are also analyzed. 

As concerns the modelling, the part of proactive scheduling remains the same, which means that 

the objective function is represented by formula (6) and the constraints are formulas (2), (3), (4) and 

(5) respectively. The general framework of surrogate robustness measures stays the same and there 

will be also 45 different calculations of the robustness measure. Similarly, the performance of the 

proposed surrogate robustness measures will be evaluated by the reactive cost, which is obtained 

through reactive simulations. Different from the reactive scheduling model for the environment E1, 

the precedence constraints will be now denoted by formula (15) instead of formula (10) to match 
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the fact that stochastic activity durations are now additionally taken into account. In other words, in 

the reactive scheduling model for the environment E3, the objective function is formula (9) and the 

constraints are (15), (11), (12) and (13) respectively.    

As concerns the computational experiment, the design of the tested instance sets and the proactive 

scheduling heuristic remains the same while the data generation and the reactive policy should be 

partly adjusted. With regard to the data generation, it might be now unsuitable to generate stochastic 

activity durations according to the way of Van de Vonder et al. (2008). If activity durations still 

follow right-skewed beta-distributions with parameters 2 and 5, many generated activity durations 

will be shorter than the expected values that are used in proactive scheduling. Through simulations 

using these generated data, the reactive costs are likely to be lower than those under the environment 

E1 with the same resource availability disruptions. This seems a little weird because compared with 

the environment E1, the reactive costs under the environment E3 are expected to increase when 

additionally taking stochastic activity durations into account. Under the environment E3, the way to 

generate stochastic activity durations and the development of the reactive scheduling policy rely on 

further research. For simulation, we can randomly generate 150 cases, for each problem, of the 

combination of stochastic resource availabilities and stochastic activity durations. Since the 

uncertainty becomes bigger when combining the two types of disruptions at the same time, to keep 

it realistic, we can only consider low variabilities of resource availabilities and activity durations. 

Based on our analysis, the expected results under the environment E3 will be quite similar to 

those under the environment E1. This is due to the fact that resource availability disruptions are 

included in these two uncertain environments, against which time buffers have a limited protection. 

Note that it is just our theoretical analysis and a computational experiment is needed in future 

research to check whether it is correct. 

6. Conclusion 

In this paper, we propose a general framework of slack-based surrogate robustness measures with 

a focus on the slack utility function of each activity and the instability coefficient for weighting the 

utilities of different activities. In this framework, three parameters are introduced to distinguish 

different calculations of the robustness measure. A computational experiment based on reactive 

simulation is constructed where the performance of the surrogate measures is evaluated by the 
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reactive cost and two types of uncertain environments, i.e. stochastic resource availabilities and 

stochastic activity durations, are taken into account. From the computational results, the following 

conclusions are drawn: 

1) We analyze the impact of the three parameters as well as the two uncertain environments on the 

surrogate robustness measures and find the best measures for project managers to generate 

robust baseline schedules under different uncertain environments. The proposed measures are 

effective, the improvements of which are 2.67% and 13.79% respectively under the two 

uncertain environments compared with the benchmark robustness measures. The main reason 

for the small improvement under the environment of stochastic resource availabilities is that 

time buffers have a limited protection for activities against resource availability disruptions 

while resource buffers might be more beneficial to improve schedule robustness. 

2) Under the environment of stochastic resource availabilities, it is necessary to have a decreasing 

marginal slack utility function and it is better for the marginal utility to decrease faster, i.e., with 

a smaller value of 𝜆. 

3) Under the environment of stochastic activity durations, we propose to calculate the instability 

coefficients in the second way, which is proven to be beneficial as more time buffers can be 

added in front of the dummy end activity to better protect its starting time. Furthermore, in 

calculating the instability coefficients of activities under this environment, it is better to take a 

small impact of a delay of one activity on its direct and indirect successors into account, i.e., 

with a small value of 𝜑𝑖. 

4) Strategies of adding time buffers are different under the two different uncertain environments. 

Under the environment of stochastic resource availabilities, it is not wise to add many time 

buffers for one specific activity. In other words, it is better to have a uniform distribution of 

time buffers throughout the schedule. However, the reverse is true under the environment of 

stochastic activity durations. 

Two types of uncertain environments are taken into account in this paper while other types of 

disruptions can be considered in future research. Further research can be also devoted to proposing 

more effective surrogate robustness measures, such as taking the activity duration variance or the 

ratio of the slack of an activity to the corresponding activity duration into account. Besides, more 
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effective algorithms, such as exact algorithms, can be developed to solve the proactive and reactive 

scheduling problem. Furthermore, for the environment of stochastic resource availabilities, resource 

buffers can be additionally considered to improve schedule robustness. It may be interesting to 

investigate the surrogate robustness measures with resource buffers and to explore the best way of 

combining time buffers and resource buffers.  
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