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Abstract

Increasing energy efficiency of thermostatically controlled loads has the po-
tential to substantially reduce domestic energy demand. However, optimizing
the efficiency of thermostatically controlled loads requires either an existing
model or detailed data from sensors to learn it online. Often, neither is prac-
tical because of real-world constraints. In this paper, we demonstrate that
this problem can benefit greatly from multi-agent learning and collabora-
tion. Starting with no thermostatically controlled load specific information,
the multi-agent modelling and control framework is evaluated over an entire
year of operation in a large scale pilot in The Netherlands, constituting over
50 houses, resulting in energy savings of almost 200 kWh per household (or
20% of the energy required for hot water production). Theoretically, these
savings can be even higher, a result also validated using simulations. In these
experiments, model accuracy in the multi-agent frameworks scales linearly
with the number of agents and provides compelling evidence for increased
agency as an alternative to additional sensing, domain knowledge or data
gathering time. In fact, multi-agent systems can accelerate learning of a
thermostatically controlled load’s behaviour by multiple orders of magnitude
over single-agent systems, enabling active control faster. These findings hold
even when learning is carried out in a distributed manner to address privacy
issues arising from multi-agent cooperation.
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1. Introduction

Thermostatically controlled loads (TCLs) represent a substantial portion
of energy consumption in most industrialized economies (1). Most frequently,
these reflect either space or water heating (or cooling) and are controlled by
rule-based decision systems which maintain temperatures within a dead-band
using hysteresis (4). These rule based control strategies are often demonstra-
bly sub-optimal. Better, more sophisticated control strategies can not only
improve energy efficiency of TCLs (6) but also use the energy flexibility in-
herent in TCLs to provide ancillary services to the grid (2): these services
include demand response (3), frequency or voltage regulation (7), and self-
consumption of local renewable generation (9).

Historically, optimal control strategies for TCLs have relied on a model of
the system to be optimized. A number of possible alternatives, ranging from
black-, grey- and white-box models, have been presented in the literature
(11). These represent increasing levels of involvement of a human domain
expert who, with his knowledge or experience, creates a model for the TCL
to be controlled. This model is, in turn, used to plan and execute optimal
policies for the TCL. Black box models, in learning directly from data, are
intended to circumvent this reliance on costly human expertise (13). An ex-
ample of data-driven control of TCLs can be found in (12), showing efficiency
gains of 7% for the heating, ventilation and air conditioning in an office build-
ing. However, in most practical systems, an expensive human domain expert
is traded off for equally (or possibly even more) expensive sensing technolo-
gies. These sensors are vital in data acquisition required by black box models
but come with their own installation and maintenance costs. Furthermore,
in most practical situations, the amount of data required by black-box sys-
tems to learn a reliable model of the TCL can be substantial. This leads to
additional delays before the devices can be actively controlled.

Contemporary developments in model-free control algorithms have shown
that it is possible to translate sensor observations directly into control ac-
tions. However, these methods rely just as much, if not more, on adequate
sensor data for reliable system identification or state estimation (23). Addi-
tionally, classical RL algorithms like Q-learning, employed by (10) and (24),
are extremely data-inefficient i.e. require much more data to attain the same
performance level as their model-based counterparts (19). More advanced
model-free RL controllers, such as the one used in (8), improve on the data-
efficiency of classical RL algorithms but still do not attain the level of their
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model-based counterparts (20). Finally, the use of model-free control rules
out the use of a developed model in diagnostic settings, for instance for fault
detection or as part of a prescriptive analysis.

Residential TCLs have remained largely untapped as a demand-side tech-
nology because of the expensive modelling requirements highlighted above.
Another complicating factor is the complexity of distributed control: thou-
sands of devices need to be operated in real-time, simultaneously optimizing
for both household (preserving thermal comfort) and market objectives (op-
timizing for energy or costs etc.).

2. State of the art and contributions

In this paper, we posit that the trade-off facing TCL modelling is not just
between sensing and prior knowledge. Rather, agency provides an additional
dimension to facilitate and even accelerate learning. We consider agency as
a measure of both the quality and the quantity of collaborative agents. To
test this hypothesis, we begin with identifying the set of conditions under
which agency can be useful. The setting (and data) for this was provided by
a large scale European Horizon 2020 project REnnovates1 where hundreds of
Dutch houses were renovated to net-zero energy status. All the houses were
equipped with identical heat pumps and hot water vessels. This replication of
TCLs is by no means atypical and is often the case in social housing schemes
across Europe where housing corporations replicate the same building and
equipment design to entire neighbourhoods, relying on economies of scale to
reduce costs.

The unique factor differentiating TCLs installed in different households
is their usage: building occupants interact with even identical TCLs in dif-
ferent ways. This means that identical devices will operate in very different
circumstances in different households because of occupant influence. This
has been shown for hot water systems (18) and the thermal behaviour of
entire buildings (21). Considered together, this corresponds to a far wider
exploration of the state space and can lead to a much richer representation
of the device than can be obtained by considering just a single TCL installed
in a household. A better model learned in this way potentially allows for
improved control policies.

1www.rennovates.eu
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The focus of this paper is on hot water systems because learning a dy-
namics model for both the storage vessel and the heating element is a chal-
lenging problem. Previous researchers have frequently resorted to learning
offline models for the storage vessel (22) or installing additional sensors in
the storage vessel for online learning (25). In practice, most residential hot
water vessels are equipped with a solitary temperature sensor which, as we
will demonstrate, is insufficient for online learning of an accurate dynamics
model.

This paper also extends earlier reported work on model-based optimiza-
tion of TCLs (5) in several ways. First, it proposes and demonstrates the
use of multiple agents as a practical alternative to increasing domain knowl-
edge or sensing information during the modelling of TCLs. It also quantifies
and explores ways to minimize the temporal cost of such modelling, i.e. the
amount of time (or data) required to learn a data-driven model online. This
cost is frequently brushed under the carpet, but is arguably one of the most
important factors in black-box control. Furthermore, the paper benchmarks
the learned model using a simulated vessel, and also investigates the reason
for the efficiency gains over an entire year in much greater detail in tens of
real-world households. Other model-based approaches include (26) and (27)
which have focused more on using ensembles of TCLs to provide services to
the grid. In doing so, the actual modelling of the TCL is simply considered as
a cyclical load which has to be modulated appropriately to provide grid ser-
vices. While the proposed methodology can be used to provide grid services
as well, the focus is instead to learn an accurate dynamics model for the TCL
in as little time as possible, and use it for optimizing efficiency. The control
part of the formulation draws some parallels with previous approaches as fun-
damentally it is the frequency of the reheat cycles which is being modulated
here too. However, the emphasis of this research is on detailed bottom-up
optimization (which focuses on household behaviour) rather than aggregated
response of an entire cluster of TCLs to grid requirements.

The primary contribution of the paper thus lies in demonstrating the value
of multi-agent systems which can quickly optimize TCL performance. Col-
laborative multi-agent decision making has been extensively used to demon-
strate improvements in cooperative tasks (14). This also holds for smart grids
concepts (15) such as peak shaving and frequency response for both central-
ized (16) and distributed decision making systems (17). It is, however, not
obvious how local control problems such as energy efficiency can benefit from
multi-agent formulations and has not been addressed in existing literature.
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This paper uses a novel multi-agent formulation for modelling of TCLs which
circumvents typical issues with black- and gray-box modelling techniques as
mentioned previously. We show that multiple agents can reduce the data
gathering period necessary for training comparable single-agent black- and
grey-box models by at least an order of magnitude. This is, in most practical
instances, the difference between optimal and sub-optimal control. Further-
more, additional agency can serve as an alternative to increased sensing or
domain knowledge in the problem formulation. This further alleviates con-
cerns typically associated with detailed modelling of TCLs.

Another contribution of the paper is its handling of privacy issues. These
are a ubiquitous concern for systems recording consumer data directly (29).
These issues have also been explored in the wider context of smart grids
where data collection is a necessary prerequisite to unlocking many innovative
value streams (28). Extending to multiple agents can further worsen this
situation. We show that data-driven learning using the proposed framework
does not necessarily have to raise (and can even alleviate) privacy concerns
by making use of a distributed learning framework, loosely inspired by the
parameter server approach (30). Such a formulation also successfully reduces
communication overhead costs - an important issue in modern smart grids.

The rest of this paper is organized as follows: we begin by presenting
the proposed methodology, followed by results obtained using a simulation
framework as well as the real world case study.

3. Methodology

3.1. Problem formulation

The problem of hot water system optimization can be seen as an N -player
finite, non-zero sum game of hidden information (31). N -player refers to the
fact that an individual agent operates in a single household but N such agents
operate simultaneously in different households to optimize their respective
rewards. Non-zero sum illustrates that, for a local problem such as energy
efficiency, an agents strategy does not directly affect other agents or their
rewards. In fact, cooperation can further increase individual rewards. Hidden
information alludes to the partial observability of the hot water system. In
most real world hot water systems, sensing for state estimation is limited
to a single temperature sensor, often mounted at the mid-way point (5).
Conventionally, hidden observation refers to the setting where different agents
are oblivious of other agents’ states, however we primarily consider the case
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where agents are aware of other agents’ states. In the section on distributed
control, we consider a relaxation of this condition.

In reinforcement learning terminology, the N -player and hidden informa-
tion aspects of the problem lead to the formulation of a multi-agent POMDP
(Partially observable Markov Decision Process) (32). By learning a dynamics
model of the system, it is possible to sidestep the hidden information problem
and formulate an MDP as: M = {S,A, P,R}n (33). {S,A, P,R}n represent
the tuple of state, action, transition function and reward stream respectively
and the n identifies that while the structure of the MDP is the same for each
agent, the individual components can be different (e.g. while the state-space
is shared across all agents, instantaneous states are not).

The structure of the MDP derives from the interactions between a hot wa-
ter storage vessel, a heating element and the human user. The reinforcement
learning (RL) agent controls the heating element to reheat the vessel follow-
ing a policy, πn, designed to minimize energy consumption while maintaining
occupant comfort.

3.1.1. State

The state, st ∈ S = {0, 1, ..., 100} is defined as the state of charge of the
hot water vessel at time t. This state of charge is not directly observable be-
cause only a single mid-point temperature sensor (Tm) is available by default
in most residential hot water vessels. This value, by itself, is not enough
to observe the state of charge of the vessel which is a non-linear function
as shown in Fig. 1. Therefore, this temperature distribution in the storage
vessel is first derived from observed sensor data as a function of user hot
water consumption over time, wt,n, agent control actions (reheat cycles), at,n
and the previous observed temperatures in the vessel, Tmt,n , using supervised
learning:

st = f(Tmt−τ :t , at−τ :t, wt−τ :t) (1)

st, the instantaneous state of charge, is then defined as the ratio between the
estimated hot water left in the vessel above a certain temperature threshold
and the vessel capacity. The threshold is, in practice, usually defined around
45°C.

3.1.2. Action

The agent’s action, at ∈ A = {0, 1}, is the control of the heating element.
An action of 1 means the initiation of a reheat cycle while a control value

6



of 0 implies the heating element is inactive. When the heating element is
turned on, it consumes some energy to reheat the storage vessel from some
initial state of charge to a final state of charge.

3.1.3. Transition function

The agent’s actions are influenced by the learned transition function,
which takes the form:

st+1,n = Pn(st,n, at,n, wt,n) (2)

where, the transition function, Pn(.), defines the probability distribution over
the next state of the vessel as a function of current state st,n, the agent's
action at,n and occupant behavior, i.e. instantaneous water consumption
wt,n. This function is a further composition of two functions. In the first, the
vessel temperature distribution is calculated for the next time step. In the
second, the threshold is applied to this distribution to calculate the current
state of charge.

3.1.4. Reward

The reward rt+1,n is a function of the final state, st+1,n and action at,n,
where the former derives from the energy consumed and the latter from
impact on occupant comfort:

rt = rt
e + rt

c (3)

where

rt
e =

{
−B if at = 0

−f(st) otherwise
(4)

and

rt
c =

{
0 if st+1 > sth

−A.E[f(st)] otherwise
(5)

where f(st) maps the energy consumed to reheat the vessel given an ini-
tial state of charge and is learned from observation data using supervised
learning. −B is a small negative reward given to the agent for every time
step. A � 1 is the value placed on the lost load, to incentivize the agent
to prioritize human comfort over energy efficiency gains while sth is a safety
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margin to ensure that the user always has sufficient hot water, even in case
of unexpected draws. E[f(st)] is the expected value of the energy consumed
to reheat the storage vessel from any state of charge and is a proxy for the
lost load in the absence of any feedback mechanism from the user. The mo-
tivation to use this value is to strongly penalize the agent when its actions
lead to lost user comfort. Where occupant feedback is present, other metrics
such as the expected waiting time until hot water availability can be used
in the reward function. Finally, the control actions are assumed to be non-
interruptible, i.e. once reheating commences, the vessel's state is reset. In
this way, the problem takes on an episodic nature.

3.1.5. Learning the transition and reward functions

Learning the temperature profile as a function of the storage vessel, oc-
cupant behavior and ambient conditions is central to this problem. Likewise,
an accurate model of the heating element allows the agent to estimate its
future rewards and improve planning.

Feature extraction. Before a supervised learning problem can be posed,
features can be extracted from the observed time series. There are two
reasons to do this. First, reducing the dimensionality of the input feature
vector simplifies the learning problem. Second, interpretable features bring
structure to the learning problem. More concretely, in this research, a number
of features are extracted from observed sensor data. These basically make
use of the episodic nature of the task in which the state of each agent can
be assumed to be reset periodically, i.e. with a reheat cycle (33). Another
alternative is to use an automated feature extraction algorithm like principle
component analysis or autoencoders (8), however the features extracted by
these algorithms are seldom interpretable. The extracted features used in
this research include: (1) initial temperature in the vessel (as measured by
the sensor) after a reheat cycle, (2) cumulative hot water consumption since
the last reheat cycle, (3) time elapsed since the last reheat cycle, and (4)
ambient temperature conditions during the reheat cycle. Of these, the first
feature provides initial conditions, while the next two identify the effect of
occupant behavior and thermodynamic losses on the storage vessel’s state
of charge respectively. These features also influence the heating element’s
energy consumption. Additionally, ambient conditions also affect the energy
consumption in case a heating element like heat pump is employed. A large
number of other features were also investigated however they did not lead to
a substantial improvement in learning performance, and were consequently
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discarded.
It is important to point out what is being learned here. The supervised

learning model for the storage takes as input the three features described
above and predicts the temperature as it would have been observed at the
sensor. By varying the three variables, an entire temperature profile inside
the storage vessel can be constructed, as depicted in Fig. 1, which can yield
the instantaneous state of charge. More concretely, keeping the initial tem-
perature and elapsed time fixed at the current observation state, the water
consumption variable is increased until the (estimated) temperature at the
outflow of the vessel falls below a specified threshold. This estimate is de-
rived from the learned vessel model and the amount of hot water divided
by the vessel capacity is the current state of charge of the vessel. Similarly,
the model for the heating element is only used when a reheat event takes
place. The heating model, in this case, simply predicts the amount of en-
ergy in kWh’s that would be required to reheat the storage vessel to a final
temperature at the mid-point (or wherever the sensor is installed).

While feature extraction from raw time series data helps with the learning
process, other avenues also exist which may speed it up. These include the
following:

Sensory information (I). This is the standard form of black-box mod-
elling, whereby observed sensor data is used to learn a mapping from input
features to output states. The default configuration that we consider (and
that is prevalent in most residential systems) is a single temperature sensor
providing this sensory input. This, however, is not enough to generalize to
the entire storage vessel as the temperature distribution is non-uniform be-
cause of stratification effects and other nonlinear dynamics (22). Additional
sensors, placed at the top, bottom or elsewhere in the vessel, can provide
further information which facilitates learning a model for the temperature
distribution. This is done by translating these additional sensor measure-
ments into additional features which are then used to train the model. The
additional sensor configuration is visualized in Fig. 1. However, this addi-
tional sensing comes at increased installation and maintenance cost. This
configuration is represented by (I) in subsequent sections.

Domain knowledge (K) This is the conventional alternative to more
sensing, whereby expert knowledge is somehow integrated with the black
box system to facilitate or accelerate learning. Frequently this takes the
form of online calibration of a pre-built thermodynamics model, constituting
a grey box system. However, in this paper we do not consider such systems
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Figure 1: Default (left) and additional (right) sensor placement in the vessel; also shown
are some representative temperature distributions in the vessel illustrating why a single
sensor offers only incomplete sensing; adopted from (22)

because of their lack of generalizability to new systems. Instead, we consider
domain knowledge in black-box settings in the form of data augmentation
using insights from general thermodynamics laws which take the following
form:

• Temperature is assumed to monotonically increase with vessel height;
thus Th ≤ Th+x where x ≥ 0

• Water temperature in the vessel is always bounded between 0 < Tx <
100 [°C] ∀x

• Even stricter bounds can be introduced by observing that a residential
water vessel invariably operates between 10 ≤ Tx ≤ 65 [°C] ∀x

• Tx → Tb ∀x as w (the cumulative water consumption) → ∞ (without
reheating the vessel), where Tb is the lower bound as defined above

These constraints are included as additional training features for the su-
pervised learning process. In the absence of these constraints, the tempera-
ture distribution values can oscillate wildly outside of the observed feature
vectors. This configuration is represented by (K) in subsequent sections and
constitutes a weak form of general domain knowledge. It is to be noted that
none of these constraints is vessel-specific and therefore remains generalizable
to new vessels.
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Agency (MARL/SARL) The N -agents, across whom the MDP is
replicated, all act independently in learning their own transition functions
to plan accordingly. Here MARL and SARL identify multi-agent and single-
agent reinforcement learners respectively. Given different human behavior
in all these buildings, the agents are driven to different regions of the state-
space. This means in general:

P (si, ai,wi) 6= P (sn, an,wn), ∀n 6= i (6)

where si, ai,wi represents the tuple of historic observations for agent i. How-
ever, since the storage vessel has fundamentally the same characteristics (i.e.
is identical across all households), the differences in learned transition func-
tion only arise because of observation bias. By aggregating features collected
by individual agents, it is possible to learn a single transition function of the
form:

P = f(s1, ..., sN , a1, ..., aN ,w1, ...,wN) (7)

In general, this unified model should outperform each individual transi-
tion function because of improved state-space exploration. This also paves
the way for cooperation between individual agents. This can be achieved by
targeted exploration to drive different agents to regions of the state-space
where the learned representations uncertainty is still high. Uncertainty esti-
mates can be derived using either ensemble (34) or Bayesian methods (36),
depending on the choice of function approximation method. For (deep) neu-
ral networks, a recent approach has been the use of dropout as a practical ap-
proximation for model uncertainty (35). In our work, we have experimented
with both random forests and neural networks obtaining similar results. Fur-
thermore, by extracting features which decouple thermodynamic losses from
consumption based losses, stochastic human behavior can be disentangled
from deterministic storage vessel behavior.

3.2. Observation period

The performance of data-driven methods depends both on the quality
and quantity of the data used to train the model. In addition to the sources
of data mentioned previously, the observation time period also plays a large
role in determining model performance. This is to say that given sufficient
learning capacity, a model trained with one year of observational data will
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most likely outperform a model trained with only one week of data. In-
creasing training data is the simplest way to improve model performance,
this remains true regardless of the source of the additional data. However,
the increased monitoring period takes away from the time available to the
controller to optimize system performance.

3.3. Evaluating model performance

Numerous metrics are available to evaluate model performance. In this
research, we focus on two simple evaluation mechanisms: mean absolute error
(MAE) and the coefficient of determination (R2). Both of these metrics are
aimed at evaluating how well the learned model can predict the system’s
present and future states. Furthermore, we also incorporate the temporal
aspect of learning into the evaluation criterion, because a modelling approach
requiring prohibitive amounts of data to perform well is impractical in the
real world. This leads us to define three characteristics: (1) initial model
performance, (2) learning rate, and (3) asymptotic model performance.

3.4. Privacy aware learning

It is possible for each agent to learn the transition function using its
own experiences locally. If no data is transferred off-site, this does not pose
any privacy challenges and represents the SARL condition as defined above.
However, once cooperation between multiple agents is considered as described
in eq. (7), additional concerns arise. Primarily, a malicious agent with access
to every agents data can estimate both occupancy patterns as well as draw
inferences about demographics. This can be addressed using two possible
formulations:

1. Feature sharing, whereby each individual agent only shares extracted
features, rather than raw consumption data, with a central oracle where
learning takes place. The central oracle then communicates the learned
model to each individual agent. By scrambling the order of the time
series through feature extraction, occupancy patterns can not be di-
rectly observed by a malicious party. This form of learning is directly
compatible with the already presented formulation.

2. Parameter sharing, a form of distributed learning, goes one step fur-
ther and only shares the parameters of individual models learned by
each agent with the oracle. These parameters can, for instance, be the
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weights of a neural network. Here, the transition function takes the
form:

P = f(P1, ..., PN) (8)

By combining N individual models, the overall performance can be
improved by ensembling through a mixture of experts approach, while
preserving privacy (37), (38). It has been shown that that this approach
works even when only a tiny fraction of all parameters are shared (43),
which assuages both privacy concerns and reduces network communi-
cation costs.

From a privacy perspective, parameter sharing offers even stronger pro-
tection against malicious parties than direct feature sharing which is, in itself,
an improvement over sharing raw time series data. The same holds for net-
work communication costs.

3.5. From modeling to control

The default policy in the considered systems is a naive rule based con-
troller with a dead-band hysteresis of the form:

at,i =

{
1, if Ts < Tth −∆T

0, if Ts ≥ Tth
(9)

This rule-based controller forms the default baseline. However, system
efficiency can be improved by only reheating the vessel when required (39).
This makes use of the state of charge of the vessel which is derived from
the learned vessel model as described above. The agent then maximizes its
future reward stream in time according to the learned dynamics model, given
its current state:

max J(π|s0) = 1/τ
τ−1∑
0

rt (10)

The reward function, as defined earlier, includes both occupant comfort
and energy efficiency. The optimal policy can be learned through policy
search (40), (41) or derivative free optimization methods (18). In this paper,
we make use of a Monte Carlo based reinforcement learning algorithm (Monte
Carlo with Exploring Starts - MCES) (33). MCES exploits the episodic
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nature of the task and makes use of the learned model and observed occupant
behaviour to simulate many trajectories (episodes) into the future. Each
episode terminates with a reward, as defined earlier, which is then assigned
to every state and action pair visited during the episode. By averaging the
rewards obtained over a large number of episodes, the true expected rewards
from that state and action pair are estimated. Thereafter, starting from any
given state, an ε-greedy policy can be implemented which chooses the action
corresponding to the highest expected reward with probability 1 − ε and
a random action otherwise. An advantage of using this controller, instead
of a classical model predictive controller, is that it is much less compute
intensive and can handle nonlinear objective functions or constraints in a
more seamless manner. Foresee, a recent framework for optimizing building
energy consumption and provision of demand response, is one example of
a model predictive controller (42). This is primarily due to the policy-side
learning which helps avoid the need to repeatedly optimize for the same,
or similar, conditions. However, there should be no discernible benefit in
the control performance achieved by this controller as opposed to a more
traditional controller also using the same learned model.

Using a controller such as MCES is only necessary for the general case
of time-variant energy tariffs or efficiency (such as with heat pumps). In
this case, while the model for each household sharing an identical TCL will
be the same, the optimal policy will be different for each household. With
tens or hundreds of households executing individual policies, this can be
difficult to keep track of, or debug when some things goes wrong. For the
more limited case of fixed electricity prices and time-invariant efficiency, a
rule based controller with the learned system dynamics is guaranteed to be
optimal if state of charge and future consumption can be accurately estimated
/ predicted. This controller takes the following form:

at =

{
1, if st < ŝt+1

0, if st ≥ ŝt+1

(11)

In this case, the agent only reheats the vessel when the predicted re-
quired state of charge in the subsequent time period (ŝt+1) is expected to
exceed the (estimated) current state of charge, st. These are derived from
the learned representation of temperature distribution in the storage ves-
sel. While sub-optimal for the case of time-variant prices or efficiency, an
additional advantage of using this controller is that it simplifies control by
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removing the dependence on the heating element model.

4. Experimental setup

In the modelling and control of a TCL, multiple factors have to be con-
sidered. These include the storage vessel and the heating element, human
occupant behaviour and ambient conditions. We consider two case studies
to investigate the performance of our algorithm on different variations of
these factors. One is based on a simulated hot water system and the other
presents results of a real world large scale pilot involving tens of net-zero
energy buildings in the Netherlands.

4.1. Simulation based case study

The first case study makes use of a simulation framework employing a
simulated hot water storage vessel and an ideal heating element. The dura-
tion for this case study was one year, and four households were considered.
Each of the households had an identical TCL setup, i.e. the storage vessel
and heating element models were identical in all households. The consump-
tion patterns were however different for each household and were drawn from
real world data.

Each agent corresponded to an individual household, which meant the
system state for every agent was unique at any given time step. The storage
vessel model was simulated using a logistic regression based model fit to
empirical data (18). The heating element was considered to be an ideal
electric heater with an efficiency of 100%. The agents were required to learn
the vessel model from the gathered data but the heating element model was
assumed to be known to all the agents. This simplified both the learning and
control problems.

To explore the effect of increased sensing on learning performance, we
considered the case where additional temperature sensors were placed in the
storage vessel. Finally, as the data was simulated using a known model, the
learned model accuracy could be estimated for the entirety of the temperature
distribution. To do this, the temperature as predicted by the model was
compared with ground truth for randomly drawn input feature vectors.

4.2. Real world case study

The simulated case study was designed to mirror the real world situa-
tion and therefore test the same hypothesis. Nevertheless, there were some
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important differences. Most notably, unlike the simulation based study, the
real world case study involved many more houses. Most notably, data from
53 households was analysed for a year. Of these, up to 32 randomly chosen
houses were used to train the storage vessel and heating models while the
remaining were used for validation purposes. The actual storage vessel and
heating models were not known for the real world study which meant the ac-
curacy of the learned models could only be calculated through this held-out
test dataset of 21 households.

All the households considered in this study employed identical TCLs (i.e.
storage vessel and heating element) so the framework could be applied in
a straightforward manner. More specifically, the storage vessel was a mod-
ern 200 L vessel with a single temperature sensor mounted at the midway
point and a water flow meter. The heating element was an air source heat
pump (ASHP) which provided both the hot water and space heating to the
buildings. The households were all recently refurbished social houses. This
situation is quite common in The Netherlands where social housing makes
for a large proportion of all residential buildings, ensuring a large degree
of homogeneity. For standardization and replication purposes, the EEBus
protocol2, an open standard for the internet of things, was employed to com-
municate between the central server and the installed heat pumps. Finally, in
The Netherlands, net-zero energy buildings are legally obliged to prove that
their annual energy demand equals production (via rooftop solar panels).
This necessitates a system to monitor energy flows irrespective of system op-
timization, meaning that the smart control framework can make use of the
already present sensing and communication infrastructure.

One final complication that we encountered with learning models in the
real world case study was with additional sensing. While in the simulation, we
could simply sample the entire distribution by placing virtual sensors, in the
real world additional sensors had to be physically installed. These sensors
were placed in a noninvasive manner, which ensured that the extra effort
required to install the sensors was replicable and not excessive. However, this
meant that the sensors recorded temperature values only when hot water was
being consumed, thereby severely limiting the amount of usable data they
generated.

Active control was interleaved with learning. More specifically, after an

2www.eebus.org
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Figure 2: Experimental setup in the real world pilot: all houses were cycled into different
control groups on a weekly basis to remove occupant behaviour influence

initial period of one month, control was executed using the learned models.
This furnished results of active control for 11 months. More practically, this
meant sending reheat commands to each heat pump being controlled when
the central controller decided it was time to reheat the storage vessel. While
the control was executed in a centralized manner to keep implementation
straightforward, it can be also be performed in a distributed manner. The 53
houses under consideration were split into three groups for control purposes:
a default group, an energy efficient group and a third group. This third group
was used by another project partner to test different algorithms including
solar self-consumption and grid congestion reduction. The split was not fixed
however, and the houses were cycled into different groups weekly to minimize
the effect of occupant behaviour. In this way, any households demonstrating
anomalous behaviour were present in every group over the course of the
year. In the remainder of this paper, we will focus exclusively on the first
two groups, i.e. the houses running the default controller and those running
the proposed efficient controller. This information is summarized in Fig. 2.

5. Results

A number of different configurations are possible for different combina-
tions of the three aspects discussed before (agency, knowledge and sensing).
This holds for both the simulated and real world case study, with some
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caveats. In this section, we summarize the results for both, using the most
interesting configurations to evaluate their impact on learning over time:

1. The default rule-based controller (RBC)
2. Aggregation of multiple rule-based controllers
3. Single agent reinforcement learner (SARL(.))
4. Single agent reinforcement learner with additional knowledge (SARL(K))
5. Single agent reinforcement learner with additional knowledge and ad-

ditional sensors (SARL(K, I))
6. Multi agent reinforcement learner (MARL(.))
7. Multi agent reinforcement learner with additional knowledge (MARL(K))
8. Multi agent reinforcement learner with additional knowledge and ad-

ditional sensors (MARL(K, I))

The rule-based controllers follow the fixed hysteresis dead-band imple-
mentation of eq.(9). The additional knowledge here refers only to constrain-
ing the output values as discussed in a previous section. This is only appli-
cable for the case of the storage vessel. Feature engineering is used in all
cases as it replaces raw consumption time series with features which can be
generalized across households. Without feature extraction, raw time series
learning fails to converge to a reliable model, and multi-agent learning can
not take place in a straightforward manner.

5.1. Theoretical study

Fig. 3a summarizes the exploration achieved with different control and
aggregation strategies: the contrast in state-space exploration for rule-based
controllers and RL based controllers is quite obvious. Common to both mech-
anisms in varying degrees is the tapering off of experiencing new states as
periodic human behavior causes the agents to follow largely similar sched-
ules. It is also obvious that by keeping everything else the same, multi-agent
systems explore much better than their single agent counterparts. This is
hardly surprising. What is surprising is that single agent systems possessing
both domain knowledge and extra sensors (SARL(K,I)) perform comparably
with multi-agent learners with only domain knowledge (MARL(K)). This
provides preliminary evidence that agency can be used interchangeably with
additional sensing.

Fig. 3b shows that better exploration does indeed correlate well with
better accuracy. The prediction error is defined as the one-step ahead pre-
diction compared with the actual realized temperature. As the ground truth
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Figure 3: (a) State-space exploration as a measure of unique states visited by the agents
[unit-less quantity]; (b) MAE for learned transition model [°C], with different configura-
tions

(temperature distribution) is known in the simulation environment, we can
test the agent’s representation on states not previously observed.

Most of the gains towards learning an accurate model are realized in the
first few weeks of operation. Nevertheless, there are a few interesting points
to note here. Rule based controllers are unable to learn a reliable representa-
tion of the vessel even after observing an entire year of data. Likewise, a single
agent equipped with only some domain knowledge is unable to reach the per-
formance of a similar multi-agent system, and requires additional sensors to
get there. This is not true when we transition from the MARL(K) configu-
ration to the MARL(K,I) configuration; indicating that domain knowledge
and extra sensing encode similar information and combining both yields no
further benefit to the learning process.

Fig. 4 visualizes the prediction error of the storage vessel in a more
detailed manner for the different schemas. It reinforces the findings from Fig.
3 about the rule-based controller and brings to light the potentially costly
errors single agent learners continue to make even after observing data from
a whole year. This is the case for lost occupant comfort, where the actual
temperature has fallen below 45°C but the predicted temperature is still
above 45°C, indicating the false belief that there is still hot water remaining
in the storage vessel. The multi-agent systems on the other hand do not
suffer from this problem, having learned a far more accurate representation
after only a month.

Fig. 4 also brings to light a curious phenomenon whereby the MARL(K,I)
configuration makes different mistakes than the MARL(K) configuration over
time. It is obvious that the MARL(K,I) performs better than MARL(K) after
a month but it makes some costly mistakes after observing data for a year.
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While the overall effect is small, the two frameworks also make errors with
opposite polarities, i.e. MARL(K) often underestimates the amount of hot
water left in the vessel and MARL(K,I) slightly overestimates it. This is
primarily because of a mismatch between the data arriving from assumed
knowledge (K) and the sensing component (I). The interference between the
two data streams leads to some costly errors which can be fixed by fine-tuning
the knowledge component, however this would defeat the purpose of having
a data-driven controller. This effect also arises as an artifact of learning itself
(whereby the MARL(K,I) framework observes so much data that it is not as
aggressive in its exploration as the MARL(K) configuration, especially at the
interface of user comfort around 45°C).

The performance gains when moving from a rule based controller to a
reinforcement learning based system exceed 40% as shown in Fig. 5. This
is true regardless of the RL configuration chosen. It appears that the high-
est energy efficiency is achieved by the single agent reinforcement learning
configuration which makes use of just the additional domain knowledge.

The impact of this optimization on occupant comfort is visualized in
Fig. 6a which shows that the single agent reinforcement learner is the only
configuration where consumption temperature falls below 45°C because of a
poor system dynamics model caused by inadequate exploration.

Fig. 6b shows that the time period between successive reheat cycles for
multi-agent configurations is also substantially more spread out than for the
single agent case. This is explained by two reasons: (1) better contingency
planning because of a better dynamics model, and (2) greater exploratory
actions made possible by greater agency. As expected for the rule based
controller, the spread on time period between successive reheat cycles is very
limited. The median of this distribution is also much lower than the time
for the reinforcement learning based controllers which explains the overall
higher energy consumption.

5.2. Privacy aware learning

The proposed multi-agent performance is compatible with the feature-
sharing learning paradigm as presented above. Since feature extraction re-
duces the data dimensionality and scrambles temporal structure, this has the
advantage that it alleviates privacy concerns and reduces data communica-
tion costs.

Nevertheless, it might be possible to infer some household characteristics
from these features. To address this, it is possible to transmit only locally
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Figure 4: Predicted and observed temperature, snapshot at different time periods, for
[time (left to right): 1 week, and 1 year; configuration (top to bottom): Aggregation of
RBC agents, SARL(K), MARL(K), and MARL(K,I)]
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Figure 5: Normalized energy consumption as a function of different learning configurations

Figure 6: Results for the simulated case study: (a) Water consumption temperature [°C];
(b) Duration between reheat cycles [hours]
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Figure 7: Distributed learning with parameter sharing; modelling performance remains
remarkably similar to centralized learning

trained models to the central oracle. More concretely, this follows a three-
step process: first, the individual agents train and transmit their models to
a central oracle. Second, the oracle generates a (random) data set in input
feature space and generates outputs from all individual models. Finally, it
uses the model outputs to train a single model which it then shares with the
contributing agents.

This three-step approach caused problems as the individual models were
prone to over-predicting the vessel state of charge. As explained before, this
is caused by poor exploration at the edge of occupant comfort as discussed
before. By training a single model which makes risk-constrained predictions
(i.e. taking a lower confidence bound), it is possible to minimize this risk.
As Fig. 7 shows, this distributed learning mechanism can approximate the
performance of centralized learning. The system dynamics model learned this
way however produces more conservative estimates of the state of charge and
can be less efficient than a centralized controller.

5.3. Real world case study

In this section, we present results from a real world case study conducted
using the proposed framework for a set of 53 houses analyzed over a year. A
subset of these - 32 to be precise - formed the basis of the learned models,
while another subset was used to test the efficacy of the controller. A subset of
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six households was equipped with additional sensors. Some of the differences
between this and the simulated case study have already been highlighted in
a previous section. As expected, both the quantity and quality of data in
real life was much lower than the simulated study especially for the case of
additional sensing, and reflected real world limitations to experiment design.
Furthermore, it wasn’t possible to explore all the different configurations
presented above because of the limited amount of households. Therefore,
while different learning strategies were evaluated, only two controllers were
evaluated. In the remainder of this section, we present results of interleaving
learning and control.

5.3.1. Storage model

Fig. 8 provides compelling proof of the efficacy of multi-agent learning of
the TCL model. It summarizes the performance of the learned model as we
increase the amount of data used to train the model. In doing so, it provides
a detailed comparison of the MARL(K) and SARL(K) configurations. It is
obvious that model performance improves with increasing amounts of data
i.e. irrespective of whether the data is observed during a prolonged period
with a single vessel or if it is aggregated over multiple vessels in a brief
time period. This is evidenced by the decreasing mean absolute error as we
traverse along the matrix towards increasing agents (y-axis) or time (x-axis).
It is important to note that there is a large difference between the initial
performance of the MARL(K) configuration and the SARL(K) configuration
as we increase the amount of agents. On the other hand, the MARL(K)
model learned after a single week of data collection is already close to the
asymptotic performance, so there is not much improvement as more data is
gathered. In this case, the primary utility of a multi-agent system over a
single-agent system is the speed with which an accurate model is learned.

It is obvious that the MARL(K) configuration outperforms the SARL(K)
configuration. What is not clear is how the multi-agent configuration without
any extra domain knowledge MARL(.) performs compared to the SARL(K)
configuration. To evaluate this, we visualized the estimated state of charge
(SoC) as a function of thermodynamic and mixing losses caused by hot water
consumption. The vessel SoC is expected to be close to 1 right after a reheat
cycle, after which it is expected to drop monotonically to 0 with the passage
of time and/or user consumption of hot water. The different SoC plots can
be seen in Fig. 9 for the case of SARL(.) and MARL(.) and Fig. 10
for the case of SARL(K) and MARL(K). The biggest difference is between
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Figure 8: Mean absolute error (MAE) [°C] for the hot water vessel model as a function of
time (x-axis) and agents (y-axis)

the SoC plot learned in the SARL(.) configuration after 1 week and the
SARL(K) configuration after the same amount of time. It is obvious that the
regularizing effect of domain knowledge incorporated via constrained learning
has enabled the SARL(K) configuration to make sensible predictions about
the SoC in the vessel while the SARL(.) configuration fails to do so. It is
important to note that the SARL(.) configuration has learned a fairly similar
SoC representation after 32 weeks as its MARL(.) counterpart after only 1
week. These are also not too different from their SARL(K) and MARL(K)
counterparts with additional data. In offline tests (performed by physically
draining the vessel and measuring the outflow water temperature), the error
of the multi-agent SoC estimates was consistently less than 10% on average.

Based on the evidence from Figs. 8 to 10, it is clear that multi-agent
modelling brings about many benefits. The same effect, albeit to a less
generalizable degree, can be achieved by incorporating domain knowledge
in the form of constraints which enables even single-agent systems to learn
with extremely limited amounts of data (in this case, only one week). At
its heart lies a better exploration of the state-space which is visualized in
Fig. 11. This is not a cosmetic difference as it is the difference between
optimally controlling the vessel almost immediately as opposed to waiting
for a prolonged period of time during which data is collected for a reliable
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Figure 9: Estimated state of charge in the storage vessel as a function of hot water
consumption and thermodynamic losses, where the model has been trained for varying
amounts of data: (top-left) 1 agent observed for 1 week; (top-right) 1 agent observed for
32 weeks; (bottom-left) 32 agents observed for 1 week; (bottom-right) 32 agents observed
for 32 weeks
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Figure 10: Estimated state of charge in the storage vessel as a function of hot water
consumption and thermodynamic losses while incorporating constraints on the model,
which has been trained for varying amounts of data: (top-left) 1 agent observed for 1
week; (top-right) 1 agent observed for 32 weeks; (bottom-left) 32 agents observed for 1
week; (bottom-right) 32 agents observed for 32 weeks
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Figure 11: Exploration as a function of time and different configurations with real world
TCLs; here exploration is defined as the count of unique states visited by the agent and
is a unitless quantity

model to be constructed.
Finally, additional sensing in the real world brought only limited benefits.

This was seen most clearly by the fact that additional sensing did not notice-
ably increase state-space exploration (Fig. 11). The amount of data gathered
by these sensors was usually fewer than the temperature data recorded by the
midpoint sensor by at least one to two orders of magnitude. Furthermore, the
data gathered was of questionable quality because of limited sampling time
and conduction delays. In our experiments, the MARL(K,I) and SARL(K,I)
configurations therefore did not offer any benefit over the MARL(K) config-
uration in the real world.

5.3.2. Heating model

The situation is vastly different for the heating element model where data
gathered by each household is much more sparse, by almost two orders of
magnitude. Fig. 12 summarizes the result of learning for both the MARL(.)
and SARL(.) configurations. Like the vessel model, the mean absolute error
for the heat pump model is also reduced drastically when increasing either
the amount of time the data is gathered or the amount of agents under
observation. This translates to a much higher initial performance for the
multi-agent case. However, unlike the vessel model, performance continues
to increase throughout the data collection period and the asymptotic perfor-
mance achieved by 32 agents over 32 weeks of data collection is far superior
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Figure 12: Mean absolute error (MAE) [Wh] for the heat pump model as a function of
time (x-axis) and agents (y-axis)

to that achieved by a comparable single agent system. As the average reheat
energy consumed by the heat pump is between 1.5 and 2 kWh’s, the asymp-
totic performance for the multi-agent system shows a relative error of less
than 10% while it is still over 20% for the single-agent case.

Mean absolute error can, on occasion, be a rather misleading measure of
quality. From Fig. 12, it seems that the model learned with data collected
from 32 agents for 1 week is better than the model learned with 32 weeks
of data for a single agent. This is however not completely true as visualized
in Fig. 13 which highlights an interesting effect. While the multi-agent
performance is indeed better than a comparable single-agent system on the
MAE metric, it is actually slightly worse at generalizing. This is highlighted
by the R2 metric in Fig. 13. One reason for this slightly poorer performance
with multiple agents is the heat pump’s dependence on ambient conditions.
A model trained with data observed only for one week will fail to generalize
to very different ambient conditions. This is one reason why the model
continues to improve throughout the data collection period as it gets to
experience different ambient conditions.
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5.3.3. Control

As the vessel model was learned in a very short time period, this was used
to optimize the operation of the hot water systems in operation according to
eq. 11. The heat pump model took substantially longer to train to a reliable
accuracy and was therefore not employed by the controller. Another rea-
son to only apply a simplified controller, rather than the full reinforcement
loop, was because of complexity. While eq. 11 means that every household
runs a simple controller (i.e. the only difference is the instantaneous pre-
dicted household water demand), a full reinforcement controller means every
household follows a unique policy. This leads to complications with debug-
ging when things go wrong - as they often do in the real world - and makes
it difficult to disentangle problems with the learning, control and other parts
of the work flow (e.g. communication etc.).

Fig. 14 visualizes the energy consumed over 11 months for households
running the default controller and the efficient controller. It is obvious that
the efficient controllers consistently consume less energy on average. As these
results are usually averaged over anywhere between 15 and 20 houses for both
groups every week, they are fairly representative. While the energy con-
sumption spikes during the winter months, it is interesting to note that the
efficiency improvements hold, in relative terms, throughout the year. Over
the course of 11 months, these savings came out to be around 200 kWh per
household and confirmed our earlier, limited scale tests. This translates to
around 20% of total energy demand for domestic hot water. Fig. 15 provides
a clearer view of the energy savings observed over the year in a cumulative
fashion. This plot was created by randomly sampling energy consumption of
different households from the two different subgroups (default and efficient)
for 10,000 times. It clearly shows that the default group consumed over 200
kWh’s more than the energy efficient group. However, there is some uncer-
tainty in the results which means that savings could range between 100 and
350 kWh over the course of a year (Fig. 15).

Despite the large difference in energy consumption, the hot water con-
sumption in both groups was unsurprisingly very similar at the end of the
year (there is less than 1% difference in hot water consumption in the two
groups). No complaints pertaining to comfort loss were received from the
householders that could be attributed to active control. Householders had
the option to inform when control went wrong and, in many instances, they
communicated actively about loss of comfort caused by equipment or coordi-
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Figure 13: Scatter plot between observed and predicted electricity consumption for the
heat pump as a function of increased data and agency: (top-left): 1 week of data for 1
agent; (top-right) 32 weeks of data for 1 agent; (bottom-left): 1 week of data for 32 agents;
(bottom-right): 32 weeks of data for 32 agents

nation problems. An example of this was seen when a building’s occupants
noticed and complained about a lack of hot water; it turned out that set-
points had been incorrectly set during the weekly hand-off between different
control groups. However, over the course of a year, there were no complaints
caused by modelling or control errors.

It is important to note here that the controller used for efficiency in this
case was demonstrably sub-optimal (i.e. it failed to take into account the
time-varying efficiency of the heat pump). In fact, simulations show that
had such information been taken into account, the savings would have been
even higher at almost 30% of the energy demand (or almost 300 kWh per
household). While these additional savings are important, they come at the
cost of increased complexity.

An additional point to consider is that, unlike the simulated case, hot
water consumption profile of a household can be rather unpredictable in
real life (18). We use a backup controller to ensure that user comfort is
guaranteed at all times which reduced the efficiency gains when compared
with the simulated case study. Another reason for the lower than theoretical
efficiency gains was the complexity associated with learning a more complex,
stochastic model for both the storage and heating elements.

31



Figure 14: Efficiency gains over 11 months of active control compared with the default
controller for hot water production in sub-groups of 53 households

Figure 15: Cumulative energy consumption over 11 months of active and default control
for hot water production in sub-groups of 53 households; different draws are sampled
randomly from measured data
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6. Conclusion and future work

In this paper, we have demonstrated that using multiple agents can reduce
dependence on sensing for black-box modeling and control of thermostatically
controlled loads. They also largely circumvent the need for specialized human
domain knowledge. Results obtained using both theoretical and actual ther-
mostatically controlled loads confirm this hypothesis. The only requirement
for the framework is the existence of multiple thermostatically controlled
loads interacting with different households and the infrastructure enabling
multi-agent communication and control.

These research findings have positive consequences for the practical ap-
plicability of such systems as sensors represent a significant cost of smart
systems, both initially and operationally. By reducing sensor dependence,
smarter buildings can become more cost-effective and therefore more attrac-
tive to investors and home owners.

The research also serves as an important guide for the future. By dis-
ambiguating different sources of information and their impact on model per-
formance, it highlights the way to learning reliable dynamics models for hot
water systems in the least amount of time at the lowest possible cost. The
multi-agent framework is also a marked improvement on both white- and
gray-box models, as it removes the dependence on human domain expertise
and is completely generalizable to new vessel types.

Additionally, in countries like The Netherlands where social houses make
up for a large fraction of the national housing stock, the replication potential
opens up endless possibilities for the presented system. In buildings where
energy monitoring is already taking place, the framework allows additional
optimal control which can save between 200 and 300 kWh’s annually at no
extra cost. Part of these efficiency gains can also be offered to the electric
grid as ancillary services. At this point, it is also important to reflect on how
these efficiency gains are possible. The single biggest contributing factor to
realizing the efficiency gains is the increased cycling time between reheat cy-
cles which has been borne by both simulations and the real world case study.
The improved heat pump efficiency, because of reheating the vessel from a
lower temperature, also contributes to reducing the energy consumption.

It is important to point out that the reduction in energy demand was not
at the cost of increased hot water demand (or altered consumption patterns).
We were able to test the hypothesis whether the control mechanism was al-
tering hot water demand, as each house was controlled with the default and
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energy efficient controller in an alternating manner. There was no statisti-
cally significant difference in hot water consumption for the same household,
regardless of whether it was controlled by the default rule-based controller
or the energy efficient controller. This provides credible evidence that the
temperature of hot water exiting the vessel is sufficiently hot to not increase
hot water demand and therefore bias efficiency calculations. This was also
confirmed by temperature sensors placed at the outflow of a subset of the
storage vessels.

In our experiments, learning using raw time series data did not general-
ize well. While we solved this problem by feature engineering, it reinforced
the notion that black-box models should not be treated as silver bullets to
modelling tasks. The proposed system additionally incurs additional costs
because of the infrastructure required to communicate the gathered data.
With increasing proliferation of smart meters and the internet of things, this
will become less of a concern over time. Despite the sizable energy efficiency
gains offered by the framework, the situation is less clear in buildings which
do not have access to a communication link. There, a decision on the cost-
effectiveness of the system has to be made on a case-by-case basis. This
decision will depend not just on the communication costs but also the preva-
lent energy tariffs and eco-consciousness of householders. Novel formulations,
like the distributed learning algorithm presented in this paper, can help with
minimizing communication overhead while still offering privacy-preserving
optimization.

Future directions to extend this work include other system identification
problems which can benefit from multi-agent configurations. These include
the broader class of thermostatically controlled loads (i.e. space heating and
cooling), as well as ventilation systems for indoor air quality control. Addi-
tionally, more general global optimization problems for solving grid interac-
tion issues can also benefit from the improved system identification potential
of the proposed multi-agent framework. Finally, while the focus of this re-
search has been on homogeneous devices (i.e. identical hot water systems),
learning from and acting on heterogeneous devices in multi-agent contexts
is an even more challenging problem. This remains a promising avenue for
future research.
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