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Abstract. High-resolution 3D micro-CT imaging is a powerful tool for
the visualization of the mineralized tissues. However, it remains challeng-
ing to discriminate automatically between mineralized cartilage and bone
as they have similar greyscale values. Currently, manual contouring is still
the standard way to segment these two tissues but it is time-consuming
and user-biased. In this work, we have optimized a 3D fully convolu-
tional neural network, i.e. U-net, to automatically segment mineralized
cartilage from bone in high-resolution micro-CT images of the Achilles
tendon-to-bone interface. Using the 3D U-net, we reach an average Dice
Similarity Coefficient of 0.85 compared to manual annotations for twelve
3D datasets. The proposed method shows comparable results to a 2D
U-net approach while ensuring better 3D segmentation consistency. We
also found that reducing the resolution of the 3D micro-CT images for
the network training did not importantly impact the performance while
considerably reducing the training time.

Keywords: Mineralized tissue segmentation · CNN · Deep learning ·
Cartilage versus bone · High-resolution micro-CT

1 Introduction

The musculoskeletal system supports and stabilizes the human body and coor-
dinates the movements of the muscles and the skeletal system. It is composed
of bone, muscle, cartilage, tendon, ligament, and other connective tissues. In
particular, tendons and bone are joined in a specific way in order to facilitate
joint motion, forming the insertion site [1]. This is also known as the enthesis or
the bone-to-tendon interface. The tissue that makes up this interface is a com-
plex transitional tissue, which is essential for physiologic musculoskeletal motion.
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It serves to integrate and minimize stress concentrations between the bone (a
stiff, structural, hard tissue) and the tendon (a compliant structural soft tissue).
More precisely, the bone-to-tendon interface can be divided into four specific
zones with varying compositional and mechanical properties and functions [2]:
the tendon, the non-mineralized fibrocartilage, the mineralized fibrocartilage,
and the bone.

Because of its function of mediating load between very dissimilar tissues, the
bone-to-tendon interface is a common site of injury. However, in case of such
injury, the natural tissue is not regenerated after healing [1,3]. Instead, it is
replaced with a so-called scar tissue, which is isotropic and significantly less stiff
than either tendon or bone. It has been reported that depending on the severity
and the location of the injury, the regenerated tissue will rupture again in 20
to 94% of cases [4]. A solution to this problem would be to use a construct
composed of a scaffold (made of a biomaterial) with growth factor and/or cells
to obtain a tissue that presents the same properties as the original one.

In this context, characterizing the bone-to-tendon interface properties and
its 3D sub-architecture is primordial. Towards this goal, high-resolution 3D
contrast-enhanced microfocus computed tomography (CE-CT) is, thanks to its
high spatial and contrast resolution, a powerful tool for the visualization of both
the unmineralized and mineralized cartilage, along with the bone [5]. However,
it remains challenging to discriminate automatically between the mineralized
cartilage and the bone in both high-resolution micro-CT and CE-CT images, as
they have similar greyscale values. Indeed, when using only greyscale-based seg-
mentation, it is very difficult to accurately detect the boundaries between these
two mineralized tissues. Currently, manual delineation of the two tissues is still
used to allow for its 3D structural analysis and that of the bone. Nevertheless,
this is time consuming and highly user-biased.

Interestingly, mineralized cartilage has a discriminant porous texture in com-
parison to bone, because of the presence of chondrocyte lacunae. Consequently,
our goal is to develop an automatic mineralized cartilage segmentation tool
exploiting its texture, shape and 3D consistency. For this purpose, we use a
fully convolutional neural network [6], named U-net, which is state-of-the-art for
the semantic segmentation in 2D and 3D biomedical images [7,8]. The 3D U-net
model is compared to the 2D U-net model and the impact of reducing the 3D
image resolution for GPU memory limitations is discussed.

To the best of our knowledge, no fully automatic segmentation algorithms
have been proposed for the segmentation of mineralized cartilage from bone.
Indeed, all the related works mentioned below focus on the easier unmineral-
ized cartilage segmentation. Most works focus on the unmineralized cartilage
versus bone segmentation in MR images. To this end, classical medical image
segmentation approaches relying on active shape models [9] and atlas databases
[10] have been proposed. However, those methods perform poorly in case of
high ROIs shape variability and require a relatively long segmentation times at
inference. In contrast, deep learning algorithms are supposed to be robust to
shape and appearance variations if those variations are captured in the train-
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ing database and they are fast at inference. In a first study on deep-learning
based knee cartilage segmentation, they used a triplanar CNN [11]. This was
followed by 2D encoder-decoder architectures such as Segnet [12], U-net [13]
and U-net complemented with conditional random fields to promote 3D con-
sistency [14]. Very recent papers use 3D approaches for knee cartilage segmen-
tation, such as 3D U-net [15] or a variant of it, namely µ-Net [16]. Only few
methods have been proposed to automatically segment unmineralized cartilage
on CT images. They include an atlas-based segmentation of acetabular carti-
lage [17] and a registration-based segmentation of knee articular cartilage [18]
on CE-CT images. One CNN-based unmineralized cartilage segmentation on
high-resolution micro-CT images has been proposed. It uses a 2D U-net model
followed by a 3D refinement. However, the method has only been presented in a
one-page abstract and is therefore hard to reproduce [19].

2 Materials and Methods

2.1 Data Acquisition, Annotation and Preprocessing

The training and test data for the U-net consist of 3D high-resolution micro-
CT images of 12 murine bone-to-Achilles tendon interfaces. After harvest, all
the samples were fixed in 4% paraformaldehyde during 16 h and then stored
at 4 ◦C in a phosphate-buffered saline solution (PBS). Next, the samples were
dissected in order to isolate the tendon and the bone, and to remove all tissue
that was unnecessary for the purpose of the experiments. A Phoenix Nanotom
M - Computed Tomography System (GE Sensing & Inspection Technologies
GmbH, Wunstorf, Germany) was used with the following scanning parameters:
60 kV, 87 µA, 1.25 µm voxel size, 2400 images, 500 ms exposure time, 20 min
scan time.

The mineralized cartilage has been manually annotated on all the slices of the
micro-CT images by an expert using the CTAn software from Bruker MicroCT
(Kontich, Belgium). Those annotations serve as ground truth in this work and
they are stored as 12 3D binary masks with the same size and resolution as the
3D micro-CT images.

The original isotropic voxel size is 1.25 µm. The 12 3D datasets have been
cropped to 1024 × 1024 × 256 voxels around the region of interest (i.e. min-
eralized cartilage and bone). The ROI is fully contained in every 1024 × 1024
slice. The bottom slices contain only mineralized cartilage (and no bone) whereas
mineralized cartilage and bone start to be difficult to distinguish visually on the
upper slices. This preprocessing is necessary since the memory limitations of
the GPUs is a bottleneck for deep learning algorithms with such high-resolution
data. Nvidia 1080Ti 11 GB GPUs are used.

2.2 Network Architecture

The 3D U-net fully convolutional neural network considered in this study is
the same as in Brion et al. [8]. More precisely, the network follows the same
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architecture (i.e. number and composition of layers) as in Ronneberger et al.
[20], where the 3 × 3 convolutions, the 2 × 2 max-pooling and the 2 × 2 up-
conversion operations have been replaced by their 3 × 3 × 3 and 2 × 2 × 2
counterparts, as in Ciçek et al. [6]. The 3D input goes through a contracting
path to capture context and an expanding path to enable precise localization.
In the last layer, a sigmoid is applied and the network outputs the probability
for each voxel to belong to the mineralized cartilage. To obtain the final binary
segmentation mask, a threshold of 0.5 is chosen. The main advantage of fully
convolutional neural networks is that they output a prediction with the same
size as the input. Hence, the thresholded output of the network directly gives
the desired prediction of the ROI with the same size and resolution as the input
3D data.

The network is trained with the Dice loss. The optimization algorithm used
is Adam with learning rate 10−4. The number of epochs is chosen such that
convergence is reached and without using early-stopping. The hyper-parameters
mentioned here are the same as in [8] and showed to be satisfactory on the data
used in this work. For this reason, no validation set is considered here. We only
used two sets: a training set and a test set both containing 6 3D images. The
batch size depends on the learning strategy that is used, but has not been tuned.

The results of 3D U-net are compared to those of 2D U-net. The 2D archi-
tecture is exactly the same as the 3D one presented above, where the 3 × 3 ×
3 convolutions, the 2 × 2 × 2 max-pooling and the 2 × 2 × 2 up-conversion
operations have been replaced by their 3 × 3 and 2 × 2 counterparts. Online
data augmentation (i.e. rotation, shift, shear, flip) is implemented for both 2D
and 3D approaches.

2.3 Learning Strategies

Two major interests of the considered datasets are (i) their high-resolution allow-
ing an accurate tissue visualization, in particular for the porous texture charac-
terizing the mineralized cartilage region, and (ii) their ability to capture the 3D
architecture of the imaged tissues in a uniformly sampled 3D grid, in opposi-
tion to histology where only stacks of 2D slices are available. However, such 3D
large high-resolution data are particularly challenging for deep learning models
in terms of training time and GPU memory limitations. In order to deal with
those constraints, three strategies could be applied.

1. The high-resolution 3D image is uniformly downsampled in every dimension.
A 3D model can then be trained and tested on the full 3D image directly.
This solves the GPU memory limitation at the expense of a lower resolution.

2. The 3D image is split in 2D slices along a chosen dimension. In this case, a 2D
model can be trained and tested at high-resolution, but the 3D consistency
is no more ensured.

3. The high-resolution 3D image is split in 3D patches without reducing their
resolution. However, this approach requires many training patches in order
to capture the variability of the full 3D image. This increases considerably
the training time.
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In this work, the 12 1024 × 1024 × 256 voxels 3D datasets have been down-
sampled by a factor 4 in every dimension, resulting in 256 × 256 × 64 voxels 3D
datasets. The downsampling factor has been chosen in order to visually preserve
the porous texture of the mineralized cartilage. The same operations are per-
formed on the annotation 3D binary masks. A 3D U-net model is then trained
on 6 of those low resolution 3D datasets and tested on the 6 remaining ones.
In order to determine whether the 3D approach improves the segmentation per-
formances compared to the 2D approach, a 2D U-net model has been trained
on 384 low resolution images (6 3D datasets multiplied by 64 slices in each 3D
dataset) of 256 × 256 pixels. The 2D test predictions are stacked in order to
reconstruct a 3D binary mask and compare it with the 3D binary mask pre-
dicted with the 3D approach. In order to evaluate the impact of reducing the
spatial image resolution, a 3D U-net model has also been trained on 96 high-
resolution patches (16 patches on each of the 6 3D datasets) of 512 × 512 × 16
voxels. The sampling of the patches in the 1024 × 1024 × 256 high-resolution
3D datasets is the following. The patches are sampled uniformly in the third 3D
image dimension (i.e. a patch every 16 slices in order to cover the 256 slices) and
randomly in the two first dimensions, provided that at least one voxel belongs to
the cartilage in the patch. The batch size is set to one for the 3D approaches and
64 for the 2D approach. This is the maximum batch size allowed by the GPU
memory limitation. A summary of the three strategies properties is provided in
Table 1.

Table 1. Characteristics and training hyper-parameters for the three learning strategies.

Parameters Strategy 1 Strategy 2 Strategy 3

Model 3D U-net 2D U-net 3D U-net

Input data size 256 × 256 × 64 256 × 256 512 × 512 × 16

Batch size 1 64 1

Number of training samples 6 384 96

Training time per epoch ∼40 s ∼3 s ∼640 s

Number of epochs ∼150 ∼150 ∼100

2.4 Performance Assessment

We use a two-fold cross-validation (with 6 3D datasets in each fold) in order to
obtain the predictions on the 12 3D datasets. The absence of a validation set is
motivated in Sect. 2.2. In order to evaluate our results, we use the Dice similarity
coefficient (DSC), which measures the overlap between two binary masks. More
specifically,

DSC =
2|A ∩ B|
|A| + |B| , (1)
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where A and B are the predicted and ground truth segmentation binary masks.
The DSC reaches respectively zero and one for no or complete overlap between
both binary masks. The low resolution ROIs predictions of the deep learning
model data are upsampled by a factor 4 before the DSC computation. Hence,
the DSC are computed in the original high-resolution.

3 Results and Discussion

3.1 Quantitative Comparison of the Learning Strategies

Table 2 presents the segmentation performances obtained with the three consid-
ered learning strategies. The 3D U-net approach trained on the low resolution
datasets reaches an average DSC close to 0.85. This corresponds to visually
acceptable segmentation outputs as shown in Figs. 1 and 2, which respectively
present the results on Set 2 (DSC = 0.889) and Set 3 (DSC = 0.836). The red
and blue regions correspond to the mineralized cartilage ROIs. In particular, in
Fig. 1d, the 3D U-net model is able to capture the complex mineralized cartilage
structure, while reasonably avoiding the bone. Three types of errors are mostly
present on the predicted ROIs.

1. Errors on the mineralized cartilage extremities. This can be observed in
Figs. 1e and 2e. The extremities of the ROIs are too long compared to the
manual annotations. A noteworthly point is that the annotations might also
be less accurate in those regions.

2. Errors in small isolated regions. This can be observed in Fig. 1f where a small
mineralized cartilage region is detected in a bone region.

3. Large errors on the external border of the bone. This can be seen on the bot-
tom of the bone region in Fig. 2d. This is explained by the fact that only
mineralized cartilage is present on the first micro-CT slices in the 3D image.
Bone progressively appears in the imaged structure as we go up in the stack
of slices. In the slices where bone starts to appear, the 3D U-net model over-
estimates the presence of mineralized cartilage. Again, the annotations might
have been less accurate in those regions.

Interestingly, the three types of errors appear equally on the three learning
strategies presented in this work. The alternative strategies reach an average
DSC performance close to 0.85 as well, with one failure case on Set 9 for the third
strategy. Since the DSC standard deviation is high compared to the difference of
average DSC between the approaches, we cannot identify a significantly better
strategy. Hence, a qualitative comparison of the learning strategies is provided
in the next sections.

But, before moving to a qualitative comparison, it is worth noting that the
DSC only converges to 0.903 (and not 1) on the training set for the first strategy
despite the predictions being visually consistent with the ground truth. We might
expect that the average DSC measured when comparing annotations provided
by different annotators also saturates around 0.9.
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Table 2. Comparison of the DSC on the high-resolution test 3D datasets for the dif-
ferent U-net training strategies. Strategy 1: 3D U-net on the low resolution 256 × 256
× 64 3D datasets; Strategy 2: 2D U-net on the low resolution 256 × 256 images; Strat-
egy 3: 3D U-net on the high-resolution 512 × 512 × 16 patches. DSC: Dice Similarity
Coefficient. SD: Standard Deviation.

Datasets Strategy 1 Strategy 2 Strategy 3

Set 1 0.881 0.877 0.858

Set 2 0.889 0.877 0.879

Set 3 0.836 0.850 0.872

Set 4 0.787 0.806 0.812

Set 5 0.868 0.879 0.856

Set 6 0.858 0.857 0.881

Set 7 0.842 0.880 0.816

Set 8 0.878 0.867 0.878

Set 9 0.786 0.860 0.606

Set 10 0.884 0.879 0.899

Set 11 0.861 0.794 0.804

Set 12 0.848 0.781 0.779

Mean ± SD 0.851 ± 0.033 0.851 ± 0.035 0.828 ± 0.076

3.2 Qualitative Impact of the 3D Consistency

Based on Table 2, the 3D U-net model does not show a significant improvement
of the DSC performances compared to a 2D U-net approach. The 3D model is
however harder to train and test since it is fed with 3D input data, reaching
faster the memory bottleneck of the GPU. On the other hand, the 2D approach
does not ensure the 3D consistency of the segmentation. This is shown in Fig. 3.
Three consecutive slices of Set 2 are shown on it. A discontinuity is present in
the segmentation of adjacent slices with the 2D approach, which is not desirable.

3.3 Qualitative Impact of a Reduction in the Spatial Image
Resolution

In the first learning strategy, the resolution of the 3D micro-CT datasets is
reduced by a factor 4 in every dimension. The ROI prediction is performed on
the low resolution datasets as well. In order to report the DSC performance,
the low resolution prediction is upsampled to the original resolution. This leads
to a rougher edge of the segmented ROI as shown in Fig. 4. Indeed, the low
resolution 3D approach is not able to segment accurately the extremity of very
irregular regions such as the one shown in Fig. 4c. However, those errors are
small compared to the errors presented in Sect. 3.1, as shown in Table 2. Hence,
we conclude that reducing the image resolution by a factor 4 preserves most of
the information (e.g. the image texture) required to discriminate between the
mineralized cartilage and bone.
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Fig. 1. Comparison of mineralized cartilage segmentations between the ground truth
in red (GT) and the prediction of 3D U-net in blue (strategy 1: low resolution) for the
slices indices 64, 128, 192 of Set 2.
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Fig. 2. Comparison of mineralized cartilage segmentations between the ground truth
in red (GT) and the prediction of 3D U-net in blue (strategy 1: low resolution) for the
slices indices 64, 128, 192 of Set 3.
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Fig. 3. Comparison of mineralized cartilage segmentations between the 2D U-net in
red (strategy 2) and the 3D U-net in blue (strategy 1: low resolution) on a detail of
Set 2.

Fig. 4. Comparison of mineralized cartilage segmentations between the patch-based
3D U-net in red (strategy 3) and the low resolution 3D U-net in blue (strategy 1) on
a detail of Set 3.
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4 Conclusion and Future Perspectives

To our best knowledge, this is the first study presenting a deep learning strategy
for automatic segmentation of mineralized cartilage from bone in high-resolution
micro-CT images. For this purpose, we use a fully convolutional neural network,
i.e. U-net. The average DSC computed on 12 3D micro-CT datasets reaches
0.85 compared to a manually annotated ground truth. The 3D U-net model
is compared to the 2D U-net model. The difference in DSC performance is not
statistically significant. However, the 3D approach ensures better 3D consistency
in the predicted segmentation. The resolution of the micro-CT datasets have
been reduced by a factor 4 in every dimensions in order to reduce the training
time and to better manage the GPU memory limitations. No major difference
in DSC has been observed compared to a 3D U-net trained on full resolution 3D
micro-CT patches. Importantly, manual segmentation of mineralized cartilage
can be subjected to inter-expert variability. This point has not been considered in
the current work and would improve the performance assessment of the proposed
methods. Also, the robustness of the deep learning segmentation methods to
errors in the annotations should be further investigated since getting high quality
annotations is challenging on these kind of datasets.
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