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Impact of Cereal Seed Sprouting on Its Nutritional
and Technological Properties: A Critical Review
Elien Lemmens , Alice L. Moroni, Jennifer Pagand, Pieter Heirbaut, Anneli Ritala, Yann Karlen, Kim-Anne LÊ, Hetty C. VanQ1

Den Broeck, Fred J.P.H. Brouns, Niels De Brier, and Jan A. Delcour

Abstract: Sprouting induces activation and de novo synthesis of hydrolytic enzymes that make nutrients available for

Q2

plant growth and development. Consumption of sprouted grains is suggested to be beneficial for human health. Positive
consumer perceptions about sprouted cereals have resulted in new food and beverage product launches. However, because
there is no generally accepted definition of “sprouting,” it is unclear when grains are to be called sprouted. Moreover,
guidelines about how much sprouted grain material food products should contain to exert health benefits are currently
lacking. Accordingly, there is no regulatory base to develop appropriate food labeling for “sprouted foods.” This review
describes the nutritional and technological properties of sprouted grains in relation to processing conditions and provides
guidelines to optimize sprouting practices in order to maximize nutritive value. Relatively long sprouting times (3 to 5
days) and/or high processing temperatures (25 to 35 °C) are needed to maximize the de novo synthesis and/or release
of plant bioactive compounds. Nutrient compositional changes resulting from sprouting are often associated with health
benefits. However, supportive data from clinical studies are very scarce, and at present it is impossible to draw any
conclusion on health benefits of sprouted cereals. Finally, grains sprouted under the above-mentioned conditions are
generally unfit for use in traditional food processing and it is challenging to use sprouted grains as ingredients without
compromising their nutrient content. The present review provides a basis for better defining what “sprouting” is, and to
help further research and development efforts in this field as well as future food regulations development.

Keywords: cereal, germination, malting, sprouting, sprouts

Introduction
Cereals are members of the family of the grasses, called

Gramineae. They produce dry, 1-seeded fruits called grains, which
consist of a fruit coat (pericarp) and a seed. The seed itself con-
sists of the embryo (germ), the endosperm, the nucellar epidermis
and the seed coat. The chemical constituents of cereal grains are
localized in compartments that are separated from each other by

Q3

cell walls or other barriers (Delcour & Hoseney, 2010).
Sprouted grain usually designates a seed with a visible radicle. In

recent years, the food industry has increasingly launched products
containing sprouted grains or flours made thereof. Such products
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vary from baked goods to pasta, breakfast cereals, snacks, and bev-
erages. An increasing positive attitude of consumers toward such
products has been linked to expectations about “natural”, “better
taste”, “more nutritious”, and “healthier” (Mattucci, 2015). In
addition, sprouted grains have been communicated as organic,
vegan, genetically modified organism free, and whole grain
(Mattucci, 2015). These positive connotations are in some terri-
tories combined with a “whole grain content” claim (2018; 2018). Q4

Most of the “sprouted grains” product launches took place in
Europe and North America, mainly bakery products and in North
America also snacks. In the Asia-Pacific region, most launches
of products containing sprouted grains have been ready-to-drink
products. Quinoa (a pseudocereal) and wheat are the most fre-
quently used sprouted grains. Sprouted buckwheat (also a pseudo-
cereal), barley, and millet have been used, but much less frequently
(Mattucci, 2015).

To date, there is no globally recognized definition and regu-
lation of “sprouting” (what is the underlying process? What are
the criteria of a “sprouted whole grain”?). The lack of proper
definition and regulation indicates that there is also no base to use
“sprouted grain” content or benefit claims.

This paper provides an overview of the biochemical and physic-
ochemical changes that take place during sprouting of sorghum,
millet, barley, wheat, brown rice, rye, and oats, thereby taking
into account different processing conditions. These changes are
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placed in perspective of health effects that may result from regular
consumption. Furthermore, the technological implications and
potential pitfalls of the use of sprouted cereals during product
making are discussed. In addition, an attempt is made to bring
more clarity to the definition of “sprouting” and the regulatory
context of foods containing “sprouted grain.”

Definition and Regulatory Status of the Sprouting
Process and Products Thereof

Various definitions of germination, sprouting, and malting exist.
Their exact wordings vary with the discipline and the product ap-
plication (Old Whole Grain Council, 2017). The terms “germina-
tion,” “sprouting,” and “malting” are frequently used as synonyms
(Hassani, Procopio, & Becker, 2016; Hübner & Arendt, 2013; A.
Singh & Sharma, 2017). In this section, we propose to harmonize
the terminology based on plant physiology and the potential appli-
cations of the products obtained by such processes. In a final part,
we present an overview of the regulatory status of “germinated
grains,” “sprouted grains,” and “malt” in different countries.

From a plant physiological point of view, germination of a
seed starts with the uptake of water and is completed with the
appearance of the radicle (Nonogaki, Bassel, & Bewley, 2010).
The complex physical and metabolic events during germination
can be grouped into 3 phases mainly linked to water uptake by
the seed (Figure 1). In phase I, the seed is steeped in water and cell
material and matrices become fully hydrated (imbibition). Further
water uptake is only limited in phase II, which consists of the
activation of the endogenous metabolism necessary for mobilizing
reserve material and radicle growth. The radicle emerges at the
end of phase II and the germination “sensu stricto” is terminated.
In phase III, the seed takes up further water, major mobilization of
reserve material occurs, and the seedling starts to grow (Nonogaki
et al., 2010). During this phase, nutrients are made available for,
for example, respiration, fueling the seedling growth. Initially, re-
serve components, for example, carbohydrates and triacylglycerol,
mainly concentrated in the scutellum of the embryo, are hy-
drolyzed and metabolized. In a next step, the reserve components
in the endosperm are utilized for plant development and growth.
The consumption of the reserve components by the developing
embryo during sprouting leads to respiratory losses, and thus, to a
decrease in grain dry matter ranging from 3.5% to 5.0% (Briggs,
Hough, Sevens, & Young, 1971). These losses mainly depend
on the sprouting conditions applied with higher temperatures
and longer times directly leading to higher respiration losses (see
section “Biochemical and Physicochemical Changes in Cereal
Grains as a Result of Sprouting”) (Bewley, Bradford, Hilhorst,
& Nonogaki, 2013; Briggs et al., 1971). The reader interested in
learning more about the physiology of the germination process is
referred to the work of Nonogaki et al. (2010).

The process of germination hence forms the basis for
producing sprouted grains, shoots, and cress, as well
as malt. The European Sprouted Seeds Association
(ESSA) provides the following definitions for sprouts,
shoots and cresses: “Sprouts means the product ob-
tained from the germination of seeds and their devel-
opment in water or another medium, harvested before
the development of true leaves and which is intended
to be eaten whole, including the seed”; “Shoots are
sprouted seeds obtained from the germination and the
development of seeds to produce a green shoot with
very young leaves and/or cotyledons. The shoots and

the leaves are harvested at the end of the production
process and the final product does not include the seed
integuments and the roots”; “Cresses are sprouted seeds
obtained from the germination and development of
true seeds in soil or in hydroponic substrate, to produce
a green shoot with very young leaves and/or cotyle-
dons. Cress is sold as the entire plants in its substrate or
soil.” (ESSA, 2016)

Malting is a specific form of sprouting. It produces fermentable
extracts for the brewing and distilling industries. The malting
process is highly industrialized and controlled. It consists of
3 subsequent steps: steeping to hydrate and activate the seed
(germination), sprouting, and kilning. The latter stops seedling
growth and forms flavor compounds and color (Kunze, 2010).
The malting industry focuses on the length of the acrospires for
defining the length of the sprouting process, which is considered
to be complete when the acrospire is about 33% to 75% of the
length of the grain (Delcour & Hoseney, 2010).

Both nonkilned malts and sprouted grains are products in the
above-mentioned phase III. The main differentiation resides in (i)
the (bio)chemical changes induced in the grains, (ii) the acrospire,
which is removed in malts, and (iii) the typical way the malted
grains are kilned (Kunze, 2010). A distinction can be made be-
tween nondiastatic and diastatic malts. The former have no residual
enzyme activity and are mainly used in the bakery industry for col-
oring and flavoring, while the latter have enzymatic activity to,
for example, hydrolyze starch into fermentable sugars during the
mashing process (Ezeogu, 2008; Manley, 2011). Malts used for beer
brewing have to meet well-defined quality criteria such as extract
yield, diastatic power, total, soluble, and free amino nitrogen con-
tents, and Kolbach index. Furthermore, the malt has to result in
wort of a specified color. Finally, the residual β-D-glucan content
in the malt has to be low enough to ensure efficient wort filtration
(Briggs et al., 1971; Jin, Du, Zhang, Xie, & Li, 2012; Karababa,
Schwarz, & Horsley, 1993; Kunze, 2010; Lee & Bamforth, 2009;
Ullrich, 2011).

Surprisingly, in contrast to what is the case for malting, there
are guidelines neither for the (bio)chemical changes, nor for
the physical removal of acrospires for sprouting grains for food
production.

In practice, both sprouted grains (meeting the above European
Sprouted Seeds Association [ESSA] definition) and malts are used
for food and beverages. A search on the regulatory status of both
terms revealed a lack of clarity in the guidelines and definitions (see
Table 1). Indeed, sprouting and germination are used as synonyms
and no specific indications on how to approach the processes and
products thereof are provided.

According to the Codex Alimentarius (1978, Appendix IV),
a germinated grain is one which has been sprouted or in which
the process of germination is visible within the embryo. This
definition has specifically been proposed as a draft standard for
maize. However, it does not clarify which modifications should
be visible in the embryo for calling it “germinated” and one can
only assume that this definition maintains that “a grain which has
been sprouted” shows the radicle.

The European Union (EU) regulation defines sprouted grains as
grains in which the embryo has undergone clearly visible changes
(EU 1272/2009), thereby focusing on the agricultural aspect of
sprouting as a quality characteristic in intervention trade (EU
742/2010). Neither a specific reference to which changes should
be observed is given nor are clear guidelines for approaching the
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Figure 1–Water uptake by seed or seedling as a function of physical and metabolic events occurring during germination (phase I and phase II) and
during early seedling growth (sprouting) (phase III) (Nonogaki et al., 2010, with permission from Plant Science).

process of obtaining sprouted grains presented. The main techni-
cal aspect of the EU regulation refers to guidelines for producing
sprouts in a safe and hygienic manner (No 208/2013). For ex-
ample, in the U.S.A., Turkey, and Russia, malt is described as a
grain that has been germinated “under controlled conditions” and
dried.

A further point of attention is whether sprouted grains
comply with the whole grain definition put forward by AACC
International (2008), which reads as follows: “Malted or sprouted
grains containing all of the original bran, embryo, and endosperm
shall be considered whole grains as long as sprout growth does not
exceed kernel length and nutrient values have not diminished.
These grains should be labeled as malted or sprouted whole grain.”
This definition provides no clear guidelines on the extent to which
the biochemical modifications have impacted the nutritional
composition of the grain. Evidently, it is not possible to sprout
grains that do not contain the original embryo, bran, and en-
dosperm tissues. The extent of sprouting and the grain treatments
after sprouting (for example, partial removal of sprouts and/or
bran) together determine whether or not the sprouted material
can be considered whole grain. In addition, the comprehensive
HEALTHGRAIN definition of whole grain is similar to the one
of AACC International. However, the former is more closely in
line with industrial milling practices, since it includes recombina-
tion of milling streams (for example, refined flour and bran) as well
as the opportunity of removing some of the outer part of grain
kernels for sanitation reasons. This definition reads as follows:
“Whole grains shall consist of the intact, ground, cracked or flaked
kernel after the removal of inedible parts such as the hull and husk.
The principal anatomical components: the starchy endosperm,
germ and bran are present in the same relative proportions as
they exist in the intact kernel. Small losses of components that is,

less than 2% of the grain or 10% of the bran that occur through
processing methods consistent with safety and quality are allowed”
(van der Kamp, Poutanen, Seal, & Richardson, 2014). A more
recent definition of the Healthgrain Forum of the term “whole
grain food” underlines that there is no need for restricting the type
of processing for whole grains, unless it leads to a reduction in the
dietary fiber content by more than 10%. The latter is then taken to
be as an indicator of the amount of beneficial components in the
whole grain (Ross et al., 2017). Therefore, this “cutoff ” of 10%
fiber reduction may well be applied to define the extent of modifi-
cations allowed during germination for still considering a sprouted
grain as a sprouted whole grain. However, an inherent difficulty
associated with this approach is that—in commercial trade—the
dietary fiber content of the nonsprouted cereal would have to be
specified. In addition, the “whole grain food” definition does not
contain any criteria on changes in other cereal nutrients such as
those relating to vitamin content, antioxidant activity, and mineral
bioaccessibility.

Biochemical and Physicochemical Changes in Cereal
Grains as a Result of Sprouting
Impact of sprouting on the starch content in cereal grains
and its digestibility

Sprouting initiates the de novo synthesis of starch degrading
enzymes, such as α-amylase and α-glucosidase, in the scutellum
and aleurone cells (Ayernor & Ocloo, 2007; Duke, 2009; Saman,
Vazquez, & Pandiella, 2008; J. Xu, Zhang, Guo, & Qian, 2012).
β-Amylase is in part bound by disulfide linkages to the protein
in the starchy endosperm of mature grains, and is released, and
hence, activated during sprouting (Agu & Palmer, 1997; Buttimer
& Briggs, 2000; Duke, 2009). As a result of sprouting, the total
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Table 1–Regulatory definitions of sprouted grains and malt in various governmental agencies.

Territory Sprouted grains Malt

U.S.A. NA (not available) Code of Federal Regulations Title 21 - Sec.
184.1445: “Malt syrup (malt extract): Malt is the
product of barley (Hordeum vulgare L.)
germinated under controlled conditions”

Australia Grain Trade Australia – Guideline N°3: Sprouted
grains are those grains in which the covering of
the embryo is split. It includes any further
advanced stage of growth of the embryo.

NA

China NA NA
Malaysia NA P.U.(A) 437 (1985) - FOOD ACT 1983 - FOOD

REGULATIONS 1985. Definition: ““Malt" means
the grain of barley, or of any other cereal that has
germinated and has been subsequently dried”

Russia NA Grain sprouted and dried under specific conditions
Turkey NA NA Definition for beer malts: “Dried and roasted

form of grains, mainly barley, used in beer
production which is germinated with water under
controlled conditions”

EU
� No 208/2013

Safety and hygiene for production
Sprouts (Article 2(a))
(standard EN 15587)

� No 1272/2009, Part III, Annex I
“Sprouted grains:. [ . . . ] embryo has undergone

clearly visible changes which make it easy to
distinguish the sprouted grain from the normal
grain”

NA

Denmark, Estonia, Finland,
Germany, Poland

Follow EU Follow EU (NA)

Spain Follow EU Royal Decree No. 678/2016 “Malt: final product
obtained from grains of barley or other cereals
once subjected to the malting process: soaking,
germination and subsequent drying and toasting
in technologically suitable conditions. It must be
designated with the name of the origin cereal”

United Kingdom Follow EU Local Q&A guidance (Agency, 2013) Follow EU (NA)

Not available (NA).

starch content decreases by 5% to 15% in brown rice sprouted for
1 to 3 days at 30 to 35 °C (Chungcharoen, Prachayawarakorn,
Tungtrakul, & Soponronnarit, 2015; J. Xu et al., 2012), in barley
sprouted for 4 days at 17 °C (Vinje, Duke, & Henson, 2015), and
in oat sprouted for 6 days at 16 °C (Peterson, 1998). Moreover,
a much higher decrease in total starch content (35% to 50%) has
been observed in sorghum (Elmaki, Babiker, & El Tinay, 1999)
and millet (Mbithi-Mwikya, Van Camp, Yiru, & Huyghebaert,
2000) sprouted for 4 days at 30 °C, in rice sprouted for 5 days at 25
to 35 °C (Ayernor & Ocloo, 2007), and in oat sprouted for 4 days
at 16 °C (Tian et al., 2010). The enzyme actions finally lead to the
partial hydrolysis of starch into glucose, maltose, and maltotriose
and a wide range of dextrins (Ayernor & Ocloo, 2007; Saman
et al., 2008), and hence, increase the sugar content (Agu & Palmer,
1997; Ayernor & Ocloo, 2007; Coulibaly & Chen, 2011; Duke,
2008; J. Xu et al., 2012). The sugars formed during sprouting
of cereals serve as an energy source for the developing embryo
(see section “Definitions and Regulatory Status of the Sprouting
Process and Products Thereof”) (T.Y. Chung, Nwokolo, & Sim,
1989; Coulibaly & Chen, 2011; Elmaki et al., 1999).

Sprouting not only impacts starch content but also its nutritional
properties that cannot be assessed based on its content alone.
Based on its digestibility, starch can be categorized into rapidly
digestible, slowly digestible, and enzyme-resistant starch. The
latter escapes digestion in the small intestines and is fermented by
the colonic bacteria to provide energy for the colonocytes (Perera,
Meda, & Tyler, 2010). However, there is no consensus on the
impact of sprouting on in vitro starch digestibility in the literature.

J. Xu et al. (2012) stated that the process of sprouting increases
the proportion of slowly digestible starch with 14%, and Cornejo,
Caceres, Martı́nez-Villaluenga, Rosell, and Frias (2015) even that
the in vitro starch digestibility decreases by 58% in sprouted brown
rice bread. The authors hypothesized that the sprouting process
increases the relative portion of starch crystalline regions since the
amorphous ones are more susceptible to amyloytic action. The for-
mer are less accessible for pancreatic amylase, and thus, hydrolyzed
at a slower rate in the gastrointestinal tract (Cornejo et al., 2015; J.
Xu et al., 2012). In contrast, many studies have shown that starch
digestibility increases as a result of sprouting. Brown rice sprouted
for 2 days at 30 °C and subsequently boiled contains 20% to 30%
more rapidly digestible starch than its nonsprouted counterpart
(H. Chung, Cho, Park, Kweon, & Lim, 2012; You et al., 2016).
Damaged granules and partially degraded starch molecules are
more susceptible to enzymatic attack during digestion (H. Chung
et al., 2012; Noda et al., 2004; You et al., 2016). Further, the starch
digestibility increases from 17% to 36% in sprouted (3 days at 25 to
30 °C) and boiled millet (Archana, Sehgal, & Kawatra, 2001). In
millet, this has mainly been attributed to the breakdown of antin-
utrients such as amylase inhibitors, phytic acid, and polyphenols
that inhibit α-amylase action. Sprouted cereals are generally better
digestible because of their enzymatically damaged starch granules,
thin cell walls, and higher content of readily available sugars (Yan
et al., 2010), making them especially suitable for the production of
foods for infants and elderly (Correia, Nunes, Barros, & Delgadillo,
2008; Srivastava, Singh, & Shamim, 2015; Tizazu, Urga, Abuye, &
Retta, 2010).
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Impact of sprouting on the protein content in cereal grains
and its digestibility

The protein content of different cereals typically ranges from
8% to 16% of dry mass (dm) (Donkor, Stojanovska, Ginn, Ashton,
& Vasiljevic, 2012). Sound cereal grains have low endogenous
peptidase activity levels, which increases substantially after 1 day of
sprouting (Elmoneim, Elkhalifa, & Bernhardt, 2010; Faltermaier,
Zarnkow, Becker, Gastl, & Arendt, 2015; Kolodziejczyk &
Michniewicz, 2004). A 2- to 5-fold increase in peptidase activity
has been observed in sorghum (Elmoneim et al., 2010), barley
(Osman et al., 2002), rye (Kolodziejczyk & Michniewicz, 2004),
oats (Mäkinen, Zannini, & Arendt, 2012), and wheat (Faltermaier
et al., 2015; Seguchi, Uozu, Oneda, Murayama, & Okusu, 2010)
when sprouted for 3 to 7 days at 15 to 27 °C. Endopeptidases
are produced and secreted from the aleurone layer and scutellum
during sprouting. They are essential for seedling development
as they degrade storage proteins and activate functional proteins
(for example, β-amylase) (Faltermaier et al., 2015; Osman et al.,
2002). Endopeptidases have an optimal activity at pH 3.5 to
6.5 and at 40 to 50 °C (Osman et al., 2002; Schwalb, Wieser,
& Koehler, 2012). Proteolysis is more pronounced after longer
sprouting times (minimum 2 days) and at higher temperatures (20
to 28 °C) (Agu & Palmer, 1997; Cáceres, Martı́nez-Villaluenga,
Amigo, & Frias, 2014; Koehler, Hartmann, Wieser, & Rychlik,
2007). In general, while sprouting results in protein hydrolysis, it
does not cause relevant changes in total protein content (Cáceres
et al., 2014; T.Y. Chung et al., 1989; Kaur, Singh, & Singh, 2002;
Ogbonna, Abuajah, Ide, & Udofia, 2012; Swieca & Dziki, 2015;
Van Hung, Maeda, Yamamoto, & Morita, 2011; Vis & Lorenz,
1998; J. Xu et al., 2012). However, some studies have reported
a significant decrease of 3% to 10% of the protein content in
sprouted wheat (Seguchi et al., 2010), sorghum (Afify, El-Beltagi,
El-Salam, & Omran, 2012; Elmaki et al., 1999), or rice (Esa,
Kadir, Amom, & Azlan, 2011; Mohan, Malleshi, & Koseki, 2010;
Veluppillai, Nithyanantharajah, Vasantharuba, Sandrasegarampil-
lai, & Arasaratnam, 2009). In contrast, other studies have reported
an increase in protein content of 5% to 10% in sprouted barley
(Donkor et al., 2012; Teixeira, Nyman, Andersson, & Alminger,
2016), oats (Donkor et al., 2012), wheat (Donkor et al., 2012),
sorghum (Donkor et al., 2012), rye (Donkor et al., 2012), rice
(Donkor et al., 2012; Ohtsubo, Suzuki, Yasui, & Kasumi, 2005; Pal
et al., 2016; Watanabe, Maeda, Tsukahara, Kayahara, & Morita,
2004), and millet (Mbithi-Mwikya et al., 2000). The decrease in
protein content was attributed to leaching of water-soluble pep-
tides in the steeping water (Afify et al., 2012; Elmaki et al., 1999),
while the increase can probably be explained by loss of carbohy-
drates through respiration (Mbithi-Mwikya et al., 2000; Tizazu
et al., 2010). However, the relative differences in protein content
between sprouted and nonsprouted cereals have been reported to
be smaller than 10%, indicating that, in general, sprouting does
not substantially affect total protein content (see above).

Sprouting of brown rice (Mohan et al., 2010) or wheat
(Koehler et al., 2007) for 3 to 7 days at 20 to 25 °C does not
significantly change the level of albumins and globulins (less than
35 kDa). However, when sprouting oats, an increase in albumins,
which are rich in essential amino acids, has been observed (Klose
& Arendt, 2012; Tian et al., 2010). One can assume that the oat
storage proteins are degraded and solubilized during sprouting
(Tian et al., 2010). Furthermore, malting wheat has been reported
to cause a 3-fold increase in water-extractable protein levels (12
to 44 kDa). This increase especially occurs during the 1st and 2nd
day of sprouting (Xie, Jin, Du, & Zhang, 2014). It may be caused

by partial degradation of globulins, prolamins, and glutenins.
Indeed, substantial degradation of the high-molecular-weight
(HMW) storage proteins, consisting of glutenin subunits for
wheat (80 to 120 kDa) (MacRitchie, 1992) and (α-β)glutelin
subunits (19 to 39 kDa) (Van Der Borght et al., 2006) for rice, has
been observed when sprouting wheat (Boukid, Prandi, Buhler, &
Sforza, 2017; Koehler et al., 2007; Ohm, Lee, & Cho, 2016) and
brown rice (Mohan et al., 2010) for 3 to 7 days at 20 to 25 °C.

The storage proteins are not only degraded into peptides with
varying MW, but also into free amino acids of which the content
increases by a factor of 5 to 10 when sprouting oats (Klose, Schehl,
& Arendt, 2009), wheat (Ohm et al., 2016), brown rice (Ohtsubo
et al., 2005), and sorghum (Afify et al., 2012; Correia et al., 2008;
Tian et al., 2010) for 3 to 5 days at 13 to 30 °C. In particular, the
levels of essential amino acids isoleucine, leucine, lysine, threonine,
valine, and phenylalanine were highly increased (Klose et al., 2009;
Moongngarm & Saetung, 2010; Van Hung et al., 2011).

Protein solubility and digestibility is higher as a result of sprout-
ing. In this respect, a 1.2- to 2.0-fold increase in protein solubility
has been noted in barley (Osman et al., 2002) and sorghum (Afify
et al., 2012; Elmoneim et al., 2010) when sprouted for 3 to 5 days
at 17 to 27 °C. The protein digestibility increased from 34% to
55% in millet when sprouted for 4 days at 30 °C (Mbithi-Mwikya
et al., 2000) and from 50% to 65% to 65% to 80% in sorghum
(Afify et al., 2012; Elmoneim et al., 2010) and in barley (T.Y.
Chung et al., 1989) when sprouted for 3 to 6 days at 22 to 27 °C.
In contrast, Swieca et al. (Swieca & Dziki, 2015) did not observe
any changes in protein digestibility when sprouting wheat for
4 days at 20 to 25 °C. This fact was related to the increase in
the levels of free phenolic compounds (see section “Impact of
sprouting on the phytate content, the mineral redistribution, and
the mineral bioaccessibility in cereals”) during sprouting, which
can form insoluble complexes with proteins and reduce their
digestibility. Also, some phenolic compounds can adversely affect
the activity of the enzymes of the digestive tract and the affinity
for their substrates (Kroll, Rawel, & Rohn, 2003; Swieca & Dziki,
2015; Swieca, Gawlik-Dziki, Dziki, Baraniak, & Csyz, 2013).

In cereals, also “antinutrients” can reduce the digestibility of
proteins. Sorghum protein is 15% to 25% less digestible than other
cereal proteins because it contains condensed tannins and trypsin
inhibitors (Afify et al., 2012; Albarracı́n, González, & Drago,
2013; T.Y. Chung et al., 1989; Swieca & Dziki, 2015), which limit
digestibility of proteins by forming complexes with proteolytic
enzymes (Elmaki et al., 1999; Ogbonna et al., 2012). There is no
consensus on the impact of sprouting on the tannin content in
cereals. A decrease in tannin content of 8% to 60% has been noted
when sprouting sorghum (Elmaki et al., 1999; Ogbonna et al.,
2012; Osuntogun, Adewusi, Ogundiwin, & Nwasike, 1989) and
millet (Hemalatha, Platel, & Srinivasan, 2007; Mbithi-Mwikya
et al., 2000) for 2 to 7 days at 20 to 30 °C. This has been
attributed to leaching of tannin into the steeping medium, to
the activity of polyphenol oxidases, and to polymerization of
tannins, the latter resulting in loss of solubility (Mbithi-Mwikya
et al., 2000; Osuntogun et al., 1989; A.K. Singh, Rehal, Kaur,
& Jyot, 2015). In contrast, the tannin content increased 25% to
300% when sprouting wheat (Hithamani & Srinivasan, 2014) and
sorghum for 3 to 5 days at 20 to 32 °C (Ahmed, Mahgoub, &
Babiker, 1996; Hithamani & Srinivasan, 2014; R. Yang, Wang,
Elbaloula, & Zhenxin, 2016). This increase in tannin content has
been explained as resulting from de novo synthesis (Ahmed et al.,
1996; R. Yang et al., 2016). In addition, degradation of proteins
and polysaccharides results in the release of earlier undetectable
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tannins (R. Yang et al., 2016). Sprouting sorghum for 4 days at
room temperature (RT) reduced its trypsin inhibitor content by
about 40% (Ogbonna et al., 2012), probably due to increased
action of specific peptidases (Mbithi-Mwikya et al., 2000;
McGrain, Chen, Wilson, & Tan-Wilson, 1989; Murugkar, 2014;
Wilson, 1988).

Impact of sprouting on the lipid content in cereal grains
The lipid catabolism provides energy and carbon sources

needed for the biochemical and physicochemical modification
during seedling growth (T.Y. Chung et al., 1989; Coulibaly &
Chen, 2011; Elmaki et al., 1999; Inyang & Zakari, 2008; Kubicka,
Grabska, & Jedrychowski, 2011; Moongngarm & Saetung, 2010).
In this context, a 1.2- to 2.3-fold increase in lipase and lipoxyge-
nase activity levels occurs during sprouting of cereal grains due to
their de novo synthesis in the aleurone and/or scutellum (Kubicka
et al., 2011; Mäkinen et al., 2012; Uvere & Orji, 2002). However,
regular mature oat grains already have high levels of lipase activity
that remain unchanged or even decline during sprouting, which
is unique among the cereals (Mäkinen et al., 2012; Peterson,
1999). As a result of the lipase activities, a 8% to 15% decrease
in the lipid contents occurs in millet sprouted for 3 days at RT
(Suma & Urooj, 2014), in barley sprouted for 5 days at 22 °C
(T.Y. Chung et al., 1989), and in oat sprouted for 6 days at 16 °C
(Peterson, 1998). Increasing the sprouting temperatures leads to
a higher lipid breakdown. A decrease in total lipid content of
18% to 28% has been observed in millet sprouted for 2 days at
32 °C (Inyang & Zakari, 2008), in wheat sprouted for 2 days at
30 °C (Van Hung et al., 2011), and in brown rice sprouted for
1 to 5 day at 25 to 30 °C (Mohan et al., 2010; Watanabe et al.,
2004). Lipase catalyzes the degradation of triglycerides to glycerol
and free fatty acids (Kubicka et al., 2011; Peterson, 1998). The
glycerol and free fatty acids are mainly converted to hexose and
then sucrose, which is sent to the scutellum for use by the rootlet
and shoot (Bewley & Black, 1994).

Impact of sprouting on the dietary fiber matrix and
properties in cereal grains

A wide range of health effects are ascribed to dietary fiber
consumption, some of which related to their solubility, viscosity,
particle size, and/or water-holding capacity (Guillon & Champ,
2000). A high intake of insoluble dietary fiber improves stool
bulk and decreases gut transit time due to its relatively high
water-holding capacity (M.A. Eastwood, Robertson, Brydon, &
MacDonald, 1983), while especially soluble dietary fiber is one
of the principal substrates for microbial fermentation in the colon
(Cummings & Bingham, 1987; Damen et al., 2011). Principal
fermentation products include short-chain fatty acids (mainly
acetate, propionate, and butyrate), which can, in turn, promote
colonic health by providing energy for the colonocytes and by
decreasing gut permeability and motility (Bränning & Nyman,
2011). Furthermore, some dietary fibers, particularly viscous
soluble fiber, may impact on postprandial glycemic responses
(Weickert et al., 2006) and lower plasma lipid concentrations
(Keenan et al., 2007; Queenan et al., 2007).

Dietary fiber components are present in plant cell walls of cereal
grains. The cell walls of wheat and rye are mainly built up of
arabinoxylan (AX), while those of barley, oats, sorghum, and millet
are mainly built up of β-D-glucan (Autio et al., 2001; Narsih,
Yunianta, & Harijono, 2012). As a result of sprouting, these cell
wall polysaccharides are hydrolyzed by de novo synthesized enzymes
(Hübner, O’Neil, Cashman, & Arendt, 2010; Krahl, Zarnkow,

Back, & Becker, 2010; Mohan et al., 2010; Teixeira et al., 2016).
Degradation of these components facilitates the passage of, for
example, α-amylases and peptidases, which are synthesized in the
scutellum and aleurone, to their substrates (starch and protein,
respectively) in the starchy endosperm cells (Bewley et al., 2013;
Ranki & Sopanen, 1984).

Sprouting induces changes in composition and contents of in-
soluble and soluble dietary fiber (Hübner et al., 2010; Krahl et al.,
2010; Mohan et al., 2010; Teixeira et al., 2016), which can be
used to modify the dietary fiber content. In general, the impact
of process conditions on solubilization of dietary fiber depends on
the cereal cultivar, since differences in hydration rate affect enzyme
synthesis and activity (Cáceres et al., 2014; Teixeira et al., 2016).

While according to Teixeira et al. (2016) sprouting does not
significantly affect the total fiber content in barley grains when
sprouted for 3 days at 15 °C, Koehler et al. (2007) showed that
it decreases in wheat during the first 2 days of sprouting at 15
or 20 °C, while it remains fairly constant at higher temperatures
(25 and 30 °C). When sprouting wheat for 4 days, the total di-
etary fiber content expressed as a proportion of total grain mass
decreases (partly) due to the loss of reserve compounds (mainly
starch) (Koehler et al., 2007; Van Hung et al., 2011). The soluble
dietary fiber content increases 3- to 4-fold as a result of sprout-
ing, while the insoluble dietary fiber content decreases, especially
when long sprouting times are applied (5 to 7 days) (Koehler et al.,
2007). Below, the changes in content and properties of AX and
β-D-glucan as a result of sprouting are discussed in more detail.

Arabinoxylan. Endo-1,4-β-D-xylanases (EC 3.2.1.8, further
referred to as endoxylanases) are key enzymes in the breakdown
of AX. They are involved in the progressive degradation of aleu-
rone and endosperm cell walls during grain sprouting (Autio et al.,
2001; Corder & Henry, 1989; Hrmova et al., 1997). Low endoxy-
lanase activities have been detected in wheat (De Backer, Gebruers,
Van den Ende, Courtin, & Delcour, 2010), rye (Autio et al.,
2001; Kolodziejczyk & Michniewicz, 2004), and barley (Autio
et al., 2001; Li, Lu, Gu, Shi, & Mao, 2005; Sungurtas, Swanston,
Davies, & McDougall, 2004) in the early stages of sprouting, in-
creasing steeply until 5 to 6 days of sprouting (De Backer et al.,
2010; Li et al., 2005). However, the total AX contents do not
change (De Backer et al., 2010; Krahl et al., 2010; Teixeira et al.,
2016) or only slightly decrease (Li et al., 2005) during the sprout-
ing process. The water-extractable AX (WEAX) level in wheat
strongly increases during the first 4 to 6 days of sprouting, while
the water-unextractable AX (WUAX) level decreases, indicating
solubilization of the latter (De Backer et al., 2010; Krahl, Müller,
Zarnkow, Back, & Becker, 2009; Li et al., 2005). The increase
in WEAX levels upon germination is accompanied by a shift in
its MW distribution. Arabinoxylan-oligosaccharides (AXOS) and
WEAX (11 to 300 kDa) may provide human health benefits by
improving colon fermentation that is associated with a prolifera-
tion of probiotic bifidobacteria and lactobacilli (Broekaert et al.,
2011; Hughes et al., 2007; Zhong, Nyman, & Fak, 2015). During
the malting process (15 °C for 6 days at a grain moisture content
of 45%), the level of WEAX increases from 0.8% of dm in regular
spelt kernels to 1.6% of dm in their malted counterparts (Dervilly
et al., 2002). Krahl et al. (2009) found the WEAX content during
malting to increase from 0.8% of dm to 1.5% of dm in wheat and
from 1.4% of dm to 2.9% of dm in rye. Hydrolysis of WEAX is
boosted by steeping conditions allowing optimal endoxylanase ac-
tivity. Teixeira et al. (2016) showed that 40% to 85% of the WEAX
in barley is degraded into either simple sugars or oligosaccharides
by steeping at 35 °C in 0.4% v/v lactic acid. Finally, the total AX
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level and the WUAX level in wheat shoots increased as a result
of 4 days of sprouting due to deposition of AX in the newly syn-
thesized cell walls of the developing seedling (De Backer et al.,
2010).

β-D-Glucan. Cereal β-D-glucans are nonstarch polysaccharides
composed of linear chains of glucose residues polymerized through
β-1-3 and β-1-4 linkages (Ahmad, Gani, Shah, Gani, & Masoodi,
2016). In 2003, the U.S. Food and Drug Administration (FDA)
had authorized a health claim that recognized the relationship
between β-D-glucan soluble fiber from whole oat sources and
reduced risk of coronary heart disease (CHD) (FDA, 2003). In
2006, the FDA published an interim final rule to include β-D-
glucan-soluble fiber from barley into the above-mentioned health
claim listing (FDA, 2006). The European Food Safety Authority
(EFSA) has also approved 2 claims regarding β-D-glucans from
these cereals. One is related to reducing low-density lipoprotein
(LDL) blood cholesterol, which may decrease the risk of (coro-
nary) heart disease. Another is related to reducing postprandial
glycemic responses at doses of about 4 g of β-D-glucan per 30 g
of available carbohydrates in bread and pasta products when con-
sumed alone or in the context of a meal (EFSA, 2011a, 2011b),
which may reduce diabetes risks.

As a result of sprouting, β-D-glucans are degraded by endo-
β-D-glucanases (EC 3.2.1.6) into oligosaccharides (Autio et al.,
2001; Bamforth & Martin, 1983; Rimsten et al., 2002; Wang,
Zhang, Chen, & Wu, 2004). Indeed, endo-β-D-glucanase
activity increases 5- to 8-fold when sprouting barley for 4 days at
15 °C (Ellis et al., 1997; Rimsten et al., 2002; Wang et al., 2004).
As a result, the MW of β-D-glucan substantially decreases along
with its content (Ahmad et al., 2016; Autio et al., 2001; Bamforth
& Martin, 1983; Hoj, Slade, Wettenhall, & Fincher, 1988; Lee &
Bamforth, 2009; Marconi, Tomasi, Dionisio, Perretti, & Fantozzi,
2014; Peterson, 1998; Sungurtas et al., 2004). Strategies have
been developed to maintain the β-D-glucan content and its MW
distribution as much as possible during sprouting to meet the
above-mentioned health claims. They mainly focused on limiting
the β-D-glucanase activity during germination and/or sprouting.
For instance, Haraldsson et al. (2004) and Teixeira et al. (2016)
reported that the barley β-D-glucan content does not change sig-
nificantly when steeped in 0.4% to 0.8% lactic acid solution at 35
to 48 °C and subsequently sprouted for 3 to 4 days at 15 °C. More-
over, Rimsten et al. (2011) found that the β-D-glucan content
only decreases by 11% to 14% when barley is steeped at 48 °C and
then sprouted at 15 to 18 °C for 4 days, while a 40% decrease in
β-D-glucan content occurs in barley grains steeped at 15 °C and
then sprouted at 15 to 18 °C for 4 days. This has been explained by
the much slower development of β-D-glucanase when steeping
at the higher temperature. Finally, Wilhelmson et al. (2001) found
the β-D-glucan content and its average MW to decrease by about
10% when oat grains were sprouted for 6 days at 5 °C.

Impact of sprouting on the phytate content, the mineral
redistribution, and the mineral bioaccessibility in cereals

About 85% of phosphorus (P) in bran is stored as phytic acid
(myoinositol 1,2,3,4,5,6-hexakisphosphate) that occurs as gran-
ules embedded in protein-rich globoid structures found mainly
in aleurone cells (Raboy, 2003; Schlemmer, Frolich, Prieto, &
Grases, 2009). Most phytic acid is chelated by (divalent) cations,
such as those of iron (Fe), zinc (Zn), calcium (Ca), manganese
(Mn), magnesium (Mg), and copper (Cu), to result in phytates
(Schlemmer et al., 2009). The bioavailability of these phytates and
their availability for absorption in the human gastrointestinal tract

(that is, bioaccessibility; Anson, van den Berg, Havenaar, Bast,
& Haenen, 2009), as well as their distribution to human organs
and tissues through the blood stream (Persson, Türk, Nyman, &
Sandberg, 1998) only amounts to 5% to 25% (Bouis, Hotz, Mc-
Clafferty, Meenakshi, & Pfeiffer, 2011; Fredlund et al., 2003),
since they are poorly digested and absorbed, as humans lack in-
testinal phytase enzymes (Iqbal, Lewis, & Cooper, 1994; Sandberg
& Andersson, 1988). Not only inositol hexaphosphate (IP6) ex-
ists, but also some so-called lower inositol polyphosphates. These
include inositol pentaphosphate (IP5), tetraphosphate (IP4), and
triphosphate (IP3). In plant-based diets, IP6 and IP5 are the main
inhibitors of Fe and Zn absorption from the gut (Hurrell, 2004).
Inositol phosphates IP1 to IP4 do not have a negative effect on Zn
absorption, whereas inositol phosphates IP1 and IP2 do not in-
hibit Fe absorption (Gibson, Bailey, Gibbs, & Ferguson, 2010). In
2006, World Health Organization and Food and Agriculture Or-
ganization jointly published guidelines on food fortification with
micronutrients (Allen, de Benoist, Dary, & Hurrel, 2006), which
maintain that in order to achieve a meaningful increase in Fe ab-
sorption from food, the molar ratio of phytic acid to Fe needs
to be maximally 1:1 or even lower than 0.5:1 if no compounds
enhancing Fe absorption are used.

Dephytinization is a very promising strategy for improving min-
eral bioaccessibility in whole grain cereal products. During germi-
nation of cereal seeds, phytases are activated, de novo synthesized,
and secreted to make phosphate, mineral elements, and myo-
inositol available for plant growth and development (Miransari &
Smith, 2014; Platel, Eipeson, & Srinivasan, 2010; Raboy, 2003).
Thus, controlled grain sprouting increases the bioaccessibility of
mineral elements. Most of the studies in this area focus on total
phytate degradation and not on hydrolyzing different lower inosi-
tol polyphosphates. Here, we only discuss phytate (IP6) reduction.

Mature cereal seeds have relatively low endogenous phytase ac-
tivity levels, which substantially increase during sprouting. These
enzyme activity levels vary with the cereal and the conditions
of sprouting. A 3- to 10-fold increase in phytase activity levels
has been found in rice (Azeke, Egielewa, Eigbogbo, & Ihimire,
2011), rye (Bartnik & Szafranska, 1987), wheat (Azeke et al., 2011;
Bartnik & Szafranska, 1987; Lemmens et al., 2018), barley
(Bartnik & Szafranska, 1987), sorghum (Azeke et al., 2011), and
oats (Bartnik & Szafranska, 1987) when sprouting for 4 to 5 days
at 15 to 25 °C. The phytase activity levels in sprouted rye are 2, 5,
and even 12 times higher than those in sprouted wheat, barley, and
oats, respectively, when sprouting for 3 days at 20 °C (Bartnik &
Szafranska, 1987). Maximum phytase activity levels are reached in
brown rice and barley when sprouted for 2 to 4 days at 20 to 25 °C.
However, after reaching its maximum, the phytase activity de-
creases relatively fast (by 20% to 50%) at steeping and/or sprouting
temperatures exceeding 20 °C. When sprouting at 15 °C, the max-
imum phytase activity is obtained only after 7 days, after which the
activity decreases more slowly (Ou et al., 2011; Sung et al., 2005).
The latter can be ascribed to enzyme degradation by activated
peptidases and/or by product inhibition due to the liberated phos-
phates (Haraldsson et al., 2004; Ou et al., 2011; Sung et al., 2005).

The increase in endogenous phytase activity as a result of
sprouting directly leads to phytate hydrolysis (Table 2), and thus, to
release of bound minerals and improved mineral bioaccessibility.
Bartnik and Szafranska (1987) measured a phytate breakdown of
12% in barley, 16% in wheat, and 28% in rye as a result of 3 days
of sprouting at 20 °C, while Centeno et al. (2001) reported a
37% and 68% phytate breakdown in barley and rye, respectively
when sprouted for 3 days at 22 °C. These findings are in line with
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Sprouting impacts cereal nutritive value . . .

Table 2–The influence of steeping and sprouting conditions on phytate hydrolysis in sorghum, millet, barley, wheat, brown rice, rye, and oats.

Steeping conditions Sprouting conditions

Cereal Temperature (°C)
Timea (in waterb)

(hours) Temperature (°C) Time (days)
Phytate breakdown

(%) Reference

Sorghum 30 24 (24) None None 4 (Lestienne et al., 2005)
RT (room temperature) 20 (20) RT 3 25 to 35c (Afify et al., 2011)

22 ± 2 22 (22) 22 ± 2 2 52 to 56c (Tizazu, Urga, Belay,
Albuye, & Retta, 2011)

NA (not available) 48 (45) NA 4 66 (Ogbonna et al., 2012)
RT Overnight RT 4 70 to 85c (Mahgoub & Elhag, 1998)

Millet NA 16 (16) 25 2 13 (Hemalatha et al., 2007)
30 24 (24) None None 28 (Lestienne et al., 2005)
32 12 (12) 32 2 45 (Inyang & Zakari, 2008)
NA 12 (11) 32 ± 3 1 57 to 72c (Badau et al., 2005)
NA 12 (11) 32 ± 3 4 87 to 91c (Badau et al., 2005)

Barley RT 14 (14) 22 1 5 (Centeno et al., 2001)
15 Until desired

moisture content of
38% was reached

15 4 3 to 5c (Rimsten et al., 2011)

15 Until desired
moisture content of
38% was reached

18 4 6 to 10c (Rimsten et al., 2011)

15 32 to 37 (32 to 37) 15 3 12 to 19c (Teixeira et al., 2016)
NA 42 (21) 10 2 21 (Hübner et al., 2010)
NA 42 (21) 20 2 24 (Hübner et al., 2010)
NA 42 (21) 10 6 27 (Hübner et al., 2010)
NA 42 (21) 20 6 23 (Hübner et al., 2010)
RT 14 (14) 22 3 37 (Centeno et al., 2001)
RT 14 (14) 22 5 58 (Centeno et al., 2001)

Wheat 15 29 (17) 15 1 6 (Lemmens et al., 2018)
15 29 (17) 15 3 14 (Lemmens et al., 2018)
15 29 (17) 15 5 15 (Lemmens et al., 2018)
NA NA 20 1 17 to 19c (Bartnik & Szafranska,

1987)
NA NA 20 3 19 to 23c (Bartnik & Szafranska,

1987)
Brown rice 25 24 (24) 30 1 9 (Liang et al., 2008)

29 ± 1 12 (12) 29 ± 1 1 13 (Moongngarm & Saetung,
2010)

30 24 (24) None None 17 (Lestienne et al., 2005)
NA NA 30 1 17 (Watanabe et al., 2004)
28 24 (24) 28 2 38 to 55c (Cáceres et al., 2014)
25 24 (24) 30 3 54 (Liang et al., 2008)
28 24 (24) 34 2 46 to 63c (Cáceres et al., 2014)
28 24 (24) 28 4 56 to 74c (Cáceres et al., 2014)
28 24 (24) 34 4 61 to 80c (Cáceres et al., 2014)

Rye RT 14 (14) 22 1 11 (Centeno et al., 2001)
NA NA 20 1 19 to 22c (Bartnik & Szafranska,

1987)
NA NA 20 3 28 to 29c (Bartnik & Szafranska,

1987)
RT 14 (14) 22 3 68 (Centeno et al., 2001)
RT 14 (14) 22 5 84 (Centeno et al., 2001)

Oat NA 42 (21) 10 2 6 (Hübner et al., 2010)
NA NA 20 1 13 (Bartnik & Szafranska,

1987)
NA NA 20 3 16 (Bartnik & Szafranska,

1987)
NA 42 (21) 20 2 18 (Hübner et al., 2010)
16 24 (24) 16 1 20 (Tian et al., 2010)
NA 42 (21) 20 6 24 (Hübner et al., 2010)
16 24 (24) 16 3 31 (Tian et al., 2010)
NA 42 (21) 10 6 32 (Hübner et al., 2010)
16 24 (24) 16 6 69 (Tian et al., 2010)

aTotal steeping time.
bTime in which grains were submerged in water; Room temperature (RT).
cRange of phytate breakdown is given if different varieties were used in the same study; Not available (NA).

the higher phytase activity levels in rye than in barley and wheat
(Bartnik & Szafranska, 1987). In general, higher endogenous
phytase activity levels in a cereal result in more extensive phytate
hydrolysis. Relatively long sprouting times (3 to 5 days) are
needed to lower the phytate concentration by more than 30%
(Azeke et al., 2011; Badau, Nkama, & Jideani, 2005; Bartnik
& Szafranska, 1987; Cáceres et al., 2014; Centeno et al., 2001;
Mahgoub & Elhag, 1998; Tian et al., 2010). Azeke et al. (2011)

indeed found only a 5%, 10%, 9%, and 9% decrease in phytate
content as a result of 2 days of sprouting at 24 to 28 °C, while the
content decreased by 57%, 47%, 34%, and 37% in rice, sorghum,
wheat, and millet, respectively, when sprouted for 5 days. Also,
Hübner et al. (2010) reported only a 6% decrease in phytate
content in oats as a result of 2 days of sprouting at 10 °C, while the
phytate content decreased by 32% when sprouted for 6 days at this
temperature.
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Cereal phytases have temperature and pH optima of 37 to
55 °C (Guo et al., 2015; Konietzny & Greiner, 2002; Larsson &
Sandberg, 1992; Türk, Carlsson, & Sandberg, 1996) and 4.5 to
6.0, respectively (Konietzny & Greiner, 2002; Lei & Porres, 2003;
Peers, 1953). Thus, increasing the steeping and/or sprouting
temperatures to those optimal for phytase action can enhance
phytate breakdown. Cáceres et al. (2014) reported a 15% to 50%
higher phytate breakdown in brown rice as a result of 4 days of
sprouting at 34 °C than at 28 °C. Hübner et al. (2010) showed that
increasing the sprouting temperature from 12 to 18 °C improved
phytate breakdown in oats from 14% to 26% when sprouted for
4 days. It is reasonable to assume that drying of sprouted grains
also affects their phytate contents, since endogenous phytase can
be active during the initial drying or kilning phases (for example,
at about 40 to 60 °C and sufficient moisture levels). However, to
the best of our knowledge, no systematic study on the impact of
different drying/kilning conditions on phytase action and phytate
breakdown has been executed. However, it has been reported that
phytate breakdown can be achieved by hydrothermal processing of
cereals at high temperature (38 to 45 °C) and low pH (2.0 to 6.0)
during steeping. In brown rice, 90% of the phytate is hydrolyzed
when the grains are first steeped in 0.6% v/v lactic acid at 45 °C for
48 hours and subsequently sprouted for 2 days at 28 °C (Albarracı́n
et al., 2013). In contrast, Teixeira et al. (2016) obtained a phytate
reduction by only 8% in barley steeped in 0.4% v/v lactic acid
solution for about 35 hours at 35 °C and then sprouted for 3 days
at 15 °C.

During steeping, minerals can be lost due to leaching (Afify,
El-Beltagi, El-Salam, & Omran, 2011; Hübner et al., 2010;
Lintschinger et al., 1997). The loss is relatively high (about 30%)
when the cereal grains are steeped at 30 °C prior to germination
(Afify et al., 2011; Lestienne, Icard-Vernière, Mouquet, Picq,
& Trèche, 2005). In addition, minerals are translocated to the
developing embryo leading to loss of minerals from the sprouted
grain when the developing rootlets and acrospires are removed
(Bashir, Ishimaru, & Nishizawa, 2010; Hübner et al., 2010;
Ozturk et al., 2006; Takahashi et al., 2009). However, the
understanding of this transport mechanism to date is limited (L.
Lu et al., 2013; Takahashi et al., 2009). The elements passing to
the seedling originate mainly from the scutellum and aleurone,
while the concentration of minerals in the starchy endosperm
remains largely unchanged (D. Eastwood & Laidman, 1971). The
most mobile mineral ions during seed sprouting are those of K,
Ca, and Zn, while Mn and Fe ions are less mobile (L. Lu et al.,
2013). Lemmens et al. (2018) found that Zn was also detected in
the pericarp tissues after sprouting, but it especially accumulates
in the developing coleoptile and radicle, suggesting that Zn
ions play a key role in their meristemic tissues (Ozturk et al.,
2006).

Several in vitro digestion studies simulating the human gastroin-
testinal tract have been carried out to assess the potential impact
of phytate degradation on mineral bioaccessibility. While the out-
comes of such studies are rather diverse, it can be concluded that a
decrease in phytate content leads to a significant increase in min-
eral bioaccessibility. A 15% decrease in phytate content in wheat
as a result of sprouting has been found to lead to an increase in
Fe and Zn bioaccessibility from 4.6% to 14.1% and from 2.5%
to 14.6%, respectively (Lemmens et al., 2018). A 30% decrease
in phytate content in sorghum as a result of sprouting has been
found to increase the Fe and Zn bioaccessibilities from 10% to
20% and from 8% to 15%, respectively (Afify et al., 2011). Platel
et al. (2010) and Luo et al. (2016) showed that Fe and Zn bioac-

cessibility amounts to 20% to 30% in sprouted wheat, rice, millet,
and barley grains. Liang, Han, Nout, and Hamer (2008) did not
observe a significant increase in Zn bioaccessibility in brown rice,
even if the phytate content decreased by 54% as a result of 3 days
of sprouting at 30 °C. Q5

As discussed above, controlled sprouting of cereals under con-
ditions optimal for phytase action paves the way for reducing and
potentially improving in vitro mineral bioaccessibility. Moreover,
to limit the loss of minerals, it is advisable to use moderate steeping
temperatures (15 to 20 °C) and to retain the shoots and rootlets.

Impact of sprouting on the vitamin content in cereals
Cereal grains contain vitamin E (which consists of tocopherols

and tocotrienols) in levels ranging from 0.9 to 4.1 mg/100 g
(EFSA, 2015; Fardet, Rock, & Rémésy, 2008; Haraldsson et al.,
2004; Moongngarm & Saetung, 2010; Plaza, de Ancos, & Cano,
2003; Watanabe et al., 2004). Consuming 100 g cereals per day
contributes 8% to 34% of the recommended dietary allowance
(RDA) of this vitamin (EFSA, 2015). Also, thiamine (B1), ri-
boflavin (B2), and pyridoxal (B6) contents range from 0.2 to
0.5 mg/100 g (Coulibaly & Chen, 2011; Hucker, Wakeling,
& Vriesekoop, 2012; Lebiedzinska & Szefer, 2006; Malleshi &
Klopfenstein, 1998; Watanabe et al., 2004), from 0.02 to 0.14
mg/100 g (Hucker et al., 2012; Lebiedzinska & Szefer, 2006;
Malleshi & Klopfenstein, 1998; Plaza et al., 2003; Watanabe et al.,
2004), and from 0.25 to 0.76 mg/100 g, respectively, depending
on the cereal (Coulibaly & Chen, 2011; Lebiedzinska & Szefer,
2006; Plaza et al., 2003). Finally, the niacin (B3) content in cereals
amounts to 2.7 to 7.6 mg/100 g (Asiedu, Lied, Nilsen, & Sandnes,
1993; Lebiedzinska & Szefer, 2006; Malleshi & Klopfenstein, 1998;
Moongngarm & Saetung, 2010) and that of folate (B9) to 0.016
to 0.143 mg/100 g (Fardet et al., 2008; Gujska & Kuncewicz,
2005; Kariluoto et al., 2006; Katina, Liukkonen, Kaukovirta-
Norja, et al., 2007; Koehler et al., 2007). Consuming 100 g cereals
per day contributes 20% to 50% of the RDA of thiamine and niacin
and 10% to 30% of the RDA of pyridoxal. The impact of cereal
riboflavin on the RDA is less pronounced and amounts to 2% to
11%. Adults meet 5% to 11% of the RDA values of folate when
consuming 100 g of rice or oat grains, 13% to 29% of the RDA
by consuming 100 g of wheat and barley grains, and even up to
20% to 47% by consuming 100 g of rye grains (EFSA, 2006).

The vitamin content in cereal grains is important for seedling
development (Hucker et al., 2012) and increases during sprouting
as a result of biosynthesis. Differences in the vitamin contents of
sprouted grains (Table 3) depend on the type of grain and condi-
tions of steeping and sprouting. Care needs to be taken to avoid
excessive leaching of vitamins during steeping, for example, by
using a minimal amount of steeping water. In addition, tailoring
the drying procedure can avoid thermal degradation (Ariahu &
Ogunsua, 2000; Hucker et al., 2012; Moongngarm & Saetung,
2010; Vercauteren, 2014; Watanabe et al., 2004). The synthesized
vitamins mainly accumulate in the rootlets, and removing them
after the process is, hence, accompanied by a substantial loss of
vitamins (Haraldsson et al., 2004; Hucker et al., 2012; Kariluoto
et al., 2006; Malleshi & Klopfenstein, 1998). The next paragraphs
focus on the impact of sprouting on the contents of specific vita-
mins in cereal grains (Table 3).

Vitamin E is a well-known antioxidant. It scavenges free radicals
within cell membranes and is mainly located in the embryo of
cereals (Fardet et al., 2008). Tocopherols are synthetized and stored
within the embryo and transported to the rootlets and acrospires
during seed sprouting (Fardet et al., 2008; Hucker et al., 2012;
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Sprouting impacts cereal nutritive value . . .

Table 3–The impact of steeping and sprouting of sorghum, millet, barley, wheat, brown rice, rye, and oats on the vitamin B, E, and C contents and their
contribution to the recommended dietary allowance (RDA).

Steeping conditions Sprouting conditions Vitamin B, E, or C content

Cereal
Temperature

(°C)
Timea(in waterb)

(hours)
Temperature

(°C)
Time

(days) Type

Content
(mg/100 g of

dmc)

RDA
(%)/100 g of

dm Reference

Sorghum 25 16 (16) 25 1 Thiamine 0.22 20 (Malleshi &
Klopfenstein, 1998)

Riboflavin 0.13 10
Niacin 3.0 22

Vitamin C 0.14 <1
25 12 (12) 25 3 Thiamine 0.92 83 (Asiedu et al., 1993)

Niacin 3.5 26
Pyridoxal 0.23 9

25 16 (16) 25 4 Thiamine 0.17 15 (Malleshi &
Klopfenstein, 1998)

Riboflavin 0.20 16
Niacin 4.7 35

Vitamin C 1.9 3
Millet 25 16 (16) 25 1 Thiamine 0.22 20 (Malleshi &

Klopfenstein, 1998)
Riboflavin 0.11 9

Niacin 2.3 17
Vitamin C 0.99 2

RT (room
temperature)

24 (24) RT 1 Riboflavin 0.16 13 (Coulibaly & Chen,
2011)

Pyridoxal 0.76 30
Vitamin E 0.18 2
Vitamin C 0.99 2

25 16 (16) 25 4 Thiamine 0.19 17 (Malleshi &
Klopfenstein, 1998)

Riboflavin 0.25 20
Niacin 2.9 22

Vitamin C 3.2 5
RT 24 (24) RT 4 Riboflavin 0.40 32 (Coulibaly & Chen,

2011)
Pyridoxal 2.8 100
Vitamin E 0.30 3
Vitamin C 3.2 5

Barley 15 23 to 28 (23 to
28)

15 4 Vitamin E 4.1 to 4.4d 34 to 37 (Haraldsson et al.,
2004)

17 24 (12) 17 4 Thiamine 0.30 27 (Hucker et al., 2012)
Riboflavin 0.05 4

Wheat 20 ± 1 12 (12) 20 ± 1 3 Vitamin C 7.9 14 (Lintschinger et al.,
1997)

16.5 24 (24) 16.5 3 Vitamin C 16 28 (F. Yang et al., 2001)
13 and 20 48 (9) 20 4 Folate 0.20 67 (Koehler et al., 2007)

28 16 (16) 28 4 Thiamine 0.08 7 (Plaza et al., 2003)
Riboflavin 0.07 6
Pyridoxal 0.67 27
Vitamin E 0.20 2
Vitamin C 1.8 3

16.5 24 (24) 16.5 6 Vitamin C 42 72 (F. Yang et al., 2001)
Brown rice 29 ± 1 12 (12) 29 ± 1 1 Thiamine 0.12 11 (Moongngarm &

Saetung, 2010)
Niacin 4.5 33

Pyridoxal 0.66 26
Vitamin E 0.86 7

NA (not
available)

NA 30 1 Thiamine 0.49 45 (Watanabe et al.,
2004)

Riboflavin 0.04 3
Vitamin E 1.1 9

Rye 15 30 (14) 15 4 Folate 0.95 >100 (Kariluoto et al., 2006)
25 30 (14) 25 5 Folate 0.25 83 (Kariluoto et al., 2006)
18 28 (12) 18 5 Folate 0.22 73 (Katina et al., 2007)

Malted oat NA NA NA NA Thiamine 0.23 21 (Hucker et al., 2012)
Riboflavin 0.04 3

aTotal steeping time.
bTime in which grains were submerged in water.
cDry mass (dm); room temperature (RT).
dRange of vitamin content is given if different varieties were used in the same study; Not available (NA).

Lampi, Nurmi, & Piironen, 2010). Haraldsson et al. (2004) found
no changes in the total level of all tocopherol and tocotrienol
compounds in barley first sprouted for 4 days at 15 C and from
which in a next step, the rootlets were removed prior to analysis.
The duration of sprouting is the main determinant for the increase

in vitamin E content. For example, Moongngarm and Saetung
(2010) and Watanabe et al. (2004) observed no significant changes
in α-tocopherol or vitamin E content in brown rice when sprouted
for 1 day at 28 to 30 °C, indicating that relatively long sprouting
times are needed to allow de novo synthesis of this vitamin. Esa et al.
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Sprouting impacts cereal nutritive value . . .

(2011) found that the tocopherol concentration increases from
undetectable levels to 60 mg/100 g in brown rice when sprouted
for 3 days at 30 °C, while the tocotrienol concentration remains
fairly constant. F. Yang, Basu, and Ooraikul (2001) reported a 2.5-
fold increase in tocopherol content in wheat when sprouted for
7 days at 16.5 °C.

The vitamin B content in cereals generally increases as a result
of sprouting and supports the seedling development and growth.
Indeed, a 1.2- to 5.5-fold increase in thiamine content was found
in sorghum (Asiedu et al., 1993), wheat (Plaza et al., 2003),
and rice (Trachoo, Boudreaux, Moongngarm, Samappito, &
Gaensakoo, 2006) when sprouted for 3 to 4 days at 25 to
30 °C. Similarly, the riboflavin content in sorghum (Malleshi &
Klopfenstein, 1998), barley (Hucker et al., 2012), millet (Malleshi
& Klopfenstein, 1998), and wheat (Plaza et al., 2003) when
sprouted for 4 days at 17 to 28 °C was doubled and accounted
for 0.07 to 0.25 mg/100 g of dm. Also, a 1.3- to 1.5-fold
increase in niacin and pyridoxal contents was observed in wheat
(Plaza et al., 2003), millet (Coulibaly & Chen, 2011; Malleshi &
Klopfenstein, 1998), and sorghum (Asiedu et al., 1993; Malleshi
& Klopfenstein, 1998) when sprouted for 3 to 4 days at 25 °C.
However, Watanabe et al. (2004) and Moongngarm et al. (2010)

Q6 observed that the thiamine, riboflavin, niacin, and pyridoxine
contents remain unchanged or even decrease when brown rice
is steeped or sprouted for only 1 day. The authors concluded that
de novo synthesis of vitamins is only initiated in later sprouting
stages and that water-soluble vitamins can leach into the steeping
water (Moongngarm & Saetung, 2010; Watanabe et al., 2004).
B vitamins are also transported to the rootlets and acrospires
during sprouting, which, in turn, means that discarding them
decreases the vitamin B content of sprouted grains (Hucker et al.,
2012; Kariluoto et al., 2006; Malleshi & Klopfenstein, 1998). For
instance, a 40% to 50% loss in thiamine concentration is observed
in sprouted sorghum (Malleshi & Klopfenstein, 1998) and brown
rice (Moongngarm & Saetung, 2010) when the developing
embryo is removed. It is also possible that thiamine, one of the
most heat labile B-vitamins, is degraded during the drying process
(Ariahu & Ogunsua, 2000; Hucker et al., 2012).

Sprouting stimulates de novo synthesis of folate because of the
increased demand for methyl groups as the metabolic activities
of the developing seedling increase (Jabrin, Ravanel, Gambonnet,
Douce, & Rébeillé, 2003; Jägerstad et al., 2005; Kariluoto et al.,
2006). Various researchers showed a 4- to 6-fold increase in fo-
late to a final content ranging from 1.5 to 3.0 mg/kg in wheat
(Hefni & Witthöft, 2012; Koehler et al., 2007) and rye (Hefni
& Witthöft, 2012; Kariluoto et al., 2006; Katina,Liukkonen,
Kaukovirta-Norja, et al., 2007; Liukkonen et al., 2003) when
sprouted for 4 to 6 days at 18 to 25 °C.

The vitamin C content in cereal grains is usually undetectable
or very low. During sprouting, however, vitamin C is synthe-
sized de novo (Coulibaly & Chen, 2011; Lintschinger et al., 1997;
Malleshi & Klopfenstein, 1998; F. Yang et al., 2001) leading to
5 to 55 mg/100 g in sprouted wheat (Lintschinger et al., 1997;
F. Yang et al., 2001), millet (Coulibaly & Chen, 2011; Malleshi
& Klopfenstein, 1998), and sorghum (Malleshi & Klopfenstein,
1998). Lintschinger et al. (1997) noted that rinsing wheat sprouts
with hot water at 70 °C decreased vitamin C content by 40%
to 60%. Accordingly, process conditions need to be chosen care-
fully to preserve this vitamin as it is one of the most heat- and
light-unstable vitamins.

When consumed, the relatively high levels of vitamins E, B,
and C in sprouted cereals can significantly contribute to daily

intakes of these vitamins (Table 3). Adults can meet the RDA
value of folate by daily consuming 100 to 150 g of sprouted wheat
or rye grains. Sprouted grains contribute less to the daily intake
of niacin, riboflavin, pyridoxal, and vitamin E than folate, but
their contribution is still substantial. Indeed, 100 g of sprouted
cereals can account for 20% to 35% of the RDA of niacin, 5%
to 30% of the RDA of riboflavin, and pyridoxal and to 3% to
36% of the RDA of vitamin E (EFSA, 2006, 2015). However,
there is great variation in the thiamine content in sprouted cereals.
Consuming 100 g of sprouted wheat, brown rice, oats, millet, or
barley contributes up to 10% to 50% of the RDA of thiamine,
while consuming 100 g of sprouted sorghum contributes up to
20% to 80% of its RDA. Sprouted grains only contribute to the
daily intake of vitamin C to a limited extent, since consuming
100 g of sprouted cereals meets about 3% to 10% of its RDA.

To conclude, short steeping times, using a limited amount of
water, followed by long sprouting times, mild drying, and retaining
rootlets and acrospires are most favorable to obtain an elevated
vitamin content in sprouted grains.

Impact of sprouting on the antioxidant capacity in cereals
In general, sprouting increases the antioxidant activity of cere-

als. Various researchers have shown a 1.2- to 2.9-fold increase in
antioxidant activity in wheat (Alvarez-Jubete, Wijngaard, Arendt,
& Gallagher, 2010; Zilic et al., 2014), barley (Ha, Jo, Mannam,
Kwon, & Apostolidis, 2016), brown rice (Cáceres et al., 2014;
Cornejo et al., 2015; Ti et al., 2014), and oats (J.G. Xu et al.,
2009) when sprouted for 2 to 5 days at 15 to 28 °C. The higher
antioxidant activity in sprouted grains is mainly attributed to ac-
cumulations of vitamin E (see section “Impact of sprouting on
the dietary fiber matrix and properties in cereal grains”) and
polyphenols (Ahmad et al., 2016; Kim et al., 2013). The lat-
ter secondary plant metabolites play a role in the protection of
plants against environmental stresses (Alvarez-Jubete et al., 2010;
Ha et al., 2016; Pal et al., 2016). Their antioxidant activity is associ-
ated with their ability to scavenge free radicals, break radical chain
reactions, and chelate metals (Fardet et al., 2008; Ha et al., 2016;
J. Lu et al., 2007). The main (poly-)phenols in cereal grains are
p-hydroxybenzoic, ferulic, sinapic, vanillic, and p-coumaric acids,
and in oats also avenanthramides (Cáceres et al., 2014; Fardet et al.,
2008; Hithamani & Srinivasan, 2014; Kim et al., 2013; J. Lu et al.,
2007; Skoglund, Peterson, Andersson, Nilsson, & Dimberg, 2008;
J.G. Xu et al., 2009). Generally, 60% to 90% of the polyphenols
in cereals occur in a bound form (Fardet et al., 2008).

A 1.2- to 3.6-fold increase in total polyphenol content has been
measured in wheat (Alvarez-Jubete et al., 2010; Hithamani &
Srinivasan, 2014; Swieca & Dziki, 2015), barley (Ha et al., 2016;
J. Lu et al., 2007), sorghum (Hithamani & Srinivasan, 2014), rye
(Katina, Laitila, Juvonen, et al., 2007; Liukkonen et al., 2003),
oats (Tian et al., 2010; J.G. Xu et al., 2009), and brown rice
(Cáceres et al., 2014; Cornejo et al., 2015; Pal et al., 2016) when
sprouted for 2 to 6 days at 15 to 28 °C. Furthermore, a 1.5- to
1.7-fold increased concentration of bound phenolic compounds
has been observed in brown rice (Ti et al., 2014) and wheat
(Ohm et al., 2016) when sprouted for 2 to 5 days at 20 °C, while
a 1.3- to 3-fold increase in free phenolic compounds has been
noted in brown rice (Ti et al., 2014) and wheat (Benincasa et al.,
2014; Ohm et al., 2016; Zilic et al., 2014) when sprouted for 2
to 5 days at 18 to 20 °C. The free phenolic compounds are more
effective antioxidants than their bound counterparts (Ti et al.,
2014). Phenolic acids are biosynthesized during sprouting and the
synthesized cell wall-degrading enzymes, such as cellulases and
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endoxylanases in combination with cinnamoyl esterases and fer-
uloyl esterases, can hydrolyze phenolic compounds bound to cell
walls. This increases the levels of free phenolic compounds, mainly
ferulic acid, and thus increases the antioxidant capacity (Benincasa
et al., 2014; Cáceres et al., 2014; Cornejo et al., 2015; Katina,
Liukkonen, Kaukovirta-Norja, et al., 2007; Kim et al., 2013; J. Lu
et al., 2007; Pal et al., 2016; Ti et al., 2014; J.G. Xu et al., 2009).
Especially the developed shoots had relatively high total phenolic
acid contents, since they were 11 times higher in the shoot than
in the remaining brown rice kernel after 5 days of sprouting at
30 °C (Cho & Lim, 2018). The increased antioxidant capacity
is concerned to be important for the protection of the sprouting
grain. However, it is debatable to link this increase to possible
benefits for human health (Bast & Haenen, 2013; Pompella
et al., 2014).

Impact of sprouting on γ -aminobutyric acid content in
brown rice

γ -Aminobutyric acid (GABA), an important nonprotein amino
acid, functions as the predominant inhibitory neurotransmitter in
the central nervous system (Charoenthaikij, Jangchud, Jangchud,
Prinyawiwatkul, & Tungtrakul, 2010; Kinnersley & Turano, 2000),
and it is also effective at decreasing blood pressure (Hayakawa et al.,
2004; Inoue et al., 2003) and in treating epilepsy (Treiman, 2001).
It is formed by transamination of α-ketoglutarate to glutamic acid,
which is then decarboxylated by glutamic acid decarboxylase to
GABA (Kinnersley & Turano, 2000; Treiman, 2001).

The GABA concentration in barley and wheat is less than
2 mg/100 g of dm (Ohm et al., 2016), while in regular brown
rice grains it ranges from 3 to 7 mg/100 g of dm (Banchuen,
Thammarutwasik, Ooraikul, Wuttijumnong, & Sirivongpaisal,
2009; Charoenthaikij et al., 2010; Chen et al., 2016). It is present
in higher concentrations in sprouted barley and wheat (7 to
25 mg/100 g) (H. Chung, Jang, Cho, & Lim, 2009; Ohm et al.,
2016), and especially sprouted brown rice (35 to 80 mg/100 g of
dm) (Banchuen et al., 2009; Chungcharoen et al., 2015; Cornejo
et al., 2015; Ohm et al., 2016; Ohtsubo et al., 2005; Roohinejad
et al., 2011; Thitinunsomboon, Keeratipibul, & Boonsiriwit,
2013). Charoenthaikij et al. (2010), Cornejo et al. (2015), and
Roohinejad et al. (2011) observed a 8- to 12-fold increase in
GABA content in brown rice when sprouted for 2 to 4 days at
27 to 35 °C. Relatively high sprouting temperatures are needed
to stimulate GABA synthesis. Donkor et al. (2012) and Kim
et al. (2012) found only a 2-fold increase in GABA content in
brown rice when sprouted for 3 to 6 days at about 15 °C. Acidic
conditions during steeping can also potentiate GABA synthesis.
The GABA content in sprouted brown rice increases up to 120
to 130 mg/100 g of dm when the kernels are steeped at 30 °C in
lactic or citric acid solutions (pH 3.0 to 5.6) prior to germination
for 1 to 2 days at 30 to 35 °C. Indeed, an acidic pH is more optimal
for rice embryo glutamic acid decarboxylase action (Banchuen
et al., 2009; Thitinunsomboon et al., 2013; Zhang et al., 2014).
It is noteworthy that GABA is very heat-stable and that it is
not degraded during kilning/drying (Chungcharoen et al., 2015;
Ohtsubo et al., 2005). However, Baranzelli et al. (2018) observed
a 75% to 90% loss in GABA content in bread baked (175 °C)
from sprouted wheat, which was attributed to the degradation of
free amino acids that are used in the Maillard reaction.

Health Benefits of Sprouted Grains
We found only a limited number of preclinical and clinical

studies when combining the search terms “sprouted grains” or

“germinated grains” with the term “health.” While most articles
provide a thorough description of the biochemical changes as a
result of sprouting, and make connections with potential health
benefits, the direct effect of such changes on in vivo health markers
has only been measured infrequently. Many articles describing the
biochemical changes do extrapolate the potential health benefits
of the specific nutrients based on the cause-effect links described
in the literature. In many studies, the types of grains used and
the sprouting treatments are diverse and sometimes the process-
ing conditions are not fully detailed. Accordingly, at present, it is
impossible to draw consistent conclusions on the impact of the
consumption of sprouted grains on human health and the regulat-
ing mechanisms behind it.

Most of these studies have been performed with rodents, while
only a few with humans. The main grains used were rice (6 in
rodents, 1 in humans) and barley (3 in rodents, 1 in humans) with,
to the best of our knowledge, wheat, millet, and oats each used
in only 1 (human) study. Brown rice has been used by various re-
searchers to investigate the effect of sprouting on lipid metabolism
or symptoms linked to it (Imam et al., 2014; Imam, Ismail, Omar,
& Ithnin, 2013; Miura et al., 2006; Roohinejad et al., 2010; Wu,
Yang, Touré, Jin, & Xu, 2013). However, the sprouting condi-
tions used differed from 1 study to another and so did the levels
of bioactive compounds such as tocopherol, oryzanol, and GABA
(Miura et al., 2006; Roohinejad et al., 2010). Furthermore, the
reference sample used was not always a nonsprouted counter-
part, making it difficult to compare sprouted with regular grains
(Hagiwara, Seki, & Ariga, 2004; Trachoo et al., 2006). Zhong,
Teixeira, Marungruang, et al. (2015) used commercial barley malt
thoroughly characterized in terms of its dietary fiber and β-D-
glucan contents and MW distributions to study the impact of
sprouting on the rodent gut microbiota. Unfortunately, the heat
treatment (leading to Maillard and/or caramelization reactions)
and the removal of rootlets (and thus also of the B and E vita-
mins) as part of the industrial malting process affected the overall
nutrient content. Interesting in this context is that Trachoo et al.
(2006) reported that these vitamins affect the in vitro growth of
probiotics. In the next paragraphs, we discuss the health effects of
sprouted grains investigated in the above-mentioned in vivo/in vitro
studies.

Lipid metabolism
The effect of sprouted brown rice on plasma lipid profiles has

been the subject of numerous studies. These profiles are associ-
ated with hypercholesterolemia and high blood pressure, which
themselves are linked to cardiovascular disease (CVD). Wu et al.
(2013) compiled 5 in vivo studies suggesting that sprouted brown
rice may have a greater effect on reducing blood serum cholesterol
and blood pressure than unprocessed brown rice. A similar con-
clusion was drawn by Roohinejad et al. (2010). They showed that
total cholesterol in rats fed with high-cholesterol diets is reduced
to a greater extent by brown rice when sprouted for 2 days, than
by such rice either nonsprouted or sprouted for just 1 day. Imam
et al. (2013), with an in vivo rat study, showed that, although the ef-
fects on total cholesterol were similar for brown rice and sprouted
brown rice, the lipid composition was more favorable for decreas-
ing the CVD risk after consumption of the latter. A corrective
effect on hypercholesterolemia of (sprouted) brown rice was ob-
served with hepatoma-bearing rats by Miura et al. (2006). The
authors attributed this positive effect to the increase in γ -oryzanol
and GABA levels and to the higher soluble fiber contents in brown
rice and sprouted brown rice than in white rice. However, they
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did not demonstrate a significant difference between the results
obtained with either brown rice or sprouted brown rice. It has
been suggested that γ -oryzanol decreases blood serum cholesterol
levels by suppressing its absorption (Miura et al., 2006; Rong,
Ausman, & Nicolosi, 1997), while the dietary fiber in rice bran
may favor fecal bile acid and total bile acid excretion and stimulate
the activity of cholesterol 7 α-hydroxylase.

To the best of our knowledge, apart from the above work on
rice, only sprouted barley and wheat have been investigated for
their effects on lipid profiles. Jackson, Suter, and Topping (1994)
found no significant difference between the effect of barley and
malted barley on blood serum lipids of rats fed either a low-
or a high-cholesterol diet. In Nelson et al.’s (2016) double-blind
cross-over intervention study, 10 overweight or obese people were
given breakfast cereals based either on whole wheat or on sprouted
wheat. A similar significant reduction of blood pressure was ob-
served for both interventions, thus not supporting the hypothesis
that sprouted wheat would have a stronger impact than its non-
sprouted counterpart. Analysis of the blood lipids showed that
the LDL cholesterol level was affected by both interventions in
a similar way, whereas total and high-density lipoprotein (HDL)
cholesterol levels remained unchanged. In this study, the authors
mainly focused on the link between the polyphenol content and
antioxidant activity of the breakfast flakes and the obesity-related
metabolic disorders, including unfavorable blood lipid profiles,
while other characteristics of the grains, such as the fiber type or
their solubility, were not described.

Glucose metabolism
Only very few studies are available on the effect of sprouted grain

consumption on glucose metabolism and type II diabetes. Most of
these have focused on sprouted rice and used rodents. Hagiwara
et al. (2004) showed that ingestion of sprouted brown rice by di-
abetic rats results in lower blood glucose levels and a tendency to
decrease the plasma lipid peroxide concentrations. Ito et al. (2005)
complemented this work by research with healthy humans. They
confirmed the positive effect of sprouted brown rice on plasma
glucose but not on insulin concentrations. Moreover, they noted
no significant differences between brown rice and sprouted brown
rice, concluding that, in this case, the lower glucose response may
not be linked to a stimulation of insulin secretion by the higher
GABA content of the sprouted brown rice as earlier suggested by
Hagiwara et al. (2004). The effect was rather attributed to the
high fiber content of the 2 types of rice (Ito et al., 2005). S.I.
Chung, Ryu, and Kang (2016) showed that ovariectomized rats
fed sprouted brown rice had lower plasma glucose and insulin
concentrations than the group fed nonsprouted counterparts (S.I.
Chung et al., 2016). The results obtained in these studies confirm
that whole grain rice may have a hypoglycemic effect, but they al-
low to draw no conclusions on the mechanism behind the effect,
neither do they demonstrate the additional benefit of sprouting
the whole grain to manage glucose metabolism. Finally, an acute
study with overweight and obese humans (Mofidi et al., 2012) ex-
posed to commercial breads (of which nutritional values but not
the exact grain composition were given) showed some positive
effect of the breads with sprouted grains on glycemic response.
Surprisingly, however, there was no significant difference in post-
prandial glucose response between the whole grain (11-grain) and
white bread (Mofidi et al., 2012). It hence appears that it is impos-
sible to claim any benefits of sprouted grains over those of whole
grains.

Mineral absorption
As discussed in section “Impact of sprouting on the lipid content

in cereal grains,” phytic acid chelates are broken down by endoge-
nous phytases that release minerals that are supposedly available to
be metabolized. To understand the effect of phytate degradation
as a result of sprouting, Larsson, Rossander-Hulthén, Sandström,
and Sandberg (1996) fed oat porridge to 2 groups of 9 or 10
healthy subjects who either received a reference porridge con-
taining unprocessed oats or a test product based on sprouted oats.
A significant increase of the Zn and Fe absorption in the sub-
jects who received the test porridge was observed and related to a
significant reduction in phytate (76%) between the reference and
test porridges. A final experiment in which sprouting led to a
67% phytate degradation showed no significant difference in Fe
absorption. This was potentially due to too high residual phytate
levels in the test porridge. Fredlund et al. (2003) obtained similar
results for Zn absorption with a group of 10 healthy subjects when
giving them breakfast cereals either based on malted barley that
contained 30% less phytate than nonprocessed barley or breakfast
cereals based on the latter. An increase by 15% to 23% in Zn
absorption was observed with the former breakfast cereals. The
same experiment to measure Ca absorption resulted in no signifi-
cant differences, probably because barley is not the main source of
this mineral in the breakfast cereals. The results by Tatala, Ndossi,
Ash, and Mamiro (2007) unfortunately did not confirm the ob-
servations made on the small groups by Larsson et al. (1996) and
Fredlund et al. (2003). The objective of their randomized con-
trol study (Tatala et al., 2007) with a group of 300 infants over a
6-month period was to assess the effect of porridge prepared from
nonsprouted or sprouted finger millet on the Fe status of children
in a region where food is traditionally plant-based and where Fe
absorption thus depends on the extent to which mineral absorp-
tion is inhibited. No significant improvement of the hemoglobin
and anemia status among the 2 groups was noted. This may have
been due to the limited difference in phytate content between the
reference and the test recipes, which, although it was significant,
was only 10%. Albarracı́n et al. (2016) studied Ca absorption in Q7
16 male Wistar rats fed with extruded brown rice and extruded
sprouted brown rice diets for 60 days and did not observe any
differences in its absorption (about 70%) among these diets. Based
on the information given above, we suggest that a reduction in
phytate as a result of sprouting may contribute to better mineral
bioavailability in humans, but that, as of now, no specific health
benefit statement can be made.

Celiac disease
Celiac disease is an inflammatory disease of the upper small in-

testine in genetically susceptible individuals (approximately 1% of
the population worldwide) triggered by the storage proteins of
wheat, rye, or barley (Catassi, Gatti, & Lionetti, 2015; Lebwohl,
Sanders, & Green, 2018; P. Singh et al., 2018). Gluten proteins, in-
cluding α-gliadins, γ -gliadins, and low-molecular-weight (LMW)
glutenins, are not completely hydrolyzed by human gastrointestinal
enzymes resulting in peptides that stimulate T-cells in the intesti-
nal mucosa of people suffering from celiac disease (Kerpes, Knorr,
Procopio, Koehler, & Becker, 2016; Schwalb et al., 2012). Most of
these immunogenic peptides are prolamine-rich and glutamine-
rich and contain at least 9 amino acid residues required for T-cell
recognition (Sollid, Qiao, Anderson, Gianfrani, & Koning, 2012).
Gluten protein degradation to levels lower than 20 ppm can make
these cereals suitable for the manufacture of gluten-free products.
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Sprouting has been investigated as a means to reduce the im-
munogenicity of gluten. Indeed, it is likely that cereal endogenous
peptidases synthesized during sprouting can extensively hydrolyze
gluten, since the seedlings need amino acids for their development
(Hartmann, Koehler, & Wieser, 2006). Immunogenic peptides are
extensively degraded when incubated for 2 hours at 37 °C and
pH 6.5 with peptidases extracted from bran of rye sprouted for
7 days at 15 °C (Hartmann et al., 2006). In addition, 40% to 80%
of celiac disease-stimulating peptides are hydrolyzed by endoge-
nous peptidases of barley and wheat sprouted for 4 to 8 days at 12
to 25 °C (Boukid et al., 2017; Kerpes et al., 2016). Such durations
may be difficult to achieve in economically feasible food pro-
duction. However, when water-soluble peptidases from sprouted
wheat were incubated with a gliadin digest containing immuno-
genic epitopes for 24 hours, these epitopes (peptides) were sig-
nificantly degraded. Although the in vitro immunogenicity of the
resulting peptides was markedly decreased, residual reactivity was
still present. The sole use of peptidases for sprouted wheat to digest
gliadin did not result in safe food for people suffering from celiac
disease (Stenman et al., 2009). Further improvements have been
proposed (Schwalb et al., 2012; Stenman et al., 2009) and might be
addressed by optimizing the conditions of sprouting along with the
type of cereal used and the cultivar (Scherf, Wieser, & Koehler,
2018). Schwalb et al. (2012) indeed showed that enzymes ex-
tracted from different sprouted cereals have different specificities
toward different peptides (Schwalb et al., 2012; Stenman et al.,
2009). This can potentially be done either using extracted and
purified enzymes or by adding grain fractions rich in enzymes,
such as bran, to food recipes (Gebendorfer, Hartmann, Wieser, &
Koehler, 2011).

Sprouted grains and gut health
Sprouting affects the fibers and other nutrients of grains and

therefore also their capacity to be fermented by the gut micro-
biota (Cummings & Bingham, 1987; Damen et al., 2011). Zhong,
Teixeira, Marungruang, et al. (2015) showed that malt material,
but not barley whole grain in combination with a high-fat diet,
fed to rats resulted in an increase in the levels of butyric and other
short-chain fatty acids in the gut. This suggests that sprouting
generates molecules such as fructo-oligosaccharides, AXOS, and
depolymerized AX and β-D-glucan, which exert a positive im-
pact on the gut microbiota. The same group in a 2nd in vivo study
with rats showed that using barley malt, rather than barley whole
grain, can stir the gut microbiota toward species producing more
butyric acid (Zhong, Nyman, et al., 2015).

In conclusion, only very few studies have investigated the effect
of sprouted grains on health-relevant parameters. Most studies have
focused on brown rice and used rodent models. It is therefore not
possible to extrapolate any finding to cereals or to potential health
benefits in general.

Techno-Functional Implications of Sprouting Grains
The biochemical changes induced by sprouting not only

modify the nutritional properties of the cereals, but they can also
affect the physicochemical properties and functionality that play a
role during product making. This section deals with the techno-
functional properties of sprouted cereals, and thus, how sprouting
affects the quality of flour and especially bread and tortilla products
made therefrom. As cereal grains contain a complex microbial
population that is active and evolves during sprouting. Therefore,
we here first discuss changes in microflora and the microbial
activity as a safety factor. Noots, Delcour, and Michiels (1999)

and Justé et al. (2011) already extensively reviewed the influence
of microbial activity on safety and quality aspects of malted grains.
The microflora is mainly concentrated in the outer layers of
the grain and in the embryo (Berghofer, Hocking, Miskelly, &
Jansson, 2003). Diverse microbial communities naturally colonize
cereal grains. These include bacteria, yeast, and molds. Gram-
negative bacterial genera (such as Enterobacter and Pseudomonas)
and gram-positive bacterial genera (such as Lactobacillus and Leu-
conostoc) are dominantly present. Also, diverse yeast and molds
genera, such as Ascomycota, Basidiomycota, Zygomycota, and
Mitosporic fungi occur in grains (Justé et al., 2011). Steeping is the
most critical stage of the sprouting process regarding safety, since
it induces microbial proliferation. Bacteria and yeasts rapidly grow
and mold mycelium develops, while at the same time, dormant
spores are activated. The viable numbers of bacteria and yeasts
reach a maximum during sprouting. A 7- to 15-fold increase in the
microbial counts occurs during steeping and sprouting and they
typically amount to 106 to 109 colony-forming units (CFU)/g dm
for bacteria, and 103 to 106 CFU/g dm for yeast in sprouted grains
(Douglas & Flannigan, 1988; Haraldsson et al., 2004; Justé et al.,
2011; Noots et al., 1999). Extensive mold growth, especially of the
Fusarium species, is associated with production of mycotoxins that
are toxic for humans at concentrations exceeding 4 to 20 μg/kg
food (Justé et al., 2011; Zain, 2011). In past efforts, strategies have
been developed to limit microbial activity during the sprouting
process and/or reduce the microbial counts to 105 to 107 CFU/g
dm for bacteria and to 103 to 104 CFU/g dm for yeast and molds
in sprouted grains. Products having such microbial counts are
generally recognized as safe for human consumption (Berghofer
et al., 2003). Gamma irradiation can be used for sterilizing cereal
grains prior to sprouting (Noots et al., 1999; Ramakrishna,
Lacey, & Smith, 1991), but also grain surface sterilization during
the first or last steeping step with formaldehyde, with dilute
solutions of lactic acid, or with inorganic acids such as sulfuric
acid, phosphoric acid, or hypochloric acid limits the growth of
microorganisms (Agu & Palmer, 1999; Haraldsson et al., 2004;
Noots et al., 1999; Ramakrishna et al., 1991). Furthermore, the
microbial activity during sprouting may be limited by appropriate
sprouting temperature control, since the use of a relatively high
sprouting temperatures (25 °C) results in a 104 higher amount of
CFU/g dm of bacteria and filamentous fungi than sprouting at
15 °C (Noots et al., 1999; Wilhelmson et al., 2001). Evidently,
kilning procedures can reduce the microbial counts of sprouted
grains by a factor of 10 to 1000 (Douglas & Flannigan, 1988;
Jiamyangyuen & Ooraikul, 2008; Justé et al., 2011; Wilhelmson
et al., 2001). Finally, sulfur dioxide can be added to the air
stream during kilning to decrease the microbial load (Noots
et al., 1999).

Sprouting is generally associated with grain softening due to re-
duced interaction between the protein matrix and the starch gran-
ules in the endosperm as a consequence of peptidase and amylase
action (Dziki & Laskowski, 2010). Liu, Hou, Cardin, Marquart,
and Dubat (2017) observed that wholemeal flour from sprouted
wheat had a 20% lower damaged starch content than did regular
whole wheat flour. The water absorption of flour from wheat
sprouted for 1 to 2 days at 15 to 25 °C was 4% to 14% lower than
that of control flour due to its lower damaged starch content and
differences in the properties of dietary fiber and protein (Baranzelli
et al., 2018; Kaur et al., 2002; Liu et al., 2017; Marti, Cardone,
Pagani, & Casiraghi, 2018; Morad & Rubenthaler, 1983). For in-
stance, water-extractable dietary fiber binds substantially less wa-
ter than its unextractable counterpart (Courtin & Delcour, 2002).
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Furthermore, gluten proteins in flour from sprouted wheat cannot
form a viscoelastic network due to partial protein hydrolysis and
modified water-binding properties (Liu et al., 2017; Marti et al.,
2018).

The pasting properties of cereals influence their functionality
in some applications. They are mainly determined by their starch
and dietary fiber (mainly β-D-glucan and AX) characteristics.
Suspensions of starch (10% w/w) isolated from flour from
preharvest sprouted wheat or from brown rice sprouted for 1 day
at 30 °C had a 20% to 60% lower peak viscosity in a Rapid Visco
Analyzer model system than that isolated from their nonsprouted
counterparts because the increased endogenous α-amylase action
hydrolyzed α-1,4-glycosidic linkages of starch molecules (Noda
et al., 2004; J. Xu et al., 2012). In addition, suspensions of
β-D-glucan (10% w/v) extracted from barley sprouted for 1 day
at 25 °C had 40% lower viscosity readings than a β-D-glucan
suspension made from unprocessed barley. Sprouting reduced the
average MW of β-D-glucan by 22%, and hence, its thickening
ability (Ahmad et al., 2016). As a result of starch (and β-D-glucan)
hydrolysis, sprouted wheat, sorghum, oat, and rice flour resulted
in 50% to 90% lower peak viscosity values in a Rapid Visco
Analyzer model system upon heating than did their nonsprouted
counterparts (Doehlert & McMullen, 2003; Marengo et al.,
2015; Moongngarm, 2011; Phattanakulkaewmorie, Paseephol, &
Moongngarm, 2011; Wichamanee & Teerarat, 2012; J. Xu et al.,
2012; Zilic et al., 2016). Finally, the cold paste viscosity levels were
60% to 85% lower for suspensions made from flour of sprouted
(1 to 2 days) rice (Wichamanee & Teerarat, 2012; J.G. Xu et al.,
2012) or sorghum (Phattanakulkaewmorie et al., 2011; Tizazu
et al., 2010) than those from their nonsprouted counterparts. As
a result of sprouting, amylase activity decreased amylose chain
lengths, causing limited amylose gelation (Phattanakulkaewmorie
et al., 2011; Wichamanee & Teerarat, 2012; J.G. Xu et al.,
2012). Too low batter and dough viscosities result in poor-quality
attributes of wheat-based products (Delcour & Hoseney, 2010),
as will be discussed in the next paragraph.

Overall, using flour from sprouted wheat in a bread recipe is
detrimental for product quality. Various authors have observed
that dough development is negatively impacted when part or
all of wheat flour is substituted (2% to 100%) by flour from
wheat sprouted for 1 to 4 days at 15 to 25 °C. Farinograph
and mixograph analyses have shown that doing so decreases
dough development time and stability by 16% to 75% and
25% to 70%, respectively. Partial gluten protein hydrolysis and,
more in particular, the decrease in the level of HMW-glutenin
macropolymers, is a main cause for these poor dough viscoelastic
properties (Baranzelli et al., 2018; Kaur et al., 2002; Liu et al.,
2017; Marti, Cardone, Nicolodi, Quaglia, & Pagani, 2017; Marti
et al., 2018; Morad & Rubenthaler, 1983; Ohm et al., 2016;
Watanabe et al., 2004). Furthermore, synthesized α-amylases in
sprouted flour are active during dough making and fermentation
and impair its processing characteristics, making doughs slack and
sticky (Lorenz, Roewe-Smith, Kulp, & Bates, 1983). Substitution
of high levels of regular flour by flour from sprouted cereals
(more than 20% to 30%) and/or when longer sprouting times are
applied (4 to 5 days, 15 to 28 °C) results in breads with much
lower overall quality and acceptability. Indeed, the resultant breads
have lower volumes (15% to 40%) mainly due to loss of structure
by partial gluten hydrolysis (Gawlik-Dziki, Dziki, & Pietrzak,
2017; Hugo, Rooney, & Taylor, 2000; Ichinose et al., 2001; Kaur
et al., 2002; Mäkinen & Arendt, 2012; Mäkinen et al., 2012). In
addition, the bread crumb is sticky and wet as a result of the high

α- and β-amylase levels, as extensive starch hydrolysis reduces
flour water-holding capacity (Hugo et al., 2000) and leads to high
levels of water-soluble dextrins (Every & Ross, 1996). Moreover,
hydrolysis of gelatinized starch during early baking (55 to 75 °C)
strongly reduces the viscosity in the system leading to coalescence
of gas cells and large holes in the crumb structure (Mäkinen
& Arendt, 2012; Mäkinen et al., 2012). These observations are
in line with those obtained when flour from wheat that has
undergone preharvest sprouting is used in bread making (Ibrahim
& D’Appolonia, 1979; Lorenz et al., 1983; Moot & Every, 1990).

Using sprouted cereals in a bread recipe also affects product
crumb and crust color. Generally, the crumb and crust are darker
(L∗, lightness in the CIELAB color space)], more reddish (a∗,
green–red color component), and yellowish (b∗, blue–yellow
color component) (Baranzelli et al., 2018; Charoenthaikij et al.,
2010; Mäkinen & Arendt, 2012; Marti et al., 2017; Marti et al.,
2018; Phattanakulkaewmorie et al., 2011; Tian et al., 2010). In-
deed, substantially more reactions between free amino groups and
reducing sugars occur during baking of dough made with flour
from sprouted wheat than with regular flour (Lasekan, Lasekan, &
Idowu, 1997; Tian et al., 2010; van Boekel, 2006). Furthermore,
longer sprouting times increase the level of undesirable flavors and
odors due to increased lipase and lipoxygenase action leading to
aldehydes, free phenolic compounds, heterocyclic substances, and
dimethyl sulfide (Dong et al., 2013; Heiniö, Oksman-Caldentey,
Latva-Kala, Lehtinen, & Poutanen, 2001; Wu, Yang, Chen, Jin,
& Xu, 2011). When present in too high concentrations, these
compounds impart rancid, fatty, cabbage-like, and beany flavors
to products (Wu et al., 2011).

On the other hand, with short sprouting times (20 to 36 hours),
or with a substitution of 10% to 20% of regular wheat by sprouted
wheat, high-quality bread can be produced since some α-amylase
in flour is desired (Moot & Every, 1990; Toups, 2017). As observed
by rheofermentometer analysis, de novo synthesized α-amylases can
effectively hydrolyze the damaged starch into fermentable sugars
promoting yeast fermentation, and hence, increase carbon dioxide
production by about 20% (Charoenthaikij et al., 2010; Kaur et al.,
2002; Marti et al., 2017; Marti et al., 2018; Struyf, Verspreet, &
Courtin, 2016) and maximal dough height by 18% to 22% (Marti
et al., 2017; Marti et al., 2018). In addition, decreased dough vis-
cosity leads to increased gas cell expansion (Kim, Maeda, & Morita,
2006; Rouillé, Della Valle, Devaux, Marion, & Dubreil, 2005),
which may also contribute to increases in dough height. During
baking, residual α-amylase activity levels further decrease the
viscosity during starch gelatinization and, by doing so, prolong the
oven spring and increase loaf volume (Goesaert et al., 2005; Goe-
saert, Slade, Levine, & Delcour, 2009). The use of sprouted cereals
for baking can also positively impact bread shelf-life and sensory
properties. The crumb firming rate of bread produced from
sprouted wheat was lower than that of control bread. This may be
mainly explained as resulting from the action of amylases on starch,
which ultimately reduces amylopectin retrogradation (Liu et al.,
2017; Marti et al., 2017; Marti et al., 2018; Phattanakulkaewmorie
et al., 2011; Watanabe et al., 2004). Breads from recipes containing
sprouted wheat are in general appreciated by the consumer due to
their 50% higher total sugar content (Marti et al., 2018; Ohtsubo
et al., 2005), giving them a pleasant sweet note (Marti et al.,
2018; Ohtsubo et al., 2005; Seguchi et al., 2010). However, the
additional nutritional benefits of these types of products are low
since it is clear from previous sections that sprouting times of
at least 3 days are needed to increase the nutritional value of
wheat.
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However, for some specific product applications, such as in
the production of tortillas, sprouting can make wholemeal prod-
ucts more acceptable for consumers. Fully or partially substituting
wheat flour with flour from wheat sprouted for 2 days at 25 °C
significantly increased the size of tortillas (Liu et al., 2017; Zhu,
Adedeji, & Alavi, 2017). Dough produced from sprouted wheat
flour readily expands during extrusion resulting in puffy tortillas,
which are valued by consumers. Indeed, such extruded products
have an increased sensory score and overall good acceptability
(Liu et al., 2017; Pawar, Shere, & Khapre, 2016). Tortillas from
sprouted wholemeal have a less grainy texture, bitterness, and bet-
ter opacity scores than their counterparts from nonsprouted wheat
wholemeal (Liu et al., 2017). Furthermore, during storage, the
latter more easily crack or break, probably because their starch
component retrogrades less than that in tortillas produced from
nonsprouted wholemeal (Liu et al., 2017).

Conclusion
Recent growing positive consumer perceptions about sprouted

cereals have resulted in new food and beverage launches, in partic-
ular in the U.S.A. and in Europe. Such products have a “positive
health” halo. Indeed, the nutritional value of cereal grains in-
creases upon sprouting, especially when long sprouting times (3
to 5 days) and/or high processing temperatures (25 to 35 °C) are
applied. During sprouting, minerals are released from their phy-
tate chelates and become available for intestinal absorption, and
vitamins and GABA are synthesized and accumulate. It is criti-
cal to optimize process conditions and to choose the desired type
of cereal when one is to maximize the nutritional properties of
sprouted grains.

At the moment, there is no accepted definition of the char-
acteristics and requirements for whole grains to be considered as
sprouted. In the context of maximizing the cereal nutritive value,
we recommend that a whole grain can only be considered as
sprouted if it has a clearly visible radicle. Indeed, only in phase
III of germination, the major mobilization of reserve material oc-
curs for seedling growth and development. Moreover, we urge
the existence of a globally recognized definition and regulation of
“sprouting” to ease research on this topic and support the produc-
tion of sprouted based products.

In the literature, the (bio)chemical changes occurring during
sprouting have frequently been extrapolated to potential health
benefits. However, the outcome of clinical studies to support spe-
cific health benefit statements is very limited. Initial studies have
suggested that sprouted grains may have a beneficial effect on
blood cholesterol and glucose levels, blood pressure, and mineral
absorption. However, much work has been done using in vitro and
animal models. In the few available human intervention studies,
the materials were poorly characterized. It is hence difficult to
draw any definitive conclusions about cause and effect. Interesting
observations stem from in vitro research showing that sprouting can
reduce the content of and bioreactivity to celiac disease-stimulating
peptides. However, the implications of these observations are hard
to interpret, because the quantity of sprouted material used in
food determines the effectivity of the food in terms of reducing
disease risk factors and improving tolerance. Therefore, there is
a clear need for well-designed randomized clinical trials to study
the impact of well-characterized sprouted grains and quantities on
physiological parameters and health status.

Sprouted nutrient-dense grains are deleterious for bread
making. Including flour from sprouted wheat in a bread recipe
negatively affects its end-quality due to excessive peptidase and

α-amylase actions during dough making, leading to a loss of struc-
ture and sticky and wet crumb with large holes, respectively. The
food industry tackles these shortcomings by using short sprouting
times and/or by blending flour from sprouted wheat with its
regular counterpart to obtain good end-products. Unfortunately,
these strategies substantially compromise the cereal nutrient
content and potential health-beneficial effects of the sprouted
grains. Innovative strategies need to be developed to inactivate
hydrolyzing enzymes in sprouted grains before or during product
making, and their functionality in a wide range of staple foods
such as bread, pasta, noodles, and breakfast flakes need to be
explored.
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Heiniö, R., Oksman-Caldentey, K., Latva-Kala, K., Lehtinen, P., &
Poutanen, K. (2001). Effect of drying treatment conditions on sensory
profile of germinated oat. Cereal Chemistry, 78, 707–714.

Hemalatha, S., Platel, K., & Srinivasan, K. (2007). Influence of germination
and fermentation on bioaccessibility of zinc and iron from food grains.
European Journal of Clinical Nutrition, 61, 342–348.

Hithamani, G., & Srinivasan, K. (2014). Bioaccessibility of polyphenols from
wheat (Triticum aestivum), sorghum (Sorghum bicolor), green gram (Vigna
radiata), and chickpea (Cicer arietinum) as influenced by domestic food
processing. Journal of Agricultural and Food Chemistry, 62, 11170–11179.

Hoj, P. B., Slade, A. M., Wettenhall, R. E. H., & Fincher, G. B. (1988).
Isolation and characterization of a (1→3)-β-glucan endohydrolase from
germinating barley (Hordeum vulgare): Amino acid sequence similarity with
barley (1→3, 1→4)-β-glucanases. FEBS Letters, 230, 67–71.

Hrmova, M., Banik, M., Harvey, A. J., Garrett, T. P., Varghese, J. N., Hoj, P.
B., & Fincher, G. B. (1997). Polysaccharide hydrolases in germinated barley
and their role in the depolymerization of plant and fungal cell walls.
International Journal of Biological Macromolecules, 21, 67–72.
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