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Abstract

Humans perceive the 3D world as a set of distinct ob-
jects that are characterized by various low-level (geometry,
reflectance) and high-level (connectivity, adjacency, sym-
metry) properties. Recent methods based on convolutional
neural networks (CNNs) demonstrated impressive progress
in 3D reconstruction, even when using a single 2D image
as input. However, the majority of these methods focuses on
recovering the local 3D geometry of an object without con-
sidering its part-based decomposition or relations between
parts. We address this challenging problem by proposing a
novel formulation that allows to jointly recover the geom-
etry of a 3D object as a set of primitives as well as their
latent hierarchical structure without part-level supervision.
Our model recovers the higher level structural decomposi-
tion of various objects in the form of a binary tree of prim-
itives, where simple parts are represented with fewer prim-
itives and more complex parts are modeled with more com-
ponents. Our experiments on the ShapeNet and D-FAUST
datasets demonstrate that considering the organization of
parts indeed facilitates reasoning about 3D geometry.

1. Introduction

Within the first year of their life, humans develop a
common-sense understanding of the physical behavior of
the world [2]. This understanding relies heavily on the abil-
ity to properly reason about the arrangement of objects in
a scene. Early works in cognitive science [22, 3, 29] stipu-
late that the human visual system perceives objects as a hi-
erarchical decomposition of parts. Interestingly, while this
seems to be a fairly easy task for the human brain, com-
puter vision algorithms struggle to form such a high-level
reasoning, particularly in the absence of supervision.

The structure of a scene is tightly related to the inherent
hierarchical organization of its parts. At a coarse level, a

Figure 1: Hierarchical Part Decomposition. We consider
the problem of learning structure-aware representations that
go beyond part-level geometry and focus on part-level rela-
tionships. Here, we show our reconstruction as an unbal-
anced binary tree of primitives, given a single RGB image
as input. Note that our model does not require any supervi-
sion on object parts or the hierarchical structure of the 3D
object. We show that our representation is able to model dif-
ferent parts of an object with different levels of abstraction,
leading to improved reconstruction quality.

scene can be decomposed into objects and at a finer level
each object can be represented with parts and these parts
with finer parts. Structure-aware representations go beyond
part-level geometry and focus on global relationships be-
tween objects and object parts. In this work, we propose a
structure-aware representation that considers part relation-
ships (Fig. 1) and models object parts with multiple lev-
els of abstraction, namely geometrically complex parts are
modeled with more components and simple parts are mod-
eled with fewer components. Such a multi-scale representa-
tion can be efficiently stored at the required level of detail,
namely with less parameters (Fig. 2).
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Recent breakthroughs in deep learning led to impres-
sive progress in 3D shape extraction by learning a para-
metric function, implemented as a neural network, that
maps an input image to a 3D shape represented as a mesh
[34, 18, 26, 55, 60, 41], a pointcloud [14, 45, 1, 25, 51, 60],
a voxel grid [5, 8, 15, 46, 47, 50, 57], 2.5D depth maps
[27, 20, 44, 12] or an implicit surface [36, 7, 42, 48, 58, 37].
These approaches are mainly focused on reconstructing the
geometry of an object, without taking into consideration
its constituent parts. This results in non-interpretable re-
constructions. To address the lack of interpretability, re-
searchers shifted their attention to representations that em-
ploy shape primitives [53, 43, 33, 11]. While these methods
yield meaningful semantic shape abstractions, part relation-
ships do not explicitly manifest in their representations.

Instead of representing 3D objects as an unstructured
collection of parts, we propose a novel neural network ar-
chitecture that recovers the latent hierarchical layout of an
object without structure supervision. In particular, we em-
ploy a neural network that learns to recursively partition an
object into its constituent parts by building a latent space
that encodes both the part-level hierarchy and the part ge-
ometries. The predicted hierarchical decomposition is rep-
resented as an unbalanced binary tree of primitives. More
importantly, this is learned without any supervision neither
on the object parts nor their structure. Instead, our model
jointly infers these latent variables during training.

In summary, we make the following contributions: We
jointly learn to predict part relationships and per-part geom-
etry without any part-level supervision. The only supervi-
sion required for training our model is a watertight mesh
of the 3D object. Our structure-aware representation yields
semantic shape reconstructions that compare favorably to
the state-of-the-art 3D reconstruction approach of [36], us-
ing significantly less parameters and without any additional
post-processing. Moreover, our learned hierarchies have a
semantic interpretation, as the same node in the learned tree
is consistently used for representing the same object part.
Experiments on the ShapeNet [6] and the Dynamic FAUST
(D-FAUST) dataset [4] demonstrate the ability of our model
to parse objects into structure-aware representations that are
more expressive and geometrically accurate compared to
approaches that only consider the 3D geometry of the object
parts [53, 43, 16, 9]. Code and data is publicly available1.

2. Related Work
We now discuss the most related primitive-based and

structure-aware shape representations.

Supervised Structure-Aware Representations: Our work
is related to methods that learn structure-aware shape rep-
resentations that go beyond mere enumeration of object’s

1https://github.com/paschalidoud/hierarchical primitives

Figure 2: Level of Detail. Our network represents an ob-
ject as a tree of primitives. At each depth level d, the target
object is reconstructed with 2d primitives, This results in a
representation with various levels of detail. Naturally, re-
constructions from deeper depth levels are more detailed.
We associate each primitive with a unique color, thus prim-
itives illustrated with the same color correspond to the same
object part. Note that the above reconstructions are derived
from the same model, trained with a maximum number of
24 = 16 primitives. During inference, the network dynam-
ically combines representations from different depth levels
to recover the final prediction (last column).

parts and recover the higher level structural decomposition
of objects based on part-level relations [38]. Li et al. [32]
represent 3D shapes using a symmetry hierarchy [56] and
train a recursive neural network to predict its hierarchical
structure. Their network learns a hierarchical organization
of bounding boxes and then fills them with voxelized parts.
Note that, this model considers supervision in terms of seg-
mentation of objects into their primitive parts. Closely re-
lated to [32] is StructureNet [39] which leverages a graph
neural network to represent shapes as n-ary graphs. Struc-
tureNet considers supervision both in terms of the primitive
parameters and the hierarchies. Likewise, Hu et al. [23] pro-
pose a supervised model that recovers the 3D structure of a
cable-stayed bridge as a binary parsing tree. In contrast our
model is unsupervised, i.e., it does not require supervision
neither on the primitive parts nor the part relations.

Physics-Based Structure-Aware Representations: The
task of inferring higher-level relationships among parts has
also been investigated in different settings. Xu et al. [59] re-
cover the object parts, their hierarchical structure and each
part’s dynamics by observing how objects are expected to
move in the future. In particular, each part inherits the mo-
tion of its parent and the hierarchy emerges by minimizing
the norm of these local displacement vectors. Kipf et al.
[30] explore the use of variational autoencoders for learn-
ing the underlying interaction among various moving parti-
cles. Steenkiste et al. [54] extend the work of [17] on per-
ceptual grouping of pixels and learn an interaction function
that models whether objects interact with each other at mul-
tiple frames. For both [30, 54], the hierarchical structure
emerges from interactions at multiple timestamps. In con-
trast to [59, 30, 54], our model does not relate hierarchies to
motion, thus we do not require multiple frames for discov-
ering the hierarchical structure.

https://github.com/paschalidoud/hierarchical_primitives


Figure 3: Overview. Given an input I (e.g., image, voxel grid), our network predicts a binary tree of primitivesP of maximum
depthD. The feature encoder maps the input I into a feature vector c00. Subsequently, the partition network splits each feature
representation cdk in two {cd+1

2k , cd+1
2k+1}, resulting in feature representations for {1, 2, 4, . . . , 2d} primitives where cdk denotes

the feature representation for the k-th primitive at depth d. Each cdk is passed to the structure network that ”assigns” a part
of the object to a specific primitive pdk. As a result, each pdk is responsible for representing a specific part of the target shape,
denoted as the set of points X dk . Finally, the geometry network predicts the primitive parameters λdk and the reconstruction
quality qdk for each primitive. To compute the reconstruction loss, we measure how well the predicted primitives match the
target object (Object Reconstruction) and the assigned parts (Part Reconstruction). We use plate notation to denote repetition
over all nodes k at each depth level d. The final reconstruction is shown on the right.

Supervised Primitive-Based Representations: Zou et al.
[61] exploit LSTMs in combination with a Mixture Den-
sity Network (MDN) to learn a cuboid representation from
depth maps. Similarly, Niu et al. [40] employ an RNN
that iteratively predicts cuboid primitives as well as their
symmetry and connectivity relationships from RGB images.
More recently, Li et al. [33] utilize PointNet++ [45] for pre-
dicting per-point properties that are subsequently used for
estimating the primitive parameters, by solving a series of
linear least-squares problems. In contrast to [61, 40, 45],
which require supervision in terms of the primitive param-
eters, our model is learned in an unsupervised fashion. In
addition, modelling primitives with superquadrics, allows
us to exploit a larger shape vocabulary that is not limited to
cubes as in [61, 40] or spheres, cones, cylinders and planes
as in [33]. Another line of work, complementary to ours,
incorporates the principles of constructive solid geometry
(CSG) [31] in a learning framework for shape modeling
[49, 13, 52, 35]. These works require rich annotations for
the primitive parameters and the sequence of predictions.

Unsupervised Shape Abstraction: Closely related to our
model are the works of [53, 43] that employ a convolu-
tional neural network (CNN) to regress the parameters of
the primitives that best describe the target object, in an un-
supervised manner. Primitives can be cuboids [53] or su-
perquadrics [43] and are learned by minimizing the dis-
crepancy between the target and the predicted shape, by ei-
ther computing the truncated bi-directional distance [53] or
the Chamfer-distance between points on the target and the

predicted shape [43]. While these methods learn a flat ar-
rangement of parts, our structure-aware representation de-
composes the depicted object into a hierarchical layout of
semantic parts. This results in part geometries with differ-
ent levels of granularity. Our model differs from [53, 43]
also wrt. the optimization objective. We empirically ob-
serve that for both [53, 43], the proposed loss formulations
suffer from various local minima that stem from the nature
of their optimization objective. To mitigate this, we use the
more robust classification loss proposed in [36, 7, 42] and
train our network by learning to classify whether points lie
inside or outside the target object. Very recently, [16, 9] ex-
plored such a loss for recovering shape elements from 3D
objects. Genova et al. [16] leverage a CNN to learn to pre-
dict the parameters of a set of axis-aligned 3D Gaussians
from a set of depth maps rendered at different viewpoints.
Similarly, Deng et al. [9] employ an autoencoder to recover
the geometry of an object as a collection of smooth con-
vexes. In contrast to [16, 9], our model goes beyond the
local geometry of parts and attempts to recover the underly-
ing hierarchical structure of the object parts.

3. Method

In this section, we describe our novel neural network
architecture for inferring structure-aware representations.
Given an input I (e.g., RGB image, voxel grid) our goal is
to learn a neural network φθ, which maps the input to a set
of primitives that best describe the target object. The target
object is represented as a set of pairs X = {(xi, oi)}Ni=1,



where xi corresponds to the location of the i-th point and
oi denotes its label, namely whether xi lies inside (oi = 1)
or outside (oi = 0) the target object. We acquire these N
pairs by sampling points inside the bounding box of the tar-
get mesh and determine their labels using a watertight mesh
of the target object. During training, our network learns to
predict shapes that contain all internal points from the tar-
get mesh (oi = 1) and none of the external (oi = 0). We
discuss our sampling strategy in our supplementary.

Instead of predicting an unstructured set of primitives,
we recover a hierarchical decomposition over parts in the
form of a binary tree of maximum depth D as

P = {{pdk}2
d−1
k=0 | d = {0 . . . D}} (1)

where pdk is the k-th primitive at depth d. Note that for the
k-th node at depth d, its parent is defined as pd−1b k2 c

and its

two children as pd+1
2k and pd+1

2k+1.
At every depth level, P reconstructs the target object

with {1, 2, . . . ,M} primitives. M is an upper limit to the
maximum number of primitives and is equal to 2D. More
specifically, P is constructed as follows: the root node is
associated with the root primitive that represents the entire
shape and is recursively split into two nodes (its children)
until reaching the maximum depth D. This recursive parti-
tion yields reconstructions that recover the geometry of the
target shape using 2d primitives, where d denotes the depth
level (see Fig. 2). Throughout this paper, the term node is
used interchangeably with primitive and always refers to the
primitive associated with this particular node.

Every primitive is fully described by a set of parame-
ters λdk that define its shape, size and position in 3D space.
Since not all objects require the same number of primitives,
we enable our model to predict unbalanced trees, i.e. stop
recursive partitioning if the reconstruction quality is suffi-
cient. To achieve this our network also regresses a recon-
struction quality for each primitive denoted as qdk . Based
on the value of each qdk the network dynamically stops the
recursive partitioning process resulting in parsimonious rep-
resentations as illustrated in Fig. 1.

3.1. Network Architecture

Our network comprises three main components: (i) the
partition network that recursively splits the shape represen-
tation into representations of parts, (ii) the structure net-
work that focuses on learning the hierarchical arrangement
of primitives, namely assigning parts of the object to the
primitives at each depth level and (iii) the geometry net-
work that recovers the primitive parameters. An overview
of the proposed pipeline is illustrated in Fig. 3. The first
part of our pipeline is a feature encoder, implemented with
a ResNet-18 [21], ignoring the final fully connected layer.
Instead, we only keep the feature vector of length F = 512
after average pooling.

Partition Network: The feature encoder maps the input I
to an intermediate feature representation c00 ∈ RF that de-
scribes the root node p00. The partition network implements
a function pθ : RF → R2F that recursively partitions the
feature representation cdk of node pdk into two feature repre-
sentations, one for each children {pd+1

2k , pd+1
2k+1}:

pθ(c
d
k) = {cd+1

2k , cd+1
2k+1}. (2)

Each primitive pdk is directly predicted from cdk without con-
sidering the other intermediate features. This implies that
the necessary information for predicting the primitive pa-
rameterization is entirely encapsulated in cdk and not in any
other intermediate feature representation.

Structure Network: Due to the lack of ground-truth su-
pervision in terms of the tree structure, we introduce the
structure network that seeks to learn a pseudo-ground truth
part-decomposition of the target object. More formally, it
learns a function sθ : RF → R3 that maps each feature
representation cdk to hdk a spatial location in R3.

One can think of each hdk as the (geometric) centroid of
a specific part of the target object. We define

H = {{hdk}2
d−1
k=0 | d = {0 . . . D}} (3)

the set of centroids of all parts of the object at all depth
levels. From H and X , we are now able to derive the part
decomposition of the target object as the set of points X dk
that are internal to a part with centroid hdk.

Note that, in order to learn P , we need to be able to parti-
tion the target object into 2d parts at each depth level. At the
root level (d = 0), h0

0 is the centroid of the target object and
X 0

0 is equal to X . For d = 1, h1
0 and h1

1 are the centroids
of the two parts representing the target object. X 1

0 and X 1
1

comprise the same points as X 0
0 . For the external points,

the labels remain the same. For the internal points, how-
ever, the labels are distributed between X 1

0 and X 1
1 based

on whether h1
0 or h1

1 is closer. That is, X 1
0 and X 1

1 each
contain more external labels and less internal labels com-
pared to X 0

0 . The same process is repeated until we reach
the maximum depth.

More formally, we define the set of points X dk corre-
sponding to primitive pdk implicitly via its centroid hdk:

X dk =
{
Nk(x, o) ∀(x, o) ∈ X d−1b k2 c

}
(4)

Here, X d−1b k2 c
denotes the points of the parent. The function

Nk(x, o) assigns each (x, o) ∈ X d−1b k2 c
to part pdk if it is closer

to hdk than to hds(k) where s(k) is the sibling of k:

Nk(x, o) =

{
(x, 1) ‖hdk − x‖ ≤ ‖hds(k) − x‖ ∧ o = 1

(x, 0) otherwise
(5)



(a)

(b)

Figure 4: Structure Network. We visualize the centroids
hdk and the 3D points X dk that correspond to the estimated
part pdk for the first three levels of the tree. Fig. 4b explains
visually Eq. (4). We color points based on their closest
centroid hdk. Points illustrated with the color associated to
a part are labeled “internal” (o = 1). Points illustrated with
gray are labeled “external” (o = 0).

Intuitively, this process recursively associates points to the
closest sibling at each level of the binary tree where the as-
sociation is determined by the label o. Fig. 4 illustrates the
part decomposition of the target shape using H. We visual-
ize each part with a different color.

Geometry Network: The geometry network learns a func-
tion rθ : RF → RK × [0, 1] that maps the feature represen-
tation cdk to its corresponding primitive parametrization λdk
and the reconstruction quality prediction qdk:

rθ(c
d
k) = {λdk, qdk}. (6)

3.2. Primitive Parametrization

For primitives, we use superquadric surfaces. A detailed
analysis of the use of superquadrics as geometric primitives
is beyond the scope of this paper, thus we refer the reader to
[24, 43] for more details. Below, we focus on the properties
most relevant to us. For any point x ∈ R3, we can deter-
mine whether it lies inside or outside a superquadric using
its implicit surface function which is commonly referred to
as the inside-outside function:

f(x;λ) =

((
x

α1

) 2
ε2

+

(
y

α2

) 2
ε2

) ε2
ε1

+

(
z

α3

) 2
ε1

(7)

where α = [α1, α2, α3] determine the size and ε = [ε1, ε2]
the shape of the superquadric. If f(x;λ) = 1.0, the given
point x lies on the surface of the superquadric, if f(x;λ) <
1.0 the corresponding point lies inside and if f(x;λ) > 1.0
the point lies outside the superquadric. To account for nu-
merical instabilities that arise from the exponentiations in
(16), instead of directly using f(x;λ), we follow [24] and
use f(x;λ)ε1 . Finally, we convert the inside-outside func-
tion to an occupancy function, g : R3 → [0, 1]:

g(x;λ) = σ (s (1− f(x;λ)ε1)) (8)

that results in per-point predictions suitable for the clas-
sification problem we want to solve. σ(·) is the sigmoid
function and s controls the sharpness of the transition of
the occupancy function. To account for any rigid body mo-
tion transformations, we augment the primitive parameters
with a translation vector t = [tx, ty, tz] and a quaternion
q = [q0, q1, q2, q3] [19], which determine the coordinate
system transformation T (x) = R(λ)x + t(λ). Note that
in (16), (17) we omit the primitive indexes k, d for clarity.
Visualizations of (17) are given in our supplementary.

3.3. Network Losses

Our optimization objective L(P,H;X ) is a weighted
sum over four terms:

L(P,H;X ) =Lstr(H;X ) + Lrec(P;X )
+Lcomp(P;X ) + Lprox(P)

(9)

Structure Loss: Using H and X , we can decompose the
target mesh into a hierarchy of disjoint parts. Namely, each
hdk implicitly defines a set of points X dk that describe a spe-
cific part of the object as described in (4). To quantify how
well H clusters the input shape X we minimize the sum of
squared distances, similar to classical k-means:

Lstr(H;X ) =
∑
hdk∈H

1

2d − 1

∑
(x,o)∈Xdk

o ‖x− hdk‖2 (10)

Note that for the loss in (10), we only consider gradients
with respect toH asX dk is implicitly defined viaH. This re-
sults in a procedure resembling Expectation-Maximization
(EM) for clustering point clouds, where computing X dk is
the expectation step and each gradient updated corresponds
to the maximization step. In contrast to EM, however, we
minimize this loss across all instances of the training set,
leading to parsimonious but consistent shape abstractions.
An example of this clustering process performed at training-
time is shown in Fig. 4.

Reconstruction Loss: The reconstruction loss measures
how well the predicted primitives match the target shape.
Similar to [16, 9], we formulate our reconstruction loss as a



binary classification problem, where our network learns to
predict the surface boundary of the predicted shape by clas-
sifying whether points in X lie inside or outside the target
object. To do this, we first define the occupancy function
of the predicted shape at each depth level. Using the occu-
pancy function of each primitive defined in (17), the occu-
pancy function of the overall shape at depth d becomes:

Gd(x) = max
k∈0...2d−1

gdk
(
x;λdk

)
(11)

Note that (11) is simply the union of the per-primitive occu-
pancy functions. We formulate our reconstruction loss wrt.
the object and wrt. each part of the object as follows

Lrec(P;X ) =
∑

(x,o)∈X

D∑
d=0

L
(
Gd(x), o

)
+ (12)

D∑
d=0

2d−1∑
k=0

∑
(x,o)∈Xdk

L
(
gdk
(
x;λdk

)
, o
)

(13)

where L(·) is the binary cross entropy loss. The first term
is an object reconstruction loss (12) and measures how well
the predicted shape at each depth level matches the target
shape. The second term (13) which we refer to as part re-
construction loss measures how accurately each primitive
pdk matches the part of the object it represents, defined as the
point setX dk . Note that the part reconstruction loss enforces
non-overlapping primitives, as X dk are non-overlapping by
construction. We illustrate our reconstruction loss in Fig. 3.

Compatibility Loss: This loss measures how well our
model is able to predict the expected reconstruction quality
qdk of a primitive pdk. A standard metric for measuring the
reconstruction quality is the Intersection over Union (IoU).
We therefore task our network to predict the reconstruction
quality of each primitive pdk in terms of its IoU wrt. the part
of the object X dk it represents:

Lcomp(P;X ) =
D∑
d=0

2d−1∑
k=0

(
qdk − IoU(pdk,X dk )

)2
(14)

During inference, qdk allows for further partitioning primi-
tives whose IoU is below a threshold qth and to stop if the
reconstruction quality is high (the primitive fits the object
part well). As a result, our model predicts an unbalanced
tree of primitives where objects can be represented with
various number of primitives from 1 to 2D. This results
in parsimonious representations where simple parts are rep-
resented with fewer primitives. We empirically observe that
the threshold value qth does not significantly affect our re-
sults, thus we empirically set it to 0.6. During training, we
do not use the predicted reconstruction quality qdk to dynam-
ically partition the nodes but instead predict the full tree.

(a) Input

(b) Prediction
(c) Predicted Hierarchy

(d) Input

(e) Prediction (f) Predicted Hierarchy

Figure 5: Predicted Hierarchies on ShapeNet. Our model
recovers the geometry of an object as an unbalanced hier-
archy over primitives, where simpler parts (e.g. base of the
lamp) are represented with few primitives and more com-
plex parts (e.g. wings of the plane) with more.

Proximity Loss: This term is added to counteract vanish-
ing gradients due to the sigmoid in (17). For example, if the
initial prediction of a primitive is far away from the target
object, the reconstruction loss will be large while its gradi-
ents will be small. As a result, it is impossible to “move”
this primitive to the right location. Thus, we introduce a
proximity loss which encourages the center of each primi-
tive pdk to be close to the centroid of the part it represents:

Lprox(P) =
D∑
d=0

2d−1∑
k=0

‖t(λdk)− hdk‖2 (15)

where t(λdk) is the translation vector of the primitive pdk and
hdk is the centroid of the part it represents. We demonstrate
the vanishing gradient problem in our supplementary.

4. Experiments
In this section, we provide evidence that our structure-

aware representation yields semantic shape abstractions
while achieving competitive (or even better results) than
various state-of-the-art shape reconstruction methods, such
as [36]. Moreover, we also investigate the quality of the
learned hierarchies and show that the use of our structure-
aware representation yields semantic scene parsings. Im-



Chamfer-L1 IoU
OccNet [36] SQs [43] SIF [16] CvxNets [9] Ours OccNet [36] SQs [43] SIF [16] CvxNets [9] Ours

Category

airplane 0.147 0.122 0.065 0.093 0.175 0.571 0.456 0.530 0.598 0.529
bench 0.155 0.114 0.131 0.133 0.153 0.485 0.202 0.333 0.461 0.437
cabinet 0.167 0.087 0.102 0.160 0.087 0.733 0.110 0.648 0.709 0.658
car 0.159 0.117 0.056 0.103 0.141 0.737 0.650 0.657 0.675 0.702
chair 0.228 0.138 0.192 0.337 0.114 0.501 0.176 0.389 0.491 0.526
display 0.278 0.106 0.208 0.223 0.137 0.471 0.200 0.491 0.576 0.633
lamp 0.479 0.189 0.454 0.795 0.169 0.371 0.189 0.260 0.311 0.441
speaker 0.300 0.132 0.253 0.462 0.108 0.647 0.136 0.577 0.620 0.660
rifle 0.141 0.127 0.069 0.106 0.203 0.474 0.519 0.463 0.515 0.435
sofa 0.194 0.106 0.146 0.164 0.128 0.680 0.122 0.606 0.677 0.693
table 0.189 0.110 0.264 0.358 0.122 0.506 0.180 0.372 0.473 0.491
phone 0.140 0.112 0.095 0.083 0.149 0.720 0.185 0.658 0.719 0.770
vessel 0.218 0.125 0.108 0.173 0.178 0.530 0.471 0.502 0.552 0.570

mean 0.215 0.122 0.165 0.245 0.143 0.571 0.277 0.499 0.567 0.580

Table 1: Single Image Reconstruction on ShapeNet. Quantitative evaluation of our method against OccNet [36] and
primitive-based methods with superquadrics [43] (SQs), SIF [16] and CvxNets [9]. We report the volumeteric IoU (higher is
better) and the Chamfer-L1 distance (lower is better) wrt. the ground-truth mesh.

Figure 6: Predicted Hierarchies on D-FAUST. We visu-
alize the input RGB image (a), the prediction (b) and the
predicted hierarchy (c). We associate each primitive with a
color and we observe that our network learns semantic map-
pings of body parts across different articulations, e.g. node
(3, 3) is used for representing the upper part of the left leg,
whereas node (1, 1) is used for representing the upper body.

plementation details and ablations on the impact of various
components of our model are detailed in the supplementary.

Datasets: First, we use the ShapeNet [6] subset of Choy
et al. [8], training our model using the same image render-
ings and train/test splits as Choy et al. Furthermore, we also

experiment with the Dynamic FAUST (D-FAUST) dataset
[4], which contains meshes for 129 sequences of 10 humans
performing various tasks, such as ”running”, ”punching” or
”shake arms”. We randomly divide these sequences into
training (91), test (29) and validation (9).

Baselines: Closely related to our work are the shape pars-
ing methods of [53] and [43] that employ cuboids and su-
perquadric surfaces as primitives. We refer to [43] as SQs
and we evaluate using their publicly available code2. More-
over, we also compare to the Structured Implicit Func-
tion (SIF) [16] that represent the object’s geometry as the
isolevel of the sum of a set of Gaussians and to the CvxNets
[9] that represent the object parts using smooth convex
shapes. Finally, we also report results for OccNet [36],
which is the state-of-the-art implicit shape reconstruction
technique. Note that in contrast to us, [36] does not con-
sider part decomposition or any form of latent structure.

Evaluation Metrics: Similar to [36, 16, 9], we evaluate
our model quantitatively and report the mean Volumetric
IoU and the Chamfer-L1 distance. Both metrics are dis-
cussed in detail in our supplementary.

4.1. Results on ShapeNet

We evaluate our model on the single-view 3D recon-
struction task and compare against various state-of-the-art
methods. We follow the standard experimental setup and
train a single model for the 13 ShapeNet objects. Both our
model and [43] are trained for a maximum number of 64

2https://superquadrics.com

https://superquadrics.com


(a) Input (b) SQs (c) Ours (d) Input (e) SQs (f) Ours

Figure 7: Single Image 3D Reconstruction. The input im-
age is shown in (a, d), the other columns show the results
of our method (c, f) compared to [43] (b, e). Additional
qualitative results are provided in the supplementary.

primitives (D = 6). For SIF [16] and CvxNets [9] the re-
ported results are computed using 50 shape elements. The
quantitative results are reported in Table 1. We observe
that our model outperforms the primitive-based baselines in
terms of the IoU as well as the OccNet [36] for the major-
ity of objects (7/13). Regarding Chamfer-L1, our model is
the second best amongst primitive representations, as [43]
is optimized for this metric. This also justifies that [43] per-
forms worse in terms of IoU. While our model performs on
par with existing state-of-the-art primitive representations
in terms of Chamfer-L1, it also recovers hierarchies, which
none of our baselines do. A qualitative comparison of our
model with SQs [43] is depicted in Fig. 7. Fig. 5 visualizes
the learned hierarchy for this model. We observe that our
model recovers unbalanced binary trees that decompose a
3D object into a set of parts. Note that [53, 43] were origi-
nally introduced for volumetric 3D reconstruction, thus we
provide an experiment on this task in our supplementary.

4.2. Results on D-FAUST

We also demonstrate results on the Dynamic FAUST (D-
FAUST) dataset [4], which is very challenging due to the
fine structure of the human body. We evaluate our model on
the single-view 3D reconstruction task and compare with
[43]. Both methods are trained for a maximum number of
32 primitives (D = 5). Fig. 6 illustrates the predicted hi-
erarchy on different humans from the test set. We note that
the predicted hierarchies are indeed semantic, as the same
nodes are used for modelling the same part of the human
body. Fig. 8 compares the predictions of our model with
SQs. We observe that while our baseline yields more par-
simonious abstractions, their level of detail is limited. On
the contrary, our model captures the geometry of the human
body with more detail. This is also validated quantitatively,
from Table 2. Note that in contrast to ShapeNet, D-FAUST
does not contain long, thin (e.g. legs of tables, chairs) or
hollow parts (e.g. cars), thus optimizing for either Chamfer-
L1 or IoU leads to similar results. Hence, our method out-

(a) Input (b) SQs (c) Ours (d) Input (e) SQs (f) Ours

Figure 8: Single Image 3D Reconstruction. Qualitative
comparison of our reconstructions (c, f), to [43] that does
not consider any form of structure (b, e). The input RGB
image is shown in (a, d). Note how our representation
yields geometrically more accurate reconstructions, while
being semantic, e.g., the primitive colored in blue consis-
tently represents the head of the human while the primitive
colored in orange captures the left thigh. Additional quali-
tative results are provided in the supplementary.

IoU Chamfer-L1

SQs [43] 0.608 0.189
Ours 0.699 0.098

Table 2: Single Image Reconstruction on D-FAUST. We
report the volumetric IoU and the Chamfer-L1 wrt. the
ground-truth mesh for our model compared to [43].

performs [43] also in terms of Chamfer-L1. Due to lack of
space, we only illustrate the predicted hierarchies up to the
fourth depth level. The full hierarchies are provided in the
supplementary.

5. Conclusion
We propose a learning-based approach that jointly pre-

dicts part relationships together with per-part geometries in
the form of a binary tree without requiring any part-level an-
notations for training. Our model yields geometrically ac-
curate primitive-based reconstructions that outperform ex-
isting shape abstraction techniques while performing com-
petitively with more flexible implicit shape representations.
In future work, we plan to to extend our model and pre-
dict hierarchical structures that remain consistent in time,
thus yielding kinematic trees of objects. Another future di-
rection, is to consider more flexible primitives such as gen-
eral convex shapes and incorporate additional constraints
e.g. symmetry to further improve the reconstructions.
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Abstract

In this supplementary document, we first present examples of our occupancy function. In addition, we present a detailed
overview of our network architecture and the training procedure. We then discuss how various components influence the
performance of our model on the single-view 3D reconstruction task. Finally, we provide additional experimental results on
more categories from the ShapeNet dataset [6] and on the D-FAUST dataset [4] together with the corresponding hierarchical
structures. The supplementary video shows 3D animations of the predicted structural hierarchy for various objects from the
ShapeNet dataset as well as humans from the D-FAUST.

A. Occupancy Function
In this section, we provide illustrations of the occupancy function g for different primitive parameters and for different

sharpness values. For any point x ∈ R3, we can determine whether it lies inside or outside a superquadric using its implicit
surface function which is commonly referred to as the inside-outside function:

f(x;λ) =
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(16)

where α = [α1, α2, α3] determine the size and ε = [ε1, ε2] determine the shape of the superquadric. If f(x;λ) = 1.0, the
given point x lies on the surface of the superquadric, if f(x;λ) < 1.0 the corresponding point lies inside and if f(x;λ) > 1.0
the point lies outside the superquadric. To account for numerical instabilities that arise from the exponentiations in (16),
instead of directly using f(x;λ), we follow [24] and use f(x;λ)ε1 . In addition, we also convert the inside-outside function

Figure 9: Implicit surface function of superquadrics. We visualize the 2D slice of f(xi) and g(xi) for a superquadric with
α1 = α2 = α3 = ε1 = ε2 = 1.



(a) ε1 = 0.25, and ε2 = 0.25

(b) ε1 = 0.25, and ε2 = 0.5

(c) ε1 = 0.25, and ε2 = 1.0

(d) ε1 = 0.25, and ε2 = 1.5

Figure 10: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
different sharpness values. The surface boundary is drawn with red.

to an occupancy function, g : R3 → [0, 1]:

g(x;λ) = σ (s (1− f(x;λ)ε1)) (17)

that results in per-point predictions suitable for the classification problem we want to solve. σ(·) is the sigmoid function and
s controls the sharpness of the transition of the occupancy function. As a result, if g(x;λ) < 0.5 the corresponding point lies
outside and if g(x;λ) > 0.5 the point lies inside the superquadric. Fig. 9 visualizes the range of the implicit surface function
of superquadrics of (16) and (17). Fig. 10+11+12 visualize the implicit surface function for different values of ε1 and ε2
and different values of sharpness s. We observe that without applying the sigmoid to (16) the range of values of (16) varies
significantly for different primitive parameters.



(a) ε1 = 1.0, and ε2 = 0.25

(b) ε1 = 1.0, and ε2 = 0.5

(c) ε1 = 1.0, and ε2 = 1.0

(d) ε1 = 1.0, and ε2 = 1.5

Figure 11: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
different sharpness values. The surface boundary is drawn with red.



(a) ε1 = 1.5, and ε2 = 0.25

(b) ε1 = 1.5, and ε2 = 0.5

(c) ε1 = 1.5, and ε2 = 1.0

(d) ε1 = 1.5, and ε2 = 1.5

Figure 12: Implicit surface function We visualize the implicit surface function for different primitive parameters and for
different sharpness values. The surface boundary is drawn with red.



B. Implementation Details
In this section, we provide a detailed description of our network architecture. We then describe our sampling strategy and

provide details on the metrics we use both for training and testing. Finally, we show how various components influence the
performance of our model on the single-view 3D reconstruction task.

B.1. Network Architecture

Here we describe the architecture of each individual component of our model, shown in Figure 3 of our main submission.

Feature Encoder: The feature encoder depends on the type of the input, namely whether it is an image or a binary occupancy
grid. For the single view 3D reconstruction task, we use a ResNet-18 architecture [21] (Fig. 13a), which was pretrained on the
ImageNet dataset [10]. From the original design, we ignore the final fully connected layer keeping only the feature vector of
length F = 512 after average pooling. For the volumetric 3D reconstruction task, where the input is a binary occupancy grid,
we use the feature encoder proposed in [43](Fig. 13b). Note that the feature encoder is used as a generic feature extractor
from the input representation.

(a) Single-view 3D Reconstruction

(b) Volumetric 3D Reconstruction

Figure 13: Feature Encoder Architectures. Depending on the type of the input, we employ two different network architec-
tures. (a) For the single view 3D reconstruction task we use a ResNet-18 architecture [21] (b) For a binary occupancy grid as
an input, we leverage the network architecture of [43].

Partition Network: The partition network implements a function pθ : RF → R2F that recursively partitions the feature
representation cdk of node pdk into two feature representations, one for each child {pd+1

2k , pd+1
2k+1}. The partition network

(Fig. 14a) comprises two fully connected layers followed by RELU non linearity.

Structure Network: The structure network maps each feature representation cdk to hdk a spatial location in R3. The structure
network (Fig. 14b) consists of two fully connected layers followed by RELU non linearity.

Geometry Network: The geometry network learns a function rθ : RF → RK × [0, 1] that maps the feature representation
cdk to its corresponding primitive parametrization λdk and the reconstruction quality prediction qdk . In particular, the geometry
network consists of five regressors that predict the parameters of the superquadrics (size α, shape ε and pose as translation



(a) Partition Network (b) Structure Network

Figure 14: Network Architecture Overview. The partition network (14a) is simply one hidden layer fully connected network
with RELU non linearity. The gray dotted lines indicate the recursive partition of the feature representation. Similarly, the
structure network (14b) consists of two fully connected layers followed by RELU non linearity.

(a) Shape (b) Size

(c) Translation (d) Rotation

(e) Reconstruction quality

Figure 15: Geometry Network. We detail the specifics of each regressor for predicting the primitive parameters λdk and the
reconstruction quality qdk .

t and rotation R) in addition to the reconstruction quality qdk . Fig. 15 presents the details of the implementation of each
regressor.

B.2. Training

In all our experiments, we use the Adam optimizer [28] with learning rate 0.0001 and no weight decay. For other hyper-
parameters of Adam we use the PyTorch defaults. We train all models with a batch size of 32 for 40k iterations. We do not



perform any additional data augmentation. We weigh the loss terms of Eq. 9 in our main submission with 0.1, 0.01, 0.01
and 0.1 respectively, in order to enforce that during the first stages of training the network will focus primarily on learning
the hierarchical decomposition of the 3D shape (Ls + Lp). In this way, after the part decomposition is learned, the network
also focuses on the part geometries (Lr). We also experimented with a two-stage optimization scheme, where we first learn
the hierarchical part decomposition and then learn the hierarchical representation, but we observed that this made learning
harder.

B.3. Sampling Strategy

Sampling a point inside the target mesh has a probability proportional to the volume of the mesh. This yields bad re-
constructions for thin parts of the object, such as legs of chairs and wings of aeroplanes. In addition, biasing the sampling
towards the points inside the target mesh, results in worse reconstructions as also noted in [36]. To address the first issue
(properly reconstructing thin parts), we use an unbalanced sampling distribution that, in expectation, results in sampling an
equal number of points inside and outside the target mesh. To counter the second (biased sampling), we construct an unbi-
ased estimator of the loss by weighing the per-point loss inversely proportionally to its sampling probability. We refer to our
sampling strategy as unbiased importance sampling. Note that throughout all our experiments, we sample 10k points in the
bounding box of the target mesh using our sampling strategy.

B.4. Metrics

We evaluate our model and our baselines using the volumetric Intersection over Union (IoU) and the Chamfer-L1 distance.
Note that as our method does not predict a single mesh, we sample points from each primitive proportionally to its area, such
that the total number of sampled points from all primitives is equal to 100k. For a fair comparison, we do the same for
[53, 43]. Below, we discuss in detail the computation of the volumetric IoU and the Chamfer-L1.

Volumetric IoU is defined as the quotient of the volume of the intersection of the target Stargetand the predicted Spred
mesh and the volume of their union. We obtain unbiased estimates of the volume of the intersection and the union by
randomly sampling 100k points from the bounding volume and determining if the points lie inside or outside the target /
predicted mesh,

IoU(Spred, Starget) =
| V (Spred ∩ Starget) |
| V (Spred ∪ Starget) |

(18)

where V (.) is a function that computes the volume of a mesh.
We obtain an unbiased estimator of the Chamfer-L1 distance by sampling 100k points on the surface of the target Starget

and the predicted Spred mesh. We denote X = {xi}Ni=1 the set of points sampled on the surface of the target mesh and
Y = {yi}Ni=1 the set of points sampled on the surface of the predicted mesh. We compute the Chamfer-L1 as follows:

Dchamfer(X ,Y) =
1

N

∑
xi∈X

min
yj∈∪Y

‖xi − yj‖+
1

N

∑
yi∈∪Y

min
xj∈X

‖yi − xj‖ (19)

The first term of (19) measures the completeness of the predicted shape, namely how far is on average the closest predicted
point from a ground-truth point. The second term measures the accuracy of the predicted shape, namely how far on average
is the closest ground-truth point from a predicted point.

To ensure a fair comparison with our baselines, we use the evaluation code of [36] for the estimation of both the Volumetric
IoU and the Chamfer-L1.

B.5. Empirical Analysis of Loss Formulation

In this section, we investigate the impact of how various components of our model affect the performance on the single-
image 3D reconstruction task.

B.5.1 Impact of Sampling Strategy

We first discuss how the sampling strategy affects the performance of our model. Towards this goal, we evaluate our model
on the single-view 3D reconstruction task using three different sampling strategies: (a) uniform sampling in the bounding box
that contains the target object (b) biased sampling (namely sampling an equal number of points inside and outside the target
mesh without reweighing) and (c) unbiased importance sampling as described in Section B.3. All models are trained on the



IoU Chamfer-L1

Uniform 0.383 0.073
Biased 0.351 0.041
Importance 0.491 0.073

(a) Influence of sampling strategy

IoU Chamfer-L1

Importance 2k 0.370 0.074
Importance 5k 0.380 0.076
Importance 10k 0.491 0.073

(b) Influence of number of sampled points.

Table 3: Sampling Strategy. We evaluate the performance of our model while varying the sampling scheme and the number
of the sampled points inside the bounding box of the target mesh. We report the volumetric IoU (higher is better) and the
Chamfer distance (lower is better) on the test set of the ”chair category”.

”chair” object category of ShapeNet using the same network architecture, the same number of sampled points (N =10k) and
the same maximum number of primitives (D = 16). The quantitative results on the test set of the ”chair” category are shown
in Table 3. We observe that the proposed importance sampling strategy achieves the best results in terms of IoU.

Furthermore, we also examine the impact of the number of sampled points on the performance of our model. In particular,
we train our model on the “chair” category while varying the number of sampled points inside the bounding box that contains
the target mesh. As expected, increasing the number of sampled points results in an improvement in reconstruction quality.
We empirically found that sampling 10k points results in the best compromise between training time and reconstruction
performance.

B.5.2 Impact of Proximity loss

In this section, we explain empirically the vanishing gradient problem that emerges from the use of the sigmoid in the
occupancy function of (17). To this end, we train two variants of our model, one with and without the proximity loss of Eq.
15, in our main submission. For this experiment, we train both variants on D-FAUST for the single image 3D reconstruction
task. Both models are trained for a maximum number of 32 primitives and s = 10 and for the same number of iterations.

(a) Input (b) without (c) Ours (d) Input (e) without (f) Ours

Figure 16: Vanishing gradients. We visualize the predictions of two two models, one trained with (Ours) and one without
the proximity loss term. On the left, we visualize the input RGB image (a, d), in the middle the predictions without the
proximity loss (b,c) and on the right the predictions of our model with this additional loss term.



IoU Chamfer-L1

Ours w/o proximity loss 0.605 0.171
Ours 0.699 0.098

Table 4: Proximity loss. We investigate the impact of the proximity loss. We report the volumetric IoU and the Chamfer
distance for two variants of our model, one with and without the proximity loss term.

Fig. 16 illustrates the predictions of both variants. We remark that the predictions of the model that was trained without the
proximity loss are less accurate. Note that due to the vanishing gradient problem, the network is not able to properly ”move”
primitives and as a result, instead of reconstructing the hands of the humans using two or four primitives, the network uses
only one. Interestingly, the reconstructions in some cases e.g. (e) do not even capture the human shape properly. However,
even though the reconstruction quality is bad, the network is not able to fix it because the gradients of the reconstruction loss
are small (even though the reconstruction loss itself is high). This is also validated quantitatively, as can be observed from
Table 4.



C. Additional Results on ShapeNet
In this section, we provide additional qualitative results on various object types from the ShapeNet dataset [6]. Fur-

thermore, we also demonstrate the ability of our model to predict semantic hierarchies, where the same node is used for
representing the same part of the object. We compare our model qualitatively with [43]. In particular, we train both models
on the single-view 3D reconstruction task, using the same image renderings and train/test splits as [8]. Both methods are
trained for a maximum number of 64 primitives. For our method, we empirically observed that a sharpness value s = 10 led
to good reconstructions. Note that we do not compare qualitatively with [16, 9] as they do not provide code. Finally, we also
compare our model with [53, 43] on the volumetric reconstruction task, where the input to all networks is a binary voxel grid.
For a fair comparison, all models leverage the same feature encoder architecture proposed in [43].

In Fig. 18+19, we qualitatively compare our predictions with [43] for various ShapeNet objects. We observe that our
model yields more accurate reconstructions compared to our baseline. Due to the use of the reconstruction quality qdk , our
model dynamically decides whether a node should be split or not. For example, our model represents the phone in Fig. 18
(a) using one primitive (root node) and the phone in Fig. 18 (b), that consists of two parts, with two primitives. This can be
also noted for the case of the displays Fig. 18 (g+j). For more complicated objects, such as aeroplanes, tables and chairs, our
network uses more primitives to accurately capture the geometry of the target object. Note that for this experiment we set the
threshold for qdk to 0.8.

Our network associates the same node with the same part of the object, as it can be seen from the predicted hierarchies in
Fig. 18+19. For example, for the displays the second primitive at the first depth level is used for representing the monitor
of the display, for the aeroplanes the 4-th primitive in the second depth level is used for representing the front part of the
aeroplanes.

C.1. Volumetric Reconstruction

Our model is closely related to the works of Tulsiani et al. [53] and Paschalidou et al. [43]. Both [53, 43] were originally
introduced using a binary occupancy grid as an input to their model, thus we also compare our model with [53, 43] using
a voxelized input of size 32 × 32 × 32. We evaluate the modelling accuracy of these three methods on the animal class of
the ShapeNet dataset. To ensure a fair comparison, we use the feature encoder proposed in [53] for all three. A qualitative
evaluation is provided in Fig. 17.

Our model yields more detailed reconstructions compared to [53, 43]. For example, in our reconstructions the legs of the
animals are not connected and the tails better capture the geometry of the target shape. Again, we observe that our network
predicts semantic hierarchies, where the same node is used for representing the same part of the animal.



(a) Input (b) [53] (c) [43] (d) Ours (e) Input (f) [53] (g) [43] (h) Ours

(i) Predicted Hierarchy (j) Predicted Hierarchy

(k) Input (l) [53] (m) [43] (n) Ours (o) Input (p) [53] (q) [43] (r) Ours

(s) Predicted Hierarchy (t) Predicted Hierarchy

Figure 17: Volumetric Reconstruction. We note that our reconstructions are geometrically more accurate. In contrast to
[43], our model yields reconstructions where the legs of the animals are not connected. Furthermore, our model accurately
captures the ears and tails of the different animals.

D. Additional Results on D-FAUST

In this section, we provide additional qualitative results on the D-FAUST dataset [4]. Furthermore, we also demonstrate
that the learned hierarchies are indeed semantic as the same node is used to represent the same part of the human body.
Similar to the experiment of Section 4.2 in our main submission, we evaluate our model on the single-view 3D reconstruction
task, namely given a single RGB image as an input, our network predicts its geometry as a tree of primitives as an output.
We compare our model with [43]. Both methods were trained for a maximum number of 32 primitives until convergence.
For our method, we set the sharpness value s = 10.

In Fig. 20+22, we qualitatively compare our predictions with [43]. We remark that even though [43] is more parsimonious,
our predictions are more accurate. For example, we note that our shape reconstructions capture the details of the muscles
of the legs that are not captured in [43]. For completeness, we also visualize the predicted hierarchy up to the fourth depth
level. Another interesting aspect of our model, which is also observed in [43, 53] is related to the semanticness of the learned
hierarchies. We note that our model consistently uses the same node for representing the same part of the human body. For
instance, node (4, 15), namely the 15-th node at the 4-th depth level, consistently represents the right foot, whereas, node
(4, 12) represents the left foot. This is better illustrated in Fig. 21. In this figure, we only color the primitive associated with
a particular node, for various humans, and we remark that the same primitive is used for representing the same body part.

Finally, another interesting characteristic of our model is related to its ability to use less primitives for reconstructing
humans, with smaller bodies. In particular, while the lower part of the human body is consistently represented with the same



(a) Input (b) SQs[43] (c) Ours (d) Input (e) SQs[43] (f) Ours

(g) Input (h) SQs[43] (i) Ours (j) Input (k) SQs[43] (l) Ours

(m) Predicted Hierarchy (n) Predicted Hierarchy

(o) Input (p) SQs[43] (q) Ours (r) Input (s) SQs[43] (t) Ours

(u) Predicted Hierarchy (v) Predicted Hierarchy

Figure 18: Single Image 3D Reconstruction on ShapeNet. We visualize the predictions of our model on various ShapeNet
objects and compare to [43]. For objects that are represented with more than two primitives, we also visualize the predicted
hierarchy.

set of primitives, the upper part can be represented with less depending on the size and the articulation of the human body.
This is illustrated in Fig. 22, where we visualize the predictions of our model for such scenarios.

Below, we provide the full hierarchies of the results on D-FAUST from our main submission.



(a) Input (b) SQs[43] (c) Ours (d) Input (e) SQs[43] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[43] (k) Ours (l) Input (m) SQs[43] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure 19: Single Image 3D Reconstruction on ShapeNet. We visualize the predictions of our model on various ShapeNet
objects and compare to [43]. For objects that are represented with more than two primitives, we also visualize the predicted
hierarchy.



(a) Input (b) SQs[43] (c) Ours (d) Input (e) SQs[43] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[43] (k) Ours (l) Input (m) SQs[43] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure 20: Qualitative Results on D-FAUST. Our network learns semantic mappings of body parts across different body
shapes and articulations while being geometrical more accurate compared to [43].



(a) Node (4, 0)

(b) Node (3, 3)

(c) Node (4, 3)

(d) Node (4, 12)

Figure 21: Semantic Predictions on D-FAUST. To illustrate that our model indeed learns semantic hierarchical layouts of
parts, here we color a specific node of the tree for various humans and we observe that it consistently corresponds to the same
body part.



(a) Input (b) SQs[43] (c) Ours (d) Input (e) SQs[43] (f) Ours

(g) Predicted Hierarchy (h) Predicted Hierarchy

(i) Input (j) SQs[43] (k) Ours (l) Input (m) SQs[43] (n) Ours

(o) Predicted Hierarchy (p) Predicted Hierarchy

Figure 22: Qualitative Results on D-FAUST. Our network learns semantic mappings of body parts across different body
shapes and articulations. Note that the network predicts less primitives for modelling the upper part of the human body.



Figure 23: Full hierarchies of Figure 6 in our main submission. Please zoom-in for details



Figure 24: Full hierarchies of Figure 8 in our main submission. Please zoom-in for details.


