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This is the first study to use Mendelian randomization analysis to explore the relationship 165 

between blood lipid levels and risk of endometrial cancer and its subtypes. Genetically 166 

predicted lower LDL cholesterol levels or higher HDL cholesterol levels were associated 167 

with increased non-endometrioid endometrial cancer risk. Further work is required to 168 

elucidate the biology underlying these associations. These results indicate that cholesterol 169 

levels could be considered risk factors for endometrial cancer, and studies are required to 170 

assess the clinical significance of this association. 171 
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HEIDI: Heterogeneity in Dependent Instruments 179 

LD: linkage disequilibrium 180 

LDL: low-density lipoprotein  181 
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 184 

Abstract 185 

Blood lipids have been associated with the development of a range of cancers, including 186 

breast, lung and colorectal cancer. For endometrial cancer, observational studies have 187 

reported inconsistent associations between blood lipids and cancer risk. To reduce biases 188 

from unmeasured confounding, we performed a bidirectional, two-sample Mendelian 189 

randomization analysis to investigate the relationship between levels of three blood lipids 190 

(low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and 191 

triglycerides) and endometrial cancer risk. Genetic variants associated with each of these 192 

blood lipid levels (P < 5×10-8) were identified as instrumental variables, and assessed using 193 

genome-wide association study data from the Endometrial Cancer Association Consortium 194 

(12,906 cases and 108,979 controls) and the Global Lipids Genetic Consortium (n=188,578). 195 

Mendelian randomization analyses found genetically raised LDL cholesterol levels to be 196 

associated with lower risks of endometrial cancer of all histologies combined, and of 197 

endometrioid and non-endometrioid subtypes. Conversely, higher genetically predicted HDL 198 
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cholesterol levels were associated with increased risk of non-endometrioid endometrial 199 

cancer. After accounting for the potential confounding role of obesity (as measured by 200 

genetic variants associated with body mass index), the association between genetically 201 

predicted increased LDL cholesterol levels and lower endometrial cancer risk remained 202 

significant, especially for non-endometrioid endometrial cancer. There was no evidence to 203 

support a role for triglycerides in endometrial cancer development. Our study supports a role 204 

for LDL and HDL cholesterol in the development of non-endometrioid endometrial cancer. 205 

Further studies are required to understand the mechanisms underlying these findings. 206 

 207 

Introduction 208 

Endometrial cancer primarily affects postmenopausal women and approximately 382,000 209 

cases were diagnosed in 20181. Risk factors for endometrial cancer include: family history of 210 

endometrial cancer2; increasing age, obesity (e.g. high body mass index (BMI) and low 211 

physical activity), unopposed estrogen exposure (e.g. early age of menarche, late age of 212 

menopause, nulliparity, hormone replacement therapy without progesterone and tamoxifen 213 

use)3,4; and fasting insulin levels5. Despite the advances that have been made in identifying 214 

endometrial cancer risk factors, endometrial cancer incidence is still rising6. 215 

Obesity is the strongest risk factor for endometrial cancer, with up to ~60% increased risk per 216 

5 kg/m2 higher BMI7. However, the mechanism(s) by which higher BMI predisposes to 217 

endometrial cancer are not well understood. Adipose tissue is an important site for the 218 

synthesis of estrogen (another endometrial cancer risk factor), especially after menopause, via 219 

the conversion of androgens to estrogens by aromatase8. BMI also has a complex relationship 220 

with blood lipid levels, with Mendelian randomization analyses finding bidirectional 221 

associations between levels of low-density lipoprotein (LDL) and high-density lipoprotein 222 
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(HDL) cholesterol, triglycerides and BMI9. Moreover, cholesterol has been suggested to play 223 

a role in cancer development by inducing chronic inflammation10-12.  224 

Blood lipid levels have been suggested to contribute to pathogenesis of endometrial cancer. 225 

As hypertriglyceridemia and hyper-LDL cholesterolemia are common in endometrial cancer 226 

survivors13, case-control studies assessing changes in blood lipid levels at/after endometrial 227 

cancer diagnosis are susceptible to reverse causation bias14-16. Observational studies 228 

conducted to examine the association between pre-diagnostic blood lipid levels and 229 

endometrial cancer risk17-23 reported significant positive associations from only three studies 230 

assessing blood triglycerides level and endometrial cancer risk18,19,23. Inconsistent findings 231 

from observational studies could be due to small study populations17,20 and a lack of 232 

adjustment for obesity18,22. Further, the use of non-fasting blood lipid levels in observational 233 

studies could also contribute to the variation in published findings17-19,21-23. Several studies 234 

have assessed the association of blood lipids with endometrial cancer by subtype15,19,21,23, but 235 

only one has assessed the pre-diagnostic blood lipid levels. This study reported increased 236 

triglycerides levels to be associated with the risk of both type 1 and 2 endometrial cancers23. 237 

However, this study did not adjust for obesity, and used non-fasting blood lipid levels. As 238 

obesity and blood lipid levels are interrelated9, it has been difficult for observational studies 239 

to disentangle the effects of blood lipid levels on endometrial cancer risk. Thus, the 240 

relationship between blood lipids and endometrial cancer remains unclear from the existing 241 

evidence. 242 

Mendelian randomization is an instrumental variable analysis that assesses the effects of 243 

exposures using genetic predictors as instrumental variables24. Mendelian randomization uses 244 

the principle that the alleles of genetic variants which predict higher levels of an exposure of 245 

interest are naturally randomized to individuals at meiosis, a process somewhat comparable 246 

https://doi.org/10.1002/ijc.33206


Accepted version manuscript – published in IJC 2020 https://doi.org/10.1002/ijc.33206 
 

8 
 

to the random assignment of participants to an exposure in a randomized controlled trial. 247 

Thus, associations between genetic variants and the outcome (and hence between the 248 

exposure and the outcome) will not be vulnerable to reverse causation because disease 249 

develops after meiosis. Provided that the selected genetic variants are associated with the 250 

outcome only via their effects on the exposure of interest (i.e. not via pleiotropic effects on 251 

other traits which could independently alter disease risk), effect estimates generated by 252 

Mendelian randomization analyses should also be less vulnerable to the influence of 253 

confounders24. 254 

In the current study, we employed a two-sample Mendelian randomization framework to 255 

assess the relationships between levels of three blood lipids (LDL and HDL cholesterol, and 256 

triglycerides) and the risk of endometrial cancer using genome-wide association study 257 

(GWAS) data from the Endometrial Cancer Association Consortium (ECAC) and Global 258 

Lipids Genetic Consortium (GLGC).  259 

 260 

Materials and Methods 261 

GWAS datasets 262 

In this study, we assessed three major blood lipids: LDL and HDL cholesterol, and 263 

triglycerides. Summary statistics from GWAS for the three blood lipids in 188,577 264 

individuals of predominantly European ancestry were obtained from the Global Lipid 265 

Genetics Consortium25 (http://csg.sph.umich.edu/willer/public/lipids2013/). A detailed 266 

description of the GLGC study has been previously published25. Briefly, blood lipid levels 267 

were measured more than eight hours after fasting in most GLGC studies. For each genetic 268 

variant association with blood lipid levels, association estimates were expressed in standard 269 

deviation (SD) per copy of the effect allele. 270 
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Endometrial cancer risk estimates were obtained from the largest published meta-GWAS to 271 

date, conducted by ECAC in 12,906 endometrial cancer cases and 108,979 controls, all of 272 

European ancestry26. In a secondary analysis, we investigated relationships between the three 273 

blood lipids and endometrial cancer subtypes using ECAC meta-GWAS results restricted to 274 

cases with either endometrioid histology (8,758 cases), or non-endometrioid histology (1,230 275 

cases)26. Histological subtypes of endometrial cancer were confirmed based on pathology 276 

reports, and detailed study descriptions have previously been reported26,27. The association 277 

estimates were expressed in log(OR) per copy of the effect allele. 278 

Instrumental variable selection  279 

Independent, genome-wide significant genetic variants (r2 < 0.05, P < 5 × 10-8) that were 280 

associated with each type of blood lipid were chosen as instrumental variables. Genetic 281 

variants with ambiguous strand codification (A/T or C/G) and minor allele frequency more 282 

than 0.42 were removed. We compared the allele frequencies between the GLGC and ECAC 283 

datasets, and a UKB10K reference panel (a random subset of 10,000 unrelated participants 284 

from UK Biobank cohort; https://www.ukbiobank.ac.uk/), and genetic variants with a large 285 

allele frequency difference (> 0.2) were also excluded.  286 

Bidirectional Mendelian randomization analysis 287 

We employed bidirectional Generalised Summary-data based Mendelian Randomisation 288 

(GSMR) analysis28 to explore the relationship between the three blood lipids and endometrial 289 

cancer. As Mendelian randomization estimates may be confounded by including pleiotropic 290 

variants, we implemented the built-in Heterogeneity in Dependent Instruments (HEIDI) 291 

outlier test28 with a P-value threshold of 0.01 to detect and filter heterogeneous variants that 292 

are likely pleiotropic. Remaining variants not excluded by HEIDI outlier test were used as 293 

non-pleiotropic instrumental variables.  294 
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Results with a Bonferroni-adjusted P < 0.05/3 = 0.017, correcting for the three blood lipid 295 

traits tested, were considered statistically significant. When blood lipid levels were treated as 296 

the exposure trait, the resulting effect estimates were expressed as odds ratios (OR) and 95% 297 

confidence intervals (CI) for endometrial cancer risk per SD increment in genetically 298 

predicted blood lipid level. When endometrial cancer risk was treated as the exposure trait, 299 

the resulting estimates represent the SD change for blood lipid level per SD increase in the 300 

genetic liability to endometrial cancer. Analyses were performed using default settings in the 301 

GSMR extension in GCTA (version 1.92)28, using the UKB10K reference panel to estimate 302 

linkage disequilibrium (LD) between variants. For comparison, we also performed inverse 303 

variance weighted (IVW) and MR-Egger regression Mendelian randomization analyses using 304 

MR-Base29. 305 

Conditional Mendelian randomization Analysis 306 

Since obesity could affect associations between blood lipid levels and endometrial cancer9, 307 

we additionally performed conditional Mendelian randomization analysis. GWAS summary 308 

statistics for the lipid of interest were conditioned for the effect of genetically predicted BMI 309 

using results from the largest GWAS of BMI to date30. Conditional analyses were performed 310 

using multi-trait-based conditional and joint analysis (mtCOJO) in the GCTA software 311 

package (version 1.92)28 and adjusted estimates were then reanalysed by GSMR.  312 

 313 

Results 314 

After removal of potential pleiotropic variants, 140 LDL cholesterol, 163 HDL cholesterol 315 

and 104 triglyceride independent genome-wide significant variants were considered as 316 

instrumental variables (Supplementary Tables 1-3). These instrumental variables were used 317 

by GSMR to estimate the effect of blood lipids on endometrial cancer risk of all histologies 318 
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combined (results presented in Table 1 and Figure 1). GSMR analysis indicated that 319 

genetically raised LDL cholesterol levels were associated with reduced risk of all endometrial 320 

cancer histologies combined (OR per SD increase in LDL cholesterol level = 0.88; 321 

95% CI = 0.83-0.93; P = 7.26 × 10-6). Consistent with the divergent roles of LDL and HDL 322 

cholesterol31, GSMR analysis provided evidence that increased HDL cholesterol levels may 323 

be associated with increased  risk of all endometrial cancer histologies combined (OR 1.07; 324 

95% CI = 1.00-1.14; P = 0.037). Secondary analysis assessing the relationships between 325 

blood lipid levels and endometrial cancer subtypes found genetically predicted higher LDL 326 

cholesterol levels were associated with lower risk of both endometrioid and non-327 

endometrioid endometrial cancer (Table 1). Conversely, genetically predicted higher HDL 328 

cholesterol levels showed suggestive evidence of association with higher risk of non-329 

endometrioid endometrial cancer only (Table 1). No significant effects were observed for 330 

triglycerides on endometrial cancer overall, or its subtypes (Table 1). Bidirectional GSMR 331 

analysis provided evidence for a unidirectional association e.g. genetically elevated LDL 332 

cholesterol level may affect endometrial cancer risk, while genetic liability to endometrial 333 

cancer does not appear to affect LDL cholesterol levels (Table 2). 334 

To reduce the influence of obesity on the associations between blood lipid levels and 335 

endometrial cancer risk, we performed Mendelian randomization analysis conditioning on 336 

genetically predicted BMI. Results are presented in Table 3 and Supplementary Figure 1. 337 

After controlling for the influence of genetically predicted BMI, the association between 338 

genetically predicted LDL cholesterol levels and risk of all histologies combined and non-339 

endometrioid endometrial cancer remained; whereas, the effect of LDL cholesterol level on 340 

endometrioid endometrial cancer risk was attenuated and no longer significant (OR 0.93, 341 

95% CI 0.87-1.01; P = 0.07). Conditioning on genetically predicted BMI had minimal impact 342 
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on the risk estimates for HDL and endometrial cancer, but associations did not pass the 343 

Bonferroni-correction threshold, reflecting the decreased power for these analyses. 344 

Results from IVW and MR-Egger analyses were consistent with our GSMR results 345 

(Supplementary Tables 4 and 5). None of the MR-Egger intercepts were significantly 346 

different from zero (P>0.05), except for the relationship between genetically predicted HDL 347 

cholesterol and non-endometrioid endometrial cancer, suggesting pleiotropy may have biased 348 

IVW results of HDL cholesterol and non-endometrioid endometrial cancer. However, the 349 

MR-Egger regression slope of HDL cholesterol and non-endometrioid endometrial cancer 350 

remained statistically significant after accounting for potential pleiotropy, supporting a 351 

relationship between HDL cholesterol and endometrial cancer risk (Supplementary Tables 4 352 

and 5).  353 

 354 

Discussion 355 

To our knowledge, this is the first Mendelian randomization study to assess the effects of 356 

genetically predicted blood lipid levels on endometrial cancer risk. While genetically 357 

increased LDL cholesterol had a protective effect on endometrial cancer, especially non-358 

endometrioid endometrial cancer, results suggest that genetically increased HDL cholesterol 359 

may have an adverse effect on non-endometrioid endometrial cancer risk. The opposing 360 

findings for LDL and HDL cholesterol are consistent with their opposing roles. For example, 361 

LDL delivers cholesterol to peripheral tissues, whereas HDL removes cholesterol from these 362 

tissues and transports it to the liver31. We found no evidence of a causal link between 363 

triglycerides and endometrial cancer, in contrast to three observational studies that have 364 

reported positive associations18,19,23. However, as previously noted, none of these studies 365 

assessed fasting blood triglycerides and one did not control for the effect of obesity18.  366 
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Mendelian randomization analysis has previously illustrated the complex interrelationship 367 

between BMI and blood lipid levels9. We therefore performed conditional Mendelian 368 

randomization analysis to investigate the influence of genetically predicted BMI on 369 

associations between LDL/HDL cholesterol and endometrial cancer risk. Comparison of the 370 

LDL/HDL cholesterol association estimates, before and after adjusting for genetically 371 

predicted BMI, did not support a role for BMI in the associations with endometrial cancer of 372 

non-endometrioid and combined histologies. In contrast, the LDL cholesterol association 373 

with endometrioid endometrial cancer was weaker with wider confidence intervals after 374 

including genetically predicted BMI as covariate. While a modest protective effect of LDL 375 

cholesterol for the endometrioid subtype of endometrial cancer cannot be excluded, this 376 

finding indicated that LDL cholesterol is likely to lie in the same causal pathway as obesity, a 377 

hypothesis consistent with results from previous genetic studies. Indeed, somewhat 378 

surprisingly, previous Mendelian randomization analyses have demonstrated a bidirectional 379 

relationship between LDL cholesterol and BMI with one study reporting that increased LDL 380 

cholesterol levels were associated with reduced BMI9 and, another reporting that increased 381 

BMI was associated with reduced LDL cholesterol levels32. Using Mendelian randomization 382 

analyses, we have previously found increased BMI to be associated with increased 383 

endometrioid endometrial cancer risk26,33. Measured LDL cholesterol levels have also been 384 

found to diminish with increasing BMI in overweight individuals34; whereas, in the same 385 

study, LDL cholesterol levels were only positively correlated with BMI in lean individuals. 386 

These findings indicate that the inverse relationship between LDL cholesterol and 387 

endometrioid endometrial cancer, a disease primarily affecting overweight individuals33, may 388 

be related to high BMI. Thus, we hypothesise that obesity is likely to be the mediator of the 389 

effect of LDL cholesterol on endometrioid endometrial cancer risk (i.e. ↑LDL → ↓BMI → 390 

↓Endometrioid Endometrial Cancer risk) (Figure 2). Moreover, as obesity is a stronger risk 391 
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factor for endometrioid than for non-endometrioid endometrial cancer26, it is perhaps not 392 

surprising that after adjusting for genetically predicted BMI we only observed an attenuation 393 

of the effect of LDL cholesterol on endometrioid endometrial cancer risk. 394 

It is intriguing that our results indicated that, independent of obesity, decreased LDL 395 

cholesterol level is inversely associated with risk of non-endometrioid endometrial cancer. 396 

While both endometrioid and non-endometrioid endometrial cancer share many other risk 397 

factors35, recent Mendelian randomization analyses have found that obesity and age at 398 

menarche are risk factors of endometrioid endometrial cancer only26.Given the rare nature of 399 

non-endometrioid histologies (~10% of all endometrial cancer cases), the tumorigenic 400 

mechanisms for these histological subtypes remain largely unknown35,36. Thus, further studies 401 

are required to explore how higher LDL cholesterol levels could protect against non-402 

endometrioid endometrial cancer development. 403 

As shown in Table 1, the association between HDL cholesterol and endometrial cancer 404 

appears to be largely driven by the non-endometrioid histological subtype. Despite not 405 

passing a Bonferroni statistical significance threshold, there was no substantial change in the 406 

association estimate before and after conditioning on BMI, suggesting HDL cholesterol may 407 

also affect non-endometrioid endometrial cancer risk independently of obesity. The wide 408 

confidence intervals suggest that future studies with more non-endometrioid endometrial 409 

cancer cases are required to further dissect any effect. 410 

The conflicting findings regarding the relationships between blood lipids and endometrial 411 

cancer risk in observational studies may be due to small sample sizes, varying timing of 412 

blood collection (e.g. fasting or non-fasting, and pre- or post- endometrial cancer diagnosis), 413 

and varying control for confounding factors. Findings presented in the current study, through 414 

the application of bidirectional Mendelian randomization which is less vulnerable to reverse 415 
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causation and confounding, have helped to clarify the effects of blood lipids on endometrial 416 

cancer risk. Consistent with our findings, other Mendelian randomization studies have 417 

observed a positive association between HDL cholesterol and breast cancer risk37-39, and an 418 

inverse association between LDL cholesterol and lung cancer risk40. Similarly, a time-to-419 

event Mendelian randomization using data from five longitudinal cohort studies reported 420 

increased LDL cholesterol level to be associated with reduced cancer risk (all reported cancer 421 

types combined)41.  422 

The potential mechanisms underlying the effects of decreased LDL and increased HDL 423 

cholesterol on cancer risk are unclear as reports of the effects of cholesterol in the literature 424 

are conflicting. However, oxidised LDL has been shown to be cytotoxic to cancer cells42 and 425 

can inhibit angiogenesis43,44, a key oncogenic process. Furthermore, given the prevalence of 426 

type 2 diabetes in endometrial cancer patients, it is noteworthy that HDL cholesterol from 427 

diabetic patients, which is often glycosylated or oxidised, promotes cancer cell proliferation, 428 

migration and invasion in vitro45 and metastasis in vivo46. 429 

The validity of Mendelian randomization analysis lies upon the satisfaction of the assumption 430 

that the effect of the instrumental variables on the outcome is only mediated through their 431 

influence on the measured exposure (i.e. no horizontal pleiotropy). One caveat of our study is 432 

that we do not have complete information of all confounding factors, and thus we did not 433 

have the ability to evaluate or adjust for unmeasured confounders in the Mendelian 434 

randomization analysis. Despite the lack of information on confounding factors, we also 435 

performed several Mendelian randomization analyses that are more robust to unmeasured 436 

confounding (i.e. HEIDI test in GSMR analysis removes variants which show evidence of 437 

horizontal pleiotropy, and MR-Egger analysis allows instrumental variables to be 438 

pleiotropic). We observed consistent results across different Mendelian randomization 439 
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analyses, and this suggests that residual confounding may have negligible impact on our 440 

results. The two-sample Mendelian randomization framework allowed us to incorporate data 441 

from two very large independent GWAS datasets to bolster power and yield more precise 442 

association estimates. However, we were restricted to summary-level GWAS data, and thus, 443 

could not perform more refined analyses (e.g. stratification analysis by BMI).  444 

This Mendelian randomization study provides evidence that increased LDL cholesterol and 445 

decreased HDL cholesterol, independent of obesity, may reduce the risk of endometrial 446 

cancer. This effect was particularly apparent for the non-endometrioid endometrial cancer 447 

subtype, which typically has a more aggressive phenotype and results in poorer prognosis. 448 

Although further work is required to elucidate the biological rationale underlying this 449 

association, these results suggest low LDL cholesterol levels and high HDL cholesterol levels 450 

should be considered as potential risk factors for endometrial cancer.  451 
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