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Abstract

This work investigates the task of unsupervised model

personalization, adapted to continually evolving, unlabeled

local user images. We consider the practical scenario where

a high capacity server interacts with a myriad of resource-

limited edge devices, imposing strong requirements on scal-

ability and local data privacy. We aim to address this

challenge within the continual learning paradigm and pro-

vide a novel Dual User-Adaptation framework (DUA) to

explore the problem. This framework flexibly disentangles

user-adaptation into model personalization on the server

and local data regularization on the user device, with de-

sirable properties regarding scalability and privacy con-

straints. First, on the server, we introduce incremental

learning of task-specific expert models, subsequently aggre-

gated using a concealed unsupervised user prior. Aggre-

gation avoids retraining, whereas the user prior conceals

sensitive raw user data, and grants unsupervised adapta-

tion. Second, local user-adaptation incorporates a domain

adaptation point of view, adapting regularizing batch nor-

malization parameters to the user data. We explore various

empirical user configurations with different priors in cat-

egories and a tenfold of transforms for MIT Indoor Scene

recognition, and classify numbers in a combined MNIST

and SVHN setup. Extensive experiments yield promising re-

sults for data-driven local adaptation and elicit user priors

for server adaptation to depend on the model rather than

user data. Hence, although user-adaptation remains a chal-

lenging open problem, the DUA framework formalizes a

principled foundation for personalizing both on server and

user device, while maintaining privacy and scalability.

1. Introduction

Data availability and increased hardware efficiency have

made neural networks thrive in a wide range of tasks, com-

peting human-level performance in a variety of tasks [13].

However, high performing deep neural network models lead

to considerable data requirements, with high capacity mod-

els trained on large amounts of labeled data. Addition-

ally, performance could be significantly increased by per-

sonalizing models to user-specific data. Nonetheless, user

data cannot be shared directly due to rigorous privacy con-

straints. This motivates the need to separate supervised

model training on the server from local adaptation to a

user’s unlabeled personal data. Furthermore, the personal-

ized user model performing tasks locally has the additional

benefit of alleviated connectivity requirements.

In this work, we explore this challenge in a class incre-

mental learning setting, relying on the assumption that a

user’s personal data evolves over time. We define a prag-

matic distributed setup comprising a central server con-

nected with a large number of user devices. We assume the

server to be a high-end machine endowed with extensive

storage capacity and computational resources. By contrast,

the compact user device has limited resources for both stor-

age and computation. In practice, the number of users may

be very high, hence imposing the need for scalable user-

adaptation. A naive approach consists of training a new

server model from scratch for each user, resulting in a lin-

early increasing demand for computational resources. An-

other infeasible route is to locally finetune user-models, as

user devices are confined by limited computational capabil-

ities. This paper explores a more realistic solution, train-

ing a single ensemble of models on the server, subsequently

aggregated leveraging user-specific priors. Besides scala-

bility, two additional hurdles must be tackled: the server is

precluded access to local user data by pressing privacy re-

quirements, and user data is typically unlabeled, raising the

need for unsupervised adaptation.

In order to tackle these rigorous constraints, we intro-

duce a new Dual User-Adaptation framework (DUA) for

model personalization using a task incremental setup. In

this setting, tasks are defined as clearly delineated batches

of independent and identically distributed (i.i.d.) data, en-

14463



abling network optimization for a task through multiple it-

erations over its data. The server trains on the sequence of

tasks and provides the user either a general or personalized

model. This model can be prone to further local adapta-

tion on the user device. Hence, DUA disentangles user-

adaptation in two phases: 1) the server exploits a model

adaptation strategy, with model weight importance as a

proxy for user data, and 2) the user device directly adapts

to local data using domain adaptation tools.

In more detail, server adaptation relies on two main

components for task incremental learning that are well

suited to fulfill our constraints for unsupervised and scal-

able user adaptation. First, Incremental Moment Matching

(IMM) [15] yields a sequence of task-specific models, re-

straining new task models to reside close to the previously

learned model. Averaging these models presumes a convex-

like search space of the loss function, aiming for a single

merged model optimal for all tasks. Although weighted av-

eraging provides scalability in the number of tasks, IMM

presumes fully supervised model weighting. Therefore, to

overcome this need for supervised user data, we incorpo-

rate Memory Aware Synapses (MAS) [1] deriving parame-

ter importance from unlabeled data, to attain scalable and

fully unsupervised Remote Adaptive Continual Learning

(RACL).

Secondly, DUA establishes further local user adaptation

of the model obtained from the server. Our domain adapta-

tive approach considers the fact that user and server data

distributions resemble two different domains, where we

want to transfer domain knowledge from server to user do-

main. A particularly suitable domain adaptation approach is

Adaptive Batch Normalization (AdaBN) [16], which sim-

ply collects Batch Normalization (BN) statistics from the

target user data. Domain knowledge of the user is assumed

to reside in these BN statistics, which can be retrieved at

low computational cost and without any supervision. Con-

sequently, this unsupervised setup can enhance any method

to become (more) user-adaptive.

The scope of this paper includes user adaptation within

the continual learning paradigm, with threefold contribu-

tions in this unexplored setup:

• We establish an inherently scalable and privacy-

preserving Dual User-Adaptation framework (DUA),

flexibly disentangling user adaptation from the server

and local user device.

• We introduce a novel benchmark, specifically designed

for the evaluation of locally adaptive models in an in-

cremental learning setting.

• We provide empirical evidence supporting the validity

of IMM mode-merging with unsupervised MAS im-

portance weights, and find importance weights to de-

pend on the model rather than data.

Adapting to user data with RACL culminates in several

advantages for both server and user. The server establishes a

single sequence ofN task-specific models using IMM. As a

consequence, independence is imposed on the typically ex-

cessive amount of users L. Further, the continual learning

setup enables the server to accumulate its knowledge with

new arriving batches of data. Hence, this evades rebuilding

the server knowledge base from scratch, which would im-

pose time-consuming retraining and storage of all seen data.

Moreover, storing one model per task instead of its train-

ing dataset results in enhanced storage requirements, espe-

cially when task data greatly exceeds model size. Addition-

ally, users only share model parameter importance instead

of their raw data, confining shared information to model-

specific gradients. On top of that, users are not required to

label local data as importance is measured in an unsuper-

vised manner. However, when a subset of labeled user data

is available, performance can be increased further by local

user adaptation, as we will show later.

2. Related Work

The DUA framework introduces a new paradigm for

user adaptation on the server, resembling federated learn-

ing [23], although completely overturning the purpose. Fed-

erated learning updates a common server model with an ag-

gregated gradient from a distributed database, wherein each

user constitutes a node providing local gradients. Similarly,

DUA solely uses user-specific gradients to acquire better

models, but attains decentralized user-personalized models,

instead of a general trend-following model. Our framework

invigorates profound overall user privacy, ensuring no sen-

sible raw user data has to be shared, and additionally tackles

the challenging issue of scalability for millions of personal-

ized neural networks.

Further, sequentially learning multiple tasks by finetun-

ing a neural network results in significant loss of previ-

ously acquired knowledge. Literature on continual learning

largely addresses coping with this catastrophic forgetting [5,

25]. Nonetheless, recent works mainly focus on supervised

data, leaving the richness of available unsupervised user

data unused. Following [5], these methods can be subdi-

vided into three main categories. First, parameter-isolation

methods preserve task knowledge by obtaining task-specific

masks [22, 21, 31], or dynamically extending the architec-

ture [30]. Replay methods preserve a subset of representa-

tive samples of the previous tasks, replayed during train-

ing of new tasks. These exemplars can be raw images

[20, 2, 29], or virtual samples retrieved from task-specific

generative models [32]. Rao et al. [28] extend virtual re-

play to a completely unsupervised setting based on varia-

tional autoencoders. However, this would require exhaus-

tive training on the low capacity edge-device of the user,

with only a limited set of available user data, hence infea-
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sible for user personalization. Finally, regularization-based

methods impose a prior in the loss function when training

the new task. Learning without forgetting (LwF) [17] min-

imizes a KL divergence prior to remain close to the new

sample’s output on the previous task model, hence distilling

previous task knowledge [8]. Further work [27] extends this

idea with task-specific autoencoders, additionally penaliz-

ing new task features to drift away from features deemed

important for previous tasks. Elastic Weight Consolidation

(EWC) [11] introduces a prior on previous-task parameters

in a sequential Bayesian framework, Laplace approximated

by a Gaussian with diagonally assumed Fisher information

matrix (FIM) as precision. As the FIM is estimated in the

task optimum, Zenke et al. [35] propose an online approach

to estimate precision during training instead. Furthermore,

the FIM relies on the loss gradient ∇L, whereas MAS [1]

sidesteps this supervised loss dependency by relying on the

output gradient ∇F instead. IMM [15] differs from pre-

viously discussed methods in first preserving trained task

models, which are subsequently merged using FIM impor-

tance weights or by averaging.

For server user-adaptation in our DUA framework, mul-

tiple task-specific models are compressed into a single

model. This is in the same vein to several other works.

Chou et al. [4] merge two task-specific networks, subse-

quently finetuned with both task data. Although reduced

training time is targeted, it remains unfit for scalable per-

sonalization, requiring raw user data and data of all tasks.

Cheung et al. [3] superpose different models into a single

one from which task-specific parameters can be retrieved.

However, adapting models to users linearly increases train-

ing time. Another compression route distills knowledge [8]

from teacher networks into smaller nets. Nevertheless,

the focus of this work is model compression to achieve a

smaller model for deployment, without addressing scalabil-

ity to employ user personalization.

Finally, deep domain adaptation introduces several un-

supervised back-propagation based techniques [6, 19], with

state-of-the-art introducing an adversarial loss during train-

ing [34, 9]. The unsupervised setting befits these methods

for adaptation to unlabeled user data. However, user data

is required during training, and therefore unscalable as each

personalized model would require training from scratch.

3. Methodology

3.1. Dual UserAdaptation Framework

A flexible framework should enable user-personalization

both on the server and locally on the user edge-device.

For this purpose, the novel Dual User-Adaptation frame-

work (DUA) respectively divides user-personalization in

two adaptation functions ψ and φ. The key to optimal

preservation of user privacy is that no raw user data is trans-

mitted. To achieve this in practice, interactions between

user and server are typically encrypted. However, when en-

cryption fails, our framework provides additional conceal-

ment of explicit user-data with ψ. Further, adaptation on the

server with ψ should be scalable, as training personalized

models from scratch would require tremendous resource

time for the vast amount of interacting users. Ideally, both

adaptation functions ψ and φ favor unsupervised local adap-

tation to limit required user interactions. The DUA frame-

work is surveyed in Figure 1, with its two user-adaptation

phases elaborately discussed in the following.

Server user-adaptation. Server S has a set of task-specific

expert models M = {M1, . . . ,MN}, trained sequentially

on a sequence of N tasks from its typically labeled data dS .

The Markov assumption holds for M, with each model de-

pending only on current task data and previous task model,

as parameters θt+1 of model Mt+1 are initialized with

θt. M is continuously extendable with new task models

MN+1.

L users interact with S, for which a user l provides for

each Mt an obscured implicit prior ψ(dl,Mt) to the server,

based on the local raw user-specific data dl. To prevent

transmission of raw user data, the ψ function uses a task-

specific model Mt and corresponding local data dl to ex-

tract concealed user-specific information. This ensures ad-

ditional privacy safety, as the conveyed user prior is ex-

pressed by an implicit proxy, rather than the user data itself.

Ideally, ψ does this without local supervision of the user, as

we discuss in Section 3.2.

Once the server convokes all information in set

Ψl = {ψ(dl,Mt)| ∀Mt ∈ M} for user l, aggregating func-

tion χ delivers the ultimate user-personalized model on the

server M̂l = χ (Ψl,M).

Local user-adaptation. User l receives M̂l from the server

on the edge device, which can be prone to further lo-

cal adaptation function φ to accomplish the final model

M∗

l
= φ(dl, M̂l). As no data needs to be transmitted, the

user can fully exploit its raw local data dl. However, lo-

cal adaptation is limited in resources, inhibiting exhaustive

training procedures for the model. Flexibility in this frame-

work facilitates φ to further process an already personalized

M̂l as in the first DUA phase, or any general model with-

out serverside personalization. This endows DUA to extend

any method delivering a single model, with adaptation to

the local user data dl as in Section 3.3.

3.2. Unsupervised Server Useradaptation

To enable the server to perform user-adaptation in the

DUA framework, we first have to define how to constitute

task experts in M, the user-adaptation function ψ, and the

aggregating function χ to establish the final personalized

model M̂l. This section explores opportunities in the chal-

lenging setup of task incremental continual learning, with
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Figure 1: The Dual User-Adaptation framework (DUA): (1) server user-adaptation involves adaptation to local user data dl
with ψ for each model in M. Aggregating function χ incorporates all models M and resulting user priors Ψl into single

model M̂l. (2) Local user-adaptation consists of adaptation function φ mapping M̂l to the final personalized model M∗

l
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only data of the new task Tn available, and inhibiting data

access for previously learned tasks. This is particularly

suited for the server, which can learn a new task, discard the

new task data Dn, and keep only the model Mn to enable

incremental learning for further tasks. Thus, server data dS
at any point comprises only new task data distribution Dn,

from which (xi, yi; tn) is sampled, respectively constituting

the image xi, label yi, and task index tn.

The task experts in M and the aggregating function χ are

defined following Lee et al. [15] with Incremental Moment

Matching (IMM). Parameter uncertainty is introduced using

the Bayesian framework, wherein incremental training of

tasks results in a new task posterior after training. Task pos-

teriors are presumed Gaussian, with the task sequence pos-

terior aggregating these components in a mixture of Gaus-

sians. Mode-IMM [15] Laplace approximates the mixture

with a single Gaussian, and for this assumption to hold, a

smooth and convex loss search space is required between

the posterior means of the mixture components. Therefore,

we adopt the weight and L2 transfer techniques proposed

in [15], respectively initializing the network with previous

task weights, and urging the new task optimum to remain

close to the previous task optimum by L2-regularization.

The aggregating function χ constitutes the mode of the fi-

nal Laplace approximation of the Gaussian mixture with N
components, and is formalized by its mean

θ̂l =
1

Ω̂l

∑N

t
αtΩtθt , (1)

and precision

Ω̂l =
∑N

t
αtΩt . (2)

for user l, with precision Ωt of task Tt. Mixing ratio αt

weighs importance of task Tt, subject to
∑N

t
αt = 1. The

balanced tasks in our experiments are deemed equally im-

portant.

Further, the user adaptation function ψ should produce

an unsupervised implicit user prior from both the raw user

data dl and a given model. Precision indicates the degree

of parameter certainty, and therefore resembles a parameter

importance measure. As this resembles an implicit prior,

we define ψ(dl,Mt) = Ωt. Nonetheless, to estimate task

precision Ωt, mode-IMM employs the Fisher information

matrix (FIM) similar to [11]. The FIM is constituted by

second-order derivatives of the loss function, thus requiring

labeled data. In contrast, to enable unsupervised importance

measures, we exert MAS importance weights [1] based on

the expected gradient of the L2-norm of the output function

with respect to parameter θkt ,

Ωk

t = Ex∼Dt
[
∇‖F (x; θ)‖

2

2

δθkt
] , (3)

with Dt ∈ dl the unlabeled user data distribution for

which importance is measured. Aggregating mode-IMM

and MAS importance weights constitutes Remote Adaptive

Continual Learning (RACL) for server-side user-adaptation

in the DUA framework.

3.3. Unsupervised Local Domain Adaptation

The second component enabling dual user-adaptation in

the DUA framework is local adaptation function φ(dl, M̂l),
constrained by limited resources on the edge device. For

lightweight adaptation with φ, we could adapt to the user

data statistics with Batch Normalization (BN) [10]. During

training, each input feature xk of the BN layer is normal-

ized to x̂k using current batch statistics. Subsequently, scal-

ing γk and shift βk parameters are learned, producing the
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normalized output yk, with

x̂k =
xk − E [xk]
√

Var [xk]
, (4)

yk = γkx̂k + βk . (5)

Whereas BN obtains global batch statistics of the training

data for inference, Adaptive BN (AdaBN) [16] introduces

an unsupervised scheme gathering batch statistics of the

target domain data instead. The main idea is for domain

knowledge to reside in the batch statistics, rather than the

parameters to optimize. In our setup, the target domain is

task-specific user data dl, enabling unsupervised user adap-

tation with AdaBN.

Relaxing the constraint for unsupervised adaptation, we

can assume a labeled subset in the user data. Although this

would facilitate finetuning on the user device, the computa-

tion and storage limitations both restrain us from comput-

ing gradients for all network parameters. Alternatively, we

extend AdaBN to this supervised setting (AdaBN-S), ad-

ditionally training BN layer parameters γ and β for a few

epochs, while freezing all remaining network parameters.

This approach significantly reduces the number of trainable

parameters compared to finetuning, scaling down computa-

tional effort by faster convergence and diminishing storage

requirements for the gradients.

4. User Personalization Benchmarks

In order to evaluate the DUA framework, we need

datasets mimicking user-specific data. Our experiments

comprise three different data setups1. In all setups, the

server data is split into training and validation sets with a

ratio of 80/20, and user-data is split into equally sized eval-

uation and user-validation sets. User adaptation techniques

such as importance weight estimation or user-specific fine-

tuning solely access the user-validation subset, evading

overfitting to the evaluation set or tuning on test data.

Two setups are based on the MIT Indoor Scene recog-

nition dataset (MITIS) [26], divided into tasks according

to the five scene supercategories. Omitting supercategory

’work’ as its extra data is too limited, the final task se-

quence is defined as {home, leisure, public, store}. All im-

ages have a minimal resolution of 200 pixels on the smallest

axis, are randomly cropped and horizontally flipped during

training, and then resized to 224 × 224. MITIS training

data is available to the server, following the continual learn-

ing paradigm in only providing access to current task data.

Evaluation and extra MITIS data are divided over users in

the following two schemes:

1. Category Prior (CatPrior). Five users each prefer a

random subset of 3 categories per task, acquiring for

1Code available at: https://github.com/mattdl/DUA

Figure 2: TransPrior user transformations following [7]

with severeness three, including: spatters, elastic transfor-

mation, saturation, defocus blur, Gaussian noise, bright-

ness, Gaussian blur, jpeg compression, contrast and impulse

noise.

each preference 250 extra MITIS images. The 20 eval-

uation images per category are equally divided over

users. All user data is mutually exclusive.

2. Transform Prior (TransPrior). Ten users each ex-

hibit a different type of transform following [7] with

perturbation severeness 3 (in range 1 to 5), permut-

ing 1000 randomly sampled images from extra MITIS

data, and all MITIS evaluation data. All user data prior

to transformation is identical. See Figure 2 for exam-

ples of the ten types of transformed MITIS images.

For all users, Monte Carlo Cross-validation over 5 iterations

is performed over the extra MITIS user data, with priors

remaining fixed.

The third setup (Numbers) comprises handwritten dig-

its from MNIST [14] and Street View House Numbers

(SVHN) [24] data, divided into five tasks of two subse-

quent numbers as in {0,1} to {8,9}. MNIST comprises

28×28 images, with 32×32 SVHN images center-cropped

to match this resolution. Server data is constituted by both

MNIST and SVHN training data, and two users are each

characterized by the evaluation data of MNIST and SVHN

respectively. Results are averaged over three trained mod-

els, initialized with different seeds.

5. Experiments

5.1. Evaluation Setup

Models. Experiments with both MITIS setups use

AlexNet [12] and VGG11 [33] models, except for the

BatchNorm experiments which are only applied to VGG11.

Due to the small input size and simplicity of the Num-

bers benchmark, a small three-layer MLP with two hid-

den layers of 100 units suffices for this setup. For AlexNet

and VGG11, we start from models pretrained on ImageNet,

while the MLP model is trained from scratch.
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Table 1: Qualitatively comparing features: user-adaptive

(Adapt.), unsupervised (Unsup.), scalable (Scal.) and

privacy-preserving (Priv.). DUA subdivides adaptation on

the server (ψ) and local user device (φ), with MAS impor-

tance weights discarding supervision. Scalability for user-

adaptive methods implies training independent of the num-

ber of users L. Shared user-data can be raw dl, gradients

of the output function F (x; θ) or loss L(x, y; θ). All meth-

ods can be extended with unsupervised (AdaBN) and super-

vised (AdaBN-S) local user adaptation φ.

Method Adapt. Unsup. Scal. Priv.

MAS-RACL X(ψ) X N ∇F
FIM-RACL X(ψ) N ∇L
Task Experts X N · L dl

MAS-IMM X N
FIM-IMM N
MAS X N
EWC N
LWF N
Joint N

+ AdaBN X(φ) X

+ AdaBN-S X(φ)

Evaluation. For all experiments, we report average accu-

racy and forgetting on the final model after training all tasks.

Depending on the method, this final post-merging model is

either user-specific or the general server model. Results are

averaged over all users.

Methods can be subdivided into user-specific and user-

agnostic approaches. Table 1 summarizes all method fea-

tures in our user-adaptive setting.

User-Specific methods adapt to the local user-validation set

of the user, resulting in a personalized model.

1. MAS-RACL is our server user-adaptation method dis-

cussed in Section 3.2, merging task-specific IMM

models on the server with unsupervised MAS impor-

tance weights obtained from the user-validation set.

2. FIM-RACL is a variant of MAS-RACL using the FIM

as importance measure to merge the task-specific IMM

models. The FIM is constituted by gradients of the

loss, hence requiring labeled user data. This baseline

serves as a performance reference for the MAS impor-

tance weights in MAS-RACL.

3. AdaBN adapts to the user BN statistics in an unsuper-

vised fashion, only demanding one forward pass for all

user-validation data (details in Section 3.3).

4. AdaBN-S collects batch statistics while training BN

parameters for a few epochs, hence requiring supervi-

sion in the user-validation data (details in Section 3.3).

5. Task Experts are obtained by finetuning each task-

specific IMM server model on the raw user validation

data for several epochs with low learning rate. This

results in an ensemble of task-specific expert networks

for each user. This is not scalable and should be re-

garded an upper bound for user-specific models.

User-Agnostic methods only access server training and val-

idation data, and therefore are not adapted to the user.

1. FIM-IMM trains a model per task, subsequently

merged using a per-parameter importance measure es-

timated on the server validation data. Identical to

mode-IMM in [15].

2. MAS-IMM is a variant of FIM-IMM using MAS im-

portance weights.

3. Joint training optimizes all tasks at once, accessing

all task data simultaneously. This violates the contin-

ual learning setup, and is considered as a weak upper

bound for performance.

4. EWC [11] preserves previous task knowledge using

FIM-based importance weights.

5. MAS [1] instead uses the gradient of L2 norm of the

output function to measure importance.

6. LwF [18] uses knowledge distillation with new task

data outputs obtained from the previous task network.

No gridsearches are performed for forgetting-related hyper-

parameters as the previous task data is assumed unavailable

in the continual learning paradigm. Therefore, the recom-

mended setting of the original works is used. Other hyper-

parameters are determined from best performance on the

Joint baseline, yielding 30 and 10 epochs with a learning

rate of 1e−3, and batch size 30 and 20 for MITIS and Num-

bers respectively. After five epochs of unimproved valida-

tion accuracy, the learning rate anneals with a factor of 0.1,

stopping early after five more subsequent inferior epochs.

Table 2: Reporting average accuracy (forgetting) for IMM

mode-merging with both unsupervised (MAS) and super-

vised (FIM) importance weights.

Data Setup Model MAS-IMM FIM-IMM

CatPrior AlexNet 67.39 (0.73) 67.42 (0.23)

VGG11 76.77 (0.30) 76.29 (0.43)

TransPrior AlexNet 46.51 (-0.14) 46.68 (-0.35)

VGG11 53.49 (-0.17) 53.14 (0.07)

Numbers MLP 84.36 (-0.40) 87.68 (0.07)
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Table 3: Left: Average accuracy (forgetting) for the three data setups and models, comparing user-specific (RACL) and

user-agnostic (IMM) importance weights, both unsupervised (MAS-) and supervised (FIM-). RACL outperforming the cor-

responding IMM variant is indicated in bold. Right: Qualitatively comparing features user-adaptive (Adapt.), unsupervised

(Unsup.), scalable (Scal.) and privacy-preserving (Priv.).

Method Alexnet VGG11 MLP Adapt. Unsup. Scal. Priv.

CatPrior TransPrior CatPrior TransPrior Numbers

MAS-RACL 66.97 (0.88) 47.04 (-0.27) 77.32 (0.77) 53.59 (-0.14) 84.01 (-0.22) X X X X

MAS-IMM 67.39 (0.73) 46.51 (-0.14) 76.77 (0.30) 53.49 (-0.17) 84.36 (-0.40) ✗ X X X

FIM-RACL 67.20 (0.73) 47.32 (-0.51) 76.53 (0.68) 53.73 (-0.13) 87.83 (0.30) X ✗ X X

FIM-IMM 67.42 (0.23) 46.68 (-0.35) 76.29 (0.43) 53.14 (0.07) 87.68 (0.07) ✗ ✗ X X

5.2. Unsupervised Moment Matching

The first experiment studies similarity in IMM mode-

merging performance of the original supervised FIM, and

the proposed unsupervised MAS importance weights. The

results in Table 2 show similar performance for MAS-IMM

and FIM-IMM. However, we observe a more salient dis-

crepancy for the Numbers setup, where FIM attains 3.32%
higher average accuracy, despite 0.47% increased forget-

ting. Analyzing importance weights, the first Numbers task

{0,1} results are an order of magnitude higher compared to

subsequent tasks in the sequence. By contrast, FIM impor-

tance weights obtain the same order of magnitude over all

tasks. As a consequence, MAS importance outweighs sta-

bility in first task knowledge, but deteriorating adaptation

to new tasks. Further, the Numbers MLP model with few

parameters is trained from scratch, with the first task learn-

ing only a limited set of discriminating features. The output

function magnitude depends only on the features learned for

this binary task, and especially the limited MLP network

size implies greater output function sensitivity to changes

in the intermediate features, which may be substantial when

learning the second task. In contrast, the AlexNet and VGG

networks initialize the network with an output function de-

pending on vast Imagenet pretraining. In conclusion, the

MAS importance measure provides competitive outcomes,

especially for the setups with pretrained networks.

5.3. Locally Adapting to the User

As the MAS importance weights empirically prove a

valid alternative precision measure for mode-merging in

IMM, we can now adapt to local user data dl in an unsu-

pervised fashion. Table 3 reports average accuracy over

all users for both user-specific and user-agnostic impor-

tance weights. The majority of locally estimated impor-

tance weights of RACL results in small improvements. The

benefit of locally adapting to the user seems minimal.

To better understand why this is the case, we further

scrutinize data dependency of importance weights measur-

ing Pearson correlation ρ. In Figure 3 we consider user-

validation data of two CatPrior tasks ’home’ (D1) and

’leisure’ (D2). Both tasks have corresponding optimized

server models M1 and M2, for which our original task in-

cremental setup calculates the importance weights. In con-

trast, for this analysis we compare importance weight cor-

relation for both datasets on the same model, resulting in

correlation coefficients 0.82 and 0.73 for M1 and M2 re-

spectively (see Figure 3 (a) and (b)). This high correlation

implies limited dependence of the importance weights on

the data. Next, we compare correlation for the same dataset,

yet calculated on the two different models. Correlations for

D1 andD2 yield 0.55 and 0.58, which is significantly lower,

hence indicating higher dependence on the model (see Ta-

ble 3 (c) and (d)). In conclusion, importance weights repre-

sent parameter importance within the specific model rather

than the data they are estimated from. As a result, there is

little to be gained by estimating them on user-specific data.

5.4. Adapting to the User Domain

Borrowing ideas from domain adaptation, we can extend

any method to become user-specific (see Table 1). For this

experiment, we employ the VGG11 model from previous

experiments interspersed with BN layers after each block

of convolutional and ReLU activation layers (VGG11-BN).

Table 4 shows results for the CatPrior and TransPrior se-

tups. Note that Task Experts inherently adapts BN param-

eters of the VGG model, as it finetunes to the user data dl.
In general, the unsupervised AdaBN mainly exhibits lim-

ited gain for RACL, and seems ineffective for the remaining

continual learning methods. In contrast, the supervised vari-

ant AdaBN-S consistently outperforms user-agnostic BN,

with an average gain of 2.64% and 3.44% accuracy in Cat-

Prior and TransPrior setups respectively. The discrepancy

between AdaBN and AdaBN-S performance discloses un-

supervised adaptation to remain a challenging open prob-

lem. Remarkably, Joint training with VGG11-BN performs

worse than VGG11 results without BN in Table 3. This

seems related to overfitting with an observed 10% increase

in discrepancy between training and validation accuracy.
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Figure 3: Visualizing user importance weight correlation ρ in the CatPrior setup, for the first two tasks. Blue and orange

represent weight and bias importance weights respectively. (a) and (b) each compare importance weights of different task

data on the same task-specific model, whereas (c) and (d) each use the same data on the two task-specific models.

(a) M1 −D1vsD2

ρ = 0.82

(b) M2 −D1vsD2

ρ = 0.73

(c) M1vsM2 −D1

ρ = 0.55

(d) M1vsM2 −D2

ρ = 0.58

Table 4: Results in the CatPrior and TransPrior setups with model VGG11-BN, comparing batch normalization on the server

data (BN) with unsupervised (AdaBN) and supervised (AdaBN-S) user-adaptive variants.

Method CatPrior TransPrior

BN AdaBN AdaBN-S BN AdaBN AdaBN-S

MAS-RACL 58.05 (2.74) 58.30 (2.34) 60.68 (2.67) 30.14 (2.69) 30.19 (2.50) 32.82 (3.25)

FIM-RACL 59.58 (2.14) 59.71 (1.61) 62.43 (1.84) 32.15 (1.53) 32.04 (1.33) 34.80 (2.13)

Task Experts 80.78 (5.61) n/a n/a 68.22 (11.35) n/a n/a

MAS-IMM 55.55 (2.69) 55.89 (2.69) 58.87 (2.81) 29.36 (2.63) 29.15 (2.45) 31.73 (3.22)

FIM-IMM 61.50 (-0.03) 61.35 (-0.46) 63.99 (-0.16) 32.08 (1.32) 31.86 (1.21) 34.48 (2.05)

MAS 65.58 (3.96) 64.15 (4.04) 67.10 (4.66) 37.32 (2.64) 35.64 (2.88) 40.51 (2.69)

EWC 66.20 (2.88) 64.03 (3.43) 67.54 (3.90) 37.16 (2.85) 35.44 (3.12) 40.05 (3.18)

LWF 70.76 (0.73) 70.37 (0.43) 72.73 (1.03) 40.22 (0.43) 39.51 (0.12) 43.07 (0.52)

Joint 75.75 (n/a) 72.13 (n/a) 76.39 (n/a) 46.53 (n/a) 41.18 (n/a) 48.50 (n/a)

By normalizing over batch statistics, BN layers alleviate

the internal covariance shift in the network. For a network

prone to overfitting due to few data, this internal covari-

ance shift might instead introduce regularizing noise in the

batch, interfering optimization to overfit the training data.

In this respect, even though the server presents a plausibly

overfitted model, adaptation to the user domain remains ef-

ficacious with AdaBN-S. Furthermore, the effects of BN on

continual learning methods still urge further elicitation, as

it is mainly disregarded in current state-of-the-art [5, 25].

In conclusion, unsupervised adaptation with AdaBN ex-

hibits cumbersome adaptation to the user domain, although

gaining significant improvement with a subset of labeled

data in AdaBN-S.

6. Conclusion

In this work, we proposed a practical Dual User-

Adaptation framework (DUA) to tackle incremental domain

adaptation to real-life scenarios with numerous users. This

novel user-adaptation paradigm disentangles personaliza-

tion to both the server and local user device, and combines

desirable user privacy and scalability properties, which re-

main highly unexplored in literature. We devised bench-

marks to scrutinize both types of user-adaptation.

First, adapting models on the server following RACL in-

curs these scalability, privacy, and additional supervision

properties, yet in practice yielded only marginal improve-

ment over a user-agnostic model, due to gradient-based im-

portance weights being largely data independent.

Second, local user-adaptation with a data regularization

approach based on adaptive Batch Normalization (AdaBN),

and especially its supervised variant (AdaBN-S), seem

more promising, leading to systematic improvements when

taking advantage of labeled user-specific data.

User privacy and experience are of major concern, for

which our DUA framework forges a principled foundation

for dual user-adaptation, aspiring to promote further re-

search in this direction.
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