
Justifications and a Reconstruction of Parity
Game Solving Algorithms

Ruben Lapauw ?, Maurice Bruynooghe ??, and Marc Denecker ? ? ?

Abstract. Parity games are infinite two-player games played on di-
rected graphs. Parity game solvers are used in the domain of formal
verification. This paper defines parametrized parity games and intro-
duces an operation, Justify, that determines a winning strategy for a
single node. By carefully ordering Justify steps, we reconstruct three
algorithms well known from the literature.

1 Introduction

Parity games are games played on a directed graph without leaves by two players,
Even (0) and Odd (1). A node has an owner (a player) and an integer priority.
A play is an infinite path in the graph where the owner of a node chooses which
outgoing edge to follow. A play and its nodes is won by Even if the highest
priority that occurs infinitely often is even and by Odd otherwise. A parity
game is solved when the winner of every node is determined and proven.

Parity games are relevant for boolean equation systems [9,18], temporal log-
ics such as LTL, CTL and CTL* [14] and µ-calculus [31,14]. Many problems in
these domains can be reduced to solving a parity game. Quasi-polynomial time
algorithm for solving them exist [8,13,25]. However, all current state-of-the-art
algorithms (Zielonka’s algorithm [32], strategy-improvement [28], priority pro-
motion [4,3,2] and tangle learning [29]) are exponential.

We start the paper with a short description of the role of parity game solvers
in the domain of formal verification (Section 2). In Section 3, we recall the essen-
tials of parity games and introduce parametrized parity games as a generalization
of parity games. In Section 4 we recall justifications, which we introduced in [21]
to store winning strategies and to speed up algorithms. Here we introduce safe
justifications and define a Justify operation and proof its properties. Next, in
Section 5, we reconstruct three algorithms for solving parity games by defining
different orderings over Justify operations. We conclude in Section 6.

2 Verification and parity game solving

Time logics such as LTL are used to express properties of interacting systems.
Synthesis consists of extracting an implementation with the desired properties.

? ruben.lapauw@cs.kuleuven.be, Supported by the IWT Vlaanderen
?? maurice.bruynooghe@cs.kuleuven.be

? ? ? marc.denecker@cs.kuleuven.be

a,0 b,0

c,1

d,1 e,0 f,0

h,2

g,1

Fig. 1: A reduced parity game.

0 1--/!eat_a,eat_b
--/eat_a,!eat_b

Fig. 2: The resulting Mealy
machine with two states, al-
ternating ¬eatA, eatB and
eatA,¬eatB regardless of the
input of hungryA and hungryB .

Typically, formulas in such logics are handled by reduction to other formalisms.
LTL can be reduced to Büchi-automata [30,19], determinized with Safra’s con-
struction [27], and transformed to parity games [26]. Other modal logics have
similar reductions, CTL* can be reduced to automata [5], to µ-calculus [10], and
recently to LTL-formulae [6]. All are reducible to parity games.

One of the tools that support the synthesis of implementations for such for-
mulas is Strix [22,23], one of the winners of the SyntComp 2018 [16] and Synt-
Comp 2019 competition. It reduces LTL formulas on the fly to parity games.
A game has three possible outcomes: (i) the parity game needs further expan-
sion, (ii) the machine wins the game, i.e., an implementation is feasible, (iii) the
environment wins, i.e., no implementation exists. Strix also extracts an imple-
mentation with the specified behaviour, e.g., as a Mealy machine.

Consider a formula based on the well-known dining philosophers problem:

G(hungryA ⇒ F eatA)∧ If A is hungry, he will eventually eat
G(hungryB ⇒ F eatB)∧ If B is hungry, he will eventually eat
G(¬eatA ∨ ¬eatB) A and B cannot eat at the same time.

(1)

Here (Gφ) means φ holds in every future trace and (Fφ) means φ holds in some
future trace where a trace is a succession of states.

Strix transforms the LTL-formula 1 to the parity game of Figure 1. The
machine (Even) plays in the square nodes and the environment (Odd) in the
diamond nodes. By playing in state b to d, and in state f to h, Even wins
every node as 2 is then the highest priority that occurs infinitely often in every
play. From the solution, Strix extracts a 2-state Mealy machine (Figure 2). Its
behaviour satisfies Formula 1: both philosophers alternate eating regardless of
their hunger.

3 Parametrized parity games

A parity game [24,12,31] is a two-player game of player 0 (Even) against 1 (Odd).
We use α ∈ {0, 1} to denote a player and ᾱ to denote its opponent. Formally,
we define a parity game as a tuple PG = (V,E,O, Pr) with V the set of nodes,
E the set of possible moves represented as pairs (v, w) of nodes, O : V → {0, 1}
the owner function, and Pr the priority function V → N mapping nodes to
their priority; (V,E) is also called the game graph. Each v ∈ V has at least one
possible move. We use Oα to denote nodes owned by α.

A play (in node v1) of the parity game is an infinite sequence of nodes
〈v1, v2, . . . , vn . . . 〉 where ∀i : vi ∈ V ∧ (vi, vi+1) ∈ E. We use π as a mathe-
matical variable to denote a play. π(i) is the i-th node vi of π. In a play π, it is
the owner of the node vi that decides the move (vi, vi+1). There exists plays in
every node. We call the player α = (n mod 2) the winner of priority n. The win-
ner of a play is the winner of the highest priority n through which the play passes
infinitely often. Formally: Winner(π) = limi→+∞max {Pr(π(j))|j ≥ i} mod 2.

The key questions for a parity game PG are, for each node v: Who is the
winner? And how? As proven by [12], parity games are memoryless determined:
every node has a unique winner and a corresponding memoryless winning strat-
egy. A (memoryless) strategy for player α is a partial function σα from a subset
of Oα to V . A play π is consistent with σα if for every vi in π belonging to the
domain of σα, vi+1 is σα(vi). A strategy σα for player α is a winning strategy for
a node v if every play in v consistent with this strategy is won by α, i.e. regard-
less of the moves selected by ᾱ. As such, a game PG defines a winning function
WPG : V 7→ {0, 1}. The set WPG,α or, when PG is clear from the context, Wα

denotes the set of nodes won by α. Moreover, for both players α ∈ {0, 1}, there
exists a memoryless winning strategy σα with domain Wα ∩Oα that wins in all
nodes won by α. A solution of PG consists of a function W ′ : V → {0, 1} and
two winning strategies σ0 and σ1, with dom(σα) = W ′

α ∩ Oα, such that every
play in v ∈W ′

α consistent with σα is won by α. Solutions always exist; they may
differ in strategy but all have W ′ = WPG , the winning function of the game. We
can say that the pair (σ0, σ1) proves that W ′ = WPG .

In order to have a framework in which we can discuss different algorithms
from the literature, we define a parametrized parity game. It consists of a parity
game PG and a parameter function P , a partial function P : V ⇀ {0, 1} with
domain dom(P) ⊆ V . Elements of dom(P) are called parameters, and P assigns
a winner to each parameter. Plays are the same as in a PG except that every
play that reaches a parameter v ends and is won by P (v).

Definition 1 (Parametrized parity game). Let PG = (V,E,O, Pr) be a
parity game and P : V ⇀ {0, 1} a partial function with domain dom(P) ⊆ V .
Then (PG, P) is a parametrized parity game denoted PGP , with parameter set
dom(P). If P (v) = α, we call α the assigned winner of parameter v. The sets
P0 and P1 denote parameter nodes with assigned winner 0 respectively 1.

A play of (PG, P) is a sequence of nodes 〈v0, v1, . . . 〉 such that for all i: if
vi ∈ Pα then the play halts and is won by α, otherwise vi+1 exists and (v, vi+1) ∈
E. For infinite plays, the winner is as in the original parity game PG.

Every parity game PG defines a class of parametrized parity games (PPG’s),
one for each partial function P . The original PG corresponds to one of these
games, namely the one without parameters (dom(P) = ∅); every total function
P : V → {0, 1} defines a trivial PPG, with plays of length 0 and P = WPGP

.
A PPG PGP can be reduced to an equivalent PG G: in each parameter

v ∈ dom(P) replace the outgoing edges with a self-loop and the priority of
v with P (v). We now have a standard parity game G. Every infinite play

a,3

1

b,4

1

c,1

1

d,2

0

e,5

0

f,6

0

Fig. 3: A parametrized parity game with nodes a, . . . , f , P0 = {d} and P1 = {a},
and winning strategies for 0 and 1. The two parameter nodes are in bold. Square
nodes are owned by Even, diamonds by Odd. The labels inside a node are the
name and priority; the label on top of a node is the winner. A bold edge belongs
to a winning strategy (of the owner of its start node). A slim edge is one starting
in a node that is lost by its owner. All remaining edges are dotted.

a,3

1

b,4

1

c,1

1

d,2

1

e,5

1

f,6

1

Fig. 4: A parametrized parity game and strategy, after withdrawing d from the
parameter list.

〈v0, v1, . . . 〉 in PGP is also an infinite play in G with the same winner. Every
finite play 〈v0, v1, . . . , vn〉 with winner P (vn) in PGP corresponds to an infinite
play 〈v0, v1, . . . , vn, vn, . . .〉 with winner P (vn) in G. Thus, the two games are
equivalent. It follows that any PPG PGP is a zero-sum game defining a win-
ning function W and having memory-less winning strategies σα with domain
(Wα \ Pα) ∩Oα (for α = 0, 1).

PPG’s allow us to capture the behaviour of several state of the art algorithms
as a sequence of solved PPG’s. In each step, strategies and parameters are mod-
ified and a solution for one PPG is transformed into a solution for a next PPG
and this until a solution for the input PG is reached.

Example 1. Figure 3 shows a parametrized parity game and its winning strate-
gies. The parameter nodes a and d are won by the assigned winners, respectively
1 and 0. Player 1 owns node c and wins its priority. Hence, by playing from c to
c, 1 wins in this node. Node b is owned by 0 but has only moves to nodes won by
1, hence it is also won by 1. Player 0 wins node e by playing to node d; 1 plays
in node f but playing to f results in an infinite path won by 0, while playing to
node e runs into a path won by 0, so f is won by 0.

Based on this PPG, we can construct a solved PPG where node d is removed
from the parameters. The strategy is adjusted accordingly: Odd wins in d by
playing to c . However, changing the winner of d breaks the strategies and winners
of the nodes e and f . Figure 4 shows one way to obtain a solved PPG with further
adjustments: nodes e and f are turned into parameters won by 1. Many other
solutions exist, e.g., by turning e into a parameter won by 0.

4 Justifications

In Figure 3 and Figure 4, the solid edges form the subgraph of the game graph
that was analysed to confirm the winners of all nodes. We formalize this subgraph
as a justification, a concept introduced in [15] and described below. In the rest
of the paper, we assume the existence of a parity game PG = (V,E,O, Pr) and
a parametrized parity game PGP = (PG, P) with P a parameter function with
set of parameters dom(P). Also, we use H : V → {0, 1} as a function describing
a “hypothesis” of who is winning in the nodes.

Definition 2 (Direct justification). A direct justification dj for player α to
win node v is a set containing one outgoing edge of v if O(v) = α and all outgoing
edges of v if O(v) = ᾱ.

A direct justification dj wins v for α under hypothesis H if for all (v, w) ∈ dj,
H(w) = α. We also say: α wins v by dj under H.

Definition 3 (Justification). A justification J for PG is a tuple (V,D,H)
such that (V,D) is a subgraph of (V,E). If a node has outgoing edges in D, it is
justified in J , otherwise it is unjustified.

Definition 4 (Weakly winning). A justification (V,D,H) is weakly winning
if for all justified nodes v ∈ V the set of outgoing edges Outv is a direct justifi-
cation that wins v for H(v) under H.

We observe that any justification J = (V,D,H) determines a PPG PGPJ

where the parameter function PJ is the restriction of H to unjustified nodes.

If J is weakly winning, the set of edges {(v, w) ∈ D | O(v) = H(v) = α} is a
partial function on Oα, i.e., a strategy for α. We denote it as σJ,α.

Proposition 1. Assume a weakly winning justification J = (V,D,H). Then,
(i) For every path π in D, all nodes v on π have the same hypothetical winner
H(v). (ii) All finite paths π starting in node v in D are won in PGPJ

by H(v).
(iii) Every path in D with nodes hypothetically won by α is consistent with σJ,α.
(iv) Every play starting in v of PGPJ

consistent with σJ,H(v) is a path in D.

Proof. (i) Since any edge (v, w) ∈ D belongs to a direct justification that wins v
for H(v), it holds that H(v) = H(w). It follows that every path π in D consists
of nodes with the same hypothetical winner. (ii) If path π in v is finite and ends
in parameter w, then H(v) = H(w). The winner of π in PGPJ

is PJ(w) which is
equal to H(v) as H expands PJ . (iii) Every path in D with hypothetical winner
α, follows σJ,α when it is in a node v with owner α. (iv) Let H(v) = α and π be a
play in v of PGP consistent with σJ,α. We can inductively construct a path from
v = v1 in D. It follows from (i) that the n’th node vn has H(vn) = H(v1) = α.
For each non-parameter node vn, if O(vn) = α, then vi+1 = σJ,α(vi) which is in
D. If O(vn) = ᾱ then D contains all outgoing edges from vn including the one
to vn+1. ut

Definition 5 (Winning). A justification J = (V,D,H) is winning if (i) J is
weakly winning and (ii) all infinite paths 〈v1, v2, . . . 〉 in D are plays of PG won
by H(v1).

Observe that, if J is winning and H(v) = α, all plays in PGPJ
starting in v

and consistent with σ(V,D,H),α are paths in (V,D) won by α. Hence:

Theorem 1. If J = (V,D,H) is a winning justification for PGPJ
then H is

WPGPJ
, the winning function of PGPJ

, with corresponding winning strategies
σJ,0 and σJ,1.

The central invariant of the algorithm presented below is that its data structure
J = (V,D,H) is a winning justification. Thus, in every stage, H is the winning
function of PGPJ

and the graph (V,D) comprises winning strategies σJ,α for
both players. In a sense, (V,D) provides a proof that H is WPGPJ

.

4.1 Operations on weakly winning justifications

We introduce an operation that modifies a justification J = (V,D,H) and hence
also the underlying game PGPJ

. Let v be a node in V , α a player and dj either
the empty set or a direct justification. We define J [v : dj, α] as the justification
J ′ = (V,D′, H ′) where D′ is obtained from D by replacing the outgoing edges
of v by the edges in dj, and H ′ is the function obtained from H by setting
H ′(v) := α. Modifications for a set of nodes are independent of application
order. E.g., J [v : ∅, H ′(v) | v ∈ S] removes all out-going edges of v and sets
H ′(v) for all v ∈ S. Multiple operations, like J [v : dj, α][v′ : dj′, α′], are applied
left to right. Some useful instances, with their properties, are below.

In the proposition, a cycle in J is a finite sequence of nodes following edges
in J that ends in its starting node.

Proposition 2. For a weakly winning justification J and a node v with direct
justification dj the following holds:

(i) If H(v) = ᾱ, v has no incoming edges and dj wins v for α under H, then
J [v : dj, α] is weakly winning and there are no cycles in J ′ with edges of dj.

(ii) Let S be a set of nodes closed under incoming edges (if v ∈ S and
(w, v) ∈ D, then w ∈ S), let Hf be an arbitrary function mapping nodes of S
to players. It holds that J [v : ∅, Hf (v) | v ∈ S] is weakly winning. There are no
cycles in J ′ with edges of dj.

(iii) If H(v) = α and dj wins v for α under H, then J [v : dj, α] is weakly
winning. There are no new cycles when (v, v) 6∈ dj and no w ∈ range(dj) can
reach v in J . Otherwise new cycles pass through v and have at least one edge in
dj.

Proof. We exploit the fact that J and J ′ are very similar.
(i) The direct justification dj cannot have an edge ending in v since H(v) 6=

H(w) for (v, w) ∈ dj and no w ∈ dj can reach v in J since v has no incoming
edges, hence J ′ has no cycles through dj. As J is weakly winning and H is

updated only in v, the direct justification of a justified node w 6= v in J is still
winning in J ′. Since also dj wins v for α, J ′ is weakly winning.

(ii) Setting H(v) arbitrary cannot endanger the weak support of J ′ as v has
no direct justification and no incoming edges in J ′. Hence J ′ is weakly winning.
Also, removing direct justifications cannot introduce new cycles.

(iii) Let H(v) = α and dj wins v for α under H. Let J ′ = J [v : dj, α]. We
have H ′ = H so the direct justifications of all nodes w 6= v in J ′ win w for
H ′(w). Since dj wins v for H ′(v), J ′ is weakly winning. Also, new cycles if any,
pass through dj and v.

4.2 Constructing winning justifications

The eventual goal of a justification is to create a winning justification without
unjustified nodes. Such a justification contains a solution for the parity game
without parameters. To reach this goal we start with an empty winning justifi-
cation and iteratively assign a direct justification to one of the nodes.

However, haphazardly (re)assigning direct justifications will violate the in-
tended winning justification invariant. Three problems appear: First, changing
the hypothesis of a node may violate weakly winning for incoming edges. The
easiest fix is to remove the direct justification of nodes with edges to this node.
Yet removing direct justifications decreases the justification progress. Thus a
second problem is ensuring progress and termination despite these removals.
Third, newly created cycles must be winning for the hypothesis. To solve these
problems, we introduce safe justifications; we start with some auxiliary concepts.

Let J be a justification. The set of nodes reaching v in J, including v, is
closed under incoming edges and is denoted with J↓v. The set of nodes reach-
able from v in J , including v, is denoted with J↑v. We define ParJ(v) as the
parameters reachable from the node v, formally ParJ(v) = J↑v ∩ dom(P). The
justification level jlJ(v) of a node v is the lowest priority of all its parameters
and +∞ if v has none. The justification level jlJ(dj) of a direct justification
dj = {(v, w1), . . . , (v, wn)} is min{jlJ(w1), . . . , jlJ(wn)}, the minimum of the
justification levels of the wi. We drop the subscript J when it is clear from the
context and write Par(v), jl(v) and jl(dj) for the above concepts. The default
winner of a node v is the winner of its priority, i.e., Pr(v) mod 2; the default
hypothesis Hd assigns default winners to all nodes, i.e., Hd(v) = Pr(v) mod 2.

Definition 6 (Safe justification). A justification is safe iff (i) it is a winning
justification, (ii) all unjustified nodes v have H(v) = Hd(v), that is, the winners
of the current parameters of the PPG are their default winners, and (iii) ∀v ∈
V : jl(v) ≥ Pr(v), i.e., the justification level of a node is at least its priority.

Fixing the invariants is easier for safe justifications. Indeed, for nodes w on
a path to a parameter v, Pr(v) ≥ jl(w) ≥ Pr(w), so when v is given a direct
justification to w then Pr(v) is the highest priority in the created cycle and H(v)
correctly denotes its winner. Furthermore, the empty safe justification (V, ∅, Hd)
will serve as initialisation of the solving process.

4.3 The operation Justify

To progress towards a solution, we introduce a single operation, namely Justify.
Given appropriate inputs, it can assign a direct justification to an unjustified
node or replace the direct justification of a justified node. Furthermore, if needed,
it manipulates the justification in order to restore its safety.

Definition 7 (Justify). The operation Justify(J, v, dj) is executable if

– Precondition 1: J = (V,D,H) is a safe justification, v is a node in V , there
exists a player α who wins v by dj under H.

– Precondition 2: if v is unjustified in J then jl(dj) ≥ jl(v) else jl(dj) > jl(v).

Let Justify(J, v, dj) be executable. If H(v) = α then Justify(J, v, dj) = J [v :
dj,H(v)], i.e., dj becomes the direct justification of v.

If H(v) = ᾱ, then Justify(J, v, dj) = J [w : ∅, Hd(w) | w ∈ J↓v][v : dj, α],
i.e., α wins v by dj, while all other nodes w that can reach v become unjus-
tified, and their hypothetical winner H(w) is reset to their default winner.

If Justify(J, v, dj) is executable, we say that v is justifiable with dj or justi-
fiable for short; when performing the operation, we justify v.

Observe, when Justify modifies the hypothetical winner H(v), then, to pre-
serve weak winning, edges (w, v) need to be removed, which is achieved by re-
moving the direct justification of w. Moreover, to preserve (iii) of safety, this
process must be iterated until fixpoint and to preserve (ii) of safety, the hypo-
thetical winner H(w) of w needs to be reset to its default winner. This produces
a situation satisfying all invariants. Furthermore, when Justify is applied on a
justified v, it preserves H(v) but it replaces v’s direct justification by one with a
strictly higher justification level. As the proof below shows, this ensures that no
new cycles are created through v so we can guarantee that all remaining cycles
still have the correct winner. So, cycles can only be created by justifying an
unjustified node.

Lemma 1. An executable operation Justify(J, v, dj) returns a safe justification.

Proof. Assume Justify(J, v, dj) is executable, J ′ = Justify(J, v, dj) and let α be
the player that wins v by dj. First, we prove that J ′ is also a winning justification,
i.e., that J ′ is weakly winning and that the winner of every infinite path in J ′ is
the hypothetical winner H(w) of the nodes w on the path.

The operations applied to obtain J ′ are the ones that have been analysed in
Proposition 2 and for which it was proven that they preserve weakly winning.
Note that, in case H(v) = ᾱ, the intermediate justification J [v : ∅, Hd(v) | v ∈
J↓v] removes all incoming edges of v. Hence, J ′ is weakly winning and all nodes
v, w connected in J have H ′(v) = H ′(w) (*). If no edge in dj belongs to a cycle,
then every infinite path 〈v1, v2, . . . 〉 in J ′ has an infinite tail in J starting in
w 6= v which is, since J is winning, won by H(w). By (*), this path is won by
H(v1) = H(w) and J ′ is winning.

If J ′ has cycles through edges in dj, then, by (i) of Proposition 2, H(v) must
be α and we are in case (iii) of Proposition 2. We analyse the nodes n on such
a cycle. By safety of J , Pr(n) ≤ jlJ(n); as n reaches v in J , jlJ(n) ≤ jlJ(v). If
v is unjustified in J then jlJ(v) = Pr(v) ≥ Pr(n), hence Pr(v) is the highest
priority on the cycle and H(v) wins the cycle. If v is justified in J and (v, w) ∈ dj
is on the new cycle, then jlJ(w) ≥ jlJ(dj) > jlJ(v) (Precondition 2 of Justify).
But w reaches v so jlJ(w) ≤ jlJ(v) , which is a contradiction.

Next, we prove that J’ is a safe justification (Definition 6). (i) We just proved
that J ′ is a winning justification. (ii) For all unjustified nodes v of J ′, it holds
that H(v) = Hd(v), its default winner. Indeed, J has this property and whenever
the direct justification of a node w is removed, H ′(w) is set to Hd(w).

(iii) We need to prove that for all nodes w, it holds that jlJ′(w) ≥ Pr(w).
We distinguish between the two cases of Justify(J, v, dj).

(a) Assume H(v) = α = H ′(v) and J ′ = J [v : dj,H(v)] and let w be an
arbitrary node of V . If w cannot reach v in J ′, the parameters that w reaches
in J and J ′ are the same and it follows that jlJ′(w) = jlJ(w) ≥ Pr(w). So,
(iii) holds for w. Otherwise, if w reaches v in J ′, then w reaches v in J and any
parameter x that w reaches in J ′ is a parameter that w reaches in J or one that
an element of dj reaches in J . It follows that jlJ′(w) is at least the minimum of
jlJ(w) and jlJ(dj). As w reaches v in J , jlJ(w) ≤ jlJ(v). Also, by Precondition
2 of Justify, jlJ(v) ≤ jlJ(dj). It follows that jlJ′(w) ≥ jlJ(w) ≥ Pr(w). Thus,
(iii) holds for w.

(b) Assume H ′(v) 6= H(v) = ᾱ and J ′ = J [w : ∅, Hd(w) | w ∈ J↓v][v :
dj, α] then for nodes w that cannot reach v in J , ParJ′(w) = ParJ(w) hence
jlJ′(w) = jlJ(w) ≥ Pr(w) and (iii) holds for w. All nodes w 6= v that can reach
v in J are reset, hence jlJ′(w) = Pr(w) and (iii) holds. As for v, by construction
jlJ′(v) = jlJ(dj) ≥ jlJ(v); also jlJ(v) ≥ Pr(v) hence (iii) also holds. ut

Lemma 2. Let J be a safe justification for a parametrized parity game. Unless J
defines the parametrized parity game PG∅ = PG, there exists a node v justifiable
with a direct justification dj, i.e., such that Justify(J, v, dj) is executable.

Proof. If J defines the parametrized parity game PG∅ then all nodes are justified
and J is a solution for the original PG. Otherwise let p be the minimal priority
of all unjustified nodes, and v an arbitrary unjustified node of priority p and
let its owner be α. Then either v has an outgoing edge (v, w) to a node w with
H(w) = α, thus a winning direct justification for α, or all outgoing edges are
to nodes w for which H(w) = ᾱ, thus v has a winning direct justification for
ᾱ. In both cases, this direct justification dj has a justification level larger or
equal to p since no parameter with a smaller priority exist, so Justify(J, v, dj)
is executable. ut

To show progress and termination, we need an order over justifications.

Definition 8 (Justification size and order over justifications). Let 1, . . . , n
be the range of the priority function of a parity game PG (+∞ > n) and J
a winning justification for a parametrized parity game extending PG. The size

a,3

1

b,4

1

c,1

1

d,2

0

e,5

0

f,6

0

a,3

1

b,4

1

c,1

1

d,2

0

e,5

0

f,6

0

Fig. 5: Above, in solid line the edges of the justification graph of the winning
but unsafe justification of Figure 3 and below the result of justifying node a, a
non-winning justification.

of J , s(J) is the tuple (s+∞(J), sn(J), . . . s1(J)) where for i ∈ {1, . . . , n,+∞},
si(J) is the number of justified nodes with justification level i.

The order over justifications is the lexicographic order over their size: with i
the highest index such that si(J) 6= si(J

′), we have J >s J
′ iff si(J) > si(J

′).

The order over justifications is a total order which is bounded as Σisi(J) ≤ |V |.

Example 2. Let us revisit Example 1. The winning justification J of Figure 3 is
shown at the top of Figure 5. For the justified nodes of J , we have jl(b) = 3,
jl(c) = +∞, jl(e) = 2 and jl(f) = 2. The justification is not safe as, e.g., jl(b) =
3 < Pr(b) = 4. Both unjustified nodes a and d have a winning direct justification,
the direct justification {(a, b)} wins a for player 1 and the direct justification
{(d, c)} wins d for 1. The figure at the bottom shows the justification resulting
from inserting the direct justification winning a. There is now an infinite path
〈a, b, a, b, . . .〉 won by Even but with nodes with hypothetical winner Odd. The
justification Justify(J, a, {(a, b)}) is not winning. This shows that condition (iii)
of safety of J is a necessary precondition for maintaining the desired invariants.

Lemma 3. Let J be a safe justification with size sJ , v a node justifiable with
dj and J ′ = Justify(J, v, dj) a justification with size sJ′ . Then sJ′ > sJ .

Proof. In case v is unjustified in J and is assigned a dj that wins v for H(v), v
is not counted for the size of J but is counted for the size of J ′. Moreover, other
nodes keep their justification level (if they cannot reach v in J) or may increase
their justification level (if they can reach v in J). In any case, sJ′ > sJ .

In case v is justified in J and is assigned a dj that wins v for H(v), then
jlJ(dj) > jlJ(v), so jl′J(v) > jlJ(v). Other nodes keep their justification level
or, if they reach v, may increase their justification level. Again, sJ′ > sJ .

Finally, the case where dj wins v for the opponent of H(v). Nodes can be
reset; these nodes w have jlJ(w) ≤ Pr(v). As a node cannot have a winning
direct justification for both players, v is unjustified in J . Hence, by precondition
(2) of Justify, jlJ(dj) ≥ Pr(v). In fact, it holds that jlJ(dj) > Pr(v). Indeed, if
some w ∈ dj would have a path to a parameter of v’s priority, that path would

be won by Hd(v) = H(v) while H(w) is its opponent. Thus, the highest index i
where si changes is jlJ(dj), and si increases. Hence, sJ′ > sJ . ut

Theorem 2. Any iteration of Justify steps from a safe justification, in partic-
ular from (V, ∅, Hd), with Hd the default hypothesis, eventually solves PG.

Proof. By induction: Let PG = (V,E,O, Pr) be a parity game. Clearly, the
empty justification J0 = (V, ∅, Hd) is a safe justification. This is the base case.

Induction step: Let J i be the safe justification after i successful Justify steps
and assume that J i = (V,Di, Hi) contains an unjustified node. By Lemma 2,
there exists a pair v and dj such that v is justifiable with dj. For any pair v and
dj such that Justify(J i, v, dj) is executable, let J i+1 = Justify(J i, v, dj). By
Lemma 1, J i+1 is a safe justification. By Lemma 3, there is a strict increase in
size, i.e., s(J i+1) > s(J i).

Since the number of different sizes is bounded, this eventually produces a
safe Jk = (V,Dk, Hk) without unjustified nodes. The parametrized parity game
PGP

Jk
determined by Jk is PG. Hence, Hk is the winning function of PG, and

Jk comprises winning strategies for both players. ut

Theorem 2 gives a basic algorithm to solve parity games. The algorithm has
three features: it is (1) simple, (2) nondeterministic, and (3) in successive steps
it may arbitrarily switch between different priority levels. Hence, by imposing
different strategies, different instantiations of the algorithm are obtained.

Existing algorithms differ in the order in which they (implicitly) justify nodes.
In the next section we simulate such algorithms by different strategies for select-
ing nodes to be justified. Another difference between algorithms is in computing
the set R of nodes that is reset when dj wins v for the opponent of H(v). Some
algorithms reset more nodes; the largest reset set for which the proofs in this
paper remain valid is {w ∈ V | jl(w) < jl(dj)}. To the best of our knowledge,
the only algorithms that reset as few nodes as Justify(J, v, dj) are the ones
we presented in [21]. As the experiments presented there show, the work saved
across iterations by using justifications results in better performance.

5 A reformulation of three existing algorithms

In this section, by ordering justification steps, we obtain basic versions of differ-
ent algorithms known from the literature. In our versions, we represent the parity
game G as (V,E,O, Pr) and the justification J as (V,D,H). All algorithms start
with the safe empty justification (V, ∅, Hd). The recursive algorithms operate on
a subgame SG determined by a set of nodes VSG. This subgame determines the
selection of Justify(J, v, dj) steps that are performed on G. For convenience of
presentation, G is considered as a global constant.

Nested fixpoint iteration [7,11,21] is one of the earliest algorithms able
to solve parity games. In Algorithm 1, we show a basic form that makes use

1 Fn Fixpoint(G):
2 J←(V, ∅, Hd) the initial safe

justification
3 while J has unjustified nodes

do
4 p←min {Pr(v) | v is unjustified}
5 v← an unjustified node

with Pr(v) = p
6 dj← a winning direct

justification for v under H
7 J←Justify(J, v, dj)

8 return J
Algorithm 1: A fixpoint algo-
rithm for justifying nodes

input: A parity game G
1 J←Zielonka((V, ∅, Hd), V)
2 Fn Zielonka(J, VSG):
3 p←max {Pr(v) | v ∈ VSG}
4 α←p mod 2
5 while true do
6 while ∃v ∈ VSG, dj : v is

unjustified, v is justifiable with dj
for α with jl(dj) ≥ p do

7 J←Justify(J, v, dj)
8 VSSG←{v ∈ VSG|Pr(v) < p,
9 v is unjustified}

10 if VSSG = ∅ then return J ;
11 J←Zielonka(J, VSSG)
12 while ∃v ∈ VSG, dj : v is

unjustified, v is justifiable with dj
for ᾱ with jl(dj) ≥ p+ 1 do

13 J←Justify(J, v, dj)
Algorithm 2: A Justify variant of
Zielonka’s algorithm.

of our Justify(J, v, dj) action. It starts from the initial justification (V, ∅, Hd).
Iteratively, it determines the lowest priority p over all unjustified nodes, it selects
a node v of this priority and justifies it. Recall from the proof of Lemma 2, that
all unjustified nodes of this priority are justifiable. Eventually, all nodes are
justified and a solution is obtained. For more background on nested fixpoint
algorithms and the effect of justifications on the performance, we refer to our
work in [21].

A feature of nested fixpoint iteration is that it solves a parity game bottom
up. It may take many iterations before it uncovers that the current hypothesis
of some high priority unjustified node v is, in fact, wrong and so that playing to
v is a bad strategy for α. The next algorithms are top down, they start out from
nodes with the highest priority.

Zielonka’s algorithm [32], one of the oldest algorithms, is recursive and starts
with a greedy computation of a set of nodes, called attracted nodes, in which the
winner α of the top priority p has a strategy to force playing to nodes of top
priority p. In our reconstruction, Algorithm 2, attracting nodes is simulated at
Line 6 by repeatedly justifying nodes v with a direct justification that wins v
for α and has a justification level ≥ p. Observe that the while test ensures that
the preconditions of Justify(J, v, dj) on the justification level of v are satisfied.
Also, every node can be justified at most once.

The procedure is called with a set VSG of nodes of maximal level p that
cannot be attracted by levels > p. It follows that the subgraph determined by
VSG contains for each of its nodes an outgoing edge (otherwise the opponent of
the owner of the node would have attracted the node at a level > p) , hence this

subgraph determines a parity game. The main loop invariants are that (1) the
justification J is safe; (2) the justification level of all justified nodes is ≥ p and
(3) ᾱ has no direct justifications of justification level > p to win an unjustified
node in VSG. The initial justification is safe and it remains so as every Justify
call satisfies the preconditions.

After the attraction loop at Line 6, no more unjustified nodes of VSG can be
attracted to level p for player α. Then, the set of VSSG of unjustified nodes of
priority < p is determined. If this set is empty, then by Lemma 2 all unjustified
nodes of priority p are justifiable with a direct justification dj with jl(dj) ≥ p,
hence they would be attracted to some level ≥ p which is impossible. Thus,
there are no unjustified nodes of priority p. In this case, the returned justifica-
tion J justifies all elements of VSG. Else, VSSG is passed in a recursive call to
justify all its nodes. Upon return, if ᾱ was winning some nodes in VSSG, their
justification level will be ≥ p+ 1. Now it is possible that some unjustified nodes
of priority p can be won by ᾱ and this may be the start of a cascade of resets
and attractions for ᾱ. The purpose of Line 12 is to attract nodes of VSG for ᾱ.
Note that Justify(J, v, dj) resets all nodes that depend on nodes that switch to
ᾱ. When the justification returned by the recursive call shows that α wins all
nodes of VSSG, the yet unjustified nodes of VSG are of priority p, are justifiable
by Lemma 2 and can be won only by α. So, at the next iteration, the call to
Attrα will justify all of them for α and VSSG will be empty. Eventually the initial
call of Line 1 finishes with a safe justification in which all nodes are justified thus
solving the game G.

Whereas fixpoint iteration first justifies low priority nodes resulting in low
justification levels, Zielonka’s algorithm first justifies nodes attracted to the high-
est priority. Compared to fixpoint iteration, this results in large improvements in
justification size which might explain its better performance. However, Zielonka’s
algorithm still disregards certain opportunities for increasing justification size as
it proceeds by priority level, only returning to level p when all sub-problems at
level < p are completely solved. Indeed, some nodes computed at a low level
i << p may have a very high justification level, even +∞ and might be useful to
revise false hypotheses at high levels, saving much work, but this is not exploited.
The next algorithm, priority promotion, overcomes this limitation.

Priority promotion [3,2,4] follows the strategy of Zielonka’s algorithm except
that, when it detects that all nodes for priority p are justified, it does not make
a recursive call but returns the set of nodes attracted to priority p nodes as a
set Rp to a previous level q. There Rp is added to the attraction set at level
q and the attraction process is restarted. In the terminology of [3], the set Rp
is a closed p-region that is promoted to level q. A closed p-region of VSG, with
maximal priority p, is a subset Rp ⊆ VSG that includes all nodes of VSG with
priority p and for which α = p mod 2 has a strategy winning all infinite plays in
Rp and for which ᾱ cannot escape from Rp unless to nodes of higher q-regions
won by α. We call the latter nodes the escape nodes from Rp. The level to which
Rp is promoted is the lowest q-region that contains an escape node from Rp. It

input: A parity game G
1 J←(V, ∅, Hd)
2 while ∃v ∈ VG : v is unjustified

do
3 R+∞←{v | jl(v) = +∞}
4 VSG←V \R+∞
5 (J, ,)←Promote(VSG, J)
6 while ∃v ∈ VSG, dj : v is

justifiable with dj and
jl(dj) = +∞ do

7 J←Justify(J, v, dj)
Algorithm 3: A variant of pri-
ority promotion using Justify.

1 Fn Promote(VSG, J):
2 p←max {Pr(v) | v ∈ VSG}
3 α←p mod 2
4 while true do
5 while ∃v ∈ VSG, dj : v is unjustified

or jl(v) < p, v is justifiable with
dj for α with jl(dj) ≥ p do

6 J←Justify(J, v, dj)
7 Rp←{v ∈ VSG | jl(v) ≥ p}
8 if Closed(Rp, VSG) then
9 l←min{q|Rq contains an escape

node of Rp}
10 return (J,Rp, l)

11 VSSG←VSG \Rp

12 (J,Rp′ , l)←Promote(VSSG, J)
13 if l > p then
14 return (J,Rp′ , l)

is easy to show that q is a lower bound of the justification level of Rp. In absence
of escape nodes, Rp is promoted to +∞.

Our variant of priority promotion (PPJ) is in Algorithm 3. Whereas Zielonka
returned a complete solution J on VSG, Promote returns only a partial J on
VSG; some nodes of VSG may have an unfinished justification (jl(v) < +∞).
To deal with this, Promote is iterated in a while loop that continues as long
as there are unjustified nodes. Upon return of Promote, all nodes attracted
to the returned +∞-region are justified. In the next iteration, all nodes with
justification level +∞ are removed from the game, permanently. Note that
when promoting to some q-region, justified nodes of justification level < q can
remain. A substantial gain can be obtained compared to the original priority
promotion algorithm which does not maintain justifications and loses all work
stored in J .

By invariant, the function Promote is called with a set of nodes VSG that
cannot be justified with a direct justification of level larger than the maximal
priority p. The function starts its main loop by attracting nodes for level p.
The attraction process is identical to Zielonka’s algorithm except that leftover
justified nodes v with jl(v) < p may be rejustified. As before, the safety of J is
preserved. Then Rp consists of elements of VSG with justification level ≥ p. It
is tested (Closed) whether Rp is a closed p-region. This is provably the case if
all nodes of priority p are justified. If so, J , Rp and its minimal escape level are
returned. If not, the game proceeds as in Zielonka’s algorithm and the game is
solved for the nodes not in Rp which have strictly lower justification level. Sooner
or later, a closed region will be obtained. Indeed, at some point, a subgame is
entered in which all nodes have the same priority p. All nodes are justifiable
(Lemma 2) and the resulting region is closed. Upon return from the recursive
call, it is checked whether the returned region (Rp′) promotes to the current

level p. If not, the function exits as well (Line 14). Otherwise a new iteration
starts with attracting nodes of justification level p for α. Note that contrary to
Zielonka’s algorithm, there is no attraction step for ᾱ: attracting for ᾱ at p is
the same as attracting for α′ = ᾱ at p′ = p+ 1.

Discussion Our versions of Zielonka’s algorithm and priority promotion use
the justification level to decide which nodes to attract. While maintaining justi-
fication levels can be costly, in these algorithms, it can be replaced by selecting
nodes that are “forced to play” to a particular set of nodes (or to an already
attracted node). In the first attraction loop of Zielonka, the set is initialised
with all nodes of priority p, in the second attraction loop, with the nodes won
by ᾱ; In Promote, the initial set consists also of the nodes of priority p.

Observe that the recursive algorithms implement a strategy to reach as soon
as possible the justification level +∞ for a group of nodes (the nodes won by the
opponent in the outer call of Zielonka, the return of a closed region —for any
of the players— to the outer level in Promote). When achieved, a large jump
in justification size follows. This may explain why these algorithms outperform
fixpoint iteration.

Comparing our priority promotion algorithm (PPJ) to other variants, we see
a large overlap with region recovery (RR) [2] both algorithms avoid resetting
nodes of lower regions. However, RR always resets the full region, while PPJ can
reset only a part of a region, hence can save more previous work. Conversely,
PPJ eagerly resets nodes while RR only validates the regions before use, so it can
recover a region when the reset escape node is easily re-attracted. The equivalent
justification of such a state is winning but unsafe, thus unreachable by applying
Justify(J, v, dj). However, one likely can define a variant of Justify(J, v, dj)
that can reconstruct RR. Delayed priority promotion [4] is another variant which
prioritises the best promotion over the first promotion and, likely, can be directly
reconstructed.

Tangle learning [29] is another state of the art algorithm that we have stud-
ied. Space restrictions disallow us to go in details. We refer to [21] for a version of
tangle learning with justifications. For a more formal analysis, we refer to [20]).
Interestingly, the updates of the justification in the nodes of a tangle cannot
be modelled with a sequence of safe Justify(J, v, dj) steps. One needs an al-
ternative with a precondition on the set of nodes in a tangle. Similarly as for
Justify(J, v, dj), it is proven in [20] that the resulting justification is safe and
larger than the initial one.

Justification are not only a way to explicitly model (evolving) winning strate-
gies, they can also speed up algorithms. We have implemented justification vari-
ants of the nested fixpoint algorithm, Zielonka’s algorithm, priority promotion,
and tangle learning. For the experimental results we refer to [21,20].

Note that the data structure used to implement the justification graph mat-
ters. Following an idea of Benerecetti et al.[3], our implementations use a single
field to represent the direct justification of a node; it holds either a single node,
or null to represent the set of all outgoing nodes. To compute the reset set R of

a node, we found two efficient methods to encode the graph J : (i) iterate over
all incoming nodes in E and test if their justification contains v, (ii) store for
every node a hash set of every dependent node. On average, the first approach
is better, while the second is more efficient for sparse graphs but worse for dense
graphs.

6 Conclusion

This paper explored the use of justifications in parity game solving. First, we
generalized parity games by adding parameter nodes. When a play reaches a
parameter it stops in favour of one player. Next, we introduced justifications
and proved that a winning justification contains the solution of the parametrized
parity game. Then, we introduced safe justifications and a Justify operation
and proved that a parity game can be solved by a sequence of Justify steps. A
Justify operation can be applied on a node satisfying its preconditions, it assigns
a winning direct justification to the node, resets —if needed— other nodes as
parameters, preserves safety of the justification, and ensures the progress of the
solving process.

To illustrate the power of Justify, we reconstructed three algorithms: nested
fixpoint iteration, Zielonka’s algorithm and priority promotion by ordering appli-
cable Justify operations differently. Nested fixpoint induction prefers operations
on nodes with the lowest priorities; Zielonka’s algorithm starts on nodes with
the maximal priority and recursively descends; priority promotion improves upon
Zielonka with an early exit on detection of a closed region (a solved subgame).

A distinguishing feature of a justification based algorithm is that it makes ac-
tive use of the partial strategies of both players. While other algorithms, such as
region recovery and tangle learning, use the constructed partial strategies while
solving the parity game, we do not consider them justification based algorithms.
For region recovery, the generated states are not always weakly winning, while
tangle learning applies the partial strategies for different purposes. As shown in
[21] where justifications improve tangle learning, combining different techniques
can further improve parity game algorithms.

Interesting future research includes: (i) exploring the possible role of jus-
tifications in the quasi-polynomial algorithm of Parys [25], (ii) analysing the
similarity between small progress measures algorithms [13,17] and justification
level, (iii) analysing whether the increase in justification size is a useful guide
for selecting the most promising justifiable nodes, (iv) proving the worst-case
time complexity by analysing the length of the longest path in the lattice of
justification states where states are connected by Justify(J, v, dj) steps.

References

1. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. In: Cantone, D., Delzanno, G. (eds.) Proceedings of the Seventh Interna-
tional Symposium on Games, Automata, Logics and Formal Verification, GandALF

2016, Catania, Italy, 14-16 September 2016. EPTCS, vol. 226, pp. 30–45 (2016).
https://doi.org/10.4204/EPTCS.226.3

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for
parity games. In: Bloem, R., Arbel, E. (eds.) Hardware and Software: Verification
and Testing - 12th International Haifa Verification Conference, HVC 2016, Haifa,
Israel, November 14-17, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 10028, pp. 117–133 (2016). https://doi.org/10.1007/978-3-319-49052-6 8

3. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9780, pp. 270–290.
Springer (2016). https://doi.org/10.1007/978-3-319-41540-6 15

4. Benerecetti, M., Dell’Erba, D., Mogavero, F.: A delayed promotion policy for parity
games. Inf. Comput. 262, 221–240 (2018). https://doi.org/10.1016/j.ic.2018.09.005

5. Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking (extended abstract). In: Dill, D.L. (ed.) Computer
Aided Verification, 6th International Conference, CAV ’94, Stanford, California,
USA, June 21-23, 1994, Proceedings. Lecture Notes in Computer Science, vol. 818,
pp. 142–155. Springer (1994). https://doi.org/10.1007/3-540-58179-0 50

6. Bloem, R., Schewe, S., Khalimov, A.: CTL* synthesis via LTL synthesis. In: Fis-
man, D., Jacobs, S. (eds.) Proceedings Sixth Workshop on Synthesis, SYNT@CAV
2017, Heidelberg, Germany, 22nd July 2017. EPTCS, vol. 260, pp. 4–22 (2017).
https://doi.org/10.4204/EPTCS.260.4

7. Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for parity
games. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International Sym-
posium on Games, Automata, Logics and Formal Verification, GandALF 2014,
Verona, Italy, September 10-12, 2014. EPTCS, vol. 161, pp. 116–130 (2014).
https://doi.org/10.4204/EPTCS.161.12

8. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017. pp. 252–263. ACM (2017).
https://doi.org/10.1145/3055399.3055409

9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 199–213. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 15

10. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the
first-order modal µ -calculus. Theor. Comput. Sci. 412(28), 3129–3139 (2011).
https://doi.org/10.1016/j.tcs.2011.02.034

11. van Dijk, T., Rubbens, B.: Simple fixpoint iteration to solve parity games.
In: Leroux, J., Raskin, J. (eds.) Proceedings Tenth International Symposium
on Games, Automata, Logics, and Formal Verification, GandALF 2019, Bor-
deaux, France, 2-3rd September 2019. EPTCS, vol. 305, pp. 123–139 (2019).
https://doi.org/10.4204/EPTCS.305.9

12. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (ex-
tended abstract). In: 32nd Annual Symposium on Foundations of Computer Sci-
ence, San Juan, Puerto Rico, 1-4 October 1991. pp. 368–377. IEEE Computer
Society (1991). https://doi.org/10.1109/SFCS.1991.185392

https://doi.org/10.4204/EPTCS.226.3
https://doi.org/10.1007/978-3-319-49052-6_8
https://doi.org/10.1007/978-3-319-41540-6_15
https://doi.org/10.1016/j.ic.2018.09.005
https://doi.org/10.1007/3-540-58179-0_50
https://doi.org/10.4204/EPTCS.260.4
https://doi.org/10.4204/EPTCS.161.12
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1016/j.tcs.2011.02.034
https://doi.org/10.4204/EPTCS.305.9
https://doi.org/10.1109/SFCS.1991.185392

13. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: Erdog-
mus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10-14, 2017. pp. 112–121. ACM (2017). https://doi.org/10.1145/3092282.3092286

14. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, Febru-
ary 2001], Lecture Notes in Computer Science, vol. 2500. Springer (2002).
https://doi.org/10.1007/3-540-36387-4

15. Hou, P., Cat, B.D., Denecker, M.: FO(FD): extending classical logic
with rule-based fixpoint definitions. TPLP 10(4-6), 581–596 (2010).
https://doi.org/10.1017/S1471068410000293

16. Jacobs, S., Bloem, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, P.J., Michaud, T., Sakr, M., Sickert, S.,
Tentrup, L., Walker, A.: The 5th reactive synthesis competition (SYNTCOMP
2018): Benchmarks, participants & results. CoRR (2019), http://arxiv.org/abs/
1904.07736

17. Jurdzinski, M.: Small progress measures for solving parity games. In: Re-
ichel, H., Tison, S. (eds.) STACS 2000, 17th Annual Symposium on Theoret-
ical Aspects of Computer Science, Lille, France, February 2000, Proceedings.
Lecture Notes in Computer Science, vol. 1770, pp. 290–301. Springer (2000).
https://doi.org/10.1007/3-540-46541-3 24

18. Kant, G., van de Pol, J.: Efficient instantiation of parameterised boolean equa-
tion systems to parity games. In: Wijs, A., Bosnacki, D., Edelkamp, S. (eds.)
Proceedings First Workshop on GRAPH Inspection and Traversal Engineering,
GRAPHITE 2012, Tallinn, Estonia, 1st April 2012. EPTCS, vol. 99, pp. 50–65
(2012). https://doi.org/10.4204/EPTCS.99.7

19. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) Computer Aided Verifi-
cation, 5th International Conference, CAV ’93, Elounda, Greece, June 28 - July
1, 1993, Proceedings. Lecture Notes in Computer Science, vol. 697, pp. 97–109.
Springer (1993). https://doi.org/10.1007/3-540-56922-7 9

20. Lapauw, R.: Reconstructing and Improving Parity Game Solvers with Justifica-
tions. Ph.D. thesis, Department of Computer Science, KU Leuven, Leuven, Bel-
gium (2021), [To appear]

21. Lapauw, R., Bruynooghe, M., Denecker, M.: Improving parity game solvers with
justifications. In: Beyer, D., Zufferey, D. (eds.) Verification, Model Checking, and
Abstract Interpretation - 21st International Conference, VMCAI 2020, New Or-
leans, LA, USA, January 16-21, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 11990, pp. 449–470. Springer (2020). https://doi.org/10.1007/978-3-
030-39322-9 21

22. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive sys-
tems from LTL specifications via parity games. Acta Inf. 57(1), 3–36 (2020).
https://doi.org/10.1007/s00236-019-00349-3

23. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10981, pp. 578–586. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3 31

https://doi.org/10.1145/3092282.3092286
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1017/S1471068410000293
http://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/3-540-46541-3_24
https://doi.org/10.4204/EPTCS.99.7
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/978-3-030-39322-9_21
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31

24. Mostowski, A.: Games with forbidden positions. University of Gdansk, Gdansk.
Tech. rep., Poland, Tech. Rep (1991)

25. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: Ross-
manith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019,
Aachen, Germany. LIPIcs, vol. 138, pp. 10:1–10:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.10

26. Piterman, N.: From nondeterministic buchi and streett automata to deterministic
parity automata. In: 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. pp. 255–264. IEEE
Computer Society (2006). https://doi.org/10.1109/LICS.2006.28

27. Safra, S.: On the complexity of omega-automata. In: 29th Annual Sym-
posium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988. pp. 319–327. IEEE Computer Society (1988).
https://doi.org/10.1109/SFCS.1988.21948

28. Schewe, S.: An optimal strategy improvement algorithm for solving parity and pay-
off games. In: Kaminski, M., Martini, S. (eds.) Computer Science Logic, 22nd Inter-
national Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro,
Italy, September 16-19, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 5213, pp. 369–384. Springer (2008). https://doi.org/10.1007/978-3-540-87531-
4 27

29. van Dijk, T.: Attracting tangles to solve parity games. In: Chockler, H., Weis-
senbacher, G. (eds.) Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 10982, pp. 198–215. Springer (2018). https://doi.org/10.1007/978-3-319-96142-
2 14

30. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18, 1986.
pp. 332–344. IEEE Computer Society (1986)

31. Walukiewicz, I.: Monadic second order logic on tree-like structures. In: Puech,
C., Reischuk, R. (eds.) STACS 96, 13th Annual Symposium on Theoretical As-
pects of Computer Science, Grenoble, France, February 22-24, 1996, Proceed-
ings. Lecture Notes in Computer Science, vol. 1046, pp. 401–413. Springer (1996).
https://doi.org/10.1007/3-540-60922-9 33

32. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998).
https://doi.org/10.1016/S0304-3975(98)00009-7

https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-540-87531-4_27
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/3-540-60922-9_33
https://doi.org/10.1016/S0304-3975(98)00009-7

	Justifications and a Reconstruction of Parity Game Solving Algorithms

