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ABSTRACT  

Adaptive learning systems aim to provide learning items tailored to the behavior and needs of individual 

learners. However, one of the outstanding challenges in adaptive item selection is that often the 

corresponding systems do not have information on initial ability levels of new learners entering a 

learning environment. Thus, the proficiency of those new learners is very difficult to be predicted. This 

heavily impairs the quality of personalized items’ recommendation during the initial phase of the 

learning environment. In order to handle this issue, known as the cold-start problem, we propose a 

system that combines item response theory (IRT) with machine learning. Specifically, we perform 

ability estimation and item response prediction for new learners by integrating IRT with classification 

and regression trees built on learners’ side information. The goal of this work is to build a learning 

system that incorporates IRT and machine learning into a unified framework. We compare the proposed 

hybrid model to alternative approaches by conducting experiments on two educational data sets. The 

obtained results affirmed the potential of the proposed method. In particular, the obtained results indicate 

that IRT combined with Random Forests provides the lowest error for the ability estimation and the 

highest accuracy in terms of response prediction. This way, we deduce that the employment of machine 

learning in combination with IRT could indeed alleviate the effect of the cold start problem in an 

adaptive learning environment.   

 

Keywords: Item response theory, Decision tree learning, Machine learning, Adaptive learning system, 

Cold-start problem 

 

 

1 Introduction 
Over the last decade, online learning environments have received a rapidly growing attention. 

Technology-enhanced environments are deemed to have a greater potential than traditional classroom 

learning as they are capable of personalizing students’ learning opportunities based on adaptive learning 

technologies (Albatayneh, Ghauth, & Chua, 2018; Truong, 2016; Ortigosa, Martín, & Carro, 2014; 

Kalyuga & Sweller, 2005; Shute & Towle, 2003; Brusilovsky & Peylo, 1999). The goal of an adaptive 

learning system is to modify instructions using a set of predefined rules (Burgos, Tattersall, & Koper, 

2006; Marcos-García, Martínez-Monés, & Dimitriadis, 2015) and to provide learning materials (or 

items) tailored to the behavior and needs of individual learners (Wauters et al., 2010). An example is a 
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system that selects items of an appropriate difficulty level. For such a system, it is crucial that the system 

builds up enough information about the learners’ ability levels and predicts their responses to the 

learning items in a timely and accurate manner. However, one of the challenges of the process is that 

the system may have very limited (or no) information on initial ability levels of new learners when they 

enter a learning environment. In this case, it takes a long time until estimates of an acceptable accuracy 

are obtained of the learners’ learning proficiency. Therefore, the system is likely to fail to recommend 

tailored items during the initial phase of the learning environment. This issue is referred to as the cold 

start problem (Schein et al., 2002). Studies showed that the cold start problem often makes new learners 

to abandon the system due to inappropriate first recommendations, which are experienced as frustrating 

(Mackness, Mak, & Williams, 2010; Bobadilla et al. 2012). Also lack of motivation, anxiety and 

boredom may be associated with the failure of adaptive item selection (Wauters et al., 2010; 

Klinkenberg, Straatemeier, & van der Maas, 2011; Ostrow, 2015; Jagust, Boticki, & So, 2018). It is 

therefore crucial to further develop methodologies and models that tackle this cold start problem.  

 

In fact, this problem has received a considerable amount of attention in another context, the context of 

recommender systems that seek to predict the rating that a user would give in e-commerce or online 

streaming websites to an item based on his or her interest (e.g., books, movies, songs). Many studies 

(e.g., Tang & McCalla, 2004; Menon et al., 2011; Forsati et al., 2014; Lika, Kolomvatsos, & 

Hadjiefthymiades, 2014; Ling, Lyu, & King, 2014; Pereira & Hruschka, 2015; Barjasteh et al., 2016; 

Fernández-Tobías et al. 2016; Contratres et al., 2018) proposed data mining and machine learning 

techniques (specifically, collaborative filtering algorithms) to address the cold-start problem using the 

side information about existing users (i.e., users’ attributes) to make recommendations for new users 

with similar profiles. However, most of their approaches focus heavily on the prediction of the new 

user’s rates on a given set of items, lacking the psychometric component i.e., assessment of the users’ 

latent traits. In adaptive learning systems, however, getting insight in the latent ability level of persons 

is of crucial importance because of its role in evaluating how effectively the learning process is working 

and how the learner performed on those learning programs. Only a very limited number of studies (Tang 

& McCalla, 2004, August; Sun et al., 2018) have paid attention to the cold-start problem in the context 

of online-learning. Therefore, this study aims to answer the research question: how can the effect of the 

new learner’s side information (e.g., age, relevant courses taken, IQ, pre-test scores) be exploited in 

order to estimate the learner’s initial ability and the corresponding performance on items with a variety 

of difficulty levels?   

With respect to the ability assessment, the use of item response theory (IRT; Van der Linden & 

Hambleton, 1997) is considered as one of the most recognized psychometric methods. The basic IRT 

model, the Rasch model (Rasch, 1960), is based on the idea that the probability of correctly solving an 

item is a logistic function of the difference between a person parameter and an item parameter, that are 

often interpreted as the person’s ability parameter and the item’s difficulty parameter. Fitting the model 

to responses of learners on a set of items allows to estimate the learners’ ability levels and the item 

difficulties, which can be used afterwards to provide learners with the most informative item. The larger 

(smaller) the person’s ability is compared to the item difficulty, the larger (smaller) the probability on a 

correct response. IRT models have a strong tradition in testing situations, because of several advantages 

(Van der Linden & Hambleton, 1997; Hambleton & Jones, 1993), which will be discussed below. Once 

a set of calibrated items in the bank is available (a measurement scale of items is constructed), new 

learners can be placed on the scale by assessing how successful the person responds to some of these 

calibrated items. IRT is often used in computerized adaptive testing (CAT; Van der Linden & Glas, 

2010), in which after each response the ability estimate of a test taker is updated and an item is given 

with a difficulty that matches closely the ability estimate. In this way, shorter tests are sufficient for 

obtaining an accurate view on the learner’s ability. The idea of selecting items whose difficulty matches 

the ability of the learner is also applicable to the online learning environments. Yet, while the goal of 

the adaptive testing is to gain efficiency in assessing test takers’ ability level and examine their relative 
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standing in the population, the goal of adaptive learning is to enhance the learning progress by providing 

more personalized learning items (Zhang & Chang, 2016).      

Not only IRT, also machine learning techniques can be valuable for adaptive item selection. Response 

predictions for new learners can be made by addressing the ability estimation as a regression task based 

on machine learning. The system can predict the new learner’s responses by using first a machine 

learning model to estimate the ability parameter of this new learner and then use this estimated ability 

parameter to predict the responses with IRT. Alternatively, the response prediction can be addressed as 

a multi-target prediction task (Kocev et al., 2013). In this case, the system can, for example, employ a 

decision tree-based learning model in a multi-output setup (Kocev et al., 2013). The machine learning 

model is learned on a training set of learners containing their descriptive features (background 

information) and their responses.   

This study proposes a hybrid approach by combining the strength of IRT models with machine learning. 

Specifically, the approach integrates the Rasch model with the use of classification and regression trees 

(Breiman, 1984) trained on side information (i.e., learner attributes/features). In this way, the model 

potentially can surpass the cold start problem and make reasonable predictions for new learners. We 

suggest the use of decision tree-based learning methods (i.e., single decision trees or ensembles, such as 

Random Forests; Breiman, 2001) among various machine learning methods because of their 

interpretability and visualization properties. In addition, when they are extended to ensembles, their 

predictive performance is greatly improved (Fernández-Delgado, 2014). In our case, this means that we 

can get more accurate predictions of a student’s latent ability and responses. In order to validate the 

effectiveness of the proposed hybrid approach, we conducted experiments using educational data sets 

including background information on learners and items.  

The novelty of our approach lies in its capability of incorporating learner features (a) to estimate the 

new learner’s initial ability level when getting engaged in an e-learning environment; and (b) to predict 

the corresponding responses to a given item bank. In particular, when the estimation of the ability of the 

learners is concerned, the hybrid system employs:   

1.    IRT to estimate the ability of the learners for which we already have data on their responses to 

items.  

2.    A regression tree-based method trained using the features that characterize the learners and the 

IRT generated abilities.  

In summary, the overarching goal is to develop a method that integrates decision tree-based techniques 

and IRT for predicting the response pattern and estimating the latent ability of new learners. As the 

current study aims to address the cold start problem in adaptive learning environments, our focus is to 

investigate the performance of the hybrid method against one of the most common approaches used in 

computerized adaptive systems i.e., assuming at the start of the algorithm that the new learner has an 

average ability (e.g., Van der Linden & Veldkamp, 2004). When it comes to adaptive learning systems, 

usually there is an initial phase where new learners are given some items and their ability is estimated 

based on the responses to those first items. However, in case these recommendations are incompatible 

(e.g., too easy, too difficult) then the learner gets frustrated or even abandons the effort (Mackness, Mak, 

& Williams, 2010). We investigate the possibility to build a system that improves the performance of 

the initial phase of an adaptive learning system, without making use of prior ability tests.  

The rest of the paper is organized as follows. In the next section, we start by presenting previous studies 

that are relevant to this work. In section 2, we describe general frameworks of IRT and decision tree-

based methods. We then propose a hybrid approach combining the two methods in order to address the 

cold-start problem. Next, in section 3, we introduce two educational data sets (one for an educational 

testing and the other for an online learning environment) for the evaluation of our approach and present 
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the experimental strategy. The results are demonstrated in section 4. We discuss our findings and provide 

concluding remarks in section 5. 

 

1.1 Related Work 
Although several recent studies proposed methods to tackle the cold-start problem in 

recommender systems, their applications in an educational domain (i.e., the adaptive learning systems) 

are an underexplored topic.  

Like in a typical educational testing environment, the majority of the online learning platforms currently 

do not use any prior information on new learners for personalized learning (Thai-Nghe et al., 2011). 

After an item bank is calibrated by IRT modelling, which means that item difficulties have become 

available, the naive method renders initial items without knowing anything about the new learners. The 

item can be selected randomly or by using the average ability estimate of the pre-existing learners as the 

starting value for the new learners. Thus, the prediction performance for new learners is not very 

efficient in the sense that it may take longer for the learning system to estimate the learner’s ability level 

with sufficient accuracy.  

A number of studies tackled the cold-start problem in relation to recommender systems in general. The 

recommender systems refer to information filtering and decision support systems that seek to predict 

the ratings or preferences a user would give to an item (e.g, movies, music, books, and products) in e-

commerce or online streaming sites. The systems typically utilize a variety of collaborative filtering 

(CF) algorithms that generate automatic predictions about the user by collecting information from other 

users who shared similar ratings or preferences. To handle the cold-start problem, several studies used 

data mining techniques that incorporate user features (age, gender, and social contact) in the CF. Said et 

al. (2014), Guo (2013), and Vozalis and Margaritis (2004) proposed a modified version of k-nearest 

neighbors (k-NN) by adding a user demographic vector to the user profile and embedding it in the CF. 

Similarly, Son et al. (2013) proposed using a fuzzy clustering method that incorporates the demographic 

features in the filtering system. Fernández-Tobías et al. (2016) proposed adding the users’ personality 

information to a matrix factorization (MF) model that incorporates user features to improve the 

recommendation where there are no ratings for the new users. Contratres et al. (2018) showed that the 

user cold-start issue can be alleviated by using sentiment analysis based on support vector machine 

(SVM) (Burges, 1998) in the recommender systems.  

Likewise, despite the recent popularity and prolificacy of the cold-start problem in the recommender 

systems, not much research has been done in the domain of adaptive learning systems. However, there 

have been various studies applying machine learning in educational systems in general. The majority of 

them harness the prediction accuracy of machine learning to develop predictive models for students. 

These models are often trained over students’ demographic characteristics or other kinds of student 

related attributes/features (e.g., school progress, number of books at home, dyslexia, dyscalculia, etc.), 

targeting at performing grade or drop-out predictions. More specifically, Kotsiantis (2011) built a 

decision support system to predict students’ performance. The system was trained on students’ 

demographic features and marks in written assignments addressing student grade prediction as a 

regression problem. Kai et al. (2018) used a decision tree to classify students into two groups− 

productive persistence or wheel-spinning. Rovira et al. (2017) employed machine learning for students’ 

grades and dropout intention prediction. The authors also proposed a personalized course 

recommendation model. Course preferences as well as course completeness ratios were studied using 

decision tree learning in (Hsia et al., 2008). Lykourentzou et al. (2009) proposed a dropout prediction 

method for e-learning courses using a combination of machine learning techniques. Vie et al. (2018) 

proposed a determinantal point process to select adaptive items for new learners, using ability and 

difficulty estimates calibrated by a cognitive diagnosis model. Park et al. (2018) proposed a 

psychometric method to reduce the new learner cold-start problem, zooming in on the adaptive learning 

systems. Based on an explanatory IRT model trained by learner-item interaction data and learner 
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features (e.g., age, gender, learning disability), their method first provides initial ability estimates for 

the new learners based on his or her profiles, then allows to make recommendations for the most 

informative items. Based on the previous studies, it is clear that background information of learner could 

contribute significantly to obtain models that precisely predict the learner’s performance. In addition, 

more learner’s information can provide more precise and accurate prediction in the context of machine 

learning in educational assessment.  

 

2 Methods 
In the following, we propose a hybrid approach that combines Item Response Theory and 

Decision Tree-based learning. First, we describe in more detail both components. 

 

2.1 Item Response Theory 
IRT has been widely used in educational and psychological settings, especially in educational 

assessments, to assess persons’ abilities or to develop learner’s cognitive or non-cognitive 

measurements. For example, in large-scale assessments such as Trends in International Mathematics 

and Science Study (TIMSS; Mullis & Martin, 2013), tests are often constructed and evaluated using 

various IRT models by analyzing characteristics of items, such as item discrimination and item bias. For 

more detail information about test and measurement theory, see Allen and Yen (2001) and MacDonald 

(2013).  

In general, IRT models often assume that the probability of a correct response to an item follows a 

logistic or a normal ogive curve. That is, the probability of correct response to the item j increases as 

learner i’s ability increases monotonically with boundaries between 0 and 1. Equation 1 shows the 

conditional probability function of the correct response for learner i to item j using the Rasch model, 

P(Xij = 1|θi, βj) =
exp(θi−βj)

1+exp(θi−βj)
     (1) 

where Xij is a dichotomously scored observed variable (with 1 referring to a correct response, 0 to an 

incorrect response), θi is a latent ability parameter for learner i, and βj is item difficulty parameter for 

item j. Also, Figure 1 shows the item characteristics curve (ICC) of the Rasch model for the item with 

difficulty parameter, βj, of 0.5. As shown in Figure 1, the probability of correctly responding to the item 

increased from 0 to 1 as the learner’s ability increases. Also note that when the latent ability is equal to 

0.5 (item difficulty), the probability of correctly responding to the item is 0.5. This implies that the 

probability of giving the correct answer is determined by item difficulty and latent ability; when a 

learner’s ability is equal to the item difficulty, the probability of given the correct answer is 0.5. 
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Figure 1. Item characteristic curve (ICC) of the Rasch model for an item (difficulty β = 0.5). 

In educational and psychological measurement, several alternative IRT models were developed. For 

instance, if one is not only interested in the item difficulties but also in how well the items discriminate 

between persons with higher and lower ability, the two-parameter logistic (2PL) model can be utilized 

that includes a second item parameter reflecting the slope of the logistic curve. The three-parameter 

logistic (3PL) model, adds to the item difficulty and discrimination parameters a guessing parameter, 

accounting for situations where the probability of a correct answer for a learner with low ability can be 

increased by guessing the item. As a result, the ICC of the 3PL model has a lower asymptotic boundary 

across the latent continuum (Birnbaum, 1968). 

One of the advantages of IRT models over traditional Classical Test Theory (CTT) is that the item 

parameters in principle do not depend on the characteristics of the samples that are used to calibrate the 

items. The calibration sample does not have to come from the same population as the persons that are 

tested afterwards with the calibrated items. The second advantage of the IRT modeling is that it enables 

researchers to conduct more sophisticated item and latent ability analysis using item information 

functions. Consequently, more advanced testing and learning environments can be further developed 

using the IRT modeling. For example, the IRT models have been implemented in adaptive learning 

system (e.g., Wauters et al., 2010). In their paper, the authors explored and illustrated the feasibility of 

applying the Rasch model for adaptive learning system.  

 

2.2 Decision Tree Learning 
One of the most exhaustively studied fields in machine learning and data mining is supervised 

learning (Jordan & Mitchell, 2015). The instances in supervised learning are represented by features and 

are associated with targets. The task is to predict a target value by building a prediction function over a 

training set of instances with known target (Witten et al., 2016). Using this prediction function, we can 

perform predictions for new (unseen) data. Among the various prediction tasks, classification and 

regression are the most common. In classification, one is interested in predicting categorical values (i.e., 

class labels where each instance is assigned to). In regression, one is interested in predicting numerical 

values. Furthermore, both tasks have a multi-output extension. More specifically, the assumption in 

single target prediction tasks is that an instance corresponds to only one class out of two (binary 

classification) or more classes (multi-class classification). However, in many applications this 

assumption does not hold and instances may belong simultaneously to more than one class. For example 

in the field of text mining, a document can be associated with many topics at the same time. In social 

media, an uploaded image can be associated with many tags. This kind of data are called multi-label 

data and the machine learning methods that build prediction functions over these data are called multi-

label methods (Tsoumakas & Katakis 2006, Tsoumakas et al., 2009). 

Decision Tree learning (Breiman et al., 1984) is among the most popular machine learning methods. It 

is used mainly for classification and regression but also for many other tasks. Decision trees consist of 

nodes and edges that connect those nodes. Every node usually has an ingoing edge connecting it with 

its parent node and outgoing edges connecting it with its children. The first node of the tree is called the 

root while the nodes without an output edge are called leaves. Decision tree learning knows many 

advantages, such as scalability, computational efficiency, and interpretability. Although there are 

predictors which are more powerful, the interpretability and visualization properties of decision trees 

are great advantages. 

Following the Predictive Clustering Tree (PCT) framework (Blockeel & De Raedt, 1998), decision trees 

are constructed with a top-down induction method. Every node is considered to be a cluster of the data. 

The root node is a cluster that contains all the training instances. Starting from the root node, all the 

nodes are recursively split by applying a test to one of the features that describe the instances. The best 
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split is found by evaluating a split quality criterion. This criterion is based on the machine learning task 

at hand. For example, information gain is usually used in classification while variance reduction is used 

in regression. The tree growing procedure stops when a stopping criterion is fulfilled or no further split 

can be performed. The final nodes are called leaves and the prediction of the target variables is based 

on a function called the prototype.  For classification, this function is the majority class assigned to the 

instances in the leaf. For regression, this function is the average of the target values that correspond to 

the instances in a leaf. When a new instance arrives, it traverses the tree ending up in a leaf node. The 

target value that corresponds to that leaf is assigned to the new instance. The path that is followed by an 

instance when it traverses the tree consists of a set of tests and can be used thereby as a rule, providing 

this way interpretability of the performed prediction. An example of a decision tree is demonstrated in 

Figure 2. The first split is based on the feature “Age”, instances (e.g., students) whose age is below (or 

equal to) 10 follow the left child node and the others the right one. The next two splits are based on the 

gender and on whether an instance has or not dyslexia. 

PCTs are able to predict multiple targets at the same time by using an appropriate split criterion and 

prototype function. Such trees are called multi-output or multi-target decision trees (Kocev et al., 2013). 

The corresponding prediction task is called multi-label classification if the targets are binary values and 

multi-target regression if they are continuous values. The quality V of a split is obtained by computing 

the split quality criterion for every output and summing the corresponding values Vj, i.e.,  V = ∑ Vj
N
j=1 . 

The prototype function returns the average target vector of the training instances in a leaf. When it comes 

to multi-label classification, this corresponds to a vector composed of the estimated probabilities of the 

labels (Vens et al., 2008). 

 

Figure 2. An example of a decision tree. 

 

Random Forests (RF) (Breiman, 2001) are an ensemble learning method composed of a collection of 

multiple decision trees. An important characteristic of this method is the diversity that is enforced among 

the trees. This diversity is obtained by using bootstrap replicates of the training set and random selection 

of the features describing the samples. More specifically, each decision tree of the ensemble is 

constructed on a random subset of the training set. Every node of that tree is split by computing the best 

possible split among a random subset of selected feature candidates. The final prediction is yielded as 

the average of the predictions of individual trees. Random Forests surpass the lack of variance and the 

overfitting drawbacks of single decision trees.   

 

2.3 A hybrid approach  
We propose a hybrid system that combines IRT and decision tree-based learning. The inputs in 

the hybrid system are the features of learners (i.e. background variables, such as school, age, gender, 

etc.) and the responses of learners that were already involved in the learning environment. The values 
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of interest are the new learners’ abilities and responses. In more detail, the available data for the system 

are the features of a set of learners and their already known responses. The system is built on these data 

and the goal is to predict the abilities and responses of new learners when they enter the system. Let the 

existing learners’ features (i.e., learners already included in the system) be denoted as F, their abilities 

as T, their responses as Y and their “unknown” or missing responses as Yu.  

The hybrid prediction model is illustrated in Figure 3. First, an IRT model is applied to Y, estimating 

item difficulties (Idif) and learners’ abilities (T), as displayed in Section 2.1. Note that any missing 

responses (yij 𝜖  Yu) in the target space are also predicted by the IRT model (a 1 is predicted if the 

probability on a correct response that is expected using the estimated Idif and T is .5 or higher, 0 

otherwise). Next, a regression tree-based model is trained on the existing learners’ feature space (F) and 

their target space (T). When a new learner arrives, in this way, the trained regressor allows to predict 

the latent ability parameter of the new learner (Tnew; an ability parameter estimate of the new learner) 

by using his or her background information (i.e., features). In summary, the machine learning model is 

trained using existing data, specifically the features and the ability parameter of the existing learners. 

Next, when the model has been trained, it can predict the ability parameter of the new learner (Tnew).   

Finally, in order to predict responses of the new learner (Ynew), we consider two approaches in our hybrid 

system. Figure 4 illustrates how the system goes on to the two types of predictions. The first approach 

(at the bottom right) predicts responses of the new learner (Ynew) based on the estimated ability parameter 

of the new learner (Tnew) and the estimated item difficulties (Idif). Given the two components are known, 

it is natural that IRT formula (see Equation 1) allows to estimate the learner’s responses to each 

individual item in Ynew. In the second prediction approach (at the bottom left), on the other hand, the 

response prediction can be viewed as a multi-target prediction problem. Therefore, the system predicts 

the new learners’ responses (Ynew) by means of a multi-output learning model (i.e., a model that learns 

to predict multiple responses simultaneously). During the training process of the decision tree-based 

learning model, the splits are based on the features of the learners included in the training and the 

variance reduction is computed on their responses. To be clear, the response matrix of existing learners, 

Y, has been previously completed by using IRT to predict any missing values. When a new user arrives, 

the trained model can perform predictions based on background information (i.e., features) of the new 

learner.  

Note that although here we choose tree-based learning methods (i.e., decision trees, random forests) for 

the machine learning counterpart of our approach, other methods could be used as well. For example, 

one could use Support Vector Machines (SVM), k Nearest Neighbors (k-NN), or linear regression. 

However, we promote the employment of tree-based machine learning methods due to their 

interpretability advantages. It is often desirable to have interpretable models and gain insights while 

performing predictions. Only through interpretability we can understand and trust the decisions made 

by machine learning (Doshi-Velez, & Kim, 2017). Moreover, tree-based methods are scalable and 

generally very fast predictors. The methodology used in this hybrid approach is similar to methods 

handling sparse data in educational assessment. Because large scale assessments often make use of 

incomplete designs (each person only answers a subset of items), researchers often use the existing 

responses to calibrate item and latent ability parameters simultaneously (Gottschall, West, & Enders, 

2012; Rose, von Davier, & Xu, 2010). They use background variables to fit the model and predict the 

nonresponses and the latent ability distribution. Here we investigate the employment of machine 

learning models and more specifically tree-based learning models to perform predictions. We combine 

IRT and machine learning to predict the new student’s responses and latent ability in the learning system. 

The goal is then to use these predictions as starting values in an adaptive learning system. 
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Figure 3.  Illustration of the hybrid prediction model. 

  

 

Figure 4.  Outline of the hybrid system. 

 

3 Evaluation of the hybrid approach 
To illustrate and compare the new hybrid system, we apply it on two real datasets, described below.  

For the implementation and experimental evaluation of our system we used the machine learning library 

Scikit-learn (Python) (Pedregosa et al., 2011). Scikit-learn contains all the machine learning algorithms 

used in this study as well as the relevant evaluation metrics that were employed. We also used the library 

NumPy for data handling purposes. When it comes to IRT, we used the IRT implementation in the 

programming language R and specifically the ltm package (Rizopoulos, 2006).     

  

3.1 Assessment Dataset 
The first dataset consists of 2044 students and 20 items that were used for a statistics exam at 

our university (further information about university was erased due to double blind restrictions). In 

addition, the background information associated with the students who took the exam was collected (i.e., 

study program, gender, school progress, language they speak at home, number of books at home, 

Socioeconomic Status (SES), dyslexia, dyscalculia, ADHD, ASS, other learning problem, school type, 
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subsidized education, rural urban, concentration, province, language of their friends, hours of math per 

week, academic self concept (math), academic self concept, attest 2nd grade, math ambitions, parents' 

attitude toward math). In total, 23 background variables were provided. The number of books at home, 

SES, concentration, hours of math per week, academic self concept (math), academic self concept, math 

ambitions, and parents' attitude toward math were recorded as continuous variables and the other 

variables were categorical variables. Among the categorical variables, some dichotomous variables 

related to a learning disability such as dyslexia, dyscalculia, ADHD, ASS and other learning problem 

were included. Those variables were recorded as 1 if a student has a learning disability, and 0 otherwise. 

We included all 23 background variables because they were closely relevant to the performance 

assessment and we wanted as many variables as possible in order to let the machine learning techniques 

learn from these data and “decide” which are important and which not. The responses from the students 

were recorded as a dichotomous variable (1 = correct, and 0 = incorrect). The proportion of correct 

responses is .55.  

 

3.2 Learning Dataset 
For evaluation purposes, we also used a dataset collected using the Statistics-Online learning 

environment (Kadengye, et al., 2015). The Statistics-Online was designed as an item-based e-learning 

environment for students in the Educational Sciences, Speech Therapy and Audiology Sciences program 

at our university. The Statistics-Online environment supplements students’ learning by providing 

exercises and feedback on students’ responses to the questions. The example dataset was obtained from 

the one of modules (regression analysis) in Statistics-Online environment and the dataset consists of 145 

multiple choice items. The item responses were obtained as follows: 1) students were allowed to log 

into the environment at any choice of times, 2) randomly ordered items were given to students, 3) 

students’ correctness (1 or 0) were recorded and 4) the corresponding feedback on why the selected 

answer is correct or wrong was given in order to enhance learning. Note that the total number of items 

per student varied as the median number of items was 13 and the mean of items per student was 20 with 

a minimum of 10 and maximum of 124. The proportion of correct responses in this dataset is .59. The 

total number of students engaged was 229 and consequently there was a number of missing responses 

in the dataset. The dataset recorded the background information of students as well: gender, campus, 

year, program, previous statistics courses, total hours of study sessions. The background variable ‘total 

hours of study sessions’ was recorded as a continuous variable and the other variables as categorical 

variables. Similar to the previous example, we included all these variables because they could be useful 

information to explain the students’ mathematical learning process and the previous study also provided 

an evidence (Kadengye et al., 2015) for that. The 2-dimensional visualisation of the used datasets is 

illustrated in Figure 5. The projections were made using principal component analysis (PCA). 

       

Figure 5.  2-D projection of the two employed datasets (on the left, the assessment dataset and on the 

right, the learning dataset). 
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3.3 Evaluation Strategy 
We evaluated our system using the two datasets in a 10 fold cross validation (10-CV) setting 

(Kohavi, 1995). In k-fold cross validation the benchmark dataset is randomly divided in k subsets of 

equal size. Next, a subset is selected as the “test” subset for the evaluation of the predictions. This “test” 

subset represents the new learners in our system.  The remaining k-1 subsets are used for “training” the 

model. The process is repeated k times, each time using a different subset as the “test” subset. In the 

end, the final evaluation result is the average of the k obtained results from the k folds.  

The predictions of the learners’ response patterns that were made by our model were compared to the 

observed (true) values.  Note that response patterns of the test datasets are directly observable, thus, it 

is possible to compare the predicted responses to the true responses. However, the latent abilities are not 

observable before the employment of IRT. To compute the accuracy of the latent trait estimate prediction 

in the cross validation setting, we considered the IRT-estimated latent ability parameters from each 

training subset as “true” values and then estimated the latent ability parameters for the test subset.  

For comparison purposes, we used Support Vector Machine Regression denoted as SVR (Burges, 1998), 

Linear Regression, and k Nearest Neighbors (k-NN). These machine learning models are often used in 

educational studies. The k-NN or alternative versions of it was used in Said et al., (2014), Guo (2013), 

and Vozalis and Margaritis (2004). SVM was employed by Contratres et al. (2018). SVM was also 

employed in a different setting (drop-out or grades prediction) in Lykourentzou et al. (2009) and Rovira 

et al. (2017). Finally, we compare the approach with imputing the ability values for new users by 

randomly drawing from the ability estimates from existing users, or by taking the overall mean ability 

estimate. The approach of using the average values to handle the cold-start problem was followed by 

Thai-Nghe et al., (2011). 

For Random Forests, 100 trees and a stopping criterion of 3 samples per leaf were used. For single trees, 

the stopping criterion was 30 samples per leaf. For SVM, the radial basis function (RBF) kernel (Burges, 

1998) was used. The γ parameter was set equal to the inverse of the number of features and the C 

parameter was selected from a range of  (0.01, 0.1, 1, 10, 100). In particular, it was optimized using the 

training set in an internal 3-fold CV. For the inner tuning, 3-fold CV was used instead of 5 or 10 for 

computational reasons. For k-NN, the number of nearest neighbors (k) was selected from a range of (3, 

5, 7, 9, 11). It was optimized in an internal 3-fold CV. 

To evaluate the accuracy of the predictions made by our system, we employed several evaluation 

criteria. In particular, the mean squared error (MSE) was used for the evaluation of the estimated 

(predicted) latent abilities for new learners (i.e., learners from the test set). The MSE is often used as a 

measure of the “precision” of the estimated (predicted) parameters and is defined as: 

𝑀𝑆𝐸(𝜃𝑗, 𝜃𝑗̂) =
1

n
∑ (𝜃𝑗 − 𝜃𝑗̂)

2𝑛
𝑗=1                                                     (2) 

where 𝜃𝑗 is the true latent ability parameter, (𝜃𝑗̂) is the predicted latent ability parameter, and n is the 

total number of learners in the test set. Of course, because we work with real datasets, rather than with 

simulated datasets, we do not really know the abilities of the learners from the test set. Therefore, we 

consider the ability estimates obtained when using IRT on the whole dataset as the true values.  

When it comes to the predicted response patterns for the new learners, the evaluation measures that were 

employed are the Area Under Receiver Operating Characteristic curve (AUROC) and Area Under 

Precision Recall curve (AUPR). Note that a ROC curve represents the relation between true positive 

rates TP/(TP+FN) and false positive rates FP/(FP+TN)  at various probability thresholds. A Precision 

Recall Curve is defined as the Precision: TP/(TP+FP) against the Recall: TP/(TP+FN) at various 

probability thresholds. The true positive rate is the same as recall, and is also denoted as sensitivity, 

while the false positive rate is also denoted as (1-specificity). Both AUROC and AUPR were used in a 

micro-average setup. In case of totally random predictions, the AUROC is approximately equal to 0.5 
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and AUPR is equal to the proportion of the positive class. AUPR is known to provide a better image 

than AUROC in case of heavily imbalanced or skewed data (i.e., the frequency of one class is 

substantially higher than the other class) (Boyd, Eng & Page, 2013; Davis & Goadrich, 2006).  

 

4 Results 
First, the performance of the system in predicting the ability parameter of the new learners (Tnew) 

is described. In Table 1, the obtained regression results are presented in terms of MSE. A comparison 

with the approach of imputing random values drawn from the estimated abilities from the existing users 

or the mean value, shows that the performance of using machine learning is relatively effective for 

predicting the abilities of new learners: for both datasets used in our study, the MSE results are 

substantially better. As it is reflected in Table 1, Random Forests slightly outperform all the other 

methods.  

The results regarding the prediction of the responses of new learners are presented in Table 2. As 

described in Section 2.3, predictions of the responses of a new learner can be achieved by using IRT 

based on the known item parameters and the latent ability parameter predicted by the regression step 

(machine learning) that precedes. For comparison purposes, we present experimental results using IRT 

based on learner ability estimation with Regression Tree (RT_IRT), Random Forest (RF_IRT), SVR 

(SVR_IRT), k-NN (kNN_IRT), and Linear Regression (LR_IRT). We also included IRT results based 

on the mean value of the abilities of the learners used in the training set (MV_IRT). The obtained results 

are demonstrated in Table 2 in terms of AUROC and AUPR. The ROC curves of the two datasets are 

also displayed in Figure 6. As it is shown, the model succeeds in predicting responses of new learners, 

as both AUROC and AUPR are much higher than the expected values using random predictions (i.e., 

0.5 for AUROC and the positive class frequency for AUPR). Moreover, all the machine learning-based 

approaches outperform the naive approach MV_IRT. Although the differences are small, the best results 

were obtained by IRT based on Random Forest ability estimates. This is in line with the finding 

described above that Random Forest achieves the best performance in terms of MSE. It is interesting to 

notice that basic Linear Regression (LR) is generally comparable to the other methods. In particular, it 

is the third best method for the first dataset and the second best for the second dataset. Alternatively, 

one could predict directly the responses of a new learner by applying a Decision Tree or a Random 

Forest model in a multi-output setup, addressing this way the problem as a multi-target prediction task. 

As it is shown in Table 2, the multi-output Random Forest approach outperforms the multi-output 

decision trees, as well as all the other approaches, including RF_IRT. At this point, it has to be mentioned 

that even in that case the integration of machine learning with IRT is still needed as IRT is initially used 

to predict the missing data (i.e., yij, described in Section 2.3).  However, this multi-output approach does 

not make use of learner’s abilities or item difficulties in order to predict the responses for new learners. 

Note that this imputation of missing values takes place only in the training phase. Although predictions 

are made for all the responses in the test set, predictions that correspond to missing responses (i.e, 

imputed responses) are excluded from the evaluation process (i.e., computation of AUPR, AUROC).        

 

 

 

 

Table 1.   

MSE Results of the Hybrid Approaches. Value in bold indicates the smallest MSE. Value in 

parenthesis indicates the standard deviation in the MSEs across folds.  



13 
 

Methods Assessment Data Learning Data 

Regression Tree 
0.5208 0.2826 

(0.0525) (0.0949) 

Random Forest 

Regressor 

0.4496 0.2426 

(0.0348) (0.0907) 

SVR 
0.5000 0.2595 

(0.0484) (0.1122) 

Linear Regression 
0.5098 0.2429 

(0.0511) (0.0717) 

kNN 
0.516 

(0.0534) 

0.2639 

(0.0790) 

Mean 
0.7671 0.3349 

(0.0523) (0.1443) 

Random 
6.1768 5.9915 

(0.3072) (1.3251) 

 

 

Table 2.  

AUROC and AUPR Results for the Hybrid Approaches. Note: RT_IRT = Regression Tree with IRT 

approach, RF_IRT = Random Forest with IRT approach, LR_IRT = Linear Regression with IRT 

approach, SVR_IRT = Support Vector Machine Regression with IRT approach, MV_IRT = Mean 

Value with IRT approach. 

  Assessment Data Learning Data 

Combined 

Methods 
AUROC AUPR AUROC AUPR 

RT_IRT 
0.7071 0.7366 0.7405 0.7890 

(0.0079) (0.0073) (0.0278) (0.0521) 

RF_IRT 
0.7164 0.7454 0.7464 0.7952 

(0.0054) (0.0044) (0.0223) (0.0480) 

LR_IRT 
0.7071 0.7356 0.7438 0.7902 

(0.0094) (0.0145) (0.0195) (0.0440) 

SVR_IRT 
0.7107 0.7386 0.7364 0.7774 

(0.0105) (0.0160) (0.0273) (0.0525) 

kNN_IRT 0.7077 0.7355 0.7406 0.7891 

 (0.0075) (0.0111) (0.0235) (0.0377) 

MV_IRT 
0.6505 0.6745 0.7182 0.7599 

(0.0077) (0.0174) (0.0402) (0.0607) 

Multi-target prediction 

Decision Tree 
0.7106 0.7414 0.7441 0.7934 

(0.0086) (0.0107) (0.0261) (0.0479) 

Random Forest  
0.7248 0.7535 0.7449 0.7975 

(0.0061) (0.0049) (0.0223) (0.0469) 
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Figure 6. ROC curves for the 1st (left) and the 2nd (right) dataset. 

 

5 Discussion and Conclusion 
In the current study, we presented an approach that combines psychometric modelling with 

machine learning techniques. We proposed that a hybrid model can be used as an alternative approach 

to address the cold start problem by predicting learner’s ability in the initial stage of adaptive learning 

in online learning systems. More specifically, the proposed approach starts with estimating existing 

learner’s abilities based on IRT analysis. Then, a tree-based method is used by regressing the estimated 

abilities on a set of features that characterize the learners. Of many machine learning techniques 

available, we selected decision-tree based methods because of their interpretability advantage. Based on 

the results, new learners’ abilities and their responses on the items can be predicted. To empirically 

investigate our approach, we employed two educational datasets: an assessment and a learning dataset. 

For validation purposes, we compared the proposed method to alternative approaches including machine 

learning methods that are not based on decision trees, as well as random prediction.   

Results from both empirical datasets suggest that our approach generally leads to relatively precise 

predictions of the new learner’s ability and item responses. More specifically, IRT combined with 

random forests demonstrated the best performance, outperforming other machine learning approaches 

as well as naive approaches based on computing the average of the target values or performing random 

predictions. The hybrid approach outperformed the alternative ones in terms of MSE for learner’s ability 

estimation and in terms of AUROC and AUPR for learner’s response prediction. In particular, it 

substantially outperforms naive approaches (such as approaches based on random predictions) that are 

currently used for the estimation of new learners’ abilities and responses.  

Our study has important implications for researchers and practitioners who use adaptive learning 

systems. Relatively simple approaches have been commonly used (e.g., taking a random  or average 

value) in practical situations to address the cold-start problem. Based on our study results, using the 

proposed hybrid approach, one can estimate the initial ability of learners more precisely. The cold-start 

problem yields lack of information about learner’s initial ability which sequentially leads to inaccurate 

predictions in the initial stage of adaptive learning system. Thus, our proposed method can be easily 

implemented prior to the adaptive learning system. Instead of using relatively simple approaches 

including random or averaged values, the proposed method can provide more accurate estimations of 

the learner’s ability in the beginning of the system using learner’s background information. Once the 

hybrid model predicts the learner’s ability, the adaptive learning system can update the learner’s ability 

more precisely based on the learner’s performance.  
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With the more accurate ability parameter estimate, the adaptive learning system can choose items which 

difficulty levels more closely match with the learner’s current need (even from the very beginning). For 

example, items can be chosen such that the expected probability of correct responses for the learner is 

.70 (i.e., items with a difficulty level a little bit lower than the learner’s current ability level so as not to 

lose motivation). But depending on the learner’s personal preference, the adaptive learning system can 

select items resulting in a probability of .50 for more challenging path or .90 for easier path, for instance. 

The performance of the machine learning methods were similar, especially when it comes to AUROC 

and AUPR results. However, besides effectiveness, in comparison to other approaches, the tree-based 

methods (i.e., decision trees, random forest) have particular advantages such as that they are scalable, 

and interpretable (i.e., they provide an explanation of the predictions). In addition, they are 

computationally efficient and can also handle categorical variables. Furthermore, it makes performing 

predictions for new learners feasible, surpassing a serious bottleneck of IRT. To the best of our 

knowledge, this is the first work that combines the psychometric model and machine learning to resolve 

the cold-start problem of new learners in the online learning environments. We recommend peer 

researchers in adaptive learning systems or in education in general to consider the proposed approach, 

not only as a tool to perform predictions but also as a means to analyze their samples. In addition, it has 

to be noted that the proposed approach is rather generic and therefore applicable to other domains.    

We recognize limitations of the study. For example, although this study evaluated the accuracy of the 

method by predicting future student’s responses and ability estimates, the practical applicability of the 

method has not been investigated. The method could be applied for adaptive testing in e-learning 

environments, and it should be examined to what extent the combined methods can improve the 

efficiency of adaptive testing. In future work, we plan to combine the proposed method for addressing 

the cold-start problem with  adaptive learning algorithms such as Bayesian Knowledge Tracing (Corbett 

& Anderson, 1995), Performance Factor Analysis (Pavlik, Cen, & Koedinger, 2009), Deep Knowledge 

Tracing (Piech et al., 2015), and  examine the improved efficiency . A second limitation is that the 

approach was only applied on two datasets, with specific characteristics. For instance, the sample size 

for the second dataset can be considered relatively small (N = 229), and comparison results might be 

different for larger datasets. Also, there is sparseness in the dataset because not all the items were 

administered to every student in the e-learning environment. In the future, more learning datasets with 

relatively large number of sample sizes should be used to evaluate the IRT combined with machine 

learning method.  

Furthermore, it would be interesting to compare this approach with more advanced IRT models which 

include explanatory IRT (e.g., Wauters et al., 2012). Given that the explanatory IRT model can 

implement background variables of learners for computing the probability of correct answers using the 

context of multilevel modelling, it would be worthwhile to compare the performances of machine 

learning approaches with the explanatory IRT model in the context of learning environment. Another 

extension of IRT that was proposed recently is IRTree  (IRTree; De Boeck  & Partchev, 2012). The 

IRTree model was developed based on a tree structure and allows for multiple sources of individual 

variations for a response scale. Later, an extension of the IRTree model was further formulated to 

incorporate multiple parametric forms, dimensionality and choice of covariates (Jeon & De Boeck, 

2016). In regard of predicting multiple skills within a course, we acknowledge that the IRT model we 

used in this study assumes a unidimensional skill space; in the future work, it will be interesting to 

integrate current machine learning model into multidimensional IRT models (that allow that the multiple 

skills are correlated among each other) to predict the new learner’s proficiency in a fine-grained way. 

In addition, when multiple courses are involved, the ability estimates obtained from one course may be 

valuable background information that can be used in the model for another course.  Another interesting 

topic of future research would be to compare the prediction accuracy between the IRTree model and the 

hybrid approach (combined with uni- and multidimensional IRTs). A simulation study could be 

conducted under various conditions to empirically show the difference between those approaches.  
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Finally, in a broad sense, the current study can provide ideas about teaching and learning in any 

educational setting. For example, in a traditional classroom, it is also likely that the teacher has no 

information about new students in the beginning of a course. Based on the same principle as our 

approach, the teacher will handle the cold-start problem by predicting their ability level using the new 

learner’s side information (e.g., relevant courses taken) and observations (such as attitude or 

participation). Besides that, the teachers will be able to exploit the interpretability advantage provided 

by our proposed appro aches. We also hope our methodological approach can provide insights when 

electronic devices (e.g., adaptive e-textbook) become more common in the future classroom.  
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