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Abstract— Objective: To classify sleep states using 
electroencephalogram (EEG) that reliably works over a wide 
range of preterm ages, as well as term age. Methods: A 
convolutional neural network is developed to perform 2- and 4-
class sleep classification in neonates. The network takes as input 
an 8-channel 30-second EEG segment and outputs the sleep state 
probabilities. Apart from simple downsampling of the input and 
smoothing of the output, the suggested network is an end-to-end 
algorithm that avoids the need for hand-crafted feature selection 
or complex pre/post processing steps. To train and test this 
method, 113 EEG recordings from 42 infants are used. Results: 
For quiet sleep detection (the 2-class problem), mean kappa 
between the network estimate and the ground truth annotated by 
EEG human experts is 0.76. The sensitivity and specificity are 90% 
and 88%, respectively. For 4-class classification, mean kappa is 
0.64. The averaged sensitivity and specificity (1 vs. all) respectively 
equal 72% and 91%. The results outperform current state-of-the-
art methods for which kappa ranges from 0.66 to 0.70 in preterm 
and from 0.51 to 0.61 in term infants, based on training and testing 
using the same database. Significance: The proposed method has 
the highest reported accuracy for EEG sleep state classification for 
both preterm and term age neonates.  
 

Index Terms— Automated sleep stage classification; quiet sleep 
detection; deep learning; convolutional neural networks 
 

I. INTRODUCTION 

ome newborn babies need special nursing and monitoring 
after delivery in the neonatal intensive care unit (NICU), 

e.g. due to asphyxia, respiratory and cardiac disorders, sepsis or 
infection, low birth weight, and prematurity [1]–[3]. Premature, 
or preterm neonates refer to infants who are born before 37 
postmenstrual age (PMA), where PMA is the number of weeks 
elapsed since the first day of the last menstrual cycle of the 
mother till the time of recording. Generally, prematurity is one 
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of the main causes of infant mortality, and affected infants 
comprise the majority of babies cared for in the NICU [4], [5]. 
While these vulnerable infants are in the NICU, bed-side 
neuromonitoring systems can provide valuable insights into 
their neurological development and brain maturation [6]–[8]. 
To this end, electroencephalogram (EEG) is used as a reliable 
and relatively easy way to non-invasively follow the 
neurological state of the neonate [9]. However, special 
expertise is needed to interpret the EEG recordings which is 
costly and not available around the clock in most centres. 
Therefore, automation of EEG analysis through computerised 
algorithms, artificial intelligence, and machine learning can 
potentially improve neurodevelopmental diagnostics and 
treatment [9]. 

Sleeping is the primary activity of newborns, particularly 
preterms, and has important roles in the development and 
maturation of cortical pathways, structural development, and 
optimal physical growth [10]. Initial evidence of sleep-wake 
cycling manifests in the EEG around 27 weeks PMA. However, 
clear sleep patterns predominantly appear after 31 weeks PMA. 
In preterms, the sleep period is initially divided into two states 
as active sleep (AS), also called rapid eye movement sleep 
(REM), and quiet sleep (QS), also referred as non-REM [9]. 
The EEG morphology of AS is very similar to wakefulness, as 
both show continuous traces. However, those can be 
discriminated based on eye and motor movements, which can 
be measured by polysomnographic signals, e.g. 
electromyogram (EMG) and electro-oculogram (EOG). On the 
other hand, QS exhibits discontinuous traces, consisting of 
burst cycles of high amplitude separated by inter-burst intervals 
(IBIs) with electrographic quiescence [8], [9], [11].  

At the onset of term age, after 36 weeks PMA, each of AS and 
QS can be divided into two sub-states: 1) ASI with anterior 
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delta activity, namely 'anterior dysrhythmia', 2) ASII or low 
voltage irregular (LVI), with low-amplitude and rapid theta as 
well as alpha activity, 3) QSI, or high voltage slow-wave (HVS) 
with high-amplitude occipital and central delta activity, and 
finally 4) QSII, or ‘Tracé Alternant’ (TA) with equal length of 
bursts and IBIs [8], [9]. Figure 1 illustrates two 20-second 
segments of EEG from a recording at 39 weeks PMA where 
Figure 1 (A) shows a TA with discontinuous burst/inter-burst 
pattern and Figure 1 (B) is an ASI segment with an anterior 
dysrhythmia. The unclear intervals between sleep stages are 
referred as transitionary sleep (TS), when multiple components 
of AS and QS, or the sub-states, manifest at the same time. This 
transition time shortens, QS periods lengthens, and the 
proportion of AS reduces whilst the infant is maturing [8], [11]. 
The age-dependency of neonatal sleep states and the evolution 
of their morphological patterns are among the challenges in 
developing an automated and robust.  

To automate neonatal EEG sleep state classification in 
preterms and term infants, different characteristics of EEG have 
been quantified and considered, including EEG (dis)continuity 
[12], frequency content of EEG [13], proportional duration of 
bursts [14], and the frequency content of bursts [15]. 
Furthermore, in other studies, the extracted features from 
adaptively segmented EEGs are temporally analysed [16]–[18]. 
This time profile analysis, called cluster-based adaptive sleep 
staging (CLASS), has been improved for preterm QS detection 
in [19] and tested on term babies in [20]. In addition, Pillay et 
al. demonstrated the use of features in frequency and time 
domain, totalling 112 features, as part of a hidden Markov 
model (HMM) and Gaussian mixture model (GMM) for 
classification in term infants [20].  

In all considered methods, in addition to different pre/post-
processing steps, the features were engineered and selected by 
the human developers, which may not be optimal. As an 
alternative, deep neural networks provide a framework for ‘end-
to-end’ learning, using the raw EEG directly as the input, 
without the need for hand-crafted feature extraction or complex 
pre/post-processing stages. Recently, a convolutional neural 
network (CNN) has been proposed in our group in [21] for 
preterm QS detection. However, due to its simple architecture 
focussed on preterm babies, it is not suitable for accurate term 
sleep staging.  

In this paper, a newly designed CNN with a more complex 
and efficient structure is proposed that can not only detect QS 
in preterms more accurately (2-class classification), but can also 
detect QS in term babies. Moreover, this network is able to 
classify the four emerging stages of sleep in term neonates (4-
class classification), which is important for monitoring 
maturation [8]. This results in the first end-to-end method based 
on deep learning that can classify sleep states in both preterm 
and term infants. 

 

II. MATERIAL AND METHODS 

A. Database 

Data was obtained at the NICU of the University Hospitals of 

Leuven (UZ Leuven), Belgium and approved by the medical 
ethics committee of UZ Leuven. Informed parental consent was 
always obtained. The EEG recordings used 9 electrodes: Fp1, 
Fp2, C3, C4, Cz, T3, T4, O1, and O2. Among them, Cz is used 
as reference (totalling 8 mono-polar channels), based on the 
international 10-20 system [9]. The data was recorded at 250 
Hz, using the BrainRT EEG recording system (OSG BVBA 
Rumst, Belgium). All newborns had normal 
neurodevelopmental outcome at 9 and 24 months of age, 
according to the criteria set out in [20], [21]. Two datasets were 
used in this study: 

 
1) Preterm dataset: this dataset consists of 97 multichannel 

EEG recordings from 26 prematurely born infants recorded 
between 2012 and 2014. All babies were born before 32 weeks 
PMA and each of them had at least two recordings. The quiet 
sleep segments were identified by two EEG experts (AD and 
KJ) upon consensus. The non-quiet sleep segments include 
active sleep, wakefulness, and indeterminate segments (IS). 
This dataset was previously used in [19], [21] as well. 

 
2) Term dataset: this dataset includes 16 recordings from 16 

infants recorded at term age (8 born preterm). In this dataset, 
one expert EEG reader (AD) annotated the sleep  
(sub-)states as AS (ASI and ASII), wakefulness, QS (TA and 
HVS), IS, as well as artefact segments. The second expert (KJ) 
then reviewed these annotations and ‘dubious’ segments were 
defined as those where the experts disagreed. This annotating 
process was performed using neural (EEG) and behavioural 
(EMG, ECG, and respiration) signals. Since both ASII and 
wakefulness include LVI patterns in EEG, which are not 
separable using EEG alone [9], those are merged into LVI state. 
Dubious, IS, and artefact segments were excluded from further 
analysis. Therefore, the final labels are: ASI, HVS, TA, and 
LVI. Similar annotations for this dataset were previously used 
in [20]. 

 

B. Data preparation for training, validating and testing 

In the preterm dataset for 2-class classification, the training 
and testing subsets were defined based on a fixed split that was 
previously used in [19], [21]. This results in a fair comparison 
when the proposed algorithm is compared with the state-of-the-
art methods considered in those studies. All EEGs are bandpass 
filtered between 1 and 15 Hz and afterwards downsampled to 
30 Hz. Then, they are segmented into 30-second epochs with 
no overlap. In total, this leads to approximately 32K and 26K 
EEG segments for training and testing the QS detection, 
respectively, in this preterm dataset. In order to validate the 
proposed algorithm during the design process, ‘leave-one-
subject-out’ (LOSO) cross-validation is applied within the 
training dataset. The final method is then tested on the test 
dataset and the performance metrics are measured. 

In the term dataset, the same filtering, downsampling, and 
segmenting techniques are used. For 2-class classification, the 
model trained on the preterm data is used with no extra training, 
while for the 4-class classification a new training round is 
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needed. In this case, due to the need for a larger training dataset, 
instead of a fixed split between training and testing, LOSO is 
used across all data and the averaged performance is reported. 
This technique was similarly applied for developing and 
training the compared HMM and GMM methods in [20]. In 
each iteration of the LOSO, 20% of the training data are used 
as validation to avoid overtraining the network (‘early 
stopping’). 

C. The state-of-the-art reference methods  

In this study, 5 state-of-the-art algorithms that were 
previously developed and validated based on the same datasets 
are compared with the proposed algorithm. These methods are 
summarized below. It is important to note that in developing, 
training, and testing the following state-of-the-art algorithms 
(for both preterm and term problems), the same datasets, as 

 
Figure 1: Two examples of a 20-second EEG segment in bipolar montage. Both segments are part of a recording at 39 weeks PMA from a term-born infant (GA: 
38 weeks). The top one (A) was scored as ‘Tracé alternant’ having clear discontinuous burst/inter-burst patterns. The bottom one (B) was labeled as ASI and is 

characterized by anterior dysrhythmia. 
 

A) 

 

B) 
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described in database subsection, were used. This helps to have 
a fair comparison between these methods and the one proposed 
in this paper. 

 
Cluster-based adaptive sleep staging (CLASS): This 

algorithm was proposed in [19] and was developed using the 
preterm dataset. In this method, bandpass filtered EEG is first 
cleaned of high-power muscle artefacts using the artefact 
subspace reconstruction technique. The cleaned EEG is then 
adaptively split into quasi-stationary segments and 9 frequency 
and time-domain features are extracted from each segment. All 
segments are clustered into 12 groups using k-means clustering 
forming ‘cluster-time profiles’ depicting the changes in the 
cluster labels with time. These cluster-time profiles were then 
smoothed over time and averaged across EEG channels before 
thresholding to define the QS segments where the profile is 
above the threshold. In general, this method detects EEG 
segments assuming that large changes represent greater EEG 
discontinuity [19]. Although this method has a suitable 
performance when applied to preterm babies [19], its 
performance was limited for term QS detection [20], as is 
further reported in this paper as well. 

 
Feature-based QS detection (FBD): This algorithm is 

described in [21] for preterm 2-class classification. First, EEG 
is split into 30-second segments with no overlap. Then, 9 
spectral features proposed in [13] are extracted from each EEG 
channel. The features from all 8 channels (totalling 72) are fed 
into a support vector machine (SVM) and the probabilistic 
output of the SVM for each epoch is smoothed by an averaging 
filter across time and thresholded to define the QS segments 
[21]. 

 
Gaussian mixture model (GMM) and Hidden Markov model 

(HMM): In these methods, which are proposed in [20] for sleep 
staging in term infants, the EEG is first filtered and split into 
30-second segments with 5 seconds overlap. Then, 112 features 
are extracted from each segment of each EEG channel and the 
median is taken across channels. Next, the best features are 
selected using minimum redundancy maximum relevance. 
Finally, the selected features are fed into both a GMM and an 
HMM to classify the four sleep states. This paper further 
suggests a patient-wise rescaling of the features before feeding 
them into the classifier in order to improve performance. The 
rescaling means correcting the inter-recording variabilities by 
standardizing the features with the means and standard 
deviations of the features from the corresponding recording. 
Using this rescaling approach needs the features of the whole 
EEG recording to be available before the start of sleep staging. 
Both the GMM and HMM with/without rescaling, are reported 
and compared with the proposed method.  

 
Previously developed CNN (CNNpre): This method was 

developed in [21] for preterm 2-class classification. In this 
method, the EEG was downsampled to 30Hz and divided into 
30-second segments. The multichannel EEG segments are then 
fed into a CNN with 17 layers and 3027 trainable parameters. 

The output is smoothed with an averaging filter. In the current 
paper, the architecture of this network is changed, the layers are 
empowered with batch-normalization and drop-out layers, the 
complexity is increased, a better optimizer algorithm is applied, 
and the output and training are changed to be able to detect 2 
and 4 sleep states in preterms and terms, as explained in the next 
section.  

 

D. Proposed method 

Convolutional neural networks: Convolutional neural networks 
(CNNs) are a type of artificial neural networks (ANN), 
consisting of alternating stacked convolutional (Conv), 
nonlinear, and pooling layers. A Conv layer is an extended 
version of a finite impulse response (FIR) filter bank as (𝑶𝒌 =

𝑓௞ ∗ 𝐼) where 𝐼 is the 3-dimensional input tensor, 𝑓௞ is the 𝑘௧௛ 
filter of the filter bank, 𝑂௞ is the output of the corresponding 
𝑘௧௛ filter, and ‘∗’ denotes the convolution operation that applies 
on the first and second modes of the inputs. Since the hidden 
layers of a multilayer ANN must be nonlinear, a nonlinear 
operator is employed usually after each Conv layer. In the 
literature, the most common nonlinear unit used in CNN 
structures is the rectified linear unit (ReLU) (or its variations), 
which is the common half-wave rectifier that keeps the positive 
values unchanged and replaces the negative values by zero 
(max(0, 𝑥)). In order to reduce the amount of trainable 
parameters and, therefore, control overfitting, a pooling layer is 
used after successive Conv layers. A pooling layer is an 
aggregator downsampling the output volume of its previous 
layer. The most common pooling operators are ‘maxpool’ and 
‘avgpool’ which downsample the data by respectively taking 
the maximum and average of the data samples in each window. 
In classification tasks, these layers are usually followed by a 
couple of dense layers, which is a classic multilayer perceptron 
(MLP) with fully connected layers. In this case, the CNN 
automatically extracts features and the MLP, normally with one 
or two hidden layers, performs the classification. In addition to 
these main layers, other types of layers may be used depending 
on the problems, including: batch-normalization (to standardize 
the extracted feature maps) [22], drop-out (to increase the 
generalization of the dense layers) [23], and softmax (to 
exponentially normalize the network outputs and represent 
them as probabilities corresponding to the target classes), etc. 
(See [24], [25] for more details.) Although the general CNN 
structure and the main functionalities originated in image 
processing studies, a growing body of literature has recently 
investigated different CNN architectures for EEG analysis, e.g. 
for seizure detection [26]–[28], evoked response potential 
classification [29], [30], sleep analysis [21], [31]–[35], 
decoding task‐related EEG information [36], and EEG-based 
auditory attention detection [37].  

 
Proposed architecture: In this study, a new, efficient, and 

robust architecture with 21K parameters (about seven times 
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more complexity than the previous network) with a better 
aggregation on EEG channels is proposed for preterm (2-class) 
and term (2 and 4-class) sleep staging. In this network with a 
large number of parameters, multiple batch-normalization and 
drop-out layers, as described below, are used to avoid 
overfitting. 

Figure 2 summarizes the proposed CNN structure. The input 
is an 8-channel 30-second EEG segment which is initially 
downsampled to 30 Hz. The first Conv layer, which follows a 
batch-normalizer, has 10 kernels of (2 ×  10), where the 1st 
mode operates on the channels (spatial) and the 2nd mode 
operates on data-points (temporal). In the spatial mode, 
involving 2 channels empowers the network to generate bipolar 
EEG channels to emphasize on contralateral neural activities if 
needed, similarly to how human expert EEG interpreters 
perform in some EEG analyses. In the temporal mode, 10 time-
samples corresponding to one-third of a second seem short 
enough to extract local features, as the first filtering step, but 
not very short to extract natural EEG noise-like patterns. In this 
layer, zero-padding was used to keep the size of input and 
output data the same. This layer is followed by a ReLU and a 
max pooling layer with size (2 × 2), respectively. As a result, 
the spatial and temporal dimensions reduce to 4 channels and 
450 data-points in 10 feature maps. Then, a single channel Conv 
layer with 20 kernels of size (1 × 5) is employed. Similarly, 
zero-padding preserves the size of volumes and the ReLU adds 
further nonlinearity. This precedes the third Conv layer with 20 
kernels of (4 × 1) with no zero-padding, which combines all 4 

bipolar channels into a single channel. Then, another ReLU and 
max pooling with size (1 × 6) are utilized, which produces 20 
feature maps of 75 time samples. A batch-normalizer 
standardizes the extracted features. Next, all cells of the feature 
maps (totalling 1500 cells) are rearranged in a single vector 
(flattening) and are fed into a two-layer MLP with two drop-out 
layers (each 25% dropping chance). The number of output 
neurons is 2 for 2-class classification in preterm and term 
datasets and 4 for 4-class classification in the term dataset. 

At the end of this process, a simple averaging filter is applied 
on the probabilistic outputs of the CNN from chronological 
EEG input segments. Since the sleep states do not change 
rapidly, this smoothing process increases the robustness of the 
outputs and reduces the effect of short artefacts. The length of 
this smoothing filter will be discussed in the next sections.  

Channel dropping analysis: In practice, different number of 
EEG channels may be recorded and used for sleep stage 
classification. In order to evaluate the performance of the 
proposed method for different numbers of EEG channels, two 
analyses are performed: I) Dropping and retraining: in this 
analysis, the number of EEG channels is reduced from 8 to 4 
(C3, C4, O1 and O2), 2 (C3 and C4), and 1 (C3 – C4). These 
channels are selected because these are commonly used EEG 
electrodes in cerebral function monitors (CFMTM). Then, the 
CNN is retrained on the training data and the test performance 
is benchmarked against the CNN with all 8 channels. II) 
Dropping and testing: The second analysis is to simulate the 
case when some EEG channels are detached during a test while 

 

 

Figure 2: Structure of the proposed CNN. The input is an 8-channel, 30-second EEG segment and the output is 4 probabilities corresponding to the target classes. 
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the applied method is unchanged. To this end, all possible 
channel dropping combinations (28-1) are made in the testing 
dataset and the performance of the CNN (without retraining) on 
these combinations is measured. In this analysis, in order to 
keep the dimension of the CNN input unchanged when different 
numbers of channels are eliminated, the rows corresponding to 
the detached channels are replaced by the average of the 
remaining ones. The performance of these two analyses are 
reported in the next section. 

 
Performance metrics: In preterm QS detection (2-class 

problem), sensitivity, specificity, the area under the ‘receiver 
operating characteristic’ curve (AUC), and Cohen's kappa are 
used. These metrics are reported as mean ± standard deviation 
(SD) calculated over the recordings.  

In 4-class classification, sensitivity, specificity, and AUC, are 
calculated as one class versus the others (one vs. all) and the 
average values over the classes are computed (the ‘macro-
average’) [20]. Kappa is calculated directly since it is a multi-
class metric. Similarly to the QS detection, the mean ± standard 
deviation of these metrics calculated over all recordings are 
reported. Furthermore, in order to test the improvement made 
by the proposed method per recording, a bootstrap test that was 
introduced in [20] is applied. To this end, the proportion of the 
bootstrapped recordings in the test database, for which the 
corresponding algorithm reaches higher performance than the 
proposed CNN is calculated and reported as pboot. Therefore, 
pboot values smaller than 50% indicate the success of the 
proposed CNN against the corresponding models in the 
majority of recordings, and vice versa. 

In addition, the confusion and confidence matrices are 
reported. For classification of a segment, the confidence of the 
CNN is defined as the difference between the probabilities of 
the classes with the two highest values. For instance, if the 
output of the softmax is {0.1, 0.4, 0.5, 0} for an arbitrary 
segment, the confidence equals 0.1 (= 0.5 - 0.4). Thus, the 
confidence equals 0 (minimum) when the two top most classes 
are equal regardless of their absolute values, e.g. {0.1, 0.3, 0.3, 
0.2}, and equals 1 (maximum) if only one class is at 1 
probability and the remaining classes are 0, e.g. {0, 1, 0, 0}. In 
other words, the confidence value defines the margin in which 
the probability of the winning class can reduce while the 
classification output remains unchanged. This value is 
measured per segment and subsequently the overall confidence 
matrix is formed taking into account the class labels and ground 
truth, as with the conventional confusion matrix. 

 

III. RESULTS 

A. Two-class classification 

Preterm recordings: The test performance of the proposed 
and state-of-the-art methods for QS detection (2-class problem) 
in preterm babies are listed in Table I. Kappa, sensitivity, 
specificity, AUC, and pboot are calculated over the test 
recordings.  

Term recordings: Table II lists the test performance of the 

proposed method compared to the state-of-the-art for the term 
recordings in the QS detection problem. In this table, HMMR 
and GMMR correspond to the HMM/GMM with patient-wise 
rescaling. 

 

B. Four-class classification 

Table III shows the overall test performance of the proposed 
method and the state-of-the-art methods with/without rescaling 
in the 4-class classification problem in the term dataset. Since 
sensitivity and specificity are only measurable in 2-class 
problems, the macro-average is calculated per recording and the 
mean and SD over the recordings are then reported.  

The confusion matrix of the proposed method is shown in 
Figure 3 (A). Each cell includes the normalized value as a 
percentage and the total number of classified segments in 
parenthesis. The green shaded cells along the main diagonal 
show the correctly classified segments and the red shaded cells 
indicate the groups with highest number of falsely classified 
segments. The confidence matrix is shown in Figure 3 (B). 

Figure 4 illustrates the hypnogram of two term recordings 
where the CNN performs poorly (A: kappa = 0.36) and almost 
perfectly (B: kappa = 0.87). In both cases, the top row shows 
the clinician’s labels and the bottom displays the algorithm’s 
output. The class labels are on the vertical axes and the 
horizontal axes represents the time in hours. 

Table I 
The classification performance of the proposed methods compared to the 

state-of-the-art for the QS detection in the preterm recordings 

Model 
Mean Kappa 

(SD) 
Mean %  

Sens (SD) 
Mean % 

Spec (SD) 
AUC 

% 
pboot 

CLASS  [19] 0.66 (0.24) 69 (20) 95 (06) 92 26% 
FBD [21] 0.70 (0.21) 77 (20) 92 (11) 93 40% 
CNNpre [21] 0.68 (0.22) 80 (22) 90 (12) 92 28% 
Proposed CNN 0.76 (0.22) 90 (22) 88 (16) 95 - 
Sens:  sensitivity, Spec: specificity, AUC: area under the mean ROC curves, 
pboot: proportion of the bootstrapped recordings (in percent) when the model is 
resulting in a better performance than the proposed method. 
 

Table II 
The classification performance of the proposed methods compared to the 

state-of-the-art for the QS detection in the term recordings 

Model 
Mean Kappa 

(SD) 
Mean %  

Sens (SD) 
Mean % 

Spec (SD) 
pboot 

CLASS [19] 0.62 (0.19) 95 (06) 86 (06) 0% 
HMM [20] 0.82 (0.19) 89 (19) 94 (09) 32% 
HMMR [20] 0.89 (0.07) 94 (04) 96 (04) 38% 
GMM [20] 0.81 (0.19) 89 (19) 93 (06) 38% 
GMMR  [20] 0.85 (0.12) 92 (06) 93 (06) 25% 
Proposed CNN 0.91 (0.07) 95 (05) 96 (04) - 
 

Table III 
The classification performance of the proposed methods compared to the 

state-of-the-art for the term 4-class classification 

Model 
Mean Kappa 

(SD) 
Mean %  

Sens (SD) 
Mean % 

Spec (SD) 
pboot 

HMM [20] 0.54 (0.20) 62 (13) 90 (05) 19% 
HMMR [20] 0.61 (0.10) 71 (06) 91 (02) 19% 
GMM [20] 0.51 (0.16) 60 (11) 87 (07) 19% 
GMMR  [20] 0.51 (0.11) 63 (09) 88 (06) 6% 
Proposed CNN 0.66 (0.14) 72 (12) 92 (03) - 
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 The transition graphs for the clinicians’ labels are shown in 
Figure 5 (A) and the proposed model in Figure 5 (B). These are 
averaged across all the recordings. Each node of these graphs 
has 3 outward links and 3 inward links representing the 

probabilities of transitions between the states. On the right side 
of each graph, the self-loop edges defining the probability of 
remaining in the same state are listed. In each node, the 
summation of the self-loop and outward probabilities should 

 

Figure 3: Confusion matrix (A) and Confidence matrix (B) for the proposed method for 4 sleep stage classification in the term dataset  
 
 

 
Figure 4:  Hypnogram of two term recordings for which the CNN performance is A) poor (kappa = 0.36) and B) almost perfect (kappa = 0.87). The top row 

corresponds to the clinicians’ labels and the bottom corresponds to the proposed CNN outputs. 
 
 

 
Figure 5: Transition matrix for different sleep states based on the clinicians’ labels (A) and the smoothed CNN outputs (B). The percentages shown on the right 

side of each graph define the probability of remaining in the same state. 
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equal 100% (± 0.1% due to the rounding effect).Thicker links 
represent the most likely transitions.  
Table IV lists the mean Kappa and the SD when the input of the 
CNN has a different number of EEG channels (dropping and 
retraining) for both 2-class and 4-class classification. In each 
case, the CNN has been retrained multiple times with different 
random initializations and the model performing the best on the 
validation data has been taken to maximize the efficiency. Note 
that QS detection in term neonates is not considered in this 
channel analysis, since it uses the same CNN that was trained 
for preterm QS detection. 

In the second analysis using a fixed CNN without retraining, 
when only one channel is dropped, the kappa range is 0.47-0.76 
(median: 0.71) in preterm and 0.41-0.67 (median: 0.61) in term 
datasets depending on the dropped channels. These values drop 
to 0.11-0.74 (median: 0.69) and 0.11-0.64 (median: 0.52) 
respectively if 2 channels are detached. In case of removing 
more than 2 channels, the CNN cannot perform reliably in 
either preterm or term classification. 

Furthermore, the overlap ratio of the input segments and the 
size of the averaging filter in the post-processing have been 
analysed. Increasing the overlap ratio from 0% to 25%, 50% 

and 75% has no meaningful effect on the CNN training. 
However, raising this ratio increases the number of segments, 
and consequently the number of estimated probabilities, for 
each recording, which leads to a smoother output. For instance, 
3 minutes of EEG is split into 6 segments with no overlap 
(totalling 6 probabilities for 3 minutes), while it can be split 
into 12 segments with 50% overlap (totalling 12 probabilities 
for 3 minutes). This results in a slight increase of kappa (by 
0.01) in the post-processing smoothing step. The length of the 
smoothing filter has also considered between 0 and 30 points. 
No significant difference in averaged performance is observed 
when this length varies between 4 and 10. Therefore, the length 
of 6 has been chosen as was taken in the previous study [21] 
based on physiological reasons. 

C. False detections 

In Figure 6, the ratios of wrongly and correctly classified 
segments are shown with respect to the distance between the 
segment and the nearest sleep state transition. In this figure, 
each group is expressed in percentage to be independent from 
the number of samples. For instance, in both 2-class (top row) 
and 4-class (bottom row) classification problems, almost 40% 
of the segments that are in the range of ±1 minute from the 
sleep transitions were classified wrongly. However, this ratio 
changes to 6% (2-class) and 18% (4-class) for the segments that 
are far from the transitions (>5 min).  

In total, 24% (2-class) and 17% (4-class) of all false 
detections occurred in one minute before or after the 
transitions.  

IV. DISCUSSION 

In this study, a new design of CNN with more complexity and 
generalization power has been proposed for 2-class 
classification in preterms and in term babies, as well as 4-class 
classification in term infants. The results have been compared 
with state-of-the-art methods that have been trained and tested 
on the same database. As was shown in Tables I to III, the 
proposed CNN outperforms the compared methods in all three 
problems. One important advantage of the proposed method is 
that it can be used in semi real-time applications. It is ‘semi’ 
because of the smoothing filter in the post-processing step, 
which causes a delay of 3 minutes. However, the considered 
HMM and GMM with rescaling, which have a reduced 
performance compared to the proposed method, requires the 
whole EEG recording to estimate the class labels, and, 
therefore, they cannot be used in real-time applications. The 
high performance of the proposed method, in addition to its 
semi real-time characteristics, makes this method a good 
candidate for real-time NICU brain monitoring. 

The confusion matrix shows that the main challenge in 
neonatal sleep staging is the detection of sub-states. Although 
QS and AS can be classified accurately, discrimination between 
QS-TA and QS-HVS, as well as between AS-ASI and AS-LVI, 
is more challenging. The confidence matrix revealed that the 
falsely detected segments, including false intra-state detections 
(TA vs. HVS and ASI vs. LVI), have meaningfully lower 
confidence compared to the correctly detected segments. It 

Table IV 
Mean Kappa for the proposed methods when it is fed and retrained by 

different number of EEG channels. The numbers in the parentheses represent 
the standard deviation. 

N* Used channels 

Preterm 2-class 
classification 

Term 4-class 
classification 

kappa pboot kappa pboot 
1 C3 - C4** 0.60 (0.31) 16% 0.44 (0.16) 6% 
2 C3, C4 0.62 (0.25) 28% 0.41 (0.16) 6% 
4 C3, C4, O1, O2 0.67 (0.24) 19% 0.50 (0.19) 12% 
8 All 0.76 (0.22) - 0.66 (0.14) - 
*  Number of used channels 

** Subtraction of C4 from C3 (bipolar) as this is the input of the CFM 
 

 
Figure 6:  False and true detection rates as a function of the distance to the 
nearest sleep state transition. The top and bottom rows respectively correspond 
to the test results from the 2-class and 4-class classification problem. In this 
figure, the red and green colours represent the falsely detected (FD) and truly 
detected (TD) segments, respectively. 
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shows that when a segment is classified correctly, the network 
makes a big margin between the probabilities of the true class 
and the wrong ones. This leads to a high robustness. On the 
other hand, there is a significantly smaller confidence margin 
for the false detections. This confidence analysis can be useful 
for further improvements in the future.  

The false detection ratios, in Figure 6, demonstrate that 
another challenge, in both 2-class and 4-class problems, is the 
classification of the epochs that are close to the sleep 
transitions. There are two possible explanations for this 
performance reduction near the sleep transition. The first is in 
the nature of the sleep staging in which the transitionary sleep 
states have indistinct patterns even for human experts [8]. The 
second is the effect of the moving-average filter used in the 
post-processing step. Although this filter improves the total 
performance, it smooths all transitions and decreases the 
accuracy of sharp transition detections. Developing an 
advanced technique to predict sleep transitions to adaptively 
adjust the smoothness can reduce this false detection rate. 
However, due to the presence of uncertain transitional sleep 
state, it does not seem to have important clinical added value. 
Furthermore, analysis on the recordings showed that in the used 
preterm dataset, there are two recordings having poor EEG 
quality or intravenous infusion motor artefact that resulted in 
many false detections, which seems unlikely to be classifiable 
without the domain knowledge in such a network. 

In the term neonatal sleep staging, the expected transition 
cycle is ASI  HVS  TA  LVI  ASI (omitting the 
transitional sleep states) [8], as shown in the transition graph of 
Figure 5. This graph also displayed that the CNN accurately 
follows this transition cycle. Although a big effort was made to 
advance the proposed method with a long short-term memory 
(LSTM) in order to learn such a transition by a data–driven 
approach (instead of the current smoothing filter), as is shown 
useful for adults [35], no further meaningful improvement was 
achieved.  

While not every NICU has the capacity to record continuous 
EEG, with 8 channels (or more), we also investigated the 
performance when only a few channels are recorded. These 
channels are selected based on the inputs of CFMs with 2 or 4 
channels which are commonly used in some medical centres. In 
this analysis, it was shown that in both preterm 2-class and term 
4-class classification, increasing the number of available EEG 
channels leads to a higher performance. Furthermore, as 
mentioned, the performance of the network drops if more than 
2 channels are detached during the testing phase. Although in 
some particular channel configurations the detachment has no 
big effect on the performance, an average random detachment 
results in a high reduction in performance.  

In this study, there are two limitations that should be taken 
into consideration: first, only the algorithms that were available 
for us have been compared with the proposed method. The 
reason behind it is the fact that comparing various algorithms 
that are trained and validated on different datasets with different 
characteristics (e.g. neonatal population with dissimilar PMA 
or GA, labellers, number of electrodes, presence of artefacts, 
and standards of EEG recording) leads to a biased and incorrect 

conclusion. Second, in this study, two annotators from the same 
centre labelled the sleep stages. Hence, one might consider it 
imperfect compared to multi-centre studies with multiple 
annotators that should be done in future.  

As future work, we aim to use multimodal inputs to further 
improve the classification tasks. Furthermore, extra 
considerations should be taken into account during the network 
design and training procedure in order to attain a better 
performance with fewer channels of EEG, which can be 
important for practical applications. In addition, due to not 
having an appropriately big term dataset, the structure of the 
network was not optimized for these babies. With more labelled 
data at this age, the structural optimization would be expected 
to improve the performance further. Besides, a multi-centre 
multi-rater study can validate the performance of the proposed 
method under different practical conditions.  

 

V. CONCLUSION 

In this study, we present a new architecture of CNN that can 
detect sleep states in both preterm and term neonates. This end-
to-end model uses raw multichannel EEG data as input and 
results in class probabilities, without the need for any 
complicated pre/post-processing or any prior hand-engineered 
feature extraction. For 2-class classification, the high 
performance of this method and its ability to operate in almost 
real-time makes it the first option to be used in the neonatal 
brain monitor developed in our centre, namely NeoGuard.  
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