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Abstract 

This study explores the performance of classical methods for detecting publication bias, namely 

Egger’s Regression test, Funnel Plot test, Begg’s Rank Correlation and Trim and Fill method, in 

meta-analysis of studies that report multiple effects. Publication bias, outcome reporting bias, and 

a combination of both were generated. Egger’s Regression and Funnel Plot test were extended to 

three-level models, and possible cutoffs for the 𝐿0
+ estimator of the Trim and Fill method were 

explored. Furthermore, we checked whether the combination of results of several methods 

yielded a better control of Type I error rates. Results show that no method works well across all 

conditions, and that their performance depends mainly on the population effect size value and on 

the total variance. 

 

      Keywords: meta-analysis, multiple effect sizes, publication bias, selective outcome reporting 

bias, simulation study. 
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Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study 

Publication bias constitutes one of the biggest threats to the validity of meta-analytic 

results. It is defined as the propensity for publishing positive, significant results to the detriment 

of studies that report negative or non-significant results (Rosenthal, 1979). Because studies with 

no novel or positive results take more time to publish or are not even published at all (Decullier, 

Lheritier, & Chapuis, 2005; Ioannidis, 1998), it is less likely that they will find their way into 

meta-analyses. Unfortunately, a large body of research provides evidence of the presence of 

publication bias in many disciplines, including, for example, medicine (Dwan, Gamble, 

Williamson, & Kirkham, 2013; Ioannidis, 1998) and psychology (e.g., Fanelli, 2012; Franco, 

Malhotra, & Simonovits, 2014). A related kind of selection bias occurs when only a non-random 

selection of effect sizes are reported (e.g. the most impressive or significant ones) among 

multiple outcomes obtained within a study (Fusar-Poli, Nosek, & David, 2014; Hutton & 

Williamson, 2000; Tannock, 1996). 

Several approaches exist to deal with publication bias. The most commonly used methods 

include the Egger Regression test (Egger, Davey-Smith, Schneider, & Minder, 1997), the Funnel 

Plot test (Macaskill, Walter, & Irwig, 2001), the Begg Rank Correlation test (Begg & Mazumdar, 

1994) and the Trim and Fill method (Duval & Tweedie, 2000a, 2000b). They are all based on the 

relationship between effect size and sample size that is expected when selection bias exists. This 

effect is known as the ‘small-study effect’, whereby studies with large effect sizes and small 

sample sizes are more likely to be published than studies with the same sample size but reporting 

unfavorable or non-significant results. This effect size – sample size relationship leads to an 

asymmetrical funnel plot shape, with some suppressed studies in the lower left part of the figure 

(if the real or expected overall effect size is positive). As said before, these methods are the most 

commonly applied (Ferguson & Brannick, 2012). Possible explanations for their popularity are 
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that they are easy to understand and that they are available in most of the common software for 

performing meta-analysis (e.g., package metafor in R, SAS, Stata or Comprehensive Meta-

Analysis). However, it should be kept in mind that the asymmetry of the funnel plot does not 

necessarily indicate the presence of publication bias. Asymmetric funnel plots can be the result of 

other underlying phenomena, such as high heterogeneity in the meta-analytic data, study – quality 

effects or a relation between the size of the study and the types of intervention studied (Egger et 

al., 1997; Ioannidis, Cappelleri, & Lau, 1998). This is why serious doubts have been raised about 

their performance in previous studies (e.g. Terrin, Schmid, Lau, & Olkin, 2003). 

Several simulation studies have explored the performance of these methods (e.g., 

Kromrey & Rendina-Gobioff, 2006; Macaskill et al., 2001; Moreno et al., 2009; Peters, Sutton, 

Jones, Abrams, & Rushton, 2006; Sterne, Gavaghan, & Egger, 2000). However, no study has 

ever explored the performance of the classical methods for detecting publication bias in the 

common situation where multiple (and dependent) effects sizes are reported within primary 

studies. In fact, studies that introduce and explain techniques for combining studies with multiple 

effect sizes (e.g., Cheung, 2014; Hedges, Tipton, & Johnson, 2010; Van den Noortgate, López-

López, Marín-Martínez, & Sánchez-Meca, 2013, 2015) do not recommend ways in which 

selection bias can be assessed. This lack of information is acknowledged in some applied meta-

analyses, like the one authored by Platt et al., (2016) who claim that publication bias was not 

appropriately addressed in their paper because ‘tests for publication bias do not yet exist for 

multilevel meta-analyses’ (p. 17). Similarly, Assink and Wibbelink (2016) have encouraged an 

evaluation of the performance of methods for detecting publication bias when effects for multiple 

outcomes are reported within primary studies. On top of that, previous simulations have never 

explored the performance of these methods under other types of selection biases, including 

selective outcome reporting bias. Given this need for such methods, the aim of this study is to fill 
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this gap by exploring the performance of (the extension of) the classical methods for detecting 

publication and selective outcome reporting bias when multiple effect sizes are reported in 

primary studies.  

Besides the classical methods, other more sophisticated procedures exist to deal with 

publication bias that may perform better. For instance, Stanley and Doucouliagos (2014) have 

proposed a modification of Egger’s regression test, and have shown how this meta-regression, 

called precision-effect estimate with standard error (PEESE), corrects better for publication bias 

than other regression methods. Other alternative methods exist, such as selection methods (e.g.; 

Copas, 1999; Hedges & Vevea, 1996; Vevea & Hedges, 1995) or approaches such as p-curve 

(Simonsohn, Nelson, & Simmons, 2014) and p-uniform (Van Assen, Van Aert, & Wicherts, 

2015). However, researchers do not often use the PEESE approach, presumably due to its recent 

development. Also, selection methods are much less frequently used due to their computational 

complexity and the difficulty of their application (Jin, Zhou, & He, 2015; Peters, Sutton, Jones, 

Abrams, & Rushton, 2007; Rothstein, Sutton, & Borenstein, 2005), and one of the conditions for 

the application of the p-curve and p-uniform approaches is the use of one p-value per study. 

Furthermore, all the aforementioned methods are primarily meant to correct for selection bias, 

and in this paper we only focus on detection. Therefore, these methods are not studied further in 

this paper. 

In the following section we give more details about the rationale and application of 

Egger’s Regression test, the Funnel Plot test, Begg’s Rank Correlation, and the Trim and Fill 

method. We also propose a multilevel extension of Egger’s Regression test and the Funnel Plot 

test so that they account for dependency among effect sizes within the same study.  
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Egger’s Regression test 

In the original version of Egger’s Regression test, the standardized effect sizes are 

regressed on the inverse of their standard errors. If the intercept is statistically significant, this is 

considered as an indication of publication bias. It has been shown that this equation equals a 

weighted least squared regression model, weighted by the inverse of the sampling variance, 

where the standard error of the effect size is introduced as a covariate (Sterne et al., 2000): 

                                                  𝑑𝑘 = 𝛾0 + 𝛾1√𝜎𝑘
2 + 𝑟𝑘                                                              (1) 

𝑑𝑘 represents the effect size reported in study k, √𝜎𝑘
2 refers to the (estimated) standard error of 

𝑑𝑘, and 𝑟𝑘 is a random residual normally distributed with mean 0 and variance 𝜎𝑘
2. In meta-

analysis, the sampling variance 𝜎𝑘
2 is typically estimated beforehand, and therefore in the meta-

analysis itself is considered as known. The term 𝛾1 is the regression coefficient representing the 

influence of the standard error on the effect sizes. If this regression coefficient is statistically 

significant (i.e., p-value < .05), then this is considered evidence for publication bias. The 

intercept, 𝛾0, can be interpreted as the overall effect if there is no publication bias. This model 

can be extended in order to account for between-studies heterogeneity by adding a random 

component, 𝑢𝑘 (Sterne & Egger, 2005): 

                                           𝑑𝑘 = 𝛾0 + 𝛾1√𝜎𝑘
2 + 𝑟𝑘 + 𝑢𝑘                                                             (2) 

where 𝑢𝑘 is a normal error term with mean 0 and variance 𝜎𝑢
2 (also written in some studies as 

𝜏2), that represents the residual between-studies variability, that is, the variability that is not due 

to sampling variance, 𝜎𝑟𝑘
2 , but rather refers to systematic variance between population effect sizes 

across studies.  



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   8 
 

In the scenario in which multiple effect sizes are reported within studies, an additional 

random residual can be added in order to account for within-study variability, that is, the 

variability in population effect sizes for outcomes that belong to the same study (Van den 

Noortgate et al., 2013, 2015). Effect sizes reported in the same study are dependent, and if this 

dependency is ignored (by fitting the two-level model in Equation 2), then the information 

contained in the data could be overestimated, which in turn would lead to the underestimation of 

the standard error of the pooled effect and of the second level predictors (Moerbeek, 2004). In 

this case, the second level predictor is the standard error of the observed effect sizes. Therefore, 

the Type I error rate when detecting selection bias would be inflated. Another reason why it is 

important to extend the model is that if a traditional random effects model (Equation 2) was 

applied, then a study reporting multiple effect sizes would get a much larger weight on the 

estimation of the pooled effect, whereas if a three-level model is used, each study contributes to 

the pooled effect with only a specific study-mean, and the assigned weight depends on how 

dependent the effect sizes reported in that study are. For all these reasons, it is important to 

extend this method to a three-level model if primary studies include multiple effect sizes. The 

model including the random component accounting for the within-study variance is as follows: 

                                              𝑑𝑗𝑘 = 𝛾00 + 𝛾1√𝜎𝑗𝑘
2 + 𝑟𝑗𝑘 + 𝑣𝑗𝑘 + 𝑢0𝑘                                        (3) 

where 𝑑𝑗𝑘 represents the jth observed effect size in study k and 𝑣𝑗𝑘 is a normal error term with 

mean zero and variance 𝜎𝑣
2, (within-study variance). As mentioned before, if 𝛾1 is statistically 

significant, selection bias could exist. Previous simulation studies (Macaskill et al., 2001; Peters 

et al., 2006; Sterne et al., 2000) have shown that Egger’s Regression test (based on Equation 1) 

led to inflated Type I error rates when the population effect size (in their case, an odds ratio) 

increased, when the number of studies included in the meta-analysis was large or when effect 
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sizes were heterogeneous. Another simulation study focused on standardized mean differences 

(Kromrey & Rendina-Gobioff, 2006) reported similar results and furthermore showed that the 

power was in general low. Based on these results, we also do not expect good performance for 

this three-level version of Egger’s Regression test, although we expect it will perform better in 

terms if Type I error than the two-level version if multiple effects are reported within studies. 

Begg’s Rank Correlation test 

Begg and Mazumdar (1994) proposed to test the relationship between the standardized 

effect sizes and their corresponding sampling variances using Kendall’s Tau correlation. 

Kendall’s Tau correlation is a non-parametric analysis that is not based on assumptions including 

the independence of effect sizes, and therefore there is no need to adapt the approach for 

multilevel meta-analyses. Yet, we use an adapted notation to account for the scenario where 

multiple outcomes are reported within studies. Although no extensions are proposed for this 

method, the performance of Begg’s Rank Correlation test is explored in this study because 

Kromrey and Rendina-Gobioff (2006) found that this method had a good control on Type I error 

rates, so we aim to study to what degree this also holds in this context of multiple within-study 

effect sizes. The standardized effect sizes (𝑑𝑗𝑘∗
) are calculated according to the following 

formula: 

                                                         𝑑𝑗𝑘∗
=

𝑑𝑗𝑘−𝑑.

√𝜎𝑗𝑘∗
2

                                                                        (4) 

where the 𝑑𝑗𝑘 represents the jth  effect size of study k, 𝑑. stands for the estimated pooled effect 

size using a fixed effect model, and 𝜎𝑗𝑘∗

2  is the sampling variance of the standardized effect size j 

in study k, that is calculated by: 

                                                         𝜎𝑗𝑘∗

2 = 𝜎𝑗𝑘
2 − (∑

1

𝜎𝑗𝑘
2 )

−1

                                                          (5) 
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where 𝜎𝑗𝑘
2  is the variance of the non-standardized effect sizes. If the Kendall’s Tau correlation 

between 𝑑𝑗𝑘∗
 and 𝜎𝑗𝑘∗

2  is statistically significant, this is an indication of publication bias. To know 

whether a given Kendall’s Tau correlation is significant or not, a normalized test statistic can be 

calculated (see, e.g., Begg & Mazumdar, 1994). Following the notation used by Kromrey and 

Rendina-Gobioff (2006), we will refer to this method as Begg’s Rank Correlation (V).  

Begg and Mazumdar (1994) also proposed to calculate and test the Kendall’s Tau 

correlation between the standardized effect size and the sample size on which it is based (𝑁𝑘). 

We will refer to this approach as Begg’s Rank Correlation (N). Sterne et al. (2000), found that the 

power of Begg’s Rank Correlation (V) was rather low, especially if there were fewer than 10 

studies in the meta-analysis. Macaskill et al., (2001) showed that Begg’s Rank Correlation (V) 

became liberal as the population effect deviated from zero, while in the same condition Begg’s 

Rank Correlation (N) became more conservative. Conversely, Begg’s Rank Correlation (V) led to 

higher power rates compared to Begg’s Rank Correlation (N), especially if the number of studies 

was large and the population effect was low. Kromrey and Rendina-Gobioff (2006) found that the 

Type I error rate of Begg’s Rank Correlation (N) was close to the nominal value, except for large 

population effect sizes, whereas Begg’s Rank Correlation (V) yielded too many Type I errors.  

Funnel plot test  

Macaskill et al. (2001) proposed to use sample sizes as a predictor of the effect sizes: 

                                                               𝑑𝑘 = 𝛾0 + 𝛾3𝑁𝑘 + 𝑟𝑘                                                    (6) 

In this study, this method has been extended in the same way as Egger’s Regression test, that is, 

two random effects have been added to account for the within-study and between-studies 

variances in order to prevent for inflated Type I error rates: 

                                                 𝑑𝑗𝑘 = 𝛾00 + 𝛾3𝑁𝑗𝑘 + 𝑟𝑗𝑘 + 𝑢0𝑘 + 𝑣𝑗𝑘                                         (7) 
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The variances of 𝑣𝑗𝑘, and 𝑢0𝑘 are the within-study variance 𝜎𝑣
2, and the between-studies variance 

𝜎𝑢
2, respectively. Macaskill et al., (2001) found in a simulation study that the standard version of 

this method (Equation 6) outperformed Begg’s Rank Correlation and Egger’s Regression test in 

terms of Type I error rate control, although its power was limited especially when the number of 

studies included in the meta-analysis was small. Similar results were obtained by Kromrey and 

Rendina-Gobioff (2006): the Funnel Plot test had a conservative Type I error rate in most of the 

conditions, and the power was low but increased as the population effect size increased. 

Trim and Fill method 

The Trim and Fill method not only allows for detecting publication bias but also offers 

the possibility to estimate a new overall effect size corrected for publication bias. This re-

estimated effect size then can be used to evaluate again the publication bias, and to obtain a new 

estimated effect size, and so on. However, only the first step of this iterative method will be 

implemented in this study, because the focus in this paper is on bias assessment, and not on 

correction for bias. This same procedure has been followed in previous simulation studies 

(Ferguson & Brannick, 2012; Kromrey & Rendina-Gobioff, 2006), and, moreover, the adjusted 

estimate (corrected for publication bias) obtained through the iterative procedure is not always 

precise (Peters et al., 2007), especially under conditions of high heterogeneity (Terrin et al., 

2003), and should be used only to test how sensitive the results are to the possible presence of 

publication bias.  

The first step of the Trim and Fill method consists of estimating the number of studies 

suppressed due to publication bias. Duval and Tweedie (2000a, 2000b) talk about ‘suppressed 

studies’ to refer to relevant studies that are not available due to publication bias and estimate this 

number, 𝑘0, by assuming that these suppressed studies are the ones that report more negative 
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results, that is, the ones that found non-significant differences or differences in the unexpected 

direction. In order to estimate the suppressed studies, Duval and Tweedie (2000a, 2000b) 

proposed two estimators of 𝑘0, namely 𝑅0 and 𝐿0. For estimating 𝑅0, the following steps have to 

be followed: first a rank (𝑟𝑘) has to be assigned to the absolute difference between a given effect 

size 𝑑𝑘 and the estimated pooled effect size, 𝑑. : 

                                                               𝑟𝑘 =  |𝑑𝑘 − 𝑑.|                                                          (8) 

A rank of 1 indicates the lowest absolute difference between 𝑑𝑘 and 𝑑.. Second, a negative sign is 

assigned to the ranks that refer to effect sizes smaller than the estimated pooled effect (𝑑𝑘< 𝑑.). 

Third, we should look for the absolute value of the lowest rank, 𝑟𝑙𝑜𝑤𝑒𝑠𝑡. The estimator 𝑅0 is then 

calculated with the following formula: 

                                                                   𝑅0 = 𝜃∗ − 1                                                              (9) 

where 𝜃∗ = 𝑚 − 𝑟𝑙𝑜𝑤𝑒𝑠𝑡 and m is the total number of observed effect sizes within the dataset.  

For estimating estimator 𝐿0, the following equations have to be applied:  

                                                                𝐿0 =
[(4𝑇𝑚)−𝑚(𝑚+1)]

2𝑚−1
                                                     (10) 

                                                                 𝑇𝑚 = ∑ 𝑟𝑘(𝑑𝑘−𝑑.)>0                                                       (11) 

where 𝑇𝑚 is the Wilcoxon rank test statistics for the observed m values. Following Duval and 

Tweedie (2000a, 2000b) procedure, we will refer to 𝑅0
+ and 𝐿0

+ as the 𝑅0 and 𝐿0 estimators in 

which negative values are truncated to 0. In this context where there are multiple effect sizes 

reported in each study, the unit of this analysis shifts from studies to effect sizes, meaning that 

𝑅0
+ and 𝐿0

+ actually represent the number of suppressed effect sizes and not the number of 

suppressed studies. These suppressed effect sizes can belong to studies that were never available 

for the meta-analyst, or to published studies where authors selectively reported the most salient 

effect sizes while hiding effect sizes that were non-significant. Kromrey and Rendina-Gobioff  
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(2006) considered the existence of publication bias when the number of estimated suppressed 

studies was above 3 (i.e., 𝑅0
+ > 3), regardless of the number of observed studies. Regarding 

estimator 𝐿0
+, there is not a clear recommended cutoff, as in the simulation of Duval and Tweedie 

(2000a) it was found that the null hypothesis of 𝑘0 = 0 was rejected under different values of 𝐿0
+ 

and 𝑅0
+. Therefore, a challenge of this paper is to find plausible thresholds for the 𝐿0

+ estimator. 

The simulation study of Kromrey and Rendina-Gobioff  (2006) concluded that the Trim and Fill 

(𝑅0
+) method yields conservative Type I error rates and low power.  

The main goal of this study is to explore by means of a simulation study the performance 

of (an extension of) the traditional tests for detecting publication bias when primary studies 

include multiple effect sizes and when different types of selection bias may exist. This study 

explores scenarios that have never been studied before. First, all previous simulations have only 

considered situations where only one effect size is reported per study. Second, previous studies 

have never explored the performance of these methods under conditions where selective outcome 

reporting bias occurs, or where both publication and selective outcome reporting bias occur 

together. Third, this study is also the first that explores the performance of the three-level version 

of the Funnel Plot test and Egger’s regression test when multiple outcomes are included within 

studies. We consider it essential that applied researchers have knowledge of the properties of 

these methods when they apply (and extension of) these techniques in meta-analysis where 

primary studies include multiple effects. 

To achieve this goal, we will follow the next steps: first, we will describe the 

consequences that different types of selection bias have on the estimated pooled effect size. Next, 

new plausible regions for the estimator 𝐿0
+ will be examined in order to find appropriate 

thresholds from which the researcher can conclude that selection bias exist. Third, we also aim to 
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find the (combination of) method(s) that lead to an adequate control of  Type I error rates, while 

still leading to an acceptable power. This approach of combining tests has been actually proposed 

before by Ferguson and Brannick (2012), although they chose three specific tests, namely the Fail 

Safe Number, the Egger Regression test and the Trim and Fill, while in our proposal we want to 

know how many of these methods have to detect the presence of publication bias so the 

likelihood of a false positive is 10% or below. To that end, we will count how many of these six 

methods suggest the presence of selection bias, and explore whether we can define a cutoff 

number to decide on publication bias. The approach of combining several methods to detect 

publication bias has received some criticisms (Rothstein & Bushman, 2012) because different 

methods assume different types of publication bias and therefore have different aims. However, it 

may be the case that researchers want to detect the presence of any type of bias (either small 

study effects, either the amount of suppressed studies) with the sole purpose of being cautious 

when interpreting results, so that is why we think it is worth it to explore this option. A fourth 

step will be to give a general description of how the estimated Type I error rate and power of 

each of the methods depends on characteristics of the design. Finally, we will describe which 

method works better under each combination of conditions, and formulate general conclusions.  

Method 

Data generation 

Data were generated in three steps. First, complete meta-analytic datasets (i.e., without 

selection bias) were created. These datasets consisted of standardized mean differences (Cohen’s 

d), that were simulated based on the following meta-analytic three-level model, with normally 

distributed residuals (Van den Noortgate et al., 2013, 2015): 

                                                         𝑑𝑗𝑘 = 𝛾00 + 𝑟𝑗𝑘 +  𝑣𝑗𝑘 +  𝑢0𝑘                                            (12) 
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where 𝛾00 is the overall effect size, and the other elements have been previously described. 

Afterwards, Cohen’s d (and their sampling variances) were corrected using a small sample 

correction factor, resulting in Hedges’ g (Hedges, 1991). In a second step, we derived for each 

full dataset six datasets in which selection bias was present. To that end, we deleted a percentage 

of effect sizes based on their p-values, that is, the larger the p-value, the larger the probability of 

deletion. These six datasets differ from each other in the pattern of bias (3 levels), and in the 

degree of bias (2 levels). In the first pattern of selection bias generated, the likelihood of an effect 

size being reported in a study depended on its p-value, which is the so-called selective outcome 

reporting bias. In line with previous simulation studies (Begg & Mazumdar, 1994; Kromrey & 

Rendina-Gobioff, 2006), the probability of inclusion was calculated using the following weight 

function: 

                                                     𝑃(𝑔𝑗𝑘 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑) = exp {−𝑏𝑝𝑗𝑘
𝑎}                                  (13) 

where 𝑝𝑗𝑘 is the two-sided p-value associated to the effect on outcome j in study k. In conditions 

with a small degree of selection bias, 𝑎 = 1.5 and 𝑏 = 4, whereas in conditions with large 

selection bias, 𝑎 = 3 and 𝑏 = 4. For the second selection bias pattern, full studies were 

suppressed based on the p-value of their mean effect size. To that end, the mean differences of all 

within-study outcomes were averaged and the p-value of the averaged mean difference was 

calculated. The probability of inclusion was obtained with a similar weight function:  

                                                   𝑃(𝑠𝑡𝑢𝑑𝑦 𝑘 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑) = exp {−𝑏𝑝·𝑘
𝑎}                            (14) 

where 𝑝·𝑘 is the two-sided p-value associated to the mean effect size of study k and the same sets 

of a and b values as described above were used. This type of bias corresponds to the standard 

conceptualization of publication bias, as full studies were removed from the meta-analysis. For 

the third selection bias pattern, both types of biases were combined: some full studies were 
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suppressed, and then some effect sizes from the remaining studies were removed as well. For all 

derived datasets, classical techniques for detecting the presence of publication bias were applied, 

and the power of these methods was assessed by calculating the proportion of meta-analyses in 

which the methods correctly detected selection bias. However, it is also important to know how 

likely it is that any of these methods spuriously detected the presence of any selection bias (i.e., 

the Type I error rate), by applying these methods on unbiased datasets. To make a fair 

comparison between the biased and unbiased datasets in terms of power, we had to make sure 

they had the same size. To that end, a third step was to calculate how many studies and/or effect 

sizes were removed in the derivation of the biased datasets and then the same amount of full 

studies and/or effect sizes were deleted completely at random from the original complete dataset. 

This means that for each initially generated full data, twelve (six biased and six unbiased) 

datasets were derived. 

Conditions 

On top of the existence of bias, the different patterns of selection bias and the size of 

selection bias (as described above), various other factors were manipulated. The number of 

studies (k) within the complete meta-analytic dataset (i.e., without selection bias) could be 15, 30 

or 70. These values are approximately equal to the minimum, median and maximum number of 

studies typically included in meta-analyses in the field of psychology (Rubio-Aparicio, Marín-

Martínez, Sánchez-Meca, & López-López, 2017). Because three effect sizes were generated 

within each study, the total amount of effect sizes could be 45, 90 or 210, respectively. The total 

number of subjects included in each primary study (n) was a number extracted from a normal 

distribution with mean 50, 100 or 150 and standard deviation of 30. These three mean sample 

sizes were selected because according to the systematic review of Rubio-Aparicio et al. (2017), 

the minimum mean sample size reported by primary studies is 17 and the maximum is 211, 
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which makes an average of 114. Therefore, the condition where the mean sample size is 100 

represents standard primary studies, while the conditions where the mean sample size is 50 and 

150 represent primary studies where the mean sample size is below and above the average, 

respectively. A standard deviation of 30 was selected in order to generate variability in the 

sample sizes of the primary studies, because this variable is the one introduced directly as a 

predictor in the Funnel Plot test and indirectly in Egger’s Regression test. The population effect 

size could equal 0, 0.2, 0.5 or 0.8, which corresponds to a null, low, medium and high effect 

according to Cohen’s benchmarks (Cohen, 1988). The between-studies (𝜎𝑢
2) and the between-

outcomes (𝜎𝑣
2) variance could both equal 0.01, 0.06, or 0.11, so the total systematic variance was 

0.02, 0.12 or 0.22, generating situations of low, medium or high variability. The selection of 

these values for the variance components is also based on the results of the revision of Rubio-

Aparicio et al. (2017), who found that the median between-studies variance of meta-analyses in 

the field of psychology was 0.11, the first quartile was 0.06 and the third quartile was 0.18. The 

combination of these conditions led to a total of 3 x 2 x 2 x 3 x 3 x 4 x 3 = 1,296 conditions, and 

for each combination we simulated 1,000 datasets, so in total 1,296*1,000 = 1,296,000 datasets 

were simulated.  

Note that inducing any of the three types of selection bias affected the number of studies 

within the meta-analysis (k), the number of outcomes within studies, the value of the population 

effect size, and the value of the variance components (𝜎𝑢
2 and 𝜎𝑣

2). For the unbiased counterparts, 

also the number of studies and the number of outcomes within studies was affected, but not the 

expected mean population effect size and variances. In Table 2, the average or median of the new 

values obtained after the generation of the three types of selection biases is shown. Thus, in the 

upcoming sections when we refer to the condition where 15 (45 effect sizes), 30 (90 effect sizes) 



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   18 
 

or 70 studies (210 effect sizes) comprised the meta-analysis, the actual number of studies and/or 

effect sizes may be smaller, whereas the estimated pooled effect of the biased datasets is expected 

to be larger than the population effect. Regarding the between-studies and between-outcomes 

variance, it has been shown that the between-studies variance can either decrease or increase 

when publication bias is present (Jackson, 2006). 

Evaluation of the simulation results 

Each of the methods explored in this study was evaluated by means of Type I error rate 

(𝛼) and power (1 − 𝛽). The Type I error rate indicates the proportion of meta-analyses in which 

the presence of any selection bias is spuriously detected. Following the recommendation of 

Macaskill et al., (2001), we set the nominal Type I error rate value to .10. We used a two-sided 

test of significance for all methods involving traditional significance tests because this is the 

default option implemented in the package metafor in R. In order to know which estimates of the 

Type I error rate values indicate a deviation from the nominal value, 95% confidence intervals 

were constructed around the nominal value. The standard error of 𝛼 was calculated using the 

formula 𝑆𝐸(𝛼) = √[𝛼(1 − 𝛼]/𝐼, where I is the number of iterations and 𝛼 = .10. Assuming 

normality, a 95 % confidence interval for the Type I error rate ranges from .0814 to .1185 (.10 ± 

.0094 * 1.96). Values outside this range were considered too low (conservative) or too high 

(liberal). Notice that for the Trim and Fill method, it is not possible to set a nominal Type I error 

rate because the decision of whether any selection bias exists is not based on a p-value. In a 

previous simulation study, Kromrey and Rendina-Gobioff  (2006) considered the existence of 

publication bias if the number of estimated suppressed studies was above 3 (i.e., 𝑅0
+ > 3), 

because Duval and Tweedie (2000a) showed that for the region 𝑅0
+ > 3, the power was around 

.80 when the proportion of suppressed studies was larger than 7. In our study, we have 
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considered the same region for estimator 𝑅0
+, that in this context represents the number of 

suppressed effect sizes. The power refers to the proportion of meta-analyses for which selection 

bias is correctly detected. We consider a statistical power of .80 or larger as adequate (Cohen, 

1988). 

As mentioned in the previous section, this study has three goals. For the first goal, 

exploring plausible regions for the 𝐿0
+ estimator of the Trim and Fill method, a Receiver 

Operating Characteristic (ROC) curve was applied. A ROC curve is a graphical representation 

that shows the specific Type I error (i.e., False Positive rate) and power (i.e., Sensitivity) for each 

value of a given classifier. In our context, the results of the ROC analyses allowed us to know 

which values of the 𝐿0
+ estimator (our classifier) led to an acceptable Type I error rate. The ROC 

curve analyses were applied separately on the 1,000 datasets generated for each combination of 

conditions, and in each analysis we selected the value of 𝐿0
+ that led to a Type I error closest to 

.10 but without exceeding the upper limit of .1185. The results of these analyses were 

summarized in a dataset, where a specific 𝐿0
+ cutoff value was recommended for each 

combination of conditions. Afterwards, in order to give general recommendations, we ran an 

analysis of variance (ANOVA), introducing the simulation design factors as predictor variables 

for the estimated 𝐿0
+ thresholds.  

For the second goal, that consists in exploring how many methods have to detect selection 

bias to be certain that selection bias is not spuriously detected, we summed up the six variables 

that indicated whether each method had detected the presence of selection bias (1) or not (0). The 

total sum led to scores from 0 (no method detected the presence of selection bias) to 6 (all 

methods detected the presence of selection bias). Afterwards, the Type I error and power was 

calculated for each of these five new criteria. For the third goal, ANOVAs were performed for 
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each method to detect which simulation design factors affected the power and Type I error rate to 

a larger extent, i.e., showing the largest eta-squares. Finally, for describing which method is most 

suited for each combination of conditions, we calculated the average Type I error rate and power 

across the three types of selection bias. Afterwards, for each combination of conditions we 

selected the method that showed an adequate mean Type I error rate and described its power 

(Bradley, 1978). In the case that two or more methods showed an adequate Type I error rate 

control, we selected the one that exhibited larger power. 

SAS was used to generate and analyze the data. The SAS code for the Funnel Plot test,  

Egger’s Regression test and the Trim and Fill (𝑅0
+ and 𝐿0

+) method, and the R code of all methods 

are available upon request from the first author. For Begg’s Rank Correlation, the PUB_BIAS 

SAS macro (Rendina-Gobioff & Kromrey, 2006) can be used. 

 Results 

Effect of selection bias on the estimated pooled effect size 

In Table 1, the mean percentage of effect sizes selected for inclusion in the meta-analysis 

is shown for each type of selection bias, and in Table 2 the mean pooled effect size obtained in 

the biased datasets is presented. The percentage of included effect sizes was notably lower when 

selection bias was large and when both publication and selective outcome reporting bias were 

induced. Therefore, it is not surprising that under these circumstances the estimated pooled effect 

size was more inflated. However, when the population effect size value was 0, the estimated 

pooled effect was barely overestimated despite the lower percentage of effect sizes included in 

the meta-analysis. The largest overestimation of the pooled effect size occurred when the 

population effect size was 0.2, whereas when the population effect size was larger, the estimated 

pooled effect was less inflated.  

Cutoffs for Trim and Fill 𝑳𝟎
+ estimator  
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Based on the ROC analyses, we selected for each combination of conditions the value of 

the 𝐿0
+ estimator that resulted in a Type I error rate as close as possible to the nominal value. The 

ANOVA done over these 𝐿0
+ cutoffs, with the simulation design factors as independent variables, 

showed that, regardless of the types of bias, the population effect size (𝜂2 = .254), the number of 

effect sizes (𝜂2 = .471) and its interaction (𝜂2 = .074) had the largest impact on the 𝐿0
+ cutoffs 

values, whereas the median number of participants (𝜂2 = .042), the amount of variance (𝜂2 = 

.021), the degree of bias (𝜂2=.002), and the type of selection bias (𝜂2=.004) had smaller effects. 

As can be seen in Table 3, the more effect sizes included in the meta-analysis and the larger the 

population effect, the larger the optimal cutoff value of 𝐿0
+. These thresholds were applied to 

calculate the Type I error rate and the power of this method. For instance, for conditions where 

the population effect size was 0.2 and the number of initial effect sizes was 90, we decided that 

there was selection bias if the value of 𝐿0
+ was larger than 2, whereas in conditions where the 

population effect size was 0.8 and the number of initial effect sizes was 210, we concluded that 

there was selection bias if the value of the 𝐿0
+ was larger than 6. The performance of this method 

is discussed in the two following sections, together with the Type I error rate and power of the 

other methods. 

Aggregation of methods 

When the evidence from all methods for detecting selection bias were put together, we 

found that if four out of the six methods detected the presence of any selection bias, the Type I 

error rate was below .10 in all conditions. When three out of the four methods detected the 

presence of publication bias, the Type I error rate was still too high in conditions of medium and 

high heterogeneity and large population effect size. In the following section we will refer to this 

method as the Four-tandem procedure 
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Effect of the simulation design factors on the mean Type I error rate and power 

Table 4 shows the Type I error rate for each method and simulated condition. Eta squared 

is given only for main effects. Interaction terms were not included because they just showed that 

the same pattern was visible in all conditions, but to a different degree. The Funnel Plot test, the 

Trim and Fill (𝑅0
+) method, and the Four-tandem method were the only procedures that exhibited 

a mean Type I error rate within the recommended cutoffs. In these methods, the 61.11%, 100%, 

and 98.77% of the conditions exhibited, respectively, an appropriate Type I error rate. Egger’s 

Regression test and Begg’s Rank Correlation (V) had an average Type I error rate around .37, 

and the 18.36% and the 1.08% of the conditions, respectively, showed a Type I error rate of .10 

or below. The Trim and Fill (𝐿0
+) method and the Begg Rank Correlation (N) exhibited a mean 

Type I error rate between .10 and .20, and the 40.59% and the 3.24% of the conditions exhibited 

an adequate Type I error rate.  

Looking closer at the Type I error rate in each level of the simulation design factors, we 

can see that the estimates yielded by Egger’s Regression test and by Begg’s Rank Correlation (V) 

were mostly affected by the population effect size value and by the mean sample size of primary 

studies. These two methods led to too many Type I errors when the population effect size and the 

number of subjects of primary studies were large. Furthermore, the variability among the Type I 

error rates was very high. For instance, when the population effect size was 0, the Type I error 

rate was .117 and .167 for Egger’s Regression and Begg’s Rank Correlation (V) respectively, 

whereas when the population effect size was 0.8, the Type I error rate reached values as large as 

.672 and .640, respectively. Also for intermediate population effect sizes, Type I error rates were 

not within the recommended cutoffs. The Type I error rates derived from the Funnel plot test 

were not largely influenced by any of the simulation design factors, and all Type I error rates 

were within the acceptable range. On the other hand, Begg’s Rank Correlation (N) led to liberal 
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Type I error rates in all conditions, but their variability was low: all the Type I error rates ranged 

between .14 and .19.  

The heterogeneity among effect sizes was the simulation design factor that had the largest 

influence on the Type I error rate of this method: the more variability, the larger the Type I error 

rate. The Trim and Fill (𝑅0
+) method became increasingly liberal with larger population effect 

sizes and with larger number of studies conforming the meta-analysis, although in none of these 

conditions the Type I error rate exceeded .05. The Type I error rates yielded by the Trim and Fill 

(𝐿0
+) method and the Four-tandem procedure were only affected by the mean sample size, 

although in opposite directions: the larger the mean sample size, the lower the Type I error rates 

given by the Trim and Fill (𝐿0
+) method, whereas the Type I error rate of the Four-tandem 

procedure test increased when the mean number of subjects in primary studies became larger. In 

addition, whereas all Type I error rates of the Four-tandem procedure were below .07, the Trim 

and Fill (𝐿0
+) method led to too large Type I error rates when the total heterogeneity among effect 

sizes was almost inexistent, when the population effect size was larger than 0.2, when the number 

of effect sizes was larger than 90 and when the mean sample size of primary studies was 50. 

Table 5 shows the statistical power for each simulated condition and method. The 

methods that exhibited a larger mean power were the Begg Rank Correlation (V), Egger’s 

Regression test, and the Trim and Fill (𝐿0
+) method, whereas the Trim and Fill (𝑅0

+) method had a 

power below .10, and the Funnel Plot test and the Four-tandem procedure exhibited an average 

power of .11. The 23.61% of the conditions of the Egger’s Regression test, 16.98% of the 

conditions of Begg’s Rank Correlation (V) and 10.03% of the conditions of the Trim and Fill 

(𝐿0
+) method showed a power of .80 or larger. However, less than 1% of the conditions of the 
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Funnel Plot test, Begg’s Rank Correlations (N), Trim and Fill (𝑅0
+) and Four-tandem procedure 

yielded a power equal or larger than .80. 

The simulation design factor that had the largest effect on the average power of almost all 

methods was the population effect size value. The power of Egger’s Regression test, Begg’s 

Rank Correlation (V), the Trim and Fill (𝑅0
+) method and increased when the population effect 

size was large (0.8). The value of the population effect size also had an influence on the power of 

the Trim and Fill (𝐿0
+) method, but in this case the largest power was observed when the 

population effect size was 0.2. Nevertheless, there were huge differences in the estimated mean 

power across these methods. For instance, whereas Egger’s regression test and Begg’s Rank 

Correlation (V and N) yielded large power rates (>.7) when the population effect size was large 

(0.8), the power of the Trim and Fill (𝑅0
+) method within the same condition was below .12. The 

power estimates of the remaining methods, namely the Funnel Plot test, the Begg Rank 

Correlation (N) and the Four-tandem procedure, were unaffected by any of the simulation design 

factors. The power estimates of the Four-tandem procedure and of the Funnel Plot were 

extremely low and never exceeded .14, while Begg’s Rank Correlation (N) showed slightly 

higher power estimates, but still did not reach values above .22. 

Under which conditions did each method perform better? 

As described in the previous section, there are some methods that showed systematically 

unacceptable Type I error rates across all simulated conditions, such as Begg’s Rank Correlation 

(V and N), or a really low mean power, like the Trim and Fill (𝑅0
+) method. However, some 

methods that on average showed inadequate Type I error rates, did show appropriate a Type I 

error rate under specific combination of conditions, like, for instance, Egger’s Regression test and 

the Trim and Fill (𝐿0
+) method. On the other hand, the Trim and Fill (𝑅0

+) method, the Funnel Plot 



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   25 
 

test and the Four-tandem procedure lacked power, but these methods also showed an increasing 

power under certain combinations of simulated conditions1. Based on the mean Type I error rates 

and power across the three conditions of selection bias, we have elaborated the classification 

shown in Table 6. In this table, we indicate which method is better to apply under each 

combination of conditions based on their mean power, given, first, an adequate mean Type I error 

rate. Practically no method had a condition where the Type I error rate was adequate and where, 

at the same time, the power was .80 or above. The only exception was the Trim and Fill (𝐿0
+) 

method and Four-tandem procedure, in which less than 1% of the conditions exhibited a Type I 

error rate equal or below to .10 and a power equal or above .80. 

As shown, the Trim and Fill (𝐿0
+) method and the Four-tandem procedure had the highest 

power in conditions where there was medium or high variability among effect sizes and the 

population effect size was large, or when the population effect size was moderate and the number 

of effect sizes included in the meta-analysis was small. Egger’s Regression test was the method 

that led to a larger power when the population effect size was zero and there was not variability 

between effect sizes, or when the population effect size was larger and the mean sample size of 

primary studies was small. The Funnel Plot test, the Four-tandem procedure and the Trim and Fill 

(𝑅0
+) method can be used in any combination of conditions, because they always showed 

adequate Type I error rates. However, the Trim and Fill (𝑅0
+) method showed a better power 

when there was no variability among effect sizes and the population effect size was large, while 

the Four-tandem procedure showed in general better power when the population effect size was 

0.5 or higher, and the mean sample size of primary studies was low. The Funnel Plot test did not 

lead to power estimates above .10, so this method is only recommended in those combination of 

 
1 The tables with the Type I error rate and power disaggregated by each method and combination of conditions are 

available upon request from the first author. 



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   26 
 

conditions where the Trim and Fill (𝑅0
+) method or the Four-tandem procedure showed a power 

below .10. Yet, it is important to keep in mind that the power of all methods was, in general, very 

low: the power of the methods in the cells of Table 6 that are not written in bold or do not contain 

an asterisk have a mean power lower than .3. 

Discussion 

The aim of this study was to explore the performance of the classical methods for 

detecting publication bias in the common situation where primary studies include multiple effect 

sizes and different patterns of selection bias exist. Before describing the performance of these 

methods, we have shown how the type of bias induced and the value of the population effect size 

affect the pooled effect size estimate. For instance, we found that selective outcome reporting 

bias had a larger influence on the overestimation of the pooled effect size compared to the effect 

of publication bias. When publication bias was generated, the selection process was based on the 

study-mean effect size and not on individual effect sizes, so it was more likely that studies 

selected for inclusion contained some non-significant effect sizes, leading to a smoother bias and 

to a more symmetrical funnel plot. In contrast, when selective outcome reporting bias was 

generated, the effect sizes were selected as a function of their p-values. Thus, large p-values were 

much less likely to be included, making the effect of the bias much stronger. Regarding the value 

of the population effect size, it was found that when the population value was zero, the estimated 

pooled effect was barely inflated despite the large percentage of suppressed effect sizes in that 

condition. This happened because the censoring process occurred in the center of the funnel plot, 

where all effect sizes were non-significant, and therefore large negative values below 0 and large 

positive values above 0 were selected for inclusion in the meta-analysis. This situation led to a 

symmetrical funnel plot that was almost empty in the center and to an estimated mean effect size 

close to the real value. In conditions where the population effect size was 0.5 or 0.8, the pooled 
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effect size was barely overestimated because most of the effect sizes were selected for the meta-

analysis: when the population effect size was 0.8, the percentage of included effect sizes was 

almost 100% so no overestimation of the pooled effect was expected. In contrast, when the 

population effect size was 0.2, the percentage of included effect sizes was much lower and hence 

a large overestimation of the pooled effect size was predicted. 

We can relate these results to the performance of the methods for detecting selection bias. 

For instance, all methods showed an increasing power when the total number of studies or effect 

sizes was high. It is well known that a good way to increase the power is to use a larger number 

of subjects. Therefore, it is logical that the probability of finding a significant effect was larger in 

conditions where many effect sizes were included in the meta-analysis. In this line, we have also 

found that the power of most methods increased for larger population effect size values. 

Following the same reasoning as before, in conditions with larger population effect size values, 

there were fewer studies or effect sizes censored and hence more effect sizes were available for 

the analysis, increasing the power. However, it might appear counterintuitive that Egger’s 

Regression test and Begg’s Rank Correlation (V) showed more power in conditions where the 

population effect size was 0.8, because in this condition there was a small effect of the selection 

bias. In other words, if the population effect size was large, most effect sizes were included in the 

meta-analysis and therefore the effect of selection bias was expected to be less pronounced and 

hence more difficult to detect. Nevertheless, the Type I error rate of these methods in the 

condition where the population effect size was 0.8 was also quite large, so the high power 

observed might be just a by-product of the complementary scenarios that lead to too many Type I 

errors also being observed. Another common pattern observed in all methods was the low 

estimated power for detecting selection bias when the population effect size was zero, which is 
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not surprising given that the distribution of effect sizes remained symmetric because effect sizes 

were only suppressed in the center of the funnel plot.  

Besides the general influence that the population effect size value and the number of 

effect sizes had on the estimated Type I error rate and power, some simulated conditions affected 

the Type I error rate and power of some methods to a larger extent. For instance, and in line with 

previous simulation studies (Kromrey & Rendina-Gobioff, 2006; Macaskill et al., 2001; Peters et 

al., 2006; Sterne et al., 2000), Egger’s Regression test and the Begg Rank Correlation (V) became 

highly liberal when the population effect size, the number of studies, the mean sample size of 

primary studies and the heterogeneity among effect sizes were larger.  

According to our results, Begg’s Rank Correlation (N) also led to Type I error rates above 

the recommended cutoff, whereas Kromrey and Rendina-Gobioff (2006) found that this method 

resulted in controlled Type I error rates in most of the conditions. This contradictory result might 

be due to the different amount of between-studies variance generated: while Kromrey and 

Rendina-Gobioff (2006) did not manipulate the value of the between-studies variance (and was 

apparently set to zero, although they do not mention it), we generated conditions of small, 

medium and high heterogeneity. The Type I error rate for this method in condition with small 

variability among effect sizes was 0.14, which is close to an adequate Type I error rate, and the 

Type I error rate in conditions of high heterogeneity was almost 0.20. Therefore, our results show 

that Begg’s Correlation Test (N) tends to work better under conditions with small heterogeneity 

among effect sizes, which goes actually in line with the results showed by Kromrey and Rendina-

Gobioff (2006).  

The Type I error rates of the Funnel Plot test and the Trim and Fill (𝑅0
+) method were less 

influenced by the simulated conditions and were in general within the recommended thresholds. 

However, as previous simulations have also shown, these methods lacked power (Kromrey & 
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Rendina-Gobioff, 2006; Macaskill et al., 2001), although power increased in conditions with low 

heterogeneity, large population effect sizes, and larger numbers of studies and effect sizes. The 

Trim and Fill (𝐿0
+) method became too liberal when effect sizes did not vary among outcomes and 

studies and when the mean sample size of primary sizes was too small. However, one advantage 

of this method is the good trade-off between Type I error rate and power: in conditions where the 

Type I error was controlled, this method led to a power notably higher than the power associated 

with any other method. The Four-tandem procedure proposed in this study worked well in terms 

of Type I error rates but power was still insufficient. In summary, none of these methods 

performed systematically well on terms of Type I error rates, and when they did, the power was 

in general low. Less than 1% of the conditions of the Trim and Fill (𝐿0
+) method and of the Four-

tandem procedure showed adequate Type I error rates and power above .80, whereas none of the 

other methods had even one condition where both Type I error rate and power were adequate. 

The most important limitation of this study is that the conclusions can be generalized only 

to the conditions simulated. Although we have tried to select representative values for the 

simulation, the characteristics of a certain meta-analysis might not fit into any of these 

combinations. For instance, the simulation study only focuses on standardized mean differences 

(Hedges’ g) so it is not possible to know whether the conclusion from this study can be 

generalized to other effect sizes, such as Pearson correlation coefficients or odds ratio. Also, we 

simulated three patterns of selection bias, but other patterns (i.e., the selection of only one p-value 

per study) or a mix of patterns are possible. Furthermore, we have fixed the number of effect 

sizes per study to be three, but this might not be a realistic assumption, as some meta-analyses 

might have a more unbalanced structure (e.g., some primary studies may include only 1 effect 

size while others report 10 effect sizes) or might have a different number of total effect sizes (less 

than 45 or more than 210). This will probably affect the results for the 𝐿+
0  estimator of the Trim 
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and Fill method, because the optimal thresholds are likely to change if there is a different number 

of total effect sizes in the meta-analysis. Along the same lines, it is important to consider that for 

selecting a method to detect selection bias, we should look at both the number of studies and the 

number of total effect sizes for applying Egger’s regression test and the Funnel Plot test. 

However, for use of the Begg’s Rank Correlation (N and V) and the Trim and Fill method (𝑅+
0  

and 𝐿+
0 ), the researcher should solely focus on the total number of effect sizes, because in these 

methods the nesting of effect sizes within studies is irrelevant. Another limitation of this study is 

that it focused on assessing rather than correcting for selection bias. The Trim and Fill method 

can however also be applied to correct for bias (and therefore to test how sensitive the results are 

to the possible presence of publication bias), although previous research has shown that results 

are not always accurate (Peters et al. 2007, Terrin et al., 2003). Future work has to be done on 

how this and other methods for correcting for publication bias (e.g., the PEESE method, selection 

methods, the p-curve method and the p-uniform method) can be adapted and applied in the 

multilevel context.  

A final remark is that it is important to remember that this study, as well as previous 

research focused on this topic, would have not been necessary if publication or selective outcome 

reporting bias did not exist. Ideally, publication and selective reporting bias is avoided so that its 

detection and correction are no longer needed. In this regard, several suggestions have been given 

(e.g., Ioannidis et al., 2014; Thornton & Lee, 2000), such as the creation of registries where 

researchers can upload their ongoing studies regardless of the results or the change of editorial 

policies towards a system that encourage editors to publish studies based on their quality and not 

on their results. So far, and until all these changes have been carried out, we recommend applied 

researchers to be very careful in using these methods and we encourage researchers to explore the 

performance of other existing methods to detect and correct for selection bias. 
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Conclusion 

From the results of this simulation study several general conclusions can be extracted. 

First, we do not recommend the use of Begg’s Rank Correlation (V and N) in multilevel meta-

analysis because there were only a few simulated conditions in which the Type I error rate was 

within the acceptable range. Regarding the Trim and Fill (𝐿0
+) method, its use is adequate under 

certain conditions. For instance, this method worked well in terms of both Type I error rate and 

power when the population effect size was moderate to large (0.5 to 0.8), variability among effect 

sizes was medium or high, there were a lot of effect sizes included in the meta-analysis and the 

mean sample size of primary studies was large. The Funnel Plot test, the Trim and Fill (𝑅0
+) 

method and the Four-tandem procedure showed an appropriate Type I error rate control, although 

the power was quite low. In conclusion, none of these methods work well and they should be 

used with caution. 

Finally, it is important to mention that other techniques can be used for accounting for 

dependent effect sizes, like the Robust Variance Estimation method (Hedges et al., 2010). 

Previous simulation research (Moeyaert, Ugille, Beretvas, Ferron, Bunuan, & Van den Noortgate, 

2016) have shown that the meta-analytic three level model and the Robust Variance Estimation 

method perform very similarly, so it is likely that the results obtained from the three-level 

Egger’s Regression test and three-level Funnel Plot test are similar to the ones that would be 

obtained if the Robust Variance Estimation method was applied instead. 
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Table 1. 

Average percentage and number of included effect sizes and studies for each type of selection 

bias. 

 Publication bias Selective reporting Both types of bias 

 % selec.  

ESs 

ESs Studies % selec.  

ESs 

ESs Studies % selec.  

ESs 

ESs Studies 

k = 15          

Small           

0 80.0% 36 12 71.1% 32 15 57.7% 26 12 

      0.2 80.0% 36 12 75.5% 34 15 62.2% 28 12 

0.5 93.3% 42 14 84.4% 38 15 82.2% 37 14 

0.8 100% 45 15 95.5% 43 15 93.3% 42 15 

Large          

0 66.6% 30 10 60.0% 27 14 44.4% 20 10 

0.2 73.3% 33 11 64.4% 29 14 51.1% 23 11 

0.5 93.3% 42 14 80.0% 36 15 75.5% 34 13 

0.8 100% 45 15 91.1% 41 15 91.1% 41 15 

k = 30          

Small          

0 76.6% 69 23 72.2% 65 29 58.8% 53 23 

0.2 80.0% 72 24 74.4% 67 29 63.3% 57 24 

0.5 93.3% 84 28 85.5% 77 30 81.1% 73 28 

0.8 100% 90 30 94.4% 85 30 94.4% 85 30 
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Table 1 (continued) 

 Publication bias Selective reporting Both types of bias 

 % selec.  

ESs 

N 

ESs 

N 

Studies 

% selec.  

ESs 

N 

ESs 

N 

Studies 

% selec.  

ESs 

N 

ESs 

N 

Studies 

Large          

0 70.0% 63 21 60.0% 54 28 45.5% 41 20 

0.2 73.3% 66 22 64.4% 58 28 52.2% 47 22 

0.5 90.0% 81 27 78.8% 71 29 74.4% 67 27 

0.8 100% 90 30 92.2% 83 30 91.1% 82 29 

k = 70          

Small          

0 78.6% 165 55 71.9% 151 68 58.6% 123 54 

0.2 81.4% 171 57 74.8% 157 69 63.3% 133 57 

0.5 92.9% 195 65 85.7% 180 69 81.4% 171 65 

0.8 98.6% 207 69 94.8% 199 70 93.8% 197 69 

Large          

0 68.6% 144 48 60.5% 127 65 45.7% 96 47 

0.2 74.3% 156 52 64.3% 135 66 52.4% 110 51 

0.5 90.0% 189 63 79.0% 166 68 74.8% 157 63 

0.8 98.6% 207 69 91.9% 193 70 91.4% 192 69 

Notes. Small and Large refer to the degree of bias generated; % selec. ESs=percentage of selected 

effect sizes; N ESs = total number of effect sizes; N Studies= total number of studies; k = initial 

number of studies; 𝛾00= combined effect size; SE= standard error; 𝜎𝑢
2= between-studies variance; 
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𝜎𝑣
2= between-outcomes variance. The between-studies and between-outcomes variances were 

fixed to 0.06 and the mean sample size (n) was fixed to 100. The values 0, 0.2, 0.5, and 0.8 refer 

to the population effect size. 
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Table 2. 

Mean estimates of the combined effect size and median estimates of the standard error and 

variance components after the different types of selection bias were generated. 

 Publication bias Selective reporting Both biases 

k = 15 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 

Small             

0 .000 .096 .075 .053 -.001 .099 .089 .068 -.001 .122 .123 .057 

0.2 .237 .087 .062 .053 .244 .092 .076 .061 .287 .105 .088 .052 

0.5 .523 .074 .042 .052 .550 .075 .046 .046 .580 .070 .033 .043 

0.8 .782 .075 .049 .052 .810 .071 .041 .044 .814 .070 .039 .043 

Large             

0 .001 .108 .089 .051 -.001 .114 .115 .074 -.001 .151 .178 .043 

0.2 .259 .093 .063 .052 .272 .103 .090 .060 .333 .118 .108 .041 

0.5 .536 .072 .037 .052 .584 .073 .039 .040 .619 .067 .026 .033 

0.8 .786  074 .047 .052 .825 .068 .037 .039 .832 .067 .035 .037 

k = 30 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 

Small             

0 -.003 .068  077 .053 -.004 .070 .088 .069 -.006 .086 .121 .059 

0.2 .235 .063 .065 .053 .241 .067 .079 .062 .284 .076 .093 .053 

0.5 .520 .053 .046 .055 .549 .054 .049 .050 .577 .052 .039 .045 

0.8 .789 .053 .051 .055 .814 .051 .044 .046 .819 .050 .041 .046 

Large             

0 -.003 .076 .089 .053 -.004 .081 .116 .073 -.006 .106 .175 .047 
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Table 2. (continued) 

 Publication bias Selective reporting Both biases 

k = 30 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 

0.2 .257 .068 .069 .053 .271 .074 .096 .062 .332 .086 .115 .043 

0.5 .536 .052 .040 .055 .583 .053 .043 .045 .620 .049 .030 .038 

0.8 .792 .053 .049 .055 .830 .049 .039 .042 .836 .048 .037 .041 

k = 70 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 𝛾00 SE 𝜎𝑢
2 𝜎𝑣

2 

Small             

0 -.001 .045 .080 .053 -.001 .046 .092 .069 -.001 .057 .125 .057 

0.2 .233 .042 .068 .053 .241 .044 .082 .063 .281 .050 .096 .054 

0.5 .520 .035 .048 .054 .550 .035 .050 .049 .578 .034 .041 .045 

0.8 .789 .035 .052 .054 .814 .034 .045 .047 .819 .033 .043 .046 

Large             

0 -.001 .051 .093 .053 -.001 .054 .119 .074 -.001 .070 .178 .049 

0.2 .254 .045 .072 .054 .268 .049 .098 .064 .328 .057 .119 .045 

0.5 .535 .035 .043 .054 .584 .035 .046 .044 .618 .033 .035 .037 

0.8 .793 .035 .050 .054 .831 .032 .041 .042 .838 .032 .037 .041 

Notes. Small and Large refer to the degree of bias generated; k = initial number of studies; 𝛾00= 

combined effect size; SE= standard error; 𝜎𝑢
2= between-studies variance; 𝜎𝑣

2= between-outcomes 

variance. The between-studies and between-outcomes variances were fixed to 0.06 and the mean 

sample size (n) was fixed to 100. The values 0, 0.2, 0.5, and 0.8 refer to the population effect 

size. 
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Table 3. 

Optimal values for the 𝐿0
+ estimator of the Trim and Fill method. 

Population effect size Number of effect sizes 𝐿0
+ cutoffs 

0 45   (20 – 45) 2 

(-0.01 - 0.01) 90   (41 – 90) 2 

 210 (96 – 207) 3 

0.2 45   (20 – 45) 2 

(0.20 - 0.33) 90   (41 – 90) 2 

 210 (96 – 207) 3 

0.5 45   (20 – 45) 2 

(0.50 - 0.62) 90   (41 – 90) 3 

 210 (96 – 207) 4 

0.8 45   (20 – 45) 2 

(.80 - .84) 90   (41 – 90) 3 

 210 (96 – 207) 6 

Notes. Values in parenthesis represent possible values of the conditions in real settings, because 

when selection bias exists, the estimated overall effect size increases and the number of studies 

and effect sizes decrease. These values are based on the values showed in Table 1 and 2. 
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Table 4.  

Mean Type I error rate for each simulated condition and method. 

 ERT FP BG (V) BG (N) TF-𝑅0
+ TF-𝐿0

+ FT 

Mean .372 .098 .377 .170 .041 .124 .057 

Total variance                   

0.02 .258 .097 .288 .140 .039 .146 .052 

0.12 .403 .098 .402 .180 .041 .116 .059 

0.22 .455 .099 .442 .192 .042 .109 .060 

        η2 .066 .004 .063 .407 .005 .064 .059 

Population ES                  

0 .117 .093 .167 .164 .034 .087 .062 

0.2 .204 .093 .232 .162 .035 .129 .056 

0.5 .495 .099 .470 .173 .044 .132 .053 

0.8 .672 .106 .640 .185 .049 .148 .057 

η2  .466 .125 .524 .067 .147 .131 .042 

Number of studies        

15 (45 ESs) .309 .092 .319 .170 .025 .114 .054 

30 (90 ESs) .362 .098 .367 .170 .041 .134 .057 

70 (210 ESs) .444 .104 .446 .173 .056 .124 .060 

η2 .029 .091 .040 .002 .572 .017 .031 
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Table 4. (continued)        

 ERT FP BG (V) BG (N) TF-𝑅0
+ TF-𝐿0

+ FT 

Mean sample size          

50 .155 .099 .220 .148 .041 .164 .047 

100 .416 .096 .408 .177 .041 .114 .059 

150 .545 .098 .504 .187 .040 .094 .065 

η2 .246 .007 .204 .215 .000 .219 .261 

Notes. The nominal Type I error rate is .10. Too conservative values (< .0814) are represented in 

italic and too liberal values (> .1185) are indicated in bold. The simulated factor conditions of 

‘type of bias’ and ‘degree of bias’ are not included here because in these datasets, no bias was 

generated. 𝜂2= eta squared;  ESs= effect sizes; ERT=Egger’s Regression Test; FP=Funnel Plot 

test; BG (V)= Begg’s Rank Correlation using the variance; BG (N)= Begg’s Rank Correlation 

using the sample size; TF-𝑅0
+= Trim and Fill method using 𝑅0

+ estimator; TF-𝐿0
+= Trim and Fill 

method using 𝐿0
+ estimator; FT= Four-tandem procedure. 



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   46 
 

Table 5.  

Mean power for each simulated condition and method. 

 ERT FP BG (V) BG (N) TF-𝑅0
+ TF-𝐿0

+ FT 

Mean  .462 .109 .481 .196 .061 .330 .107 

Degree of bias        

Small .448 .103 .463 .188 .050 .319 .095 

Large .476 .115 .499 .205 .073 .341 .119 

                             η2 .002 .028 .005 .025 .030 .003 .027 

Type of bias                     

Publication bias .451 .099 .459 .190 .047 .179 .078 

Selective Reporting  .447 .108 .471 .187 .060 .429 .113 

Both .489 .120 .513 .211 .077 .382 .131 

η2 .004 .056 .008 .036 .030 .149 .090 

Total variance          

0.02 .353 .114 .420 .179 .085 .302 .115 

0.12 .493 .109 .499 .203 .060 .338 .107 

0.22 .540 .104 .524 .208 .040 .350 .099 

        η2 .061 .012 .028 .052 .070 .005 .007 

Population ES                  

0 .143 .101 .210 .207 .051 .090 .076 

0.2 .297 .105 .329 .191 .014 .548 .102 

0.5 .634 .123 .636 .203 .069 .421 .138 
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Table 5. (continued)        

 ERT FP BG (V) BG (N) TF-𝑅0
+ TF-𝐿0

+ FT 

Population ES          0.8 .773 .108 .749 .184 .112 .262 .113 

η2  .614 .052 .686 .026 .244 .372 .091 

Number of studies        

15 (45 ESs) .361 .098 .391 .185 .047 .244 .082 

30 (90 ESs) .450 .107 .468 .193 .066 .338 .103 

70 (210 ESs) .575 .123 .584 .211 .071 .408 .136 

η2 .074 .081 .089 .037 .022 .057 .089 

Mean sample size                     

50 .327 .121 .408 .200 .068 .443 .137 

100 .481 .105 .484 .192 .060 .294 .096 

150 .579 .101 .550 .197 .057 .252 .089 

η2 
.104 .054 .048 .003 .004 .084 .081 

Notes. 𝜂2=eta squared; ES= effect size; ERT=Egger’s Regression Test; FP=Funnel Plot test,  BG 

(V)= Begg’s Rank Correlation using the variance; BG (N)= Begg’s Rank Correlation using the 

sample size; TF-𝑅0
+= Trim and Fill method using 𝑅0

+ estimator; TF-𝐿0
+= Trim and Fill method 

using 𝐿0
+ estimator; FT= Four-tandem procedure. 
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Table 6. 

Classification of methods for each combination of conditions based on their mean power 

estimates, given Type I error rate control. 

PES k ESs n Total Var. = 0.02 Total Var. = 0.12 Total Var. = 0.22 

0 

15 45 50 Egger’s Regression Egger’s Regression Egger’s Regression 

  100 Egger’s Regression Funnel Plot Funnel Plot 

  150 Egger’s Regression Funnel Plot Funnel Plot 

30 90 50 Egger’s Regression Egger’s Regression Egger’s Regression 

  100 Egger’s Regression Funnel Plot Funnel Plot 

  150 Egger’s Regression Funnel Plot Funnel Plot 

70 210 50 Egger’s Regression Egger’s Regression Egger’s Regression 

  100 Egger’s Regression Funnel Plot Funnel Plot 

  150 Egger’s Regression Funnel Plot Funnel Plot 

0.2 

15 45 50 Trim and fill 𝐿0
+* Trim and fill 𝐿0

+* Trim and fill 𝐿0
+ 

  100 Trim and fill 𝐿0
+* Trim and fill 𝐿0

+* Trim and fill 𝐿0
+ 

  150 Trim and fill 𝐿0
+* Trim and fill 𝐿0

+* Trim and fill 𝐿0
+ 

30 90 50 Egger’s Regression Egger’s Regression Egger’s Regression 

  100 Funnel Plot Funnel Plot Funnel Plot 

  150 Funnel Plot Funnel Plot Funnel Plot 

70 210 50 Egger’s Regression Egger’s Regression Egger’s Regression 

  100 Funnel Plot Funnel Plot Funnel Plot 

  150 Funnel Plot Funnel Plot Funnel Plot 

       



DETECTING SELECION BIAS IN THREE-LEVEL META-ANALYSES                                                   49 
 

Table 6. (continued) 

PES k ESs n Total Var. = 0.02 Total Var. = 0.12 Total Var. = 0.22 

0.5 

15 45 50 Egger’s Regression Four-tandem Four-tandem 

  100 Funnel Plot Trim and fill 𝐿0
+ Trim and fill 𝐿0

+* 

  150 Funnel Plot Trim and fill 𝐿0
+ Trim and fill 𝐿0

+* 

30 90 50 Egger’s Regression* Four-tandem Trim and fill 𝑳𝟎
+ 

  100 Trim and fill 𝑅0
+ Trim and fill 𝐿0

+* Trim and fill 𝐿0
+* 

  150 Trim and fill 𝑅0
+ Trim and fill 𝐿0

+ Trim and fill 𝐿0
+* 

70 210 50 Egger’s Regression Four-tandem Four-tandem 

  100 Trim and fill 𝑅0
+ Four-tandem Four-tandem 

  150 Trim and fill 𝑅0
+ Trim and fill 𝐿0

+* Trim and fill 𝑳𝟎
+ 

0.8 

15 45 50 Trim and fill 𝑅0
+ Trim and fill 𝑅0

+ Funnel Plot 

  100 Funnel Plot Funnel Plot Funnel Plot 

  150 Funnel Plot Funnel Plot Trim and fill 𝐿0
+ 

30 90 50 Trim and fill 𝑅0
+ Trim and fill 𝑅0

+ Four-tandem 

  100 Trim and fill 𝑅0
+ Trim and fill 𝑅0

+ Trim and fill 𝐿0
+ 

  150 Funnel Plot Trim and fill 𝑅0
+ Trim and fill 𝐿0

+ 

70 210 50 Four-tandem Four-tandem Trim and fill 𝑳𝟎
+ 

  100 Trim and fill 𝑅0
+ Trim and fill 𝑅0

+ Trim and fill 𝐿0
+ 

  150 Trim and fill 𝑅0
+ Trim and fill 𝑅0

+ Trim and fill 𝐿0
+ 

Notes. PES= Population effect size; Total Var. = Total variance;  k = number of studies; n = 

mean sample size of primary studies; ESs= effect sizes. The methods in each cell exhibited the 

largest power in that specific condition and controlled the Type I error rate. Methods in bold 
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yielded a mean power between .5 and .7. Methods with an asterisk had a mean power between .3 

and .5. Methods without any special characteristic (not bold, not asterisk) had a mean power 

below .3. 

 

 

 


