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Abstract  

 Animals and humans learn statistical regularities that are embedded in sequences of 

stimuli. The neural mechanisms of such statistical learning are still poorly understood. Previous 

work in macaque inferior temporal (IT) cortex demonstrated suppressed spiking activity to visual 

images of a sequence in which the stimulus order was defined by transitional probabilities 

(labeled as “standard” sequence), compared with a sequence in which the stimulus order was 

random (“random” sequence). Here we asked whether IT neurons encode the images of the 

standard sequence more accurately compared with images of the random sequence. Previous 

human fMRI studies in different sensory modalities also found a suppressed response to expected 

relative to unexpected stimuli, but obtained various results regarding the effect of expectation on 

encoding, with one study reporting an improved classification accuracy of expected stimuli 

despite the reduced activation level. We employed a linear classifier to decode image identity 

from the spiking responses of the recorded IT neurons. We found a greater decoding accuracy for 

images of the standard compared with the random sequence during the early part of the stimulus 

presentation, but further analyses suggested that this reflected the sustained, stimulus selective 

activity from the previous stimulus of the sequence, which is typical for IT neurons.  However, 

the peak decoding accuracy was lower for the standard compared with the random sequence, in 

line with the reduced response to the former compared to the latter images.  These data suggest 

that macaque IT neurons represent less accurately predictable compared with unpredictable 

images.  



 

 

Introduction 

Animals are sensitive to temporal regularities in their visual environment. Behavioral 

studies have shown that mere exposure to sequences of visual stimuli is sufficient to learn 

statistical regularities embedded in these sequences (for review see Turk-Browne, 2012). Such 

extraction of statistical regularities by the animals is often referred to as “statistical learning” 

(Saffran, Aslin, & Newport, 1996; Turk-Browne, 2012). Spiking activity recordings in passively 

fixating monkeys showed that inferior temporal (IT) cortical neurons carry statistical learning 

signals after the animals were exposed to visual image sequences in which the statistical 

regularities were based on transitional probabilities (Kaposvari, Kumar, & Vogels, 2016). The 

stimulus set of that study consisted of 3 groups of 5 images each, defining 3 quintets of images. 

The order of the 5 stimuli within each quintet was fixed, but the quintets were presented 

repeatedly in a random order without any interruption. Thus, only transitional probabilities 

defined quintets of images. Post-exposure recordings in IT showed an enhanced response to 

deviant stimuli that violated the exposed sequence. This response enhancement for unpredicted 

compared to predicted stimuli was also seen in single IT neurons after exposure to doublets 

(Meyer & Olson, 2011; Ramachandran, Meyer, & Olson, 2016) or triplets (Meyer, 

Ramachandran, & Olson, 2014) that were followed by a reward and an inter-sequence interval.   

By comparing IT responses to sequences with and without statistical regularities, 

Kaposvari et al. (2016) observed a response suppression for stimuli of a sequence with 

regularities (labeled “standard sequence”) compared with a “neutral” sequence in which images 

were presented in random order during exposure (labeled “random sequence”). This response 



difference between sequences with and without statistical regularity was neither caused by image 

familiarity/frequency nor by repetition suppression. Here we ask whether the smaller response to 

the standard compared with the random sequence has any repercussion on the representation of 

the images of the sequences. In particular, we assessed how well one could decode the individual 

visual images from the population activity of the neurons recorded by Kaposvari et al. (2016). 

Intuitively, one would predict a lower classification accuracy for the standard compared with the 

random sequence stimuli, since the response was smaller for the former sequence. Contrary to 

this intuitive prediction, Kok, Jehee, & de Lange (2012) found in human V1, using functional 

magnetic resonance imaging (fMRI) multivoxel pattern analysis (MVPA), an increased 

classification accuracy for two grating orientations when these were expected compared with 

when they were unexpected. This enhanced encoding of expected grating orientations was 

present despite a decreased activation for the expected gratings. These data were interpreted to 

suggest that expectation sharpens stimulus representations. A more recent human fMRI study 

(Blank & Davis, 2016) using speech stimuli reported also a decreased activation in the posterior 

Superior Temporal Sulcus for expected words compared with unexpected words, but contrary to 

Kok et al. reported a decreased decoding of the expected words. Interestingly, these opposite 

findings were both explained in terms of predictive coding theories (Feldman & Friston, 2010; 

Friston, 2005).  The Kok et al. (2012) human fMRI data predict that the classification accuracy of 

IT neurons would be greater for the stimuli in the standard sequence relative to the random 

sequence stimuli, since the latter are unpredictable while the former are predictable. The Blank 

and Davis study makes the opposite prediction. In the present work, we examined these 

predictions by decoding image identity of the two sequences from the neural responses, using 

linear Support Vector Machines (Cortes & Vapnik, 1995) classifiers, and assessed the time 

course of the classification of image identity during stimulus presentation for the two sequence 



types separately.   

 

Methods 

The data were collected in experiment 2 of Kaposvari et al. (2016). A detailed description 

of apparatus, recording and experimental procedures can be found in that study. Here we briefly 

describe the experimental paradigm.  

Subjects and recording location 

Data were collected from 2 male rhesus monkeys (H and O; Macaca mulatta). All animal 

care and experimental protocols complied with national and European guidelines and were 

approved by the KU Leuven Ethical Committee for animal experiments. Multi-unit activity 

(MUA) recordings were performed in the ventral bank of the rostral Superior Temporal Sulcus 

(STS) of the right hemisphere.  

Fixation task 

The animals were required to fixate within a 2 degree square fixation window, centered 

around a small fixation target (red color; 0.13 degree), in order to obtain a juice reward. Juice 

rewards were given with decreasing intervals as long as the monkeys maintained fixation, 

encouraging long fixation. Importantly, the timing of the juice delivery and the presentation of 

the stimulus sequences was uncorrelated. The fixation target was located at the center of the 

display, superimposed on the center of mass of the stimuli.  

Experimental design 



 The stimuli consisted of 2 groups of 15 stimuli each (Figure 1C). Each group consisted of 

modified Snodgrass and Vanderwart images of animals and objects, taken from the Rossion & 

Pourtois (2004) database. The stimuli were presented on a gray background. We resized the 

images so that their maximal horizontal or vertical extent was 6 degrees and equated their mean 

luminance. One group of 15 images was sorted into groups of 3 quintets. We equated as much as 

possible the low-level image properties between successive presentations within and across 

quintets (see Kaposvari et al., 2016). During the exposure phase of the experiment, the selected 3 

quintets were shown in random order, but with a fixed stimulus order within a quintet. We will 

label these sequences as “standard sequences”. An individual image was shown for 293 ms and 

was immediately succeeded by the next image, without any inter-stimulus or inter-quintet interval 

(Figure 1A). 

The other group of stimuli consisted of 15 other animals and objects and these were 

presented for 293 ms each in pseudorandom order, without any inter-stimulus interval (Figure 

1B). These sequences will be labeled as “random”. We required that the number of stimuli in-

between presentations of the same stimulus should be at least 4. This ensured that the average 

interstimulus presentation interval was equal for both the standard and random sequences. The 

stimulus groups presented in standard or random sequences were counterbalanced across the two 

animals.  

We exposed the animals to both types of sequences using a block design. Each block 

consisted of 4050 stimuli (270 presentations per stimulus), lasting approximately 20 min, and 

standard and random sequence blocks were alternated in daily sessions of approximately 2 hours. 

The sequence type of the first block of a daily session was randomized across sessions. We kept 

track of the number of presentations per sequence type and when necessary increased temporally 



the number of presentations for a particular type in order to equate the number of presentations 

per sequence type. Thus, we ensured that the stimuli of the standard quintets and random 

sequences had equal familiarity. The exposure phase in experiment 2 lasted 34 and 35 daily 

sessions in monkeys H and O, respectively.  

After the exposure phase, we recorded MUA for blocks of standard and random 

sequences. We searched for responsive MUA using either standard or random sequences, 

alternating between MUA sites. This avoided biasing responses towards one or the other 

sequence type. The data were obtained in two phases, described briefly below (for more details, 

see Kaposvari et al., 2016). In the first phase, the MUA sites were tested with blocks containing 

only standard or random sequences. We performed 16 and 17 daily recording sessions in 

monkeys H and O, respectively, in the first phase. We tested each responsive MUA site with 2 

blocks of each sequence type and the two block types alternated. The sequence type of the first 

block was randomized across sites. Each block contained 70 presentations per stimulus. We kept 

track of the number of presentations per sequence type, in particular during the search periods in 

which a single sequence type was presented, and when necessary compensated by presenting the 

less frequent stimuli more in later sessions.  

In the second phase, the MUA sites were tested with blocks of random sequences and 

blocks that were composed of standard sequences with one fourth of the quintets containing a 

deviant, i.e. a stimulus that did not belong to that quintet. The quintets with deviants had one 

image of another quintet inserted. As in the first phase, a responsive MUA was searched using 

either standard sequences with quintets without a deviant or random sequences and this was done 

with an equal frequency. When testing the MUA sites, we alternated blocks of standard and 

deviant quintets and blocks of random sequences. Because of the inclusion of deviants, we 



increased the duration of the blocks containing quintets with deviants by presenting each stimulus 

480 times per block. The number of presentations per stimulus was 140 for the random block. 

The data for standard stimuli used in all the analyses of this study came from quintets without 

deviants.  MUA to both types of sequences in the second phase was measured in 17 and 19 daily 

recording sessions in monkeys H and O, respectively.   

Data analysis 

In total 119 MUA sites (58 and 61 for monkeys H and O, respectively) were recorded in 

the first phase of recordings and 62 MUA sites (32 and 30 for monkeys H and O, respectively) in 

the second phase. For all analyses, we included only those stimulus presentations during which 

the monkey was fixating at the fixation target. Response to a stimulus in standard and random 

sequences was considered only when the stimulus was preceded by at least 5 images and 

succeeded by at least 2 images during a fixation period. As was previously shown by Kaposvari 

et al. (2016) that there was no significant difference among the responses to the last three stimuli 

of a standard quintet, we chose the last three stimuli (9 stimuli in total from 3 quintets) for further 

analyses and for comparison with the stimuli of the random sequence. We will label these 9 

standard sequence stimuli as “selected standard” stimuli. The sites containing responses to a 

minimum of 10 presentations of each of the stimuli were selected. This selection criterion yielded 

116 MUA sites (55 and 61 for monkeys H and O, respectively) of the first phase and all 62 sites 

of the second testing phase. To compute population peristimulus time histograms (PSTHs), we 

averaged first across responses to a stimulus for a site and then these mean responses were 

averaged across sites. The number of observations in the statistical tests corresponded to the 

number of MUA sites. 



 

Decoding analysis methods 

The population decoding analyses were performed in MATLAB using Neural Decoding 

Toolbox (Meyers, 2013). We employed a support vector machine (SVM) classifier, with a linear 

kernel. A fivefold cross-validation scheme was used, where 80 percent of the stimulus 

presentations were used for training and the remaining 20 percent were used for testing.  

Reported classification accuracies were for the independent test data only. We used an “all-pairs” 

multiclass classification scheme (Meyers, 2013). The neural responses were z-score normalized 

with the mean and standard deviations of the training data.  

 We created pseudopopulation response vectors using a selected set of N MUA sites. For 

each stimulus label and MUA site, the responses for 10 stimulus presentations were randomly 

assigned to 10 pseudo-population vectors (length = N sites). The 10 presentations were randomly 

picked from all the presentations of a stimulus. For each MUA site, a random selection of 8 

pseudopopulation response vectors per stimulus label constituted the training data set, while the 

remaining 2 vectors per label defined the test set. The 9 stimulus labels for the standard sequence 

corresponded to the 9 ‘selected standard’ stimuli (3rd, 4th and 5th stimuli of each of the three 

standard quintets), whereas 9 from the 15 stimuli of the random sequences were selected at 

random to train and test the classifiers. Training and testing was done using fivefold cross-

validation. 

In the main analysis, we randomly sampled N = 108 MUA sites (approximately 60 

percent) from the 178 MUA sites (116 of the first and 62 from the second phase). This random 

selection of 108 sites was done 1000 times and for each of these 1000 samples of sites we 



performed the same population decoding of the 9 standard and 9 random stimuli as described 

above. The data used for training and testing consisted of firing rates in 20 ms bins sampled at 20 

ms intervals starting at stimulus onset sampled until 107 ms after stimulus offset. For each of the 

1000 selection of sites, the decoding procedure was run 20 times, each time creating new 

pseudopopulation vectors and performing the fivefold cross-validation. For each of the 1000 site 

selections, the classification scores were averaged across the 20 resamples.  Since we classified 

both random and standard sequence stimuli for each of the 1000 site selections, we could 

compute for each selection the difference between the mean classification scores for the two 

sequences. Statistical significance of the difference in mean classification scores for the two 

sequences was based on the percentile of a zero difference in the distribution of the 1000 

difference scores (percentiles < 0.025 and > 0.975 considered significant).  

In addition, we performed the following control analyses. First, we decoded stimulus 

labels using the responses of the full population of 178 sites, using the 9 selected stimuli of the 

standard sequence and a single random selection of 9 stimuli of the random sequences. In this 

analysis, 100 instead of 20 resamplings were performed and classification scores are the averages 

of the 100 resamplings. Second, we performed the same classification analyses with 100 

resamplings using the data of each individual animal. Third, to check whether the classification 

accuracies depended on the selection of the 9 random sequence stimuli, we repeated the decoding 

procedure 50 times, each time randomly selecting 9 from the 15 random sequence stimuli. In 

each of the 50 procedures, the number of pseudopopulation vector resamples was 20 and we 

employed the full population (N = 178 sites). Fourth, in the second phase of the recordings the 

stimuli of the standard sequences were presented more often than the random sequence stimuli, 

which might have produced a difference in familiarity between the stimuli of the two sequence 



types. Because the number of presentations per stimulus was very high, it is unlikely that the 

effects we report result from this difference in stimulus frequency. Nonetheless, we performed all 

the above decoding analyses using only the data from the 116 MUA sites of the first phase, in 

which stimulus frequency of standard and random sequence stimuli was equated. The results 

(data not shown) were qualitatively identical to those of the data of both phases combined.  

 

Results 

We exposed monkeys to two types of sequences of visual images. One type of sequence, 

the standard sequence, consisted of three quintets of images. The order of presentation of the 5 

images was fixed in each quintet but the 3 quintets were presented in random order. The animals 

can predict the next stimulus of the standard sequence based on the previous stimulus (except for 

the first stimulus of a quintet). In the second type of sequence, the random sequence, 15 other 

images were presented in (pseudo-)random order so that the presentation of a particular stimulus 

could not be predicted from the previous ones. Kaposvari et al. (2016) showed that IT neurons 

responded with higher firing rates to the stimuli of the random compared to those of the standard 

sequence. This “expectation suppression” effect is illustrated in Figure 2A for 108 randomly 

selected MUA sites in IT of the two monkeys (the same number of MUA sites was employed for 

the classification analysis below). The response for the standard sequence is the mean of the 

responses to the last 3 stimuli of each quintet (9 stimuli in total). These stimuli were selected 

because Kaposvari et al. (2016) found that the response was higher for the first stimulus of a 

quintet than for the last 3 stimuli of a quintet, likely reflecting the low transition probability (1/3) 

associated with the first stimulus of a quintet. Furthermore, in one animal, the second stimulus of 

a quintet also produced a higher response compared with the 3 later stimuli of the quintet. The 



response to the random sequence was averaged across 9 randomly selected stimuli of that 

sequence. Note that the stimuli that were presented in the random and standard sequences were 

counterbalanced across the two monkeys. As reported by Kaposvari et al. (2016) for all recorded 

MUA sites (N = 178) of this experiment, this random selection of MUA sites showed a stronger 

transient response to the random compared with the standard sequence stimuli. In the present 

work, we asked whether neurons downstream from IT can decode with a greater accuracy the 

standard compared with the random sequence stimuli. 

In a first decoding analysis, we classified the label of 9 stimuli (the last 3 of each quintet) 

of the standard sequence and of 9 randomly selected stimuli of the random sequence. In this 

analysis, we employed only 108 sites and not all 178 sites, since this allowed performing 

randomization-based statistical tests of condition effects. We pooled the MUA sites across 

animals and drew at random 108 sites from the 178 recorded MUA sites. This process was 

performed 1000 times to get a bootstrapped data. We classified the images for each of the 1000 

randomly drawn samples. The time course of average classification accuracy for the images of 

the two sequences is shown in Figure 2B. The bands indicate 95% confidence intervals based on 

the 1000 bootstrapped data. The classification accuracy during stimulus presentation was well 

above chance level (11.1%) and peaked for both sequences at 130 ms post-stimulus onset. The 

time of the peak classification accuracy coincided with the time of the peak firing rate (compare 

Figure 2A and 2B). The classification accuracy for the standard sequence stimuli was well above 

chance throughout the stimulus presentation, even before response onset (at about 90 ms). This is 

because in Figure 2B, the classifier was trained and tested at the same time bin and the stimulus 

sequence of a quintet was fixed (and thus stimulus labels were correlated within a quintet). The 

classification accuracy for the random sequence stimuli started at chance and then rose above 



chance after 90 ms, matching the time course of the response. Importantly, the peak classification 

accuracy was significantly higher for the random compared to standard sequence (randomization 

test (see Methods): p = 0.003; analysis bin: 120-140 ms). In fact, except for the initial period 

before and immediately after response onset, the classification scores for the standard sequence 

was below or equal to that of the random sequence, suggesting poorer stimulus identification for 

predictable compared to unpredictable stimuli.   

In a subsequent analysis we trained and tested the classifier at different, non-overlapping 

time bins. This allowed us to assess whether and when the responses to the previous stimulus are 

carried over to the responses pattern for the next stimulus. For the standard sequence, training the 

classifier at bins before 80 ms did not produce significant decoding above chance (based on 95% 

confidence intervals) when the classifier was tested at bins later than 140 ms (Figure 3A). This 

lack of generalization of the classifier from early (before response onset) bins to later bins in the 

standard sequences does not result from a nonstationary stimulus code during stimulus 

presentation, since there was above chance classification between 100 and 380 ms when trained 

and tested bins differed (Figure 3A). For the random sequence stimuli (Figure 3B), generalization 

of decoding from trained to tested bins was present between 100 and 400 ms. This generalization 

for the random and standard sequences after stimulus offset (i.e. after 293 ms) and for the 

standard sequence before stimulus onset fits previous findings that the stimulus-selective 

response of IT neurons outlasts the stimulus duration for about 160 ms for stimuli presented 

without interstimulus time interval (De Baene, Premereur, & Vogels, 2007; Keysers, Xiao, 

Földiák, & Perrett, 2001). The difference between the classification scores for all the trained-

tested pairs are shown in Figure 3C. Regions with significant bins (randomization test; two-tailed 

p < 0.05) are indicated by stippled black outlines. When training or testing was performed in the 



100 ms period before the response onset, the classification scores were significantly greater for 

the standard compared with the random sequence stimuli. There was a weakly enhanced 

classification for the standard sequence when training was performed between 100 and 200 ms 

and testing before 100 ms or when training was before 100 ms and testing between 100 and 200 

ms. This is because of the sustained prolonged activity to the preceding stimulus (see above) and 

reflects decoding of the previous stimulus. Such decoding of the previous stimulus is only 

possible for the standard sequence, since only in that sequence the order of the stimuli (within a 

quintet) was fixed.  

During the response phase of the current stimulus, i.e. after 100 ms, the classification 

scores were higher for the random compared to the standard sequence, a difference reaching 

significance in several 20 ms long bins (randomization test; stippled boxes in Figure 3C for 

trained-test bins > 100ms). The only exception was a reversal of the difference in classification 

scores (greater for the standard sequence) for the late 380-400 bin. This likely reflects decoding 

of the next stimulus of the standard sequence where the order of the stimuli was fixed within a 

quintet. This interpretation is supported by the stronger decrease in generalization for the 

standard compared with the random sequence when the testing bin preceded the 380-400 training 

bin. Overall, the above analyses of the time course of decoding for the two sequences support a 

higher classification accuracy for random compared with standard sequence stimuli. The apparent 

higher classification accuracy for the standard sequence during the early part of the stimulus 

presentation reflects the sustained, stimulus selective activity from the previous stimulus.   

We performed several control analyses to assess the generality of the above reported 

findings. First, we trained classifiers using the whole population of 178 MUA sites. Except for 

the expected overall increase in classification accuracy, the results were highly similar with those 



obtained by the smaller sample of sites analyzed above (Figures 2C, 4A, 4D and 4G). Second, in 

the above analysis, only one (randomly selected) sample of 9 stimuli from the 15 random 

sequence stimuli was employed. To assess whether the results obtained above were specific to 

that sample of 9 random sequence stimuli, we resampled 50 times 9 random sequence stimuli and 

performed the classification procedure for each of these 50 sampled stimulus sets. As shown in 

Figure 2C, the range in classification accuracy due to stimulus variability was relatively small 

and could not explain the enhanced encoding for the random relative to the standard sequence. 

Finally, we repeated the classification analyses for the data of each individual animal, showing 

that similar effects were present in each animal (Figure 4). The stimulus resampling and the 

individual monkey analyses reassure that the effects we report here are not due to stimulus 

differences between the two sequence types but are related to differences between the sequences 

per se.   

 

Discussion 

fMRI studies in humans (Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010; den 

Ouden, Friston, Daw, McIntosh, & Stephan, 2008; Kok et al., 2012) and electrophysiological 

studies in nonhuman primates (Meyer & Olson, 2011; Meyer et al., 2014; Kaposvari et al., 2016; 

Ramachandran et al., 2016) showed a decreased activity to predictable visual stimuli in primary 

visual cortex and inferior temporal cortex. Despite the decreased activity to an expected grating 

orientation, Kok et al. (2012), found an increased encoding of orientation in human V1 using 

multivoxel pattern analysis of fMRI blood oxygen level dependent (BOLD) responses. Using a 

statistical learning design (Kaposvari et al., 2016), we found an increased image encoding by IT 

neurons for unpredictable stimuli in a random sequence compared with predictable stimuli in 



sequence of fixed stimuli. Although during the initial part of the stimulus presentation, 

classification was higher for the predictable compared to the unpredictable stimuli, this difference 

could be explained by the well-known prolonged sustained response of IT neurons and does not 

require other expectation-based mechanisms.  

Although we do not have behavioral evidence that the monkeys learned the transitional 

probabilities of the standard sequence, we do know that their IT neurons carry predictive signals. 

Kaposvari et al. (2016) showed for the same MUA sites and stimulus sequences in the same 

animals an enhanced response to a stimulus that was presented at the wrong position inside a 

quintet (“deviant”) and a decreased response to the standard compared to the random sequence, 

two signatures of prediction-related neural responses (also see Figure 2A).  Furthermore, we took 

in the present analysis only the 3 last stimuli of each quintet since for these stimuli predictive 

signals were present (Kaposvari et al., 2016). Despite this evidence for predictive signals in these 

animals’ IT neurons, no evidence for an increased encoding of the predictable stimuli was 

present. To the contrary, we found evidence for a decreased encoding of the predictable stimuli. 

The reason(s) of the apparent discrepancy between Kok et al. (2012) and our macaque 

data is difficult to pinpoint, because of the many differences between the two studies. First, we 

employed MUA spiking activity while they used BOLD responses which have a much coarser 

spatial resolution. In fact, it is not clear which neural properties drive MVPA orientation signals 

in human V1 (Alink et al., 2010; Freeman, Brouwer, Heeger, & Merriam, 2011; Pratte, Sy, 

Swisher, & Tong, 2016). Previous studies showed that classification analyses of MUA can be 

employed as a proxy to classification of single unit responses in IT (Yamins et al., 2014), while 

the relationship between BOLD fMRI MVPA and single unit selectivity is not straightforward 

(Dubois, de Berker, & Tsao, 2015). Second, the fMRI MVPA analyses have information about 



the across-presentation correlations amongst the simultaneously measured activations of the 

voxels, while across-presentation correlations in spiking activity (“noise correlations”) were not 

included in our decoding analyses. However, we believe that this is unlikely to explain the 

discrepancy between the Kok et al. (2012) study and our results. Spiking activity correlations 

occur in the 100-1000 ms range (e.g., Bair, Zohary, & Newsome, 2001; Arandia-Romero, 

Tanabe, Drugowitsch, Kohn, & Moreno-Bonte, 2016; Engel, Steinmetz, Gieselmann, Thiele, 

Moore, & Boahen, 2016), while that for BOLD is in the 10 s range (e.g., Li, Bentley, & Snyder, 

2015; peak frequency of correlations: 0.06Hz). Given the long time constant of the hemodynamic 

response function, compared with the shorter time constant of the dominant noise correlations of 

spiking activity, we argue that basically fMRI MVPA is more comparable to a multivariate 

analysis of spike counts that ignores spike correlations – like we did – than one that includes 

noise correlations. Furthermore, recent theoretical work (reviewed in Kohn, Coen-Cagli, 

Kanitscheider, & Pouget, 2016) emphasized that details of the response covariance matrix is 

critical for evaluating the effect of correlations on population decoding, and such details are lost 

in MVPA due to the low spatial resolution of fMRI.  

Third, Kok et al. (2012) compared expected and unexpected, deviant stimuli when the 

subjects had the same expectation of a stimulus, while we compared predictable stimuli with 

stimuli that were shown in random order and thus for which no or perhaps a weak (transitional 

probability = 1/15) expectation was present. Kaposvari et al. (2016) showed that unpredicted, 

deviant stimuli produce an enhanced “surprise” response with respect to the neutral, random 

sequence stimuli, while predictable stimuli are suppressed relative to the random sequence 

condition. The latter expectation suppression had also a different time course compared with the 

surprise response to deviants. One might conjecture that the stimulus selectivity of the enhanced 



response to surprising stimuli is less than for expected stimuli, thus explaining the Kok et al. 

(2012) finding. However, Meyer and Olson (2011) showed a higher discrimination of 

unpredicted, surprising stimuli compared with predicted stimuli in monkey IT, which runs 

counter to the Kok et al. (2012) finding in human V1 and the above conjecture. Meyer and Olson 

(2011) found that deviant-induced prediction effects in IT scaled with stimulus preference, while 

the Kok et al. (2012) study found that the suppressive effect was strongest in voxels that least 

preferred the stimulus. The latter subtractive effect leads to a sharpened representation which 

may explain the increased encoding for expected stimuli observed in the Kok et al. study. Thus, 

potential differences between areas in multiplicative versus additive expectation effects may 

explain the discrepancy between the monkey IT and fMRI V1 data. Fourth, the subjects in both 

our and the Meyer and Olson monkey studies (Meyer & Olson, 2011; Meyer et al., 2014; 

Ramachandran et al., 2016) were exposed to the sequences for several weeks prior to recordings, 

while in the Kok et al. (2012) study, expectation was manipulated within a single session. Also, 

the subjects in Kok et al. (2012) were engaged in a discrimination of the stimuli, while our 

monkeys and those in the Meyer and Olson study were passively fixating. Thus, top-down 

processes are likely to have been fundamentally different in the monkey studies compared with 

the subjects in the Kok et al. (2012) study. In fact, the effects observed by Kok et al. (2012) may 

be more related to feature-based attention, which is known to result in sharpened stimulus 

representations (Maunsell & Treue, 2006), instead of expectation per se. Whichever the reason(s) 

of the discrepancy between the different findings, the Kok et al. and Meyer and Olson studies 

compared surprising with expected stimuli. However, we examined the effect of expectation 

suppression on image classification, which may well be different from the effect of surprise on 

classification. In fact, our results are in line with a recent human fMRI (Blank & Davis, 2016) 

that showed a decreased decoding in the posterior Superior Temporal Sulcus of expected auditory 



speech stimuli when these were primed by a visual presentation of the same word compared with 

auditory stimuli following a nonsense word, similar to our neutral, random condition. 

Interestingly, an enhanced classification was present when the primed speech stimuli were 

acoustically degraded. These findings were – as those of Kok et al. (2012) – interpreted in terms 

of predictive coding, but alternative accounts are possible, e.g. feature-based attention in the case 

of the strongly degraded stimuli and cross-modal (visual-auditory) repetition suppression in the 

case of the less-degraded auditory stimuli since the visual prime and primed auditory words were 

identical in the Blank & Davis study.   

Computational studies have shown that the effect of noise correlations on population 

coding can depend on many factors, including the pattern of signal and noise correlations and 

their readout (Averbeck, Latham, & Pouget, 2006; Kohn et al., 2016). Given that we did not 

measure the response covariance matrix and are ignorant about its readout, we cannot make 

claims about how well (i.e., quantitatively) the brain can decode the IT population responses. 

Chen, Lin, Hsu, & Hung (2015) assessed the effect of noise correlation in a small population of 

IT neurons (up to 87 neurons) on object decoding with a linear classifier. They found that noise 

correlations slightly decreased decoding, which is in line with their on average positive signal 

correlations. Thus, our decoding performance might be an overestimation. Our results and 

conclusion hold under the assumption that the response covariance structure is not affected by 

predictability. In this regard, our decoding analysis should be viewed as an assessment of the 

effect of predictability on the overall stimulus selectivity of a population of IT neurons. 

The reduced classification that we observed for the standard sequence compared with the 

random sequence stimuli fits the decreased response for the former compared with the latter 

stimuli. This effect of expectation suppression on classification is similar to the effect of 



repetition suppression on classification. Although fundamentally different neural mechanisms 

very likely underlie expectation suppression and repetition suppression (Vogels, 2016), the net 

functional effect could be the same: both resulting in decreased responses and classification 

accuracy (Kaliukhovich, De Baene, & Vogels, 2013). From a metabolic perspective, it makes 

sense that an object recognition system devotes less energy to processing a stimulus that is the 

same as a recently presented one (repetition suppression) or predicted by a preceding one 

(expectation suppression).   
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Figure Legends 

 

Figure 1. Stimuli and sequences. (A) The “standard sequence” consisted of a continuous 

presentation, without interstimulus interval, of 3 quintets. The 5 stimuli of a quintet were shown 

in a fixed order but the order of the 3 quintets was random. Stimulus duration was 293 ms. (B) In 

the “random sequence”, 15 stimuli were shown in random order. Stimulus presentation 

parameters were identical with those in the standard sequence. (C) The two groups of 15 stimuli 

employed in the study. The order of the 5 stimuli of each row correspond to that in the exposed 

quintet. Note that the top and bottom group of 15 stimuli were employed in the standard and 



random sequence, respectively, in monkey H, while the opposite assignment of stimulus group to 

sequence type was present in the other monkey.      

 

Figure 2. Responses and classification accuracy for standard and random sequence 

stimuli. A. Mean firing rate to random (r) and standard (s) sequence stimuli from 108 sites that 



were randomly chosen from the 178 MUA sites of both animals. The shaded bands indicate 

standard error of the mean, computed following the procedure by Loftus and Masson (1994). 0 

corresponds to stimulus onset and stimulus offset is indicated by the vertical line. (B) 

Classification accuracy for random and standard stimulus sequences. For each of 1000 decoding 

runs, responses of 108 sites were randomly chosen from 178 sites. The lines indicate the mean 

across the 1000 runs while the shaded bands indicate 95 percent confidence intervals based on 

percentiles of the distribution of the 1000 classification scores. The horizontal line corresponds to 

chance level performance. Same conventions as in (A). (C) Mean classification accuracy for 

random (r) and standard (s) sequence stimuli when decoding was performed using all MUA 178 

sites (100 resamplings). The dashed 'r#' lines correspond to the mean classification accuracies (20 

resamplings) obtained when each time sampling 9 from the 15 random sequence stimuli, showing 

the variability due to stimulus differences. Same conventions as in (B). Binwidth in all panels 

was 20 ms and no smoothing is present. 



 

Figure 3. Classification accuracy as a function of the training and testing time bin, 

obtained when employing 108 randomly sampled MUA sites. Each row corresponds to the time 

bin (width = 20 ms) that was employed to train the classifier. The columns correspond to the time 

bins that were employed to test the classifier that was trained using the binned data indicated by a 



row.  The main diagonal corresponds to the classification accuracies obtained when training and 

testing bins were identical.  The classification scores are indicated by color (see legend to the 

right of each panel). The classification scores are the mean of 1000 decoding runs, using each 

time a novel random sample of 108 sites from the 178 available sites. (A). Mean classification 

accuracies for standard sequence stimuli. (B). Mean classification accuracies for random 

sequence stimuli.  (C). Difference between classification accuracies for the standard and random 

stimulus sequences (standard (s) – random (r)). The boxes with stippled lines indicate the time 

bins where the difference was significant (randomization test; p < 0.05).  



 

Figure 4. Classification accuracy as a function of the training and testing time bin, 

obtained when employing all 178 MUA sites (A, D, and G), the MUA data of monkey H (87 

MUA sites; B, E and H) and the MUA data of monkey O (91 sites; C, F and I).   (A, B and C) 

plot classification accuracies for standard sequence stimuli, (D, E and F) for random sequence 

stimuli, and (G, H and I) plot the difference between standard and random sequence stimuli 



classification accuracies. The mean classification accuracies are averages of 100 resamplings. 

Same conventions as in Figure 3.  


