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Abstract14

This paper presents an efficient approach to compute the bounds on the reliability of a structure15

subjected to uncertain parameters described by means of imprecise probabilities. These impre-16

cise probabilities arise from epistemic uncertainty in the definition of the hyper-parameters of a17

set of random variables that describe aleatory uncertainty in some of the structure’s properties.18

Typically, such calculation involves the solution of a so-called double-loop problem, where a crisp19

reliability problem is repeatedly solved to determine which realisation of the epistemic uncertain-20

ties yields the worst or best case with respect to structural safety. The approach in this paper aims21

at decoupling this double loop by virtue of the Augmented Space Integral. The core idea of the22

method is to infer a functional relationship between the epistemically uncertain hyper-parameters23

and the probability of failure. Then, this functional relationship can be used to determine the24

best and worst case behaviour with respect to the probability of failure. Three case studies are25

included to illustrate the effectiveness and efficiency of the developed methods.26

Keywords: imprecise reliability analysis, simulation-based method, interval variable, augmented27

space28

1. Introduction29

Methods for uncertainty quantification are becoming widespread within the engineering com-30

munity. However, their practical application becomes challenging whenever the analyst is con-31

fronted with insufficient data, as prescribing probability density functions that are commonly used32
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to represent the uncertainty is far from trivial in this case. In such scenario, the framework of33

imprecise probabilities has been proven to be a viable alternative approach to traditional proba-34

bilistic methods [1]. Following the framework of imprecise probabilities, the epistemic uncertainty35

that results from such lack of data can be explicitly taken into account by considering credal sets36

of distribution functions that are consistent with the available information [2], as for instance illus-37

trated in the context of fitting data to accelerated life tests [3], system reliability applications [4],38

model validation [5, 6] or risk-based design optimization [7].39

Practically speaking, however, the calculation of the bounds on probabilistic measures such as40

the probability of failure based on these credal sets of distributions is hindered by the non-negligible41

computational cost that is associated with propagating both sources of uncertainty (aleatory and42

epistemic) jointly towards the model responses, even when simplified imprecise probability models43

such as parametrized p-boxes are considered [8]. Typically, double loop approaches are deployed44

to propagate these uncertainties, where the outer loop scans the parameter space spanned by the45

epistemic uncertainties, while the inner loop calculates a failure probability for each realisation46

within this epistemic space. There is considerable research effort aimed at reducing this compu-47

tational cost. For instance, series expansion methods have been introduced (see e.g., [9], [10]) to48

approximate the epistemic uncertain parameters via series expansion or orthogonal polynomial49

expansion schemes (see e.g., [11]), or Chebyshev polynomial based schemes such as presented in50

[12]. For a more rigorous analysis of Monte Carlo methods for propagating imprecise probabilities,51

the reader is referred to [13, 14]. However, due to assumptions on the local nature of the solu-52

tion manifold around the expansion point, these methods are often limited to small-to-moderate53

levels of epistemic uncertainty [15]. An alternative approach lies in the reduction of the compu-54

tational cost associated with the deterministic solution of the considered model. In this context,55

many efficient surrogate modelling schemes for the propagation of imprecise probabilistic problems56

have been proposed using sparse polynomial chaos expansion representations of the model (see57

e.g., [16, 17]), support vector machines [18], interval predictor models [19, 20] or variants of the58

Sobol-Hoeffding decomposition (also known as HDMR representation) of the relation between the59

epistemic parameters and the probability of failure [21, 22], providing an efficient and accurate60

approximation of the problem. Some of the aforementioned methods even allow performing a61

global sensitivity analysis of the model, as reported in e.g. [17, 22]. Yet another group of methods62

are the so-called ‘decoupling approaches’, which aim at decoupling the earlier described double63

2



loop. For instance, the Operator Norm framework, as presented in recent work by some of the64

authors (see [23, 24, 25]) is proven to be extremely efficient, but its application is limited to linear65

models. Finally, the idea of using augmented space methods, as introduced by [26] in the context66

of probabilistic failure analysis and further developed for sensitivity analysis and reliability-based67

optimization in, e.g. [27, 28, 29, 30, 31, 32], might also provide a solid foundation to build strate-68

gies to reduce the computational cost. In the context of imprecise probabilities, similar methods69

were introduced by [21, 22, 33] and independently by [34] in a different form. Following these70

approaches, the main idea is to propagate the epistemic and aleatory uncertainty jointly in a71

purely aleatory, augmented space that is optimal with respect to a certain well-defined measure,72

in such a way that both sources of uncertainty can be decoupled again at the response side.73

The contribution presented in this paper in fact is a combination of the latter two classes of74

methods. The core idea is to employ the propagation of the uncertainty in augmented space to75

derive a functional relationship between the epistemic uncertain parameters and the probability76

of failure, which is then used to decouple the double loop. This relationship is established by77

virtue of Bayes’ theorem. The work is closely related to recent work of the authors [35], where78

the Augmented Space Integral method (ASI) is integrated within the Directional Importance79

Sampling [36] for the efficient calculation of the bounds on the first excursion probability of linear80

systems subjected to a Gaussian excitation. The contributions in this paper reach wider than81

the methods described in [35] since they are applicable to nonlinear models, as well as non-82

Gaussian uncertainties. This is specifically obtained by integrating advanced simulation methods83

such as Subset Simulation and Importance Sampling into the ASI framework. This contribution84

is organized as follows. In Section 2, the definition of imprecise reliability analysis problem is85

first briefly given. Then, the mathematical formulation of the proposed framework is developed86

in Section 3. Then, in Section 4, various examples are presented to show the performance of the87

proposed approach. Finally, Section 5 lists the conclusions of the paper.88

2. Imprecise reliability89

In general, the uncertain parameters of the structure under consideration can be represented90

using two kinds of variables: imprecise (subjective) random variables and crisp (objective) random91

variables. The objective random variables represent the aleatory uncertainty on the actual model92

quantity via a probability density function (PDF) f(y). These random variables are for the93
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remainder of this paper denoted as y = [y1, · · · , yny ]T , with ny ∈ N the number of crisp random94

variables. The imprecise random variables on the other hand take subjectivity in the definition95

of the probability density function explicitly into account by considering a set of probabilistic96

measures. Under this assumption, an imprecise random variable vector x = [x1, x2, . . . , xn]T97

is described by a credal set of probability measures to fully represent all sources of uncertainty.98

However, the application of the general framework of imprecise probability theory requires complex99

mathematical descriptions and methods. Therefore, simplified imprecise probability models such100

as parametric p-boxes are often preferable for a simpler utilization and representation [1]. Given101

a precise joint probability distribution function (PDF) f(x), which is parameterized by a vector102

θ ∈ Rn, a parametric p-box can be represented by the function f (x|θ) , which depends on a set103

of interval variables θ = [θ1, · · · , θn]T , where θ ∈ [θL,θU ]. Given these sources of uncertainty, the104

analyst is typically concerned with calculating the lower and upper bound of the failure probability,105

which are given as follows:106

107

PL
F = min

θ∈[θL,θU ]
P{G = g(x,y) ≤ 0} = min

θ∈[θL,θU ]

∫
IF (x,y)f(x|θ)f(y)dxdy (1)

108

PU
F = max

θ∈[θL,θU ]
P{G = g(x,y) ≤ 0} = max

θ∈[θL,θU ]

∫
IF (x,y)f(x|θ)f(y)dxdy (2)

109

where G = g(x,y) is the response function or performance function; F = {(x,y) : g(x,y)≤0},110

is the failure domain; IF (x,y) is the indicator function of the failure domain, IF (x,y) = 1 if111

(x,y) ∈ F, and IF (x,y) = 0 if (x,y) /∈ F . From an engineering point of view, the random vari-112

ables are assumed to be independent. Note that this assumption does not affect the generality,113

since dependent random variables can be orthogonalized using appropriate transformations [37].114

Concerning the solution of the integral equations in the ‘inner’ loop of Eq. (1) and Eq. (2), it is115

well documented that the application of quadrature schemes is unfeasible for most realistic appli-116

cations [38], even though lower/upper bounds [39] or approximate solutions [30] exist in certain117

cases. Therefore, the integral equation is usually solved by asymptotic approximations [40] or ad-118

vanced simulation methods such as Subset Simulation [41], Importance Sampling [42], Directional119

Importance Sampling [36] or the Probability Density Evolution Method [43] in case of stochastic120

dynamics. To determine the bounds of PF using Eqs. (1) and (2), a solution of this integral equa-121

tion is required at each realisation of θ that the optimization algorithm in the outer loop generates.122
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Apart from nearly-trivial cases, such solution is numerically intractable without resorting to either123

high-performance computing infrastructures or surrogate modelling approaches, since depending124

on the problem, O(2) to O(6) reliability problems need to be solved (see e.g. [23], for numerical125

examples), each potentially requiring O(3)−O(6) deterministic model evaluations depending on126

the applied simulation method, the order of magnitude of PF and the desired variance on this127

estimator. Herein, O is used to denote ‘order of magnitude’.128

3. Proposed approach129

This section presents an efficient approach to approximate the solution to Eqs. (1) and (2)130

without having to solve the associated double-loop problem. This method is based on the Aug-131

mented Space Integral (ASI) method, as also introduced by some of the authors in [32] in the132

context of reliability based design optimization. In essence, the proposed approach aims at replac-133

ing the integral equation in the ‘inner’ loop of Eqs. (1) and (2) by an a priori defined functional134

relationship between the failure probability and the epistemic parameters θ, i.e., PF (θ). Then,135

based on PF (θ), the lower and upper bound, respectively PL
F and PU

F , are obtained. Section 3.1136

describes the basic formulation of the proposed approach. Section 3.2, Section 3.3 and Section 3.4137

then illustrate how the formulation can be applied using three simulation-based methods: Monte138

Carlo simulation, Importance Sampling and Subset Simulation, respectively. Section 3.5 summa-139

rizes the procedure of the proposed ASI methodology to provide a practical guide on how to apply140

this method.141

3.1. Augmented space integral142

The augmented space idea provides an efficient means for calculating the Failure Probability143

Function (FPF) PF (θ) and was first proposed by Au [44]. In an augmented space, the epistemically144

uncertain hyper-parameter vector θ is no longer characterized as an interval but it is modeled as145

a random variable vector with an instrumental probability distribution ϕ(θ). Note that ϕ(θ) is146

solely used as a numerical tool to estimate the FPF and not as a means to describe the uncertainty147

on θ, as this would obviously violate the interval paradigm. Then, applying Bayesian theory, PF (θ)148

can be calculated as [44]:149

PF (θ) =
ϕ(θ | F )P (F )

ϕ(θ)
(3)

where the instrumental distribution ϕ(θ) can be selected arbitrarily, for example, either Gaussian150

or Uniform distributions can be employed [44]; P (F ) is the failure probability of the augmented151
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space problem, that is:152

P (F ) =

∫∫
IF (x,y)f(x | θ)ϕ(θ)f(y)dθdxdy (4)

which can be estimated using any suitable reliability method; and ϕ(θ | F ) is the posterior153

distribution of θ conditioned on the occurrence of the failure event, which can be estimated by154

performing reliability analysis in the augmented space. The challenge for practical application155

of Eq. (3) lies usually in the estimation of ϕ(θ | F ). In [44], histograms are used to represent156

ϕ(θ | F ) in order to analyze the reliability sensitivity with respect to design parameters for157

dynamic structural systems. Alternatively, in [27], the Maximum Entropy method is adopted to158

approximate the posterior distribution, leading to an estimator for PF (θ) which is an explicit159

expression of θ. It was further applied to the solution of reliability-based design optimization160

problems of dynamic systems in [28].161

In this contribution, the framework provided by the augmented space concept is further de-162

veloped, such that there is no need to fit a density function to describe the posterior distribution163

ϕ(θ | F ). For this purpose, recall that the target distribution ϕ(θ | F ) is equal to:164

ϕ(θ | F ) =

∫
ϕ(θ | (x,y), F )f((x,y) | F )dxdy (5)

where the expression of ϕ(θ | (x,y), F ) is given by (see Appendix A for the detailed mathematical165

derivation):166

ϕ(θ | (x,y), F ) = IF (x,y)
f(x | θ)

∆(x)
(6)

with ∆(x) = Eθ [(f(x | θ))(ϕ(θ))−1], where Eθ [·] represents expectation with respect to θ. The167

second term in the integral in Eq. (5), that is f(x,y | F ), can be expressed as shown below.168

f(x,y | F ) =
IF (x,y)f(x,y)∫

IF (x,y)
∫
f(x,y,θ)dθdxdy

=
IF (x,y)f(x,y)

P (F )
(7)

Substitution of Eqs. (6) and (7) into Eq. (5) allows rewriting ϕ(θ | F ) as:169

ϕ(θ | F ) =
1

P (F )

∫
IF (x,y)f(x | θ)

∆(x)
f(x,y)dxdy (8)

Finally, substitution of Eq. (8) into Eq. (3) leads to the sought expression for the FPF, that170

is PF (θ), which is equal to:171
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PF (θ) =
1

ϕ(θ)

∫
IF (x,y)f(x | θ)

∆(x)
f(x,y)dx

=
1

ϕ(θ)
E

[
IF (x,y)f(x | θ)

∆(x)

]
(9)

where E[·] represents expectation under the marginal distribution f(x,y). This equation172

reveals that the calculation of FPF PF (θ) reduces to determining the expected value described in173

Eq. (9). This expected value can be computed using simulation methods, as will be illustrated174

in the next sections. This implies that Eq. (9) actually provides a means for determining the175

functional form of the failure probability as a function of the distribution parameters.176

Then, to compute the bounds on PF , i.e., PL
F and PU

F , the following optimization problems177

have to be solved:178

PL
F = min

θ∈[θL,θU ]
PF (θ) (10)

to determine the lower bound, and179

PU
F = max

θ∈[θL,θU ]
PF (θ) (11)

to determine the upper bound. As such, rather than solving a reliability problem for each step180

of the outer loop optimization, the approximation of the bounds is reduced to solving a single181

reliability problem in augmented space, followed by two deterministic optimization problems over182

the a priori defined function PF (θ) as given in Eq. (9). The next sections deal with specific183

implementation strategies to compute PF (θ) in an efficient way using simulation methods184

3.2. Implementation with Monte Carlo simulation185

The most straightforward implementation to solve the integral in Eq. (9) is to apply Monte186

Carlo simulation. Note that Monte Carlo simulation is applied in the augmented space (x,y,θ).187

As such, samples of f(x,y) = f(x)f(y) are generated, and the estimate can be readily obtained.188

The procedure is denoted in the following as ‘ASI-MCS’ and is described below.189

1. Generate samples of f(x). As f(x) is a marginal distribution, it cannot be directly sampled190

since there may be no closed-form expression in the general case. Therefore, sampling from191

this distribution has to be performed as follows. First, generate samples
{
θ(j), j = 1, . . . , N

}
192

that follow ϕ(θ). Then, for each of these samples, generate samples
{
x(j), j = 1, . . . , N

}
,193

each of them distributed according to f
(
x | θ(j)

)
. As such, a set of samples

{(
x(j),θ(j)

)
, j = 1, . . . , N

}
194
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that follows f(x,θ) is obtained. Based on these samples, and discarding the samples θ(j),195

the remaining set of samples
{
x(j), j = 1, . . . , N

}
is distributed as the marginal distribution196

f(x).197

2. Generate samples from f(y). In this sense, note that a number of samples can be directly198

generated from f(y).199

3. Compute the estimate for PF (θ) based on the samples set
{(
x(j),y(j)

)
, j = 1, . . . , N

}
as:200

P̂F (θ) =
1

ϕ(θ)

1

N

N∑
j=1

IF
(
x(j),y(j)

)
f
(
x(j) | θ

)
∆ (x(j))

(12)

The estimator P̂F (θ) is obviously unbiased, and its variance is:201

Var
[
P̂F (θ)

]
≈ 1

N − 1

 1

N

N∑
j=1

{
IF
(
x(j),y(j)

)
f
(
x(j) | θ

)
ϕ(θ)∆ (x(j))

}2

− P̂ 2
F (θ)

 (13)

It should be noted that the proposed ASI approach is implemented by using MCS only once202

to obtain the failure probability as a function. In other words, a single run of MCS suffices for203

determining the failure probability as an explicit function of θ. Hence, repeated reliability analyses204

are avoided and the double loop is effectively broken, as illustrated in Eqs. (10) and (11). It is205

expected that carrying out ASI-MCS should be more efficient from a numerical viewpoint than206

applying MCS for specific crisp values of θ. This is due to the fact that a relatively large failure207

probability is estimated in the augmented space (P (F ) in Eq. (4)), in opposition to a possibly208

small failure probability PF (θ) for certain values of θ.209

3.3. Implementation with Importance Sampling210

The proposed framework as cast in Eqs. (9), (10) and (11) can also be implemented using211

Importance Sampling, which is denoted as ‘ASI-IS’ for the remainder of the paper. Introducing212

an appropriate Importance Sampling function H(x,y) in the augmented space, the formulation213

for PF (θ) in Eq. (9) can be rewritten as:214

PF (θ) =
1

ϕ(θ)

∫
IF (x,y)f(x | θ)

∆(x)

f(x,y)

H(x,y)
H(x,y)dxdy (14)

In an augmented space, it may not be straightforward to select an optimal Importance Sampling215

function. Here, the following approach is adopted for determining H(x,y). The design point216

associated with the performance function can be solved with respect to a nominal value of the217

epistemic uncertain parameter, for example, θ0. This nominal value can be simply set as the218
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center of the hyper-rectangular domain associated with θ, i.e., θ0 = (θL +θU)/2. Then, based on219

the design point, which is denoted as [x∗,y∗], H(x,y) can be chosen as:220

H(x,y) = f(x)H(y|y∗) (15)

where f(x) is the marginal distribution associated with x and H(y|y∗) denotes the Importance221

Sampling density function associated with y. The density H(y|y∗) is equal to f(y) except for its222

expected value, which is set equal to y∗. Please note that x∗ is not included in the Importance223

Sampling density H(x,y) to allow exploring the failure region associated with different values224

of θ. An alternative approach for selecting H(x,y) could be based on an adaptive Importance225

Sampling density [45].226

Substituting Eq. (15) into (14) and considering that f(x,y) = f(x)f(y) and f(x) = ϕ(θ)∆(x)

allows rewriting PF (θ) as:

PF (θ) =
1

ϕ(θ)

∫
IF (x,y)f(x | θ)

∆(x)

f(x,y)

f(x)H(y|y∗)
f(x)H(y|y∗)dxdy

=
1

ϕ(θ)
EH

[
IF (x,y)f(x | θ)f(y)

∆(x)H(y|y∗)

]
(16)

where EH [·] denotes the expectation under H(x,y) in the augmented space.227

In case a suitable Importance Sampling density function has been chosen, then samples can228

be generated according to H(x,y). Suppose that a total of N samples are generated, that is229 {
(x(j),y(j)), j = 1, . . . , N

}
. Then, according to Eq. (16), PF (θ) is estimated as:230

P̂F (θ) =
1

ϕ(θ)

1

N

N∑
j=1

IF
(
x(j),y(j)

)
f
(
x(j) | θ

)
∆(x)(j)

f
(
y(j)
)

H (y(j)|y∗)
(17)

This estimator P̂F (θ) is also unbiased, and its variance is:231

Var
[
P̂F (θ)

]
≈ 1

N − 1

 1

N

N∑
j=1

{
IF
(
x(j),y(j)

)
f
(
x(j) | θ

)
ϕ(θ)∆ (x(j))

f
(
y(j)
)

H (y(j)|y∗)

}2

− P̂ 2
F (θ)

 (18)

3.4. Implementation with Subset Simulation232

Subset Simulation is an efficient reliability analysis method which is capable of dealing with233

high dimensional problems, nonlinear performance functions and failure events of rare occurrence234

[46]. It expresses a low failure probability as the product of a series of conditional but larger prob-235

abilities, and utilizes Markov Chain Monte Carlo (MCMC) simulation to efficiently calculate these236
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probabilities. The proposed ASI framework can be implemented together with Subset Simulation,237

as described in the following.238

Suppose that in the augmented space (x,y,θ), a nested sequence of failure events is de-239

fined such that F1 ⊃ F2 ⊃ . . . ⊃ Fm = F , where Fi = {g(x,y) ≤ bi} (i = 1, 2, . . . ,m) and240

bi, i = 1, . . . ,m denote a set of intermediate threshold levels. Then, the failure probability can be241

expressed as:242

P (F ) = P (F1)
m∑
i=2

P (Fi | Fi−1) (19)

The corresponding intermediate threshold values b1, b2, . . . , bm−1 are adaptively determined,243

such that the corresponding probabilities P (F1) , P (F2 | F1) , · · · , P (Fm−1 | Fm−2) are set to be244

equal to p0, e.g., p0 = 0.1 for convenience. The final threshold bm = 0 is not chosen adaptively.245

The practical implementation of Subset Simulation in the augmented space (which is denoted246

as ASI-SS in the following) is almost identical to the original implementation of Subset Sim-247

ulation [41]. Specifically, suppose that there are Ns samples generated at the (m − 1)th stage248

of Subset Simulation in the augmented space. Moreover, it is considered that there are NF249

failure samples located at the final stage such that
{(
x(j),y(j),θ(j)

)
, j = 1, . . . , NF

}
, which250

are distributed as f(x,y,θ | F ). Discarding the samples corresponding to θ, the samples251 {
(x(j),y(j)), j = 1, . . . , NF

}
are distributed according to f((x,y) | F ). Furthermore, recall that252

the conditional distribution ϕ(θ | F ) can be expressed as:253

ϕ(θ | F ) =

∫
IF (x,y)f(x | θ)

∆(x)

f(x,y)

P (F )
dxdy

=

∫
f(x | θ)

∆(x)
f((x,y)|F )dxdy (20)

which can be estimated considering the samples distributed according to f((x,y) | F ), that is:254

ϕ̂(θ | F ) =
1

NF

NF∑
j=1

f
(
x(j) | θ

)
∆ (x(j))

(21)

Additionally, the augmented failure probability as defined in Eq. (4) is estimated by means of255

Subset Simulation according to:256

P̂ (F ) = pm−1
0

NF

Ns

(22)

Finally, substitution of Eqs. (21) and (22) into Eq. (3) leads to the following estimator for the257
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FPF PF (θ):258

P̂F (θ) =
pm−1

0

ϕ(θ)

1

Ns

Ns∑
j=1

IF
(
x(j),y(j)

)
f
(
x(j) | θ

)
∆ (x(j))

. (23)

The coefficient of variation (C.O.V.) of the estimator is equal to:259

Cov
[
P̂F (θ)

]
=

√√√√√ m∑
i=1

Var
(
P̂i

)
P 2
i

≈

√√√√√ m∑
i=1

Var
(
P̂i

)
P̂ 2
i

(24)

Please refer to Appendix B for the details on the derivation of this estimator.260

3.5. Summary of the proposed framework261

The practical application of the proposed strategy to compute the bounds of PF in an efficient262

way can be summarized as follows:263

1. Select a distribution ϕ(θ). A feasible choice is a uniform distribution, due to its simplicity.264

2. Perform simulation. ASI-MCS, ASI-IS or ASI-SS can be selected to carry out reliability anal-265

ysis in the augmented space (x,y,θ), producing failure samples
{(
x(j),y(j),θ(j)

)
: j = 1, . . . , NF

}
.266

3. Obtain the FPF estimator. The FPF can be obtained according to Eq. (12) for ASI-MCS,267

Eq. (17) for ASI-IS or Eq. (23) for ASI-SS.268

4. Imprecise reliability analysis. Solve the optimization problems in Eqs. (10) and (11) to269

determine the bounds of the failure probability, that is, PL
F and PU

F , respectively.270

4. Examples271

In this section, three examples are presented to illustrate the performance of the proposed272

strategy. For comparison purposes, the double loop method is also applied. It is implemented by273

using the class of convex optimization algorithms included in the Matlab function ‘fmincon’ to274

solve the ‘outer’ propagation problem, as shown in Eqs. (1) and (2). The ‘inner’ loop is solved using275

a Monte Carlo estimator, where the sample size depends on the actual case study. Furthermore,276

‘fmincon’ is also used to optimize over the failure probability function once the propagation of277

the imprecise probabilities is decoupled following the proposed strategy (i.e., to solve Eqs. (10)278

and (11)).279
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4.1. Example 1280

The first example considers the front axle of a car, which is an important component for the281

structural reliability since it bears heavy loads during operational use [47]. Often, an I-beam282

profile is used in the design due to its high bending strength and stiffness combined with its283

comparatively light weight (as compared to e.g., a rectangular cross-section). Fig. 1 shows a284

diagram of the cross-section of a typical front axle, where the thicknesses of web and flange are285

denoted as a and t, respectively.286

Figure 1: Diagram of automobile front axle.

To verify the static strength behavior of the front axle, the following performance function is287

formulated:288

g(x,y) = σs −
√
σ2 + 3τ 2 (25)

where x = [a, t]T is the vector of imprecise variables; y = [b, h,M, T ]T is the vector of objective289

random variables; and σs is the yield stress. According to the material property of the front axle,290

σs =680 MPa. The maximum normal stress and shear stress are σ = M/Wx and τ = T/Wρ,291

where M and T are bending moment and torque, respectively, Wx and Wρ are the section factor292

and polar section factor, respectively, which are equal to:293

Wx =
a(h− 2t)3

6h
+

b

6h

[
h3 − (h− 2t)3

]
(26)

294

Wρ = 0.8bt2 + 0.4
[
a3(h− 2t)/t

]
(27)

All the variables are assumed to be independent with respect to each other and the probability295

distributions associated with each of them are listed in Table 1. The mean values of a and t, are296
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modeled as interval variables, i.e., θ1 = µa ∈ [11, 13] and θ2 = µt ∈ [13, 15], respectively. Note297

that the distributions of those parameters that must be positive due to physical reasons, i.e., a, t,298

b and h, are truncated such that no samples with negative values are generated.299

Table 1: The distribution information of the random variables in Example 1

Random variable a(mm) t(mm) b(mm) h(mm) M(KN ·m) T (KN ·m)

Mean value θ1 ∈ [11, 13] θ2 ∈ [13, 15] 65 85 3.5 3.1

Standard deviation 1.2 1.4 6.5 8.5 0.35 0.31

Distribution Normal Normal Normal Normal Log-Normal Log-Normal

Figure 2: Evolution of the failure probability and its coefficient of variation with respect to the number of samples

obtained by ASI-MCS (Example 1).

The proposed approaches, i.e., ASI-MCS ASI-IS and ASI-SS, are applied to carry out the300

imprecise reliability analysis in the augmented space. First, different sample sizes are used to301

investigate the performance with respect to the computation cost. Figs. 2, 3 and 4 show the302

evolution of the results of the proposed ASI-MCS, ASI-IS and ASI-SS, respectively, with respect303

to the sample set size. Based on this, the bounds for the failure probability (P̂U
F and P̂L

F ) are304

obtained. It is observed that the three approaches are capable of determining the bounds of the305

failure probability. Moreover, both ASI-IS and ASI-SS outpeform ASI-MCS, as they require less306
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Figure 3: Evolution of the failure probability and its coefficient of variation with respect to the number of samples

obtained with ASI-IS (Example 1).

Figure 4: Evolution of the failure probability and its coefficient of variation with respect to the number of samples

obtained with ASI-SS (Example 1).
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Figure 5: FPF PF (θ1, θ2) obtained by ASI-MCS.

samples for producing comparable bounds. This was an expected result, as both Importance307

Sampling and Subset Simulation are usually more efficient than Monte Carlo.308

Based on these results, and considering the balance between the computational cost and ac-309

curacy, the following setting of the approaches is used for further analysis: N = 104 samples for310

ASI-MCS, N = 4000 for ASI-IS (excluding the cost of determining design point) and N = 6000311

for ASI-SS (where Ni = 2000, i = 1, 2, 3, samples are considered for each level). As mentioned be-312

fore, only one reliability analysis in the augmented space is required to estimate the FPF. In order313

to visualize the results produced by the proposed strategy, the FPF resulting from ASI-MCS is314

shown in Fig. 5. Furthermore, the FPF obtained by the three proposed approaches are compared315

in one-dimensional plots, i.e., Pf (θ1, θ2 = 14) and Pf (θ1 = 12, θ2), as shown in Figs. 6a and 6b,316

respectively. It can be seen that the results are quite consistent with the exact, point-wise values317

of FPF obtained by direct MCS with 106 samples associated with each point in the curve.318

Finally, Table 2 shows the results obtained by performing the calculation of the bounds via319

the three proposed approaches, as well as a validation using a conventional double-loop Monte320

Carlo estimation. Specifically, the table shows the obtained estimators for the lower and upper321

bounds, as well as the coefficient of variation of these estimators. It can be seen from the table322

that the results obtained by different approaches agree with each other, and that the coefficients323

of variation associated with the obtained bounds are reasonable taking into account the gain in324
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(a) PF (θ1, θ2 = 14) (b) PF (θ1 = 12, θ2)

Figure 6: FPF obtained with the proposed strategy considering Monte Carlo (ASI-MCS), Importance Sampling

(ASI-IS) and Subset Simulation (ASI-SS) and comparison with FPF obtained with direct Monte Carlo.

computational efficiency. Of course, the results obtained by the double-loop approach are the325

most accurate, but they come at a much higher computational cost.326

Table 2: Estimated probability bounds and their coefficient of variation for Example 1

Method P̂U
F Cov(P̂U

F ) P̂L
F Cov(P̂L

F ) N

ASI-MCS 0.0368 0.12 3.5176 ×10−4 0.16 104

ASI-IS 0.0305 0.15 3.6401 ×10−4 0.11 4000

ASI-SS 0.0330 0.24 3.4383 ×10−4 0.25 3×2000*

Double-loop 0.0384 0.016 3.5400 ×10−4 0.050 21× 105 + 42× 106

*3× 2000 denotes that Subset Simulation required 3 simulation stages, each of them comprising 2000 samples.

4.2. Example 2: Composite beam327

The second case study comprises the analysis of a composite beam model. This example is328

shown in Fig. 7 and is partially based on the example presented in [48]. The beam has a width329

of A(mm), a height of B(mm) and a length of L(mm). The Young’s modulus of the material is330

denoted as Ew. In addition, the beam is reinforced by an aluminum plate clamped on the bottom331

of the beam and whose Young’s modulus is denoted as Ea. This aluminum plate possesses a cross332

section of width C(mm) and height D(mm). The beam is loaded with six external vertical forces,333

P1, P2, P3, P4, P5 and P6(kN). These forces are applied discrete locations L1, L2, L3, L4, L5 and L6334

along its longitudinal direction. Failure is defined as maximum bending normal stress of the beam335
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exceeding the allowable tensile stress S (strength). The performance function associated with this336

failure criterion is:337

g(x,y) = S − σmax(x,y) (28)

where S = 0.0198 GPa is the allowable tensile stress; x = [A,B,C,D]T is the vector of imprecise338

variables; y is the vector of the remaining 15 objective random variables, which are the beam’s339

length, the Young’s moduli of the beam and plate, and the locations and magnitudes of the vertical340

forces; σmax(x,y) is the maximum stress given by σmax(x,y) = max {σk(x,y) : k = 1, . . . , 6} and341

σk(x,y) is the stress of the cross-section which given by:342

σ1(x,y) =

[
(L1/L)

∑6
i=1 Pi (L− Li)

]
Ymax(x,y)

W (x,y)
(29)

σk(x,y) =

[
(Lk/L)

∑6
i=1 Pi (L− Li)−

∑k−1
i=1 Pi (Lk − Li)

]
Ymax(x,y)

W (x,y)
(k = 2, . . . , 6) (30)

where343

Ymax(x,y) =
0.5AB2 +DC(B +D)Ea/Ew

AB +DCEa/Ew
(31)

344

W (x,y) =
AB3

12
+ AB

[
Ymax(x,y)− B

2

]2

+
CD3Ea
12Ew

+
CDEa
Ew

[
D

2
+B − Ymax(x,y)

]2

(32)

The mean values of A,B,C and D are modeled as interval variables. The distribution informa-345

tion of the random variables is given in Table 3. Note that the distributions of those parameters346

that must be positive for physical reasons, for example, the geometrical and material properties,347

are truncated such that no negative samples are generated. Moreover, all random variables are348

assumed to be independent.349

Figure 7: Schematic illustration of the Composite Beam
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Table 3: Distribution information of random variables for the composite beam

No. Random variable Location parameter Scale parameter Distribution

1 A(mm) θ1 ∈ [95, 105] 5 Normal

2 B(mm) θ2 ∈ [190, 210] 10 Normal

3 C(mm) θ3 ∈ [75, 85] 4 Normal

4 D(mm) θ4 ∈ [18, 22] 1 Normal

5 L1(mm) 200 2 Normal

6 L2(mm) 400 4 Normal

7 L3(mm) 600 6 Normal

8 L4(mm) 800 8 Normal

9 L5(mm) 1000 10 Normal

10 L6(mm) 1200 12 Normal

11 L(mm) 1400 14 Normal

12 P1(KN) 15 3 Extreme value

13 P2(KN) 15 3 Extreme value

14 P3(KN) 15 3 Extreme value

15 P4(KN) 15 3 Extreme value

16 P5(KN) 15 3 Extreme value

17 P6(KN) 15 3 Extreme value

18 Ea(GPa) 70 0.7 Normal

19 Ew(GPa) 8.75 0.0875 Normal

The results obtained by the proposed strategy implemented considering Monte Carlo simula-350

tion, Importance Sampling and Subset Simulation, as well as the results stemming form a double351

loop Monte Carlo validation run are shown in Table 4. As noted from the Table, the obtained352

results agree rather well with the double loop result. It is observed that there exists a slight353

discrepancy in the calculation of the bounds, which is caused by the fact that the epistemic un-354

certainty is resolved over an approximation of the FPF. While this introduces small differences,355

there is a significant gain in computational efficiency. Furthermore, the coefficient of variation356

(Cov), as also illustrated in Table 4, gives a measure for the statistical accuracy of the estimator.357
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Table 4: Estimated probability bounds and their coefficient of variation for Example 2

Method P̂U
F Cov(P̂U

F ) P̂L
F Cov(P̂L

F ) N

ASI-MCS 0.4907 0.11 2.0512×10−3 0.12 104

ASI-IS 0.4806 0.14 1.8759×10−3 0.16 4000

ASI-SS 0.5040 0.18 2.4228 ×10−3 0.17 2×2000*

Double-loop 0.4682 0.011 2.25 ×10−3 0.059 10× 104 + 93× 105

*2× 2000 denotes that Subset Simulation required 2 simulation stages, each of them comprising 2000 samples.

4.3. Example 3: Car road dynamics358

4.3.1. General model introduction359

The third case study represents a quarter-car model, which is a 2 degree of freedom idealisation

of the realistic dynamics of the suspension of a car. Specifically, this case study is concerned with

assessing the bounds on several comfort metrics of a vehicle suspension, given several imprecisely

defined properties of the system. The quarter-car dynamics can be represented as a set of two

ordinary differential equations:

msẍs + cs(ẋs − ẋus) + ks(xs − xus) = 0 (33)

musẍus − cs(ẋs − ẋus)− ks(xs − xus) + ct(ẋus − ẋ0) + kt(xus − x0) = 0 (34)

with •̇ the time derivative of •, xus the displacement of the unsprung mass (i.e., the suspension360

components, wheel and other components directly connected to them), xs the displacement of the361

sprung mass (i.e., all components resting on the suspension), mus and ms the unsprung and sprung362

mass of a quarter of the car, cs and ct respectively the damping coefficients of the suspension and363

tire, ks and kt respectively the stiffness coefficients of the suspension and tire. Finally, x0 and ẋ0364

are the displacement and velocity in vertical direction that excite the bottom of the wheel (i.e.,365

the road profile). The complete road profile is denoted x0(t). A schematic representation of the366

model is given in figure 8.367

For the solution of this coupled system of ODEs, a state-space model is employed:368

d

dt


xus − x0

ẋus

xs − xus
ẋs

 = A


xus − x0

ẋus

xs − xus
ẋs

+


−1

4ct
mus

0

0

 ẋ0 (35)
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Figure 8: Schematic illustration of the quarter-car model

with the matrix A equal to:369

A =


0 1 0 0

−4kt
mus

−4(cs+ct)
mus

4ks
mus

4cs
mus

0 −1 0 1

0 4cs
ms

−4ks
ms

−4cs
ms

 (36)

Four state variables are considered, being respectively the tire deflection (xus − x0); the un-370

sprung mass velocity ẋus; the suspension stroke xs − xus, and sprung mass velocity ẋs. Typically,371

in the context of assessing the dynamical comfort of a car, two parameters are of interest: the372

suspension stroke (i.e., the relative displacement of the car body with respect to the unsprung373

mass) and the acceleration of the sprung mass. In the proceeding study, the damping effect of the374

tire, ct is considered negligible. The uncertain road profile x0(t) is modelled as a precise zero-mean375

Gaussian random field with squared exponential covariance kernel with a correlation length L of376

1 (m) and standard deviation of 1 (mm). Note that a single exponential kernel cannot be used in377

this case since it is not differentiable at zero-lag.378

The dynamics of the car are simulated over a distance of 50 (m), when the car is travelling379

at a speed of 10 (m/s). The one dimensional spatial domain is discretized into 1000 equidistant380

points and the time domain is discretized into time intervals of 0.005 (s). In the K-L expansion of381

x0(t), a total of 50 dependent Gaussian random variables are used. Considering the limit on the382

displacement and acceleration of spring mass, the performance function can be established as:383
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g(x,y) = min {g1(x,y), g2(x,y)}

g1(x,y) = 1−maxi=1,...,m

(
xs(x,ti)−xus(x,ti)

d

)
g2(x,y) = 1−maxi=1,...,m

(
ẍs(x,ti)

a

) (37)

where d = 3.5× 10−3(m) and a = 3.5× 10−2(m/s2) are the threshold values for the allowed stroke384

and acceleration of the sprung mass. The nominal parameters of the state-space model, as well as385

their uncertainty are listed in table 5. All distributions are truncated such that only non-negative386

realisations are generated for the physical parameters of the quarter-car model.387

Table 5: Parameters of the quarter car state-space model and their uncertainty

Parameter Mean value Standard deviation Distribution

ks(N/m) θ1 ∈ [400, 600] 50.53 Log-Normal

cs(N.s/m) θ2 ∈ [1600, 2200] 189.79 Log-Normal

ms(kg) 325 3.25 Normal

mus(kg) 65 6.5 Normal

kus(N/m) 2325.0 232.5 Log-Normal

4.3.2. Results and discussion388

The estimates of the bounds on PF using ASI-MCS and ASI-SS, as well as the bounds obtained389

by performing a double loop procedure are shown in Table 6. As noted from the Table, also in390

this case the bounds on PF match relatively well, especially taking into account the large gain in391

computational efficiency obtained with the proposed strategy.392

Table 6: Estimated probability bounds and their coefficient of variation for Example 3

Methods P̂U
F Cov(P̂U

F ) P̂L
F Cov(P̂L

F ) N

ASI-MCS 0.0179 0.17 7.3 ×10−3 0.15 104

ASI-SS 0.0158 0.28 7.0 ×10−3 0.24 2×2000*

Double-loop 0.0160 0.025 7.9 ×10−3 0.034 6× 104 + 59× 105

*2× 2000 denotes that Subset Simulation required 2 simulation stages, each of them comprising 2000 samples.

As an additional remark, it should be noted that for this particular example, the application393

of ASI-IS was not explored. While in principle it is possible to apply Importance Sampling to394
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this problem (see, e.g. [29]), the authors chose not to explore this direction further in order to395

focus on the assessment of ASI as a general framework and less on the implementation details of396

a specific Importance Sampling density function.397

5. Conclusions398

This paper presents a decoupling approach for the propagation of imprecise probabilities based399

on the concept of the Augmented Space Integral. Rather than aiming at solving the double loop400

that is typically associated with the propagation of parametric p-boxes, this approach represents401

the epistemic uncertain parameters by means of an auxilliary distribution to augment the failure402

probability calculation to the joint space of aleatory and epistemic uncertain parameters. Then, by403

virtue of Bayes’ theorem, an explicit function between the epistemic parameters and the probability404

of failure of the system can be retrieved. This function is then used to calculate the bounds on405

the probability of failure.406

Following conclusions can be made:407

• The proposed approach is numerically more efficient than a typical double loop by several408

orders of magnitude, however at the cost that the calculated bounds are only approximate.409

• The coefficient of variation of the estimator of the probability bounds can be used as a mea-410

sure for the accuracy of this approximation, allowing for an a posterior accuracy assessment.411

• No assumptions on the underlying nature of the structural model were made, making this412

methodology widely applicable413

While the results presented are encouraging, it should be kept in mind that the proposed414

approach also possesses limitations. Specifically, the number of imprecise distribution parameters415

that can be handled effectively cannot be that large, e.g. not beyond 10. This is due to the fact416

that estimating probability densities (as required in the proposed approach) becomes challenging417

in high dimensions, as documented in [31].418
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Appendix A. Distribution of θ conditioned on (x, y) and F426

An expression for ϕ(θ | x,y, F ) is next derived. First, using Bayesian theory in the augmented427

space, it is noted that:428

ϕ(θ | x,y) =
f(x,y | θ)ϕ(θ)

f(x,y)
(A.1)

When the probability space is limited to the failure region F instead of the whole augmented429

space Ω, Eq. (6) becomes:430

ϕ(θ | (x,y), F ) =
f((x,y) | θ, F )ϕ(θ | F )

f((x,y) | F )
(A.2)

where f(x,y | θ, F ) is the probability density function of (x,y) conditional on θ and F, which431

is given by:432

f((x,y) | θ, F ) =
IF (x,y)f((x,y) | θ)∫

IF (x,y)f((x,y) | θ)dxdy
=
IF (x,y)f((x,y) | θ)

PF (θ)
(A.3)

And f((x,y) | F ) is the probability density function of (x,y) conditional on F, which is given433

by:434

f(x,y | F ) =
IF (x,y)f(x,y)∫

IF (x,y)
∫
f(x,y,θ)dθdxdy

=
IF (x,y)f(x,y)

P (F )
(A.4)

Substitution of Eqs. (A.3) and (A.4) into Eq. (A.2) leads to the following expression for435

ϕ(θ | (x,y), F ).436

ϕ(θ | (x,y), F ) = IF (x,y)
f(x,y | θ)

f(x,y)

ϕ(θ | F )P (F )

PF (θ)
(A.5)

According to Eq. (3), it is noted that ϕ(θ) = ϕ(θ|F )P (F )/PF (θ). Inserting this equality into437

the last equation, it is found that ϕ(θ | (x,y), F ) can be further simplified to:438

ϕ(θ | (x,y), F ) = IF (x,y)
f(x,y | θ)

f(x,y)
ϕ(θ) (A.6)

It is emphasized that the probability density function ϕ(θ) is just a device to yield useful439

information. It is not meant to reflect the uncertainty associated with θ. Furthermore, it is noted440

that, without particular preference for the region of the epistemic parameters to be explored,441

a uniform distribution can be chosen for convenience and leads to appropriate estimates of the442

FPF [44]. Therefore, it is assumed that θ is uniformly distributed over its interval support, i.e.,443

θ ∼ U [θL,θU ]. Thus, ϕ(θ) is a constant within θ ∈ [θL,θU ]. Then, the marginal distribution444

f(x) can be rewritten as:445

f(x) =

∫ θU

θL
f(x | θ)ϕ(θ)dθ = ϕ(θ)∆(x) (A.7)
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where ∆(x) =
∫ θU
θL

f(x | θ)dθ is an integral over the interval support. Note that since all random446

variables are assumed as independent, calculating this integral is straightforward. For example, it447

can be calculated using numerical algorithms. An alternative way for expressing ∆(x) is:448

∆(x) =

∫ θU

θL
f(x | θ)dθ = Eθ

[
f(x | θ)

ϕ(θ)

]
(A.8)

where Eθ[·] is the expectation under ϕ(θ). This means that ∆(x) can be estimated through sam-449

pling. In fact, for the particular case where θ corresponds to the mean values of Gaussian random450

variables, ∆(x) can be derived in closed form. Suppose xi ∼ N (θi, σ
2
i ) , and θi ∼ U

[
θLi , θ

U
i

]
then451

∆(x) is equal to:452

∆(x) =

nθ∏
i=1

[
Φ

(
θUi − xi
σi

)
− Φ

(
θLi − xi
σi

)]
(A.9)

where Φ(·) is the cumulative probability function associated with a standard Gaussian distribution.453

Substituting Eq. (A.7) into (A.6) and recalling that y is independent from x allows determining454

the sought posterior distribution ϕ(θ | (x,y)), which is equal to:455

ϕ(θ | x,y) = IF (x,y)
f(x,y | θ)ϕ(θ)

f(x,y)
= IF (x,y)

f(x | θ)ϕ(θ)

f(x)
= IF (x,y)

f(x | θ)

∆(x)
(A.10)

Appendix B. Coefficient of variation of estimator for the failure probability estima-456

tor associated with Subset Simulation457

This appendix derives the C.o.v. of the estimator P̂F (θ) in Eq. (23) calculated by the proposed458

framework with Subset Simulation [41]. For simplicity in notation, let Pi = P (Fi | Fi−1) , P̂i =459

P̂ (Fi | Fi−1) , i = 1, . . . ,m − 1, ( where F0 = Ω) , Pm = P (F ) and I
(i)
jk = IFi

(
(x,y)

(i−1)
jk

)
where460

(x,y)
(i−1)
jk denotes the k -th sample in the j -th Markov chain at simulation level (i− 1). Thus:461

1) Variance of P̂1462

As the first stage of Subset Simulation involves Monte Carlo simulation, the variance is simply463

given as [41]:464

Var
(
P̂1

)
=
P1(1− P1)

N
≈ P̂1(1− P̂1)

N
(B.1)

2) Variance of P̂i (2 ≤ i ≤ m− 1)465

At the (i−1)-th level, suppose that a number of NC Markov chains is used and N/NC samples466

are generated for each of these chains. Under the assumption that the samples generated by467

different chains are uncorrelated, the variance of P̂i (i = 2, . . . ,m− 1) is given by [41] :468
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Var
(
P̂i

)
=
Ri(0)

N

1 + 2

N/NC−1∑
k=1

(
1− kNC

N

)
Ri(k)

Ri(0)

 (B.2)

Based on the Markov chain samples
{

(x,y,θ)
(i−1)
jk : j = 1, . . . , Nc; k = 1, . . . , N/NC

}
at the469

(i− 1)-th conditional level, the covariance Ri(k) can be estimated as:470

R̂i(k) =

 1

N − kNC

NC∑
j=1

N/NC−k∑
l=1

I
(i)
jl I

(i)
j,l+k

− P̂ 2
i (B.3)

3) Variance of P̂m(θ)471

For the last stage of Subset Simulation and for simplicity in notation, let V
(i)
jk =

IF (x(j),y(j))f(x(j)|θ)
∆(x(j))

472

and P̂m = P̂m(θ). Then the variance of P̂m is given by [41]:473

Var
(
P̂m

)
=
Rm(0)

N

1 + 2

N/NC−1∑
k=1

(
1− kNC

N

)
Rm(k)

Rm(0)

 (B.4)

Based on the Markov chain samples
{

(x,θ)
(m−1)
jk : j = 1, . . . , NC ; k = 1, . . . , N/NC

}
at the474

(m− 1)-th conditional level, the covariance Rm(k) is estimated as:475

Rm(k) ≈ R̂m(k) =

 1

N − kNC

NC∑
j=1

N/NC−k∑
l=1

V
(m)
jl V

(m)
j,l+k

− P̂ 2
m (B.5)

4) C.o.v. of P̂F (θ)476

At last, suppose all P̂i (i = 1, . . . ,m) are uncorrelated [41], then the C.o.v. of P̂F (θ) is given477

by:478

Cov
[
P̂F (θ)

]
=

√√√√√ m∑
i=1

Var
(
P̂i

)
P 2
i

≈

√√√√√ m∑
i=1

Var
(
P̂i

)
P̂ 2
i

(B.6)

where Var
(
P̂i

)
can be calculated according to Eqs. (B.1),(B.2) and (B.4).479
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