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ABSTRACT 
In object-oriented conceptual modelling, the Generalisation/Specialisation hierarchy and the Whole/Part 
relationship are prevalent classification schemes for object types. This paper presents an object-oriented 
conceptual model where, in the end, object types are classified according to two relationships only: existence 
dependency and generalisation/specialisation.  Existence dependency captures some of the interesting 
semantics that are usually associated with the concept of aggregation (also called composition or Part Of 
relation), but in contrast with the latter concept, the semantics of existence dependency are very precise and 
its use clear cut.  The key advantage of classifying object types according to existence dependency are the 
simplicity of the concept, its absolute unambiguity and the fact that it enables to check conceptual schemes 
for semantic integrity and consistency.  
We will first define the notion of existence dependency and claim that it is always possible to classify objects 
according to this relationship, thus removing the necessity for the Part-Of-relation and other kinds of 
associations between object types.  The second claim of this paper is that existence dependency is the key to 
semantic integrity checking to a level unknown to current object-oriented analysis methods.  In other words: 
existence dependency allows to track and solve inconsistencies in an object-oriented conceptual schema. 
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1. INTRODUCTION 

One of the main tasks in the object-oriented analysis process is the elaboration of the “real world”  model.  This 
model describes the Universe of Discourse at the conceptual level, without taking functional requirements in 
account yet.  This model is also called enterprise model [8] or entity object model [16].  Typical kinds of 
components are classes, attributes, methods and relationships between classes.  These relationships or 
associations organise object types (or classes) into classification schemes.  Most developers will agree that the 
“A Kind Of”  (or Generalisation/Specialisation) lattice and the “A Part Of”  (or aggregation) lattice are two 
primary ways of organising objects.  Nearly every object-oriented analysis method has special notations to 
denote these two association lattices [3, 5, 6, 10, 16, 21, 22].  There are of course many other kinds of 
relationships that can be defined and these are in general captured under the common denominator 
“associations” .  The concepts of Generalisation/Specialisation and Part-Of both reflect very natural and intuitive 
classification principles.  These concepts are considered crucial to object-oriented conceptual modelling because 
of their ability to reduce the complexity of conceptual schemes.  However, as pointed out in [7], one of the major 
problems with the use of the Part-of relation is that its semantics are insufficiently defined.  Many variants of the 
concept of aggregation exist and definitions are mostly subject to different interpretations.  The classification 
principle existence dependency, presented in this paper, captures the most interesting features of the principle of 
composition and has the advantage that its semantics are simple and clear.   
 
In addition to the simplicity and total absence of ambiguity, a very important motivation for classifying object 
types according to existence dependency is the ability to allow for quality control at a very high level.  In object-
oriented conceptual modelling, both the structure and the behaviour of object types have to be modelled.  Usually 
different techniques are used to capture both kinds of aspects. For example, a large number of object-oriented 
analysis (OOA) methods use an Extended Entity Relationship-like technique together with the concepts of 
Generalisation/Specialisation and “Part Of”  for specifying static aspects.  Finite State Machines and Event Trace 
Diagrams are used for capturing dynamic aspects.  Some of these structure and behaviour modelling techniques 
have overlapping semantics.  This means that the same aspects may be modelled several times in different 
schemes.  For example, the Generalisation/Specialisation-lattice should have an influence on how behaviour 
should be modelled.  If we assume that the technique of Finite State Machines is used for behaviour modelling, 
then these are examples of relevant questions: 
− Does a specialisation type inherit the state machine of the generalisation type? 
− Can it refine this state machine by adding, removing or redefining states, transitions or events ? 
− Can it restrict the behaviour of the generalisation type or extend it or both ?   
− Are the events of the specialisation type specialisations of the events of the generalisation type ? 
− Can a specialisation type override properties of the generalisation ? 
 
Many current OOA-methods do not answer these questions in a very precise or formal way.  For example, in 
OOSA the life-cycle of a subtype corresponds to a part of the life-cycle of its supertype [23].  This definition 
violates the broadly accepted notion of inheritance where subtypes inherit data and behaviour of their supertypes.   
 
It is clear that some kind of consistency checking between subschemes is required to ensure the quality of the 
conceptual schema.  This consistency checking can vary from a simple syntactic correspondence to a full 
semantic match between subschemes.  In [24] it was demonstrated how consistency between the “A Kind Of” -
lattice and behaviour modelling can be ensured.  In this paper we will demonstrate how the Existence 
Dependency lattice can serve as a starting point to derive overlapping semantics between static and dynamic 
schemes in general and to define schema constraints that will ensure consistency.   
 
Classifying object types according to existence dependency thus solves two problems at once.  First, it is a better 
alternative for the sometimes confusing concepts of aggregation and composition.  Secondly, it allows for 
semantic integrity control of object-oriented domain models to a level unknown by current object-oriented 
analysis methods. 
 
The paper is organised as follows.  Section 2 defines the concept of existence dependency and demonstrates that 
it is always possible to classify object types according to this relationship.  Existence dependency is then 
compared in more detail with the concept of aggregation (Section 2.4).  Finally, the paper presents the formal 
definition of the dynamic aspects of a conceptual model with an explicit existence dependency relation 
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(Section3) and demonstrates how this relation can be used as a starting point for semantic consistency checking 
between static and dynamic aspects of object types (Sections 3.3 and 3.6).   
 
Note that this paper presents a conceptual model where object types are classified according to existence 
dependency only in order to simplify the presentation of the results.  In practical situations, object types can be 
classified according to Generalisation/Specialisation as well.  For a formal definition of the latter relationship 
type and its consequences for modelling behavioural aspects, the reader is referred to [24]. 
 
 

2. EXISTENCE DEPENDENCY 

2.1 What is existence dependency ? 

The concept of existence dependency is based on the notion of the “ life”  of an object.  The life of an object is the 
span between the point in time of its creation and the point in time it is ended.  Existence dependency is defined 
at two levels: at the level of object types or classes and at the level of object occurrences. The existence 
dependency (ED) relation is a partial ordering on objects and object types which is defined as follows: 
 
Definition 1. 

Let P and Q be object types.  P is existence dependent of Q (notation: P ← Q) if and only if the life of each 
occurrence p of type P is embedded in the life of one single and always the same occurrence q of type Q.  p is 
called the existence dependent object (P is the existence dependent object type) and is existence dependent of 
q, called the parent (Q is the parent object type).  
 

A more informal way of defining existence dependency is as follows: 
If each object of a class A always refers to minimum one, maximum one and always the same occurrence of 
class B, then A is existence dependent of B. 

 
The result is that the life of the existence dependent object can not start before the life of its parent.  Similarly, 
the life of an existence dependent object ends at the latest at the same time the life of its parent ends.  This is 
illustrated in Fig. 1 
 

= Start of life = End of life

Possibilities for the life
span of an existence
dependent object

Life span  of
a parent object

Time

 
Fig. 1:  life span of parent and existence dependent object 

 
Example 1 

The life span of a loan of a copy (of a book) is always embedded in the life span of the copy that is on loan.  
Indeed, we can not have a loan for a copy if the copy doesn’ t exist.  And the life cycle of the copy cannot end 
as long as the life cycle of the loan is not ended.  In addition, a loan always refers to one and the same copy 
for the whole time of its existence.  Hence the object type LOAN is existence dependent of the object type 
COPY.  
 



4 

The notion of existence dependency is very similar to the concept of a dependency association as described in 
[17].  However, a major difference is that when an object is dependent from two parent instances, these parent 
instances need not to be of the same type.  A loan, for example depends on the existence of a copy instance and 
of a member instance. 

 
 

2.2 The Existence Dependency Graph (EDG) 

2.2.1 Basic Definition 

The existence dependency (ED) relationship is a partial ordering on object types as defined in the previous 
section.  The following definition establishes what we understand by a syntactically correct existence 
dependency graph.  
 
Definition 2 

Let 
�

be the set of object types in the conceptual schema.   

The existence dependency graph (EDG) is a relation that connects object types of �   and satisfies the 
following restrictions: 

1) An object type is never existence dependent of itself 
2) The EDG is acyclic.  

 
The two restrictions are motivated as follows: 
1a) The life span of an object is always embedded in itself.  As a result, one could say that an object is existence 
dependent of itself.  However, in the context of object-oriented analysis, it is the relation between different 
objects that is of interest.  In this sense, saying that an object is existence dependent of itself does not provide us 
with additional information.   
1b) Assume that an object type P would be existence dependent of itself, whereby each occurrence of class P 
depends on the existence of another occurrence of the same class P.  It would then be impossible to create 
occurrences of class P.  Indeed, as the life of the existence dependent object cannot start before the life of its 
parent, creating the existence dependent object requires the existence of a parent object.  But this parent is in turn 
existence dependent of another object of the same class, which should already exist before the parent is created.  
As a result, allowing an object type to be existence dependent of itself creates a problem of circular prerequisites.  
Hence we define that an object type cannot be existence dependent of itself. 
2) Similarly, allowing cycles in the existence dependency graph leads to circular prerequisites as well.  Hence we 
require the existence dependency graph to be acyclic. 
 
Later in this paper, when formulating consistency checking rules, additional arguments that motivate these 
restrictions will be given. 
 
Informal definitions like the above one have the disadvantage that often different interpretations are possible.  
For this reason, for each definition a formal equivalent is given in Appendix A. 
 
Graphical representation 

A parent object type is placed above the existence dependent object type and the two are connected with a 
line. Example 2 is represented in Fig. 2. 

 
Example 2 

In a library environment, the entity type BOOK captures the common features of similar copies, that is to say, 
the combination of authors, title, text, publisher, number of pages, and so on.  The library can possibly keep 
zero, one or many physical copies of a single book.  Copies are always the physical realisation of a book.  As 
in addition each copy is the realisation of exactly one book for its whole life, the object type COPY is 
existence dependent of the object type BOOK.  MEMBERS can borrow COPIES.  But members are not existence 
dependent of copies, nor are copies existence dependent of members.  There is however a relationship 
between MEMBER and COPY: some copies are borrowed by a member.  This relationship is modelled by the 
object type LOAN, which is existence dependent of the object types that are involved in the relationship, 
namely COPY and MEMBER.  Indeed, a loan always refers to exactly one and always the same member and 
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copy.  For this small library example, the set of object types and the existence dependency relation are as 
follows: 
�   = { LOAN, BOOK, MEMBER, COPY}  
LOAN ← COPY 
LOAN ← MEMBER 
COPY ← BOOK 

 
 

BOOK

COPY

LOAN

MEMBER

 
Fig. 2.  Existence Dependency Graph for the library 

 

PERSON

MARRIAGE

 
Fig. 3 A marriage depends on 

two persons  
 

 
 Note that an object type can be existence dependent from the same object type in two different ways.  For 
example, the existence of a marriage1 depends both on the existence of a husband and on the existence of a wife 
and thus there will be two lines between MARRIAGE and PERSON (see Fig. 3). 
 
 
2.2.2 Cardinality of Existence Dependency 

 The existence dependency graph also defines the cardinality of the existence dependency relationship.  This 
cardinality defines how many occurrences of the existence dependent object type can be dependent of one parent 
object at one point in time. 
 
Notation 

P (1)← Q if P ← Q and an occurrence q of Q can have at most one existence dependent occurrence of P 
at one point in time. 
 
P (n)← Q if P ← Q and an occurrence q of Q can have more than one existence dependent occurrence of 
P at one point in time2. 

 
Graphical representation 

The cardinalities are written next to the line that connects the parent and the existence dependent object type.  
The cardinality of one is written as a ‘1’  next to the line representing the existence dependency.  A cardinality 
of Many is written as a ‘M’  next to the line representing the existence dependency.  Note that the ‘M’  stands 
for ‘Many’  and that if an ‘M’  is appearing in several places in a diagram, this does not mean that the 
cardinalities of all these existence dependencies are equal in number. 

 
Example 3 

In the library example, at one point in time a copy can be involved in at most one loan, a member can 
have several loans going on and a book can have several physical copies.  Therefor: 

                                                           
1. Many designers would define marriage as a relationship rather than as an object type.  But as will be seen 

further on, non-existence dependent relationships always give rise to a new object type that is the 
instantiation of this relationship.  

2. Note that the clause “at one point in time”  is essential in the definition of the cardinalities.  Over time, most 
objects of a certain type can have many existence dependent objects of another type.  
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LOAN (1)← COPY and LOAN (n)← MEMBER 
COPY (n)← BOOK 
Fig. 4 shows the Existence dependency graph with cardinalities. 

 

TITLE

COPY

LOAN

MEMBER

M

M

1

 
Fig. 4. EDG with cardinalities for the library 

 
Note that the cardinality of the reference from the existence dependent object type to the parent object type is 
always the same: each existence dependent object always refers to exactly one parent object.  As a result, if the 
existence dependency relation is modelled as a classical binary link between object types, it is a one to many or 
one to one link with cardinalities and multiplicities as denoted in Fig. 5, where the UML notations are used to 
denote cardinalities and multiplicities [20]. 
 

COPY

LOAN

MEMBER

TITLE

M

M1

COPY

LOAN

MEMBER

TITLE

[0..1] [0..*]

1 1

1

[0..*]

 
Fig. 5 EDG with equivalent UML diagram 

 
In order to correctly reflect the semantics of existence dependency, the UML diagram needs an additional 
constraint: it is required that the reference from the existence dependent type to the parent type cannot be re-
assigned.   
 
Fig. 6 gives the representation of the existence dependency relationship according to the ER-notation [4].  
Existence dependency is equivalent to the concept of a weak relationship that is in addition mandatory for the 
weak entity type (which is indicated by the black dot). 
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COPY

LOAN

MEMBER

TITLE

M

M1

COPY

LOAN

MEMBER

TITLE

M M

1 1

1

M

  
Fig. 6 Existence dependency expressed in the notation of the ER-model 

 
For the life cycles of objects, a multiplicity of one implies that the parent object can have only one existence 
dependent object of a certain type at one point in time.  However, there can still be many existence dependent 
objects of that type consecutively.  For example, in the library example, a copy can be involved in at most one 
loan at any one time, but possibly in many loans consecutively.  On the other hand, a member can be involved in 
many loans at the same time.  Fig. 7 gives a graphical representation of the relationship between life cycles of a 
copy and its related loans and between the life cycle of a member and those of the related loans. 
 

= Start of life = End of life

Life span of a copy

Time

Examples of life spans of
loans for that copy: the
cardinality of one specifies
that overlapping loans are
NOT allowed.

Life span of a member

Examples of life spans of
loans for that member: the
cardinality of many specifies
that overlapping loans are
allowed

 
Fig. 7.  Examples of life spans for a copy, a member and loans 

 
 
2.3 Existence dependency versus (traditional) relationship types  

Most object-oriented analysis methods have an Entity-Relationship like technique for modelling static aspects.  
In the conceptual model proposed in this paper, it is the existence dependency graph that fulfils this purpose: all 
object types have to be related according to existence dependency3.  At first sight it seems not so obvious that 
organising object types according to existence dependency is always possible.  However, by means of a few 
examples we will demonstrate that this is in fact pretty straightforward. 
 
                                                           
3. In reality object types can also be classified according to Generalisation/Specialisation.  However, as this 

paper focuses on existence dependency, we assume a domain where there is no need for classification 
according to the IS-A relationship.  
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Binary Relationships. Imagine a conceptual model with two related object types.  Either the relationship 
between the object types is existence dependent or it is not.  In the first case, one object type is existence 
dependent of the other.  For example, ORDER and ORDERLINE are related to each other by means of an existence 
dependent relationship with cardinality many: each order can have many existence dependent order lines.  If the 
relationship is not existence dependent, then the relationship should be instantiated to a new object type that 
models the duration of the relationship.  For example, assume an enterprise model where EMPLOYEE is related to 
DEPARTMENT.  The relationship type between EMPLOYEE and DEPARTMENT is a non existence dependent one to 
many relationship type: each department has many employees and each employee is assigned to at most one 
department.  However, the existence of an employee does not depend on the existence of a department and 
conversely, the existence of a department does not depend on the existence of an employee.  Even if the 
relationship is mandatory for employees, that is, an employee must always be related to a department, there is no 
existence dependency because we can assume that an employee can change from department.  As the 
relationship that models the allocation of employees to departments does not express existence dependency, the 
existence dependency graph will contain a third object type ALLOCATION that models this relationship: it is a 
kind of contract object type that models everything that can happen during the time an employee is allocated to a 
department.  The new object type ALLOCATION is existence dependent of both EMPLOYEE and DEPARTMENT, with 
cardinality one and many respectively. That is: an allocation always refers to exactly one and the same employee 
and as an employee can be allocated to at most one department at the time, each employee is referred to by at 
most one allocation object at a time.  An allocation always refers to exactly one and always the same department 
and a department can be referred to by many allocations at one point in time, namely one per employee allocated 
to that department.  Fig. 8 shows the Object-Relationship diagram (drawn according to the UML notations) and 
the resulting existence dependency graph. 
 

EMPLOYEE DEPARTMENT

ALLOCATION

1 M

EMPLOYEE

DEPARTMENT

1

[0..* ]

is in

 
Fig. 8  Object-Relationship Model and Existence Dependency Graph for EMPLOYEE and DEPARTMENT 

 
The same reasoning applies to one-to-one and many-to-many relationships.  For example, if in a network 
management model client computers can be connected to many server computers and server computers serve 
many client computers, the connection must be modelled as a separate object type.  This is illustrated in Fig. 9. 
 

SERVER CLIENT

CONNECTION

M M

SERVER

CLIENT

[0..* ]

[0..* ]

serves

 
Fig. 9  Converting  a many to many relationship type to an existence dependent object type 

 
 
Unary Relationships.  Unary relationship types never express existence dependency, because an object can not 
be existence dependent of itself, nor of an object of the same type. (If this was possible, we would have an 
infinite chain of existence dependent objects, with no top parent object.  It would thus be impossible to create the 
first occurrence of that type, because this would require an already existing parent occurrence, which is in 
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contradiction with the fact that we are creating the first occurrence).  Unary relationship types are thus always 
converted to an existence dependent object type.  For example, if marriage is modelled as a unary relationship 
from person to person, the existence dependency graph will contain two object types, namely person and 
marriage (see Fig. 10).  Another example is a model for an organisational hierarchy of departments: the 
hierarchy relationship should be modelled as a separate object type (Fig. 11). 
 
 

DEPARTMENT

ASSIGNMENT

DEPARTMENT
[0..* ]

[0..1]

1 Msubdepartment
of

 
Fig. 11 Unary Relationship type:  

Sub-department-of 
 

 
N-ary relationships.  This kind of relationships will be converted to a new object type.  For example, assume a 
university model where professors teach courses to student classes in a particular class-room.  This can be 
modelled as a relationship type of arity four in an Object-Relationship diagram.  In the existence dependency 
graph, the relationship is modelled as the contract object LECTURE between PROFESSOR, STUDENT CLASS, ROOM 

and COURSE (see Fig. 12). 
 

COURSE

STUDENT CLASS

ROOM PROFESSOR

COURSE

STUDENT

CLASS

LECTURE

M M

PROFESSORROOM

M
M[0..* ]

[0..* ]

[0..* ]

[0..* ]

 
Fig. 12 Lectures at the university 

 
Note that with this conversion of relationships to existence dependent object types we assume that relationships 
are unchangeable: when a link is changed, a new relationship instance is created.  For example, if an employee is 
allocated to a new department, this means that the old allocation object is destroyed and a new allocation object 
is created.    
 
 
2.4 The difference between existence dependency and the Part Of-relation or Aggregation 

Although the Part-Of relation is in essence an association between objects like any other association, many 
designers of OOA methods estimate that it deserves special attention and notation [10, 22, 16, 21, 5].  This is 
probably due to the fact that the notion of ‘Part-Of’  embodies some aspects of existence dependency4 and 
propagation of events5.  However, existence dependency and the part-of relation are not equivalent concepts: 
some part-of relations are existence dependent and some are not.  For example, wheels are part of a car, but if a 

                                                           
4. See for example [21], p. 38:  “The existence of a component object may depend on the existence of the 

aggregate object of which it is part.  ... In other cases, component objects have an independent existence, ...”  
5. See for example [21], p. 60: “Propagation is the automatic application to a network of objects when the 

operation is applied to some starting object.  For example: moving an aggregate moves its parts; the move 
operation propagates to the parts.  Propagation of operations to parts is often a good indicator of 
aggregation.”  

PERSON

MARRIAGE

PERSON

[0..1] 1 1

[0..1]

married to

 
Fig. 10 Unary Relationship type: Marriage 
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car is disassembled, the wheels still exist as objects.  Order lines, on the contrary can usually not exist 
independent of the order of which they are a part.  Similarly, if the parts are not existence dependent of the 
aggregate, propagation of events is not straightforward.  Disassembling a car ends the life of a car-object, but 
does not end the life of the constituent parts.  On the other hand, deleting an order usually implies the deletion of 
the order lines. 
 
As pointed out in [7], the Part-Of relation is quite underdefined.  The use of aggregation is not clear cut and the 
semantics of the Part-Of relationship are not precisely defined.  It is not always clear whether parts are existence 
dependent of the aggregation or not, when and which operations should be propagated, and whether the Part-Of 
relation is transitive or not [3, 5, 6, 16, 21, 22].  Sometimes the definitions in different methods contradict each 
other.   
 
An example of a confusing or incomplete definition is the concept of “composition”  as defined in the Unified 
Modelling Language [20].  The Notation Guide says: “Composition is a form of aggregation with strong 
ownership and coincident lifetime of part with the whole.  The multiplicity of the aggregate end (the 
"component") may not exceed one (it is unshared).  The aggregation is unchangeable (once established the links 
may not be changed).  Parts with multiplicity > 1 may be created after the aggregate itself but once created they 
live and die with it.  Such parts can also be explicitly removed before the death of the aggregate.”   This 
definition doesn’ t say anything about parts with multiplicity ≤ 1.  Are they always created at the same time the 
aggregate is created ?  Can they die before the aggregate is destroyed ?  Can you have parts with multiplicity 0 ?  
 
A much better definition of composite objects in the context of object-oriented databases can be found in [18].  
This paper makes a difference between dependent and independent composites.  The semantics of existence 
dependency are similar to the semantics of a dependent component: existence dependency implies that the 
existence of the existence dependent object depends on the existence of the parent.  However, in [16] it is not 
explicitly stated that the reference from parent to component cannot be reassigned.  In addition, whereas in [18] 
dependency implies a cascading delete of components when the root object of a composite is deleted, we assume 
that ending the life of a parent object is invalid as long as there are existence dependent objects for this parent. 
 
The existence dependency relation proposed in this paper is a valuable alternative for the Part-Of relation.  A 
Part-Of relation with existence dependent parts can simply be replaced by existence dependency: in case of 
existence dependent components, the existence dependency relation is identical to the Part-Of relation.  Fig. 13 
illustrates this with an example.  The Part-Of relation is drawn according to the notation of OMT [21]: it is 
drawn as a line between part and whole with a diamond on the side of the whole; the black dot denotes a 
cardinality of Many.   
 

ORDER

ORDERLINE

ORDER

ORDERLINE

M

 
Fig. 13. Existence dependent parts: OMT Object diagram and EDG 

 
In case of non-existence dependent parts, the involvement of the part in the aggregate is modelled as a separate 
object type.  This new object type is a kind of contract between the part and the aggregate for the duration of the 
part-of relationship.  The object diagram in Fig. 14 states that a PC consists of one monitor, one system box, one 
keyboard and zero to many external drives.  
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MONITOR SYSTEM

BOX

KEYBOARD EXTERNAL

DRIVE

 
Fig. 14. Non existence dependent parts: OMT Object diagram 

 
 

MONITOR PC EXTERNAL

DRIVE

KEYBOARD SYSTEM

BOX

MONITOR

USE

KEYBOARD

USE

SYSTEM

BOX USE

EXTERNAL

DRIVE USE

1
1

1

1
1

1
1

M

 
Fig. 15. Non existence Dependent parts: EDG 

 
Fig. 15 shows the equivalent EDG.  The cardinalities in this graph express the fact that each component can be in 
use by at most one PC at one point in time and that a PC consists of one monitor, one keyboard, one system box 
and zero to many external drives.  Reuse of components is possible. 
 
These examples demonstrate that existence dependency is a valuable alternative for the sometimes confusing 
concept of aggregation: its semantics embodies the interesting features of the Part-Of relation and its precise 
definition allows for an unambiguous use of the concept. Compared to the Part-Of relation, the Existence 
Dependency has the advantage that 
• its semantics are simple and easy to formalise, 
• the use of this relationship is clear cut, 
• existence dependency allows for consistency checking at the side of the dynamic model by considering 

existence dependent objects as contracts, 
• the semantics of the concurrency aspects are well-defined [25, 9]. 
 
The last two points will become clear when the modelling of behaviour and subsequent consistency checking 
have been explained.   
 
 
2.5 A final consideration 

Obviously, classifying object type according to existence dependency increases the number of object types in the 
domain model because all non-existence dependent relationships are turned into an object type which is 
existence dependent of the object types participating to the relationship.  However, this is experienced as a 
positive effect as volume is easier to deal with than logical complexity.   And that is exactly what existence 
dependency does: it reduces complexity by making the relationships between object types simple and easy to 
understand.  An existence dependency graph is much easier to understand than a semantically rich object-
relationship diagram.  Note that this does not mean that classical modelling techniques cannot be used during the 
requirements analysis process.  But in the end, the analyst has to come up with a domain model were all object 
types are arranged in an existence dependency graph (in combination with Generalisation/Specialisation).  As 
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will be seen in the next sections, this will ease the task of behaviour modelling and allow to ensure semantic 
integrity between the structural and behavioural aspects of object types. 
 
In addition, nothing should prevent the software developer of merging classes together at implementation time.  
In the example of the employees and departments (Fig. 8), the object type ALLOCATION that results from the 
relationship type that models the allocation of employees to a department, could well be merged with the object 
type EMPLOYEE.  However, this kind of efficiency improvements are to be done at design time. 
 
 

3. MODELLING DYNAMIC ASPECTS OF OBJECT TYPES 

The concept of existence dependency implies some operational semantics: as the life of an existence dependent 
object is to be embedded in the life of its parent, some constraints are put on the timing of the creation, 
modification and ending of objects.  In object-oriented analysis, behaviour of objects is encapsulated within the 
object type.  In addition, objects can interact with each other through messages.  It is clear that the definition of 
behaviour and its implied semantics should be compatible with the operational semantics implied by existence 
dependency.  This is also true for a concept such as composition: the concept might be less confusing if the 
relation between the semantics of structural composition and the behavioural aspects of composition were 
explicitly stated. 
 
This section will shortly present some techniques for modelling the behavioural aspects of object types and will 
then explain how semantic integrity can be ensured between this dynamic model and the EDG.   
 
 
3.1 Object Interaction Modelling 

In object-oriented analysis, communication between objects is usually based on the concept of message passing.  
The conceptual schema proposed in this paper uses interaction by means of common event types rather than 
communication by means of message passing. An analysis model is supposed to specify what the information 
system should do while the design model specifies how things should be done.  When interaction between 
objects is modelled, message passing is much closer to the how than to the what.  For this reason, in the 
conceptual model proposed in this paper, objects do not communicate with each other by means of message 
passing.  The formalism of synchronous participation to events is used instead.  For example, assume a library 
environment with an object type MEMBER and an object type COPY. Copies can be borrowed, which is modelled 
by the event type borrow.  This might be modelled by specifying a message that is sent from COPY to MEMBER on 
occurrence of a borrow event.  Or it might seem more natural to have MEMBER send a message to COPY.  Rather 
than debating on the direction of the message, it is much more essential to model the essence of this type of 
communication.  In reality, none of the objects is sending a message to the other.  What really happens is that 
when a borrow event occurs, two objects are involved in this event: one member and one book.  For this reason 
we say that objects do not communicate by means of message passing but that they communicate by jointly 
participating in events.  For the library example this means that both the member and copy object types are 
provided with a method called ’borrow’ and it is agreed that upon occurrence of a borrow event both methods 
will be executed simultaneously.  In this way, object types synchronise on common events.  This way of 
communication is similar to communication as defined in the process algebras CSP [13] and ACP [2].  Message 
passing is more similar to CCS [19].   
 
This communication concept gives rise to what one could call simultaneous polymorphism: a method takes 
several forms (with possibly different interfaces) in different classes, namely, in each of the classes that is 
involved in the event.  As opposed to classical polymorphism, a consequence of inheritance, no choice is made 
between the different forms of the method, but all methods are executed simultaneously. 
 
 
3.2 The Object Event Table (OET) 

Modelling interaction by means of common event types requires the identification of relevant business event 
types.  The Object Event Table matches object types against event types.  The list of object types are those that 
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appear in the Existence Dependency Graph.  The Object Event Table (OET) contains one row per event type and 
one column per object type.  Each cell in the table indicates whether an object type is involved in an event type 
or not.  In this way, a subset of event types is assigned to each object type.  This subset is called the alphabet of 
an object type P and is denoted SAP.  It contains all the event types that are relevant for that particular object 

type.  In addition, the alphabet of P is partitioned in three mutually disjoint sets: c(P), m(P) and e(P) with 
 

c(P) = { The set of event types that create an occurrence of type P}  ∈ SAP 
m(P) = { The set of event types that modify an occurrence of type P}  ∈ SAP 
e(P)= { The set of event types that end an occurrence of type P}  ∈ SAP 
 

 c(P) and e(P) are never empty: per object type there is at least one event type that creates occurrences of this 
object type and there is at least one event type that ends6 occurrences of this object type.  As there are not always 
modifying event types, m(P) possibly is empty.   
 
Definition 3 

The Object Event Table is a table with one row per event type and one column per object type.  Each cell 
contains either a blank, a 'C', an 'M' or an 'E', which stands for “creates occurrences” , “modifies occurrences”  
and “ends occurrences”  respectively. 
 
Per column, there is at least one row with a ‘C’  and one row with an ‘E’ . 
c(P), m(P) and e(P) are the sets of all event types for which there is respectively a ‘C’ , ‘M’  or ‘E’  in the 
column of P.   
 
Each event type must be relevant for at least one object type: so on each row there is at least one column with 
a ‘C’ , an ‘M’  or an ‘E’ . 
 

Graphical representation 
The OET is drawn as a matrix containing one row per event type and one column per object type.  A 'C', 'M' 
or 'E' on a row-column point of intersection indicates that this particular event type is an element of 
respectively c(P), m(P) or e(P), where P is the object type corresponding to the column. Fig. 16 is a graphical 
representation of Example 4. 

 
Example 4 

Let us assume that for the library example the universe of event types is  
{ enter, leave, acquire, classify, borrow, renew, return, sell, lose}  
The partitions of the alphabets of the object types  COPY, MEMBER and LOAN are as follows: 
 
SACOPY = { acquire, classify, borrow, renew, return, sell, lose}   

with 
 c(COPY) = { acquire}  
 m(COPY) = { classify, borrow, renew, return}  
 e(COPY) = { sell, lose}  
 

                                                           
6. Ending an occurrence is not necessarily the same as physically destroying or deleting object occurrences.  An 

ending event brings an object to a final state.  Objects that are in a final state cannot be subject to further 
changes and can, depending on the implemented archiving, deletion and backup policies, be removed from 
the database.  Ending an object only says something about the permissibility of a physical removal: it is 
always allowed to physically remove objects that are in a final state.  Analogous concepts are also used in 
temporal databases where information is not removed at its end of validity but is retained for querying 
purposes. 
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SAMEMBER = { enter, borrow, renew, return, lose, leave}  with 

 c(MEMBER) = { enter}  
 m(MEMBER) = { borrow, renew, return, lose}  
 e(MEMBER) = { leave}  
 
SALOAN = { borrow, renew, return, lose}   

with 
 c(LOAN) = { borrow}  
 m(LOAN) = { renew}  
 e(LOAN) = { return, lose}  

 
 
The object event table is the basis for the definition of abstract data types for object classes: the abstract data type 
will contain a method for each ‘C’ , ‘M’  and ‘E’  in the classes’  column. 
 
Note that only those participations should be indicated where exactly one occurrence of the object type 
participates in events of the given type.  In the given example, in a ‘borrow’  event there is exactly one copy, one 
loan and one member that are involved.  Participation of multiple occurrences is usually not correct7.  
 
 
3.3 Existence Dependency Graph versus Object Event Table 

The existence dependency graph and dynamic schema (object event table and sequence constraint specifications) 
are dual perspectives of the same reality and thus must be consistent with each other.  Therefore the semantics of 
the existence dependency graph must also be a subset of those of the dynamic schema.  This means (among other 
things) that for each object in the Existence Dependency graph there is one column in the Object Event Table 
(and vice versa).  An additional requirement is that a parent object type has to participate in all event types in 
which one of its existence dependent object types participates:  
 
Propagation rule 

If P is existence dependent of Q, the alphabet of P must be a subset of the alphabet of Q. 
 
This can be explained as follows.  Existence dependent objects should not participate in any event without the 
parent object having knowledge of this event.  By including the alphabet of the existence dependent object type 
in the alphabet of the parent object type, all possible places for information gathering and constraint definition 
are identified.  For example, the borrow method of the class COPY is the right place to count the number of times 
a copy has been borrowed and to implement a rule such as ‘When a copy has been borrowed 500 times, check if 
it still is in good condition.  If not, the copy should be taken out of circulation and sent to the book binder’ .  
Obviously, not all object-event methods will have a meaningful content.  At implementation time, empty 
methods can be removed to increase efficiency. 
 
In addition, by including the event types of the existence dependent objects in the alphabet of the parent, 
sequence constraints that concern event types of different existence dependent objects can be specified as part of 
the behaviour of the parent.  For example, assume a library where books can be reserved.  This can be modelled 
by means of an additional object type RESERVATION that is existence dependent of COPY and MEMBER.  Sequence 
constraints such as ‘a reservation can only be made for copies that are on loan’  relate to more than one object 
type, namely LOAN and RESERVATION.  They can be specified as part of the behaviour of a common parent of 
these object types, COPY in the given example.  
 
Additional restrictions can be put on the subsets of the alphabet.  An existence dependent object cannot be 
created before its parent exists nor can it exist after its parent has been ended.  Creating an existence dependent 
object means that either the parent is created at the same time (e.g. creating the first order line creates the order) 
or that the parent object type already exists (e.g. opening an account for an existing customer).  In the latter case, 

                                                           
7. An exception to this is when each occurrence (of the same type) needs a different interpretation of the event.  

For example, in a sales transaction two owners are involved: a buyer and a seller.  This gives rise to the 
definition of aliasing event types [25].  

 MEMBER COPY LOAN 
enter C   
leave E   
acquire  C  
classify  M  
borrow M M C 
renew M M M 
return M M E 
sell  E  
lose M E E 

Fig. 16. OET for the library example 
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the creation of an existence dependent object modifies the state of the parent.   As the alphabet of the existence 
dependent object is a subset of the alphabet of the parent object type, this means that the set of creating event 
types of the existence dependent object is a subset of the creating and modifying event types of the parent.  So 
c(P) ⊆ [c(Q) ∪ m(Q)], when P ← Q.  Modifying an existence dependent object always modifies the state of the 
parent, so m(P) ⊆ m(Q).  Finally, ending an existence dependent object also modifies the state of the parent.  If 
the last existence dependent object is ended, then the parent can be ended at the same time.  As a result: 
e(P) ⊆ e(Q) ∪ m(Q).  We call these constraints the type of involvement rule.   
 
Type of involvement rule 

If in the column of an existence dependent object type a row contains a ‘C’  then on the same row a ‘C’  or 
‘M’  must appear in the column of each parent object type.  
If in the column of an existence dependent object type a row contains an ‘M’  then on the same row an ‘M’  
must appear in the column of each parent object type.  
If in the column of an existence dependent object type a row contains an ‘E’  then on the same row an ‘E’  or 
‘M’  must appear in the column of each parent object type.  

 

Example 5 
LOAN is existence dependent of COPY and MEMBER.  The OET in Fig. 16 satisfies both the Propagation and 
the Type of Involvement rule. The alphabet of LOAN is a subset of the alphabet of both MEMBER and COPY.  
The event type borrow creates a loan, modifies a member and modifies a copy.  So for the ‘C’  in the LOAN 

column, we have a ‘M’  in the MEMBER and COPY column.  The event type renew modifies the state of a loan, 
a member and a copy.  And thus for the ‘M’  in the LOAN column, we have ‘M’  in the MEMBER and COPY 
column.  Finally, return and lose are both ending the life of a loan and are both modifying the state of a 
member.  For the ‘E’s in the LOAN column we have ‘M’s in the MEMBER column.  Return is modifying the 
state of a copy and lose is ending the life of a copy.  So for the ‘E’s in the LOAN column we respectively have 
an ‘M’  and ‘E’  in the COPY column.  As a result, the object event table satisfies the type of involvement rule 
and the propagation rule 

 
The propagation rule and type of involvement rule together ensure that the life span of the existence dependent 
object is embedded in the life span of the parent. 
 
As explained in the previous section, non existence dependent relationship types are always turned into object 
types existence dependent of the object types that participate in the relationship.  As a consequence of the 
propagation rule, the alphabet of a relationship object type always is a subset of the alphabet of the entity object 
types it relates.  Moreover, when two (or more) object types share a number of common event types, it makes 
sense to demand that this relationship between object types be modelled by a common existence dependent 
object type that has the role of a ‘contract’ 8.  Possibly, the shared event types can be spread across more than one 
existence dependent object type.  We call this the contract rule.   
 
Contract rule 

When two object types share two or more event types, the common event types must be in the alphabet of 
one or more common existence dependent object types. 

 
Example 6 

Besides borrowing books, it is also possible to reserve books that are not on shelf.  If a member changes 
his/her mind and decides not to fetch the copy, (s)he can cancel the reservation.  The events ‘ reserve’ , 
‘cancel’  and ‘ fetch’  are added to the object event table (see Fig. 17).  The shaded area shows the common 
event types of COPY and MEMBER.  Some of the events are also in the alphabet of the existence dependent 
object type LOAN, but ‘ reserve’  and ‘cancel’  do not appear in the alphabet of a common existence dependent 
object type.  According to the contract rule, the two event types should either be included in the alphabet of 
LOAN, or they should be included in the alphabet of a new object type, existence dependent of both MEMBER 
and COPY.  The latter solution is to be preferred, because a loan can occur without a reservation and a 
reservation can occur without being followed by a loan.  The correct object event table is as in Fig. 18. 
 

                                                           
8. The notion of contract will be further elaborated when talking about sequence constraints. 
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 MEMBER COPY LOAN RESER- 
VATION 

enter C    
leave E    
acquire  C   
classify  M   
borrow M M C  
renew M M M  
return M M E  
sell  E   
reserve M M  C 
cancel M M  E 
fetch M M C E 
lose M E E  

Fig. 18  Correct OET for the library example 
 
 
Contracts between objects are thus the counterpart of relationships between objects in an Object-Relationship 
Diagram: common event types between objects always indicate the presence of at least one relationship between 
these objects.  On the other hand, when in the static schema a relationship is modelled between two object types, 
then either this relationship expresses existence dependency or either the relationship should be instantiated to a 
new object type that is existence dependent of the object types participating to the relationship.  In the first case, 
the alphabet of the existence dependent object type is a subset of the alphabet of its parent and in the second case 
the alphabet of the new relationship object type will be the set of event types common to all its parent object 
types. 
 
Note that the contract rule is only applicable in case of two or more common event types.  If there is only one 
common event type (e.g. ‘ fetch’  is common to RESERVATION and LOAN), it would be wrong to model an 
additional object type: a single event type is a contract with no duration and at least two event types are 
necessary to determine the life span of a candidate object type.  An additional object type cannot be the result of 
only one event type. 
 
 
3.4 Techniques for modelling sequence constraints 

In general, events are not allowed to occur in a random order during the life cycle of an object.  For example, a 
book can not be returned if it has not previously been borrowed.  In order to specify this kind of constraints, each 
object is equipped with a ‘ life cycle state’  variable and a description of allowed sequences of event types.  The 
latter are described by means of a regular expression, a Jackson Structure diagram [15] or a Finite State 
Machine.  From a mathematical point of view, these three techniques are perfectly equivalent.  Fig. 19 depicts 
how sequence, choice (exclusive and exhaustive selection) and iteration are modelled in each of the first three 
techniques.  In this paper we will use any of these techniques, but any other technique that is mathematically 
equivalent to Regular Expressions would do as well.   Harel Statecharts [11] are an example of such a technique 
that resolves some of the modelling problems that are attributed to the use of Finite State Machines, but that is 
still mathematically equivalent to Regular Expressions. 
 
 
In order to simplify expressions, a special event type “do nothing”  is provided.  In a regular expression this event 
is denoted by ‘1’ , in a finite state machine by a transition labelled with an ‘& ’  and in a JSD diagram by a box 
labelled with an underscore.  The initial state of a finite state machines is depicted as a circle with an incoming 
arrowhead and final states are drawn as double circles. 

 
 

MEMBER COPY LOAN 

enter C   
leave E   
acquire  C  
classify  M  
borrow M M C 
renew M M M 
return M M E 
sell  E  
reserve M M  
cancel M M  
fetch M M C 
lose M E E 

Fig. 17  New OET for the library example 
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A is a sequence of
first B, then C and
then D.

A is a choice
between B,  C and
D.

A is an iteration of
B.

A = B.C.D

A = B + C + D

A = B*

A

B DC

A

B DC

A

B*

B C D

B

C

D

B
B,C, D

OR

 
Fig. 19   Natural Language, Regular Expression, JSD and Finite State Machine specification for sequence, 

selection and iteration 
 
Note that in fact the object event table already specifies some sequence constraints.  The default assumption is 
that objects first must be created before they can be modified and that an ending event is always the last event in 
an object’s life.  But sometimes it is necessary to put additional constraints on sequences of event types. 
 
Example 7 

Imagine a library where all available books can be searched for by means of an on-line catalogue.  The 
regular expression for the definition of the object type COPY could be as follows: 

 
COPY =  acquire.classify.(borrow.(renew)*.return)* .[ 1 + (borrow.(renew)*.lose)].  
   declassify. remove_copy 
 
The equivalent finite state machine and JSD-diagram are given in Fig. 20. 
 
This specification should be read as:  

In the context of a library, the existence of a copy starts with its acquisition.  The copy is then classified, 
this is, registered in the catalogue.  It can then be borrowed and returned to the library many times 
consecutively.  Loans can be renewed and the copy can possibly be lost in stead of being returned to the 
library.  Finally the copy is removed from the catalogue (declassify) and the set of existing copies 
(remove_copy). 

 



18 

acquire

renew

classify declassifyborrow
lose

remove
copy

declassify

return

acquire classify remove
copy

declassify

borrow lose

renew*

loan-cycle

borrow return

renew*

_

possible
lose

COPY

*

 
Fig. 20  Finite State Machine and JSD diagram for COPY 

 
Example 8 

Fig. 21 shows the JSD-diagrams for the library example of Fig. 18.  The conversion from JSD diagram to 
regular expressions is pretty straightforward: each box is either an event or a sub-expression between 
brackets.  Sequence is indicated by periods, selection by a ‘+’  sign and iteration by a ‘ * ’ .  The equivalent 
regular expressions are as follows: 

COPY = acquire . classify . (borrow + fetch + renew + return)*  . (sell + lose) 
RESERVATION = reserve . (cancel + fetch) 
MEMBER = enter . (borrow + fetch  + renew + return + lose)*  . leave 
LOAN = (borrow + fetch) . (renew)* . (return + lose) 
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COPY

acquire classify life

*life-it

borrow fetch renew return

end

sell lose

LOAN

begin

borrow fetch

life

*renew

end

return lose

RESERVATION

reserve end

cancel fetch

MEMBER

enter life

*life-it

borrow fetch renew return lose

leave

 
Fig. 21  JSD diagrams for the library example 

 
Conversion of JSD diagrams and regular expressions to Finite State Machines is less straightforward.  
Algorithms for these kinds of transformations can be found in any book on compiler theory, e.g. [14, 1]. 
 
 
3.5 Formalising communication 

As said before, it is important to guarantee consistency between static and dynamic characteristics of object 
types.  As a result, the semantics of existence dependency have their consequence on the specification of 
sequence constraints.  More especially, as the alphabet of an existence dependent object type is a subset of the 
alphabet of its parent object type (propagation rule), parent object and existence dependent object will have to 
synchronise on all events in which the existence dependent object participate because of the principle of 
communication by means of common event types.  It is thus necessary to investigate the life cycle of parent and 
existence dependent object type for possible contradictions.   
 
In order to gain more insight in the paradigm of communication by means of common event types and in order to 
be able to check sequence constraints for consistency with the existence dependency graph, some more detailed 
and formal definitions on sequence constraints and parallel composition are required.  However, formal 
definitions will be avoided as much as possible. For a summary of the main definitions we refer to the process 
algebra of MERODE as described in [9].  Full formal definitions can be found in [25]. 
 
As defined in the previous paragraph, the set of event types an object type is involved in, is called the alphabet 
of an object type.  The finite state machine of an object type defines a set of valid scenarios over this alphabet.  A 
scenario is a sequence of event types, e.g. borrow^renew^return.  If iteration operators are used in the life cycle 
expression, the number of valid scenarios for an object type is infinite. 
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Example 9 
The set of valid scenarios defined by RESERVATION (Example 8) is 
{ reservê cancel, reservê fetch}  
The set of valid scenarios for LOAN is infinite: 
{ borrow^return, borrow^lose, fetch^return, fetch^lose, borrow^renew^return, borrow^renew^lose, 
fetch^renew^return, fetch^renew^lose, borrow^renew^renew^return, borrow^renew^renew^lose, …}  

 
 

Communication by means of common event types imposes some restrictions on the set of allowable scenarios for 
an object when it runs in parallel with other objects.  Calculating the result of parallel composition is done by 
comparing the sets of scenarios.  However, as object types can have different alphabets and as synchronisation is 
required for common event types only, comparison must be made by taking account of these common event 
types only.  Therefor a projection operator ‘ \B’  is defined (B will be the set of common event types) that replaces 
each event type that is not in B by the “do-nothing”  event type.  The projection can be applied to individual 
scenarios as well as to definitions of sequence constraints (JSD-diagrams, FSMs or regular expressions).  When 
it is applied to scenarios, the “do nothing”  event types can just be dropped from the scenario.  When applied to 
regular expressions, the resulting expression can be simplified by using the following axioms: 

− for any event type a, choosing between a and a is just a: a + a = a 
− the “do nothing”  event type can be dropped in a sequence: 1 . a = a = 1 . a 
− “do nothing”  is always included in an iteration (namely, do it zero times), so (a + 1)*  = a* 

 
Example 10 

Given the object definitions of Example 8, the following is a valid scenario for copy: 
acquirê classify^borrow^renew^return^borrow^renew^renew^lose 
 
Now let B = { borrow, renew, return} .  If we apply the projection \B we obtain the scenario: 
1^1^borrow^renew^return^borrow^renew^renew^1 
= borrow^renew^return^borrow^renew^renew 
 
If the same projection is applied to the regular expression for COPY the following expression is obtained: 

 
COPY \ { borrow, renew, return}   
= [acquire . classify . (borrow + fetch + renew + return)*  . (sell + lose)] \ { borrow, renew, return}  
= 1 . 1 . (borrow + 1 + renew + return)*  . (1 + 1) 
= (borrow + renew + return)*  

 
Some readers might have wondered why in the library example (Example 8), the sequence constraints for COPY 
do not include the constraints that apply to a loan, for example that a return event should always be preceded by 
a borrow or fetch event.  The reason for this lies in the fact that COPY and LOAN objects will synchronise on 
common events.  
  
The enterprise model specifies object classes, but the actual system will consist of object occurrences.  These 
objects run concurrently and have to synchronise on events in which they jointly participate.  In order to be able 
to calculate the behaviour of a system composed of many concurrent objects, a parallel-operator || can be 
defined. This operator expresses the fact that when two objects run concurrently, only those scenarios are valid 
where both objects agree on the sequence of common events. 
 
Example 11 

Suppose we have the following definition for the object types COPY and LOAN: 
COPY = acquire.classify.(borrow + renew + return)* .(sell + lose) 
LOAN = borrow.(renew)*.(return + lose) 
 
The existence dependency graph specifies that a copy can have at most one loan at one point in time.  Hence, 
during its life a copy will participate zero, one or more times consecutively to a loan, which is an iteration of 
loan (see also Fig. 7).  To find out what the set of accepted scenarios will be, we thus must calculate the 
parallel composition of COPY and the iteration of LOAN.  The behaviour of a copy that can be on loan zero, 
one or more times consecutively is: 
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COPY || (LOAN)*  
= COPY || (borrow.(renew)*.(return + lose))*  
= acquire.classify.[borrow.(renew)*.return]* .[sell + borrow.(renew)*.lose] 
 

Fig. 22 depicts the same expression calculated by means of finite state machines.  An algorithm to calculate the 
result of the parallel composition of Finite State Machines can be found in [1, 14]. 

 
The sequence constraints of the calculated expression are exactly expressing what we understand by a copy than 
can be borrowed many times consecutively.  For this reason it is not necessary to include the sequence 
constraints of LOAN in the definition of COPY: they will automatically be enforced when COPY and LOAN objects 
run concurrently. 

 

 

classify

borrow,
fetch,

renew,
return

acquire
sell

lose

FSM for COPY

borrow,
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return,
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FSM for LOAN FSM for LOAN*
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Fig. 22  Calculating the behaviour of a copy on loan. 
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3.6 Consistency checking with the OET and the EDG 

The essence of consistency checking of sequence constraints is based on two principles: propagation of events 
and existence dependent objects as contracts between parent object types. 
 
Propagation of events. Event types of existence dependent object types are propagated to the parent object type 
(see Propagation Rule).   
 
Existence dependent objects as contracts. When two object types have common event types, at least one 
existence dependent object type must be modelled that has the common event types in its alphabet.  This 
existence dependent object type acts as a contract between the parent object types: the contract ensures that the 
participating object types agree on the allowed behaviour (sequences of events).   
 
In order to understand the consequences of this notion of contract for sequence constraints, let us imagine an 
enterprise with only two object types, a parent object type Q and an existence dependent object type P (e.g. 
ORDER and ORDER_LINE).  According to the definition of the ||-operator, both object types will run concurrently 
and such a system will only accept sequences of events that satisfy the sequence constraints of both P and Q.  As 
a result, any scenario of an existence dependent object that is not acceptable from the point of view of its parent 
object, will always be rejected.  It can thus be removed from the life cycle definition of the existence dependent 
object type.  It thus seems sensible to demand that a parent object type Q can accept all scenarios of its existence 
dependent object type P.  We say that the existence dependent object type P must have more stringent sequence 
constraints than or must be more deterministic than the parent object type Q.  The difference between the general 
case and the case in which P is more deterministic than Q is depicted in Fig. 23.  
 

Scenarios accepted by Q Scenarios accepted by P

Scenarios
accepted by

P|| Q

Scenarios rejected by P Scenarios rejected by Q

General case

Scenarios accepted by Q

Scenarios accepted by P

Scenarios
accepted by

P|| Q
Scenarios rejected by
P

P existence dependent of Q
andsatisfying the restriction rule

 
Fig. 23  Restriction rule for existence dependent object types 
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As a result, when an object type has more than one parent object type, the set of scenarios accepted by the 
existence dependent object type is a subset of the intersection of the sets of scenarios accepted by all its parent 
object types.  In this sense, the existence dependent object type acts as a contract between the parent object types: 
for the common event types it defines the set of scenarios that will be accepted by all participants.  For the 
library example LOAN is a contract between MEMBER and COPY (see Fig.24). 
 

Scenarios accepted by

MEMBER

Scenarios accepted by

BOOK

Scenarios accepted by

the contract LOAN

Contract Area

 
Fig.24. loan as a contract between member and copy 

 
How can this relationship more deterministic than be checked ?  The basic idea is to project the sequence 
constraints of the parent object type on the set of common event types (that is, the alphabet of the existence 
dependent object type) and see if these sequence constraints are less stringent than those of the existence 
dependent object type  
 
Definition 4 

An object type P is more deterministic than an object type Q (which is written as P ≤ Q) if the alphabet of P 
is a subset of the alphabet of Q and if the scenarios of P are all acceptable for Q. 

 
Example 12 

With the sequence constraints as in Example 8 and LOAN existence dependent of COPY and MEMBER, we 
have:  

 
COPY = acquire.classify.(borrow + fetch + renew + return)* .(sell + lose) 
MEMBER = enter.(borrow + fetch + renew + return + lose)* .leave 
LOAN = (borrow + fetch).(renew)*.(return + lose) 
 
The alphabet of LOAN is a subset of the alphabet of COPY.  In order to compare the scenarios defined by COPY 
and LOAN, the expression of COPY is projected on the alphabet of LOAN: 
COPY\SALOAN   

= acquire.classify.(borrow + fetch + renew + return)* .(sell + lose)\SALOAN 

= (borrow + fetch + renew + return)* .(1 + lose) 
 

Apparently, the scenarios defined by LOAN are all acceptable for COPY.   
As a result, LOAN ≤ COPY: LOAN is more deterministic than COPY. 
 
The same reasoning applies to MEMBER: 
MEMBER\SALOAN 

= enter.(borrow + fetch + renew + return + lose)* .leave\SALOAN 

= (borrow + fetch + renew + return + lose)*  
 
Which is also less deterministic than LOAN and thus LOAN ≤ MEMBER. 
 

The full set of schema constraints for the specification of behaviour takes not only existence dependency into 
account, but also the elements specified in the OET.  The OET defines the alphabet of an object and partitions 
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this alphabet in creating, mutating and ending event types.  These elements have an influence on what can be 
considered as a valid behaviour definition of an object type.  In the first place, there is the alphabet rule:  
 
Alphabet rule 

The structure diagram or expression that defines the behaviour of an object type P must contain all and only 
the event types for which there is a ‘C’ , ‘M’  or ‘E’  in the column of P in the OET .  

 
As already said, the partitioning of the alphabet in creating, modifying and ending event types imposes a default 
life cycle.  This default life cycle must be respected by the sequence constraints:  
 
Default life cycle rule 

The events in c(P), m(P) and e(P) must appear as creating event types, modifying event types or ending event 
type respectively in the sequence restriction of the object type P.  This means that the sequence constraints 
must be more deterministic than the default life cycle of create, modify, end. 

 
When object types have a default life cycle it is thus in fact not really necessary to specify the sequence 
constraints explicitly by means of a FSM, a JSD-diagram or any other technique. 
 
As said before, the existence dependency relation defines a partial order on � .  From the point of view of object 
behaviour, the partial order more deterministic than (≤) can be defined as the dual counterpart of the existence 
dependency relation.  This means that 
 
Restriction rule 

If P is existence dependent of Q, then P must be more deterministic than Q. 
 
Note that the restriction rule contains a one direction implication.  It might indeed happen that P is more 
deterministic than Q (P ≤ Q) without P being existence dependent on Q. 
 
Example 13 

DRAWING = paint.(give_away + receive)* .throw_away 
CHILD = (...).(paint + give_away + receive + throw_away)* .(...) 
 
Then DRAWING ≤ CHILD, but a drawing is never existence dependent of a CHILD.  As DRAWING and CHILD 
have more than two event types in common, we need at least one existence dependent object type in which 
all these event types are involved.  In this example this is the object type 
 

PROPERTY_OF = (paint + receive).(give_away + throw_away) 
 

Note that if the sequence constraints imposed by each object type are written as a regular expression or an 
equivalent graphical representation (such as a Finite State Machine), checking the contract can be done 
automatically by a CASE-tool. 
 
The combination of the propagation rule and the restriction rule implies that, in case cycles would be allowed in 
the existence dependency graph, all object types involved in a cycle would have identical alphabets and identical 
sequence restrictions.  These object type could then well be collapsed into a single object type.  This is an 
additional motivation to require the existence dependency graph to be acyclic. 
 
Appendix B presents a comprehensive example that illustrates the process of developing a domain model and 
that demonstrates how the consistency checking rules help to spot errors in a schema. 
 
 



25 

4. CONCLUSION 

This paper has proposed a new object type classification concept called existence dependency.  The existence 
dependency graph establishes the structural relationships between object types.  Its semantics are clear and 
unambiguous.  In addition, classifying object types according to existence dependency allows to formulate a 
number of semantic integrity rules for modelling the behaviour of object types.  A domain model built with the 
three presented techniques (EDG, OET and sequence constraints) is consistent if all the presented rules, namely 
the Propagation Rule, the Type of Involvement Rule, the Alphabet Rule, the Default Life Cycle Rule and the 
Restriction Rule are satisfied.  The possibility to check a domain model for semantic integrity between structural 
and behavioural aspects is a major advancement in object-oriented analysis practice as the level to which current 
methods allow for this type of consistency checking is unfortunately rather low. 
 
Proposing a conceptual modelling approach where object types can only be classified according to 
generalisation/specialisation and existence dependency is in sharp contrast with the current trend to provide 
analysts with techniques with vast semantic richness and as much expressiveness as possible.  However, as 
researchers we should be aware that semantically rich techniques may be much more difficult to use.  In 
addition, they are difficult to define in a perfectly unambiguous way.  As a result, schemes built according to 
semantic rich techniques often need an accompanying interpretation to be understandable by users and, what is 
more of a problem, the interpretation of a single schema may vary from person to person.  With existence 
dependency, users have a simple technique at hand which application is so clear cut and unambiguous that 
discussions about possible interpretations become obsolete.   
 
We are aware that during the creative process of developing an enterprise model, it might be useful to use an ER-
like approach that allows for more types of associations between objects.  However, the final product should be 
expressed in terms of object types, existence dependency and generalisation/specialisation only.  Only in this 
way it is possible to ensure the syntactical and semantic integrity of domain models.   
 
Finally, existence dependency is a concept that can perfectly be integrated in existing methods, for example by 
grafting it onto UML [20] or integrating it into OPEN [12].  
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APPENDIX  A 
 
 
Formal definition of the existence dependency graph 

Let �  be the set of object types in the conceptual schema.   

The existence dependency graph (EDG) is a relation ← which is a bag9 over �  × �  such that 
 ← satisfies the following restrictions: 
 1) An object type is never existence dependent of itself: ∀ P ∈ �  :  (P,P) ∉ ← 
 2) Existence dependency is acyclic.  This means that: 
  ∀ n ∈ � � , n ≥ 2, ∀ P1, P2, ..., Pn ∈ � :  

  (P1,P2), (P2,P3),..., (Pn-1,Pn) ∈ ← ⇒ (Pn,P1) ∉ ←  

 
Formal Definition of the Object Event Table 

Let A be the universe of relevant event types.  Then
T ⊆ �  × A × { ’ ’, ’C’, ’M’, ’E’}  such that  
∀ P ∈ � , ∀ a ∈ A :  
 (P,a,’ ’) ∈ T or (P,a,’C’) ∈ �  or (P,a,’M’) ∈ �  or (P,a,’E’) ∈ T   
 ∀ P ∈ �  : c(P) = { a ∈ A | (P,a,’C’) ∈ T}  
     m(p) = { a ∈ A | (P,a,’M’) ∈ T}  
     e(P)= { a ∈ A | (P,a,’E’) ∈ T}  
 c(P), m(P), e(P) are pairwise disjoint 
 c(P) ∪ m(P) ∪ e(P) = SAP 

 c(P), e(P) ≠ ∅ 
 
∪  { SAP | P ∈ �  }  = A 

 
Propagation rule 

If P is existence dependent of Q, the alphabet of P must be a subset of the alphabet of Q. 
 

Formally:  P ← Q ⇒ SAP ⊆ SAQ.   

 
Type of involvement rule 

If in the column of an existence dependent object type a row contains a ‘C’  then on the same row a ‘C’  or 
‘M’  must appear in the column of each parent object type.  
If in the column of an existence dependent object type a row contains an ‘M’  then on the same row an ‘M’  
must appear in the column of each parent object type.  
If in the column of an existence dependent object type a row contains an ‘E’  then on the same row an ‘E’  or 
‘M’  must appear in the column of each parent object type.  

 
Formally:  P ← Q ⇒ c(P) ⊆ c(Q) ∪ m(Q) and m(P) ⊆ m(Q) and e(P) ⊆ e(Q) ∪ m(Q) 

 
Contract rule 

When two object types share two or more event types, the common event types must be in the alphabet of 
one or more common existence dependent object types. 

 
Formally: ∀ P, Q ∈ �  : #(SAP ∩ SAQ) ≥ 2 and ¬(SAP ⊆ SAQ or SAQ ⊆ SAP)  
⇒ ∃ R1, R2, ... Rn ∈ � : ∀ i ∈ { 1,...,n} : Ri ← P,Q and SAR1 ∪ ... ∪ SARn = SAP ∩ SAQ 

Formal Definition of scenarios, projection and parallel composition 
Let A be the universe of event types. 
R(A) is the set of all regular expressions over A where e is a regular expression over A if and only if 
(a) e = 0 or (b) e = 1 or (c)  ∃ a ∈ A: e = a or (d)  ∃ e', e" ∈ R(A) such that e = e' + e" or e = e'.e" or e = 
(e’ )*  
 

                                                           
9. Bags can contain the same element more than once (as opposed to sets).  
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Each regular expression defines a set of scenarios, called its language 
(1)  A* is the set of scenario’s over A.  A* is defined by 
 (a) 1 ∈ A* 
 (b) ∀ a ∈ A: a ∈ A* 
 (c) Let s, t ∈ A*, then ŝ t ∈ A* 
 (d) ∀ s ∈ A*: 1^s = s = ŝ 1 
 

(2)  The regular language of a regular expression is a subset of A* defined by 
 L(1) = { 1}  
 ∀ a ∈ Α : L(a) = { a}  
 ∀ e, e’ ∈ R*(A): L(e + e’) = L(e) ∪ L(e’), L(e.e’) = L(e).L(e’), L(e*) = L(e)*  
 where L(e).L(e’) = {  ŝ t | s ∈ L(e) and t ∈ L(e’)}  
 and L(e)*  = { 1}  ∪ L(e) ∪ L(e).L(e) ∪ L(e).L(e).L(e) ∪ L(e).L(e).L(e).L(e) ∪ ... 

 
Let B ⊆ A. Then 
1\B = 1 
∀ a ∈ A : (a\B = 1 ⇔ a ∉ B) and (a\B = a ⇔ a ∈ B) 
∀ s, t ∈ A* : (s ^ t)\B = s\B ^ t\B,  
∀ e, e’ ∈ R*(A) : (e + e’)\B = e\B + e’\B, (e.e’)\B = e\B . e’\B, (e*)\B = (e\B)*  
 
Let P, Q be object types 
The alphabet of P || Q is the union of the alphabets: SA (P || Q)  = SAP ∪ SAQ  

The behaviour of P || Q is defined by an expression e" ∈ R*(A) such that 
L(e") = {  s ∈ (SAP ∪ SAQ)* | s\SAP ∈ L(P) and s\SAQ ∈ L(Q)}  

 
Formal definition of more deterministic than: 

P ≤ Q if and only if SAP ⊆ SAQ and L(P) ⊆ L( Q\SAP) 

 
Alphabet rule: 

The structure diagram or expression that defines the behaviour of an object type P must contain all and only 
the event types for which there is a ‘C’ , ‘M’  or ‘E’  in the column of P in the OET. 
 
Formally: ϕ(SRP) = SAP.  

where ϕ : R*(A) → � (A): e → ϕ(e) such that ϕ(a) = { a}  
                ϕ(e + e') = ϕ(e) ∪ ϕ(e') 
                ϕ(e . e') = ϕ(e) ∪ ϕ(e') 
 

Default life cycle rule 
The events in c(P), m(P) and e(P) must appear as creating event types, modifying event types or ending event 
type respectively in the sequence restriction of the object type P.  This means that the sequence constraints 
must be more deterministic than the default life cycle of create, modify, end. 

 
Formally:  ∀ P ∈ �  : SRP ≤ (Σ c(P)).(Σ m(P))* .(Σ d(P)) 

 
Restriction rule 

If P is existence dependent of Q, the P must be more deterministic than Q 
 
Formally: P ← Q ⇒ P ≤ Q 
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APPENDIX B: CONCEPTUAL SCHEMA FOR PROJECT ADMINISTRATION 
The EDP-department of a large company consists of several groups.  Each development project 
has one group responsible for it.  People from different groups can be assigned full-time or part-
time to the same project.  In order to keep track of the development cost of information systems, 
each member of the development staff has to register the number of hours (s)he worked for a 
particular project.  A person can only register working hours for projects (s)he is assigned to.  
When a project comes to an end, all assignments are closed as well.  Finished projects and closed 
assignments can be kept for a while for cost analysis purposes. 

 
 
Fig. 25 shows an ER-schema for this case-study. As explained in section 2.3, all relationships that do not express 
existence dependency have to be converted to object types existence dependent of the object type participating to 
the relationship.  Fig. 26 shows the resulting existence dependency graph. 
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Fig. 25. ER-schema for the project 

administration 
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Fig. 26.  Existence Dependency Graph for the 

project administration 

 
 
 GROUP PROJECT PERSON PROJECT 

ALLOCATION 
PERSON 

ALLOCATION 
ASSIGNMENT REGISTRA-

TION 
cr_group C       
end_group E       
cr_project  C      
close_project  M M   M  
end_project  E      
cr_person   C     
end_person   E     
proj_alloc M M  C    
proj_dealloc M M  E    
pers_alloc M  M  C   
pers_dealloc M  M  E   
assign  M M   C  
close_assign  M M   M  
end_assign  M M   E  
register  M M   M C 
end_registr  M M   M E 

Fig. 27 OET for the project administration 
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The Object event table contains one column per object type in de EDG and one row per relevant domain event 
type.  Each object type should have at least one creating and one ending event type.  In addition, the Propagation 
Rule and Type of Involvement Rule tell us how to fill in the OET.  Participation to event types has to be 
propagated from REGISTRATION to ASSIGNMENT, from ASSIGNMENT to PROJECT and PERSON, from 
PERSON_ALLOCATION to PERSON and GROUP and finally from PROJECT_ALLOCATION to PROJECT and GROUP. Fig. 
27 shows the resulting OET. 
 
Finally, sequence constraints can be specified: each object type defines a regular expression that contains exactly 
these event types in which the object type is involved according to the OET (Alphabet Rule).  In addition, the 
type of involvement for each event type must be respected (Default Life Cycle Rule).  Fig. 28 shows possible 
sequence constraints. 
 
 

GROUP : cr_group.(proj_alloc + proj_dealloc + pers_alloc + pers_dealloc)* .end_group 
 
PROJECT : cr_project . (proj_alloc+ proj_dealloc + assign + close_assign + end_assign  

+ register + end_registr)* .close_project .end_project  

PERSON : cr_person .(close_project + pers_alloc + pers_dealloc + assign + close_assign + end_assign + 
register + end_registr)*  . end_person 

 
PROJECT_ALLOCATION : proj_alloc.proj_dealloc 
 
PERSON_ALLOCATION : pers_alloc.pers_dealloc 
 �
	 	 � ��

����
 �

 : assign.(register + end_registr)*  .(close_assign + close_project).(end_registr)* . 
end_assign 

 
REGISTRATION : register.end_registr 

 
Fig. 28.  Sequence constraints for the project administration 

 
When checking the specifications against the Restriction Rule, an error is found: some scenarios of �
	 	 � ��

����
 �

 are not conform to the sequence restrictions imposed by � ���
� ��� � .  Indeed, the sequence 
restrictions of � ���
� ��� �  require each individual scenario to end with a ’close_project’ event:

������� �"!
# \ SA$�% % & '�(")
�
(
#  = (assign + close_assign + end_assign + register + 

end_registr)* .close_project   
 
So the ’close_project’ cannot be followed by ’end_registr’ or ’end_assign’ events as allowed by the sequence 
restrictions of ASSIGNMENT .  Even worse, the specification of PROJECT requires the end_assign event to precede 
the close_project event, while the specification of ASSIGNMENT requires the opposite: close_project must precede 
end_assign.  The conceptual schema thus contains conflicting sequence restriction, which will result in a 
deadlock at execution time. 
 
The conceptual schema can be corrected by removing the close_project from the sequence restrictions of 
ASSIGNMENT.  The correct solution defines the sequence restriction of ASSIGNMENT as: 
 �
	 	 � ��

����
 �

 = assign.(register + end_registr)*  .close_assign.(end_registr)* . end_assign 
 

As PERSON had acquired the close_project event from ASSIGNMENT because of the Propagation Rule, the 
close-project event must also be removed from the alphabet of PERSON.  The fact that all assignments 
referring to a project must be ended before that project is closed is in fact already modelled by the sequence 
restrictions of PROJECT.  Indeed, these restrictions say that an "close_assign" can not follow a "close_project" 
even type.  As a result, correct event handling will ensuring that all assignments are ended before a project is 
closed.    


