Restoration of Click Degraded Speech and Music Based on
High Order Sparse Linear Prediction

Bisrat Derebssa Duferal, Eneyew AdugnaQ, Koen Eneman® and Toon van Waterschoot?
L3AESAT-ETC, KU Leuven - Group T Leuven Campus, Belgium
34ESAT-STADIUS, KU Leuven, Belgium
L2 Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
Ipisratderebssa.dufera@kuleuven.be, 2eneycw_a@yah00.c0m, 3koen.eneman @kuleuven.be,
“4toon.vanwaterschoot@esat.kuleuven.be

Abstract—Clicks are localized degradation that affect most archived
audio media. Click degradation are objectionable to the listener and
should be suppressed to make the audio acceptable. The use of linear
prediction (LP) modeling for the restoration of audio signal that has
been corrupted by click degradation has been extensively researched.
However, it is hampered by the need of a pitch predictor and by its
poor performance for voiced speech and music. High-order sparse linear
prediction has been shown to offer better representation of voiced speech
and music over conventional linear prediction. In this paper, the use of
¢1-norm and ¢0-norm regularized high-order sparse linear prediction
is proposed for restoration of audio signal that is corrupted by click
degradation that can work equally well for speech and music without
a priori information of the type of signal. High-order sparse linear
prediction is used to obtain a better model of the spectral envelope
and harmonics in the presence of click degradation and background
noise. Evaluation with clean speech and music shows that the proposed
method achieves SNR improvement from 3dB to 5dB over conventional
LP approach for a wide range of click durations. Tests with speech and
music corrupted by background noise in addition to click degradation
show that the proposed method achieves a better SNR than the restoration
of click degraded speech and music that is not corrupted by background
noise using conventional LP. Perceptual evaluation of audio quality
(PEAQ), used to estimate the subjective quality audio, shows that the
proposed method performs better than conventional LP methods in terms
of perceived quality of the restored audio by a listener. A computational
requirement analysis shows that even though the proposed method is
not real-time, it only takes 2 to 3 times the duration of the frame being
restored on a present day general-purpose processor.

Index Terms—Click degradation, Missing sample estimation, High-
order sparse linear prediction, Linear prediction

I. INTRODUCTION

The term ‘click’ according to [1] refers to "finite duration artifacts
which occur at random positions in an audio signal”. These are due
to damages on the physical medium [2]. Clicks can be modeled as an
additive or as a replacement degradation. An additive model, where
the click degradation is assumed to be added to the underlying audio
signal, has been shown to be acceptable for most surface defects
in recording media, such as dust, dirt and small scratches [1]. A
replacement model, where the degradation replaces the signal entirely
for some short period of time, may be applicable for breakages and
large surface scratches which may completely destroy the underlying
signal information.
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Generally, restoration of click degraded audio can be seen as miss-
ing sample estimation if the underlying signal during the occurrence
of the click is assumed to be lost and the location of the click
degradation is known. To avoid any undesirable distortion on the
sample values that are not affected by click degradation a two step
approach is usually followed [1]: identification of degraded signal
samples and estimation of the underlying sample values for the click
degraded samples. In this paper, only the estimation of the underlying
click degraded samples is considered assuming the location of the
click degraded samples is known a priori.

The Least Square (LS) Autoregressive (AR) estimation [1] uses
the minimum square error criterion assuming that the excitation
signal has a Gaussian distribution. The click degradation are assumed
to be mutually independent zero-mean Gaussian process. The click
degraded samples can then be obtained from a priori knowledge of
the LP coefficients of the audio signal, the undegraded samples and
the location of the click degraded samples.

The performance of the LS Autoregressive (AR) interpolator is
limited by the fact that the LP coefficients of the undegraded audio
signal are not known a priori. Janssen et al. [3] proposed to iteratively
solve for both the LP coefficients and the missing samples through
the minimization of the £2-norm of the residual, i.e. the difference
between the original undegraded signal and the predicted signal as a
function of the unknown LP coefficients and the unknown samples.
Even though such modeling works well for unvoiced speech [4],
it is not a good model for music and voiced speech, where the
excitation is quasi-periodic and spiky [3]. For voiced speech and
music, the minimization of the ¢2-norm of the residual puts more
emphasis on the periodic peaks of the residual [S]. As a result, it
trades off spectral envelope estimation accuracy against estimating the
harmonics [5]. A better decoupling between the spectral envelope and
pitch harmonics has been reported by using high-order sparse linear
prediction (HOSpLP) [4], [6], [7].

Another limitation of Janssen’s method is that it needs a pitch
predictor to estimate long-term correlation. In [8], a sparse linear
prediction approach was proposed that minimizes the ¢2-norm to
jointly model the long-term and short-term correlations. In [9] the
joint optimization of the formant and pitch predictors has been
proposed. It poses the estimation of the formant and pitch filter as a
single LP problem given the a priori knowledge of the intermediate
residual signal, i.e. the output of prediction error filter. It is an iterative
optimization algorithm one where the intermediate residual signal of
a previous iteration is used to jointly estimate the formant and pitch
predictor filters. These methods however require a priori knowledge
of the pitch period.

For musical sounds or tonal audio for which the signal contains a
finite number of dominant frequency components, the LP model is



much less popular than in speech analysis as the generation of musical
sounds is dependent on the instruments used [5]. This makes it hard
to use a generic audio signal generation model [5]. In addition, each
polyphonic audio signal should be modeled using multiple source-
filter models, which seems to be rather impractical [5]. In the absence
of noise, by using a model order which is twice the number of tonal
components LP can be used to estimate the spectral peaks. In practice,
noise is always present that may be due to imperfections in the tonal
behavior, signal that is not tonal in nature, finite precision arithmetic,
finite-length data windowing or noise in general. Therefore, such LP
signal estimates are very often poor. In [5] extensive simulations were
conducted to assess the performance of conventional and alternative
LP models for tonal audio analysis in the presence of noise. It was
reported that high-order all-pole models are better suited to the audio
LP problem albeit being impractically complex in many applications.
The high-order all pole method used in [S] minimize the ¢2-norm
of the residual to obtain the LP coefficients while the HOSpLP
methods use sparsity of the residual and the coefficient vector in
the optimization problem.

In [10] ¢1-norm regularized HOSpLP was used for the restoration
of click degraded audio. It was reported that the use of ¢1-norm
regularized HOSpLP coefficients in the Janssen algorithm provided a
significant improvement over conventional LP and joint-optimization
based LP. However, the HOSpLP coefficients were obtained by using
the ¢1-norm and the 0-norm was not investigated. Furthermore, the
noise robustness of the £1-norm regularized HOSpLP coefficients was
not investigated.

In this paper we move forward, proposing a novel method for the
restoration of audio signal that is corrupted by click degradation that
works for both speech and music without a priori information of
the type of audio signal. It uses high-order sparse linear prediction
models with different levels of sparsity (/0-norm and #1-norm of the
coefficient vector) to estimate a high-order all-pole LP coefficients.
The proposed method has several advantages, one of which is that
no segmentation and annotation is needed when presenting the click
degraded signal to the method. This will significantly decrease the
need for manual annotation and segmentation needed for practical
application.

The contribution of this paper is two fold. First, we extend the
use of HOSpLP for the restoration of click degraded audio by using
both ¢1-norm and the ¢0-norm of the coefficient vector into the
optimization problem. Second, we investigate the noise robustness
of these different LP models for the restoration of audio signal that
is corrupted by click degradation by using the Janssen algorithm.

The organization of the paper is as follows. Section II formally
describes conventional LP and HOSpLP with different levels of spar-
sity.Section III discusses the proposed method. Section IV describes
the data used, the type of click degradation and the performance
measure used. In section V the results are presented and discussed
in comparison with conventional LP and pitch-prediction based joint
optimization. Finally, section VI presents additional discussions and
concludes the work.

II. LINEAR PREDICTION

The LP coefficient vector, a, can be obtained from a set of observed
samples x = [z(N1), ..., z(N2)] " by the following optimization
problem [4]:

a:argmainHX*X‘lei+7Ha|’z M

where,

ZL‘(Nl—l) l’(Nl—M)
X=| :
x(Ng — 1) a:(NQ - M)
Ny and N2  are the start and end indexes of the observed
frame x,
M is the order of the prediction filter,
0% is the regularization parameter that determines

by how much the sparsity of the LP coefficient
vector and residual contribute to the optimization
problem.

The ¢p-norm ||.||, is defined as

/], = (fZN |x<n>|p)’l’ ®

In conventional LP, the /2-norm is used, i.e. p = 2. In addition,
no a priori information about the coefficient vector is assumed, i.e.
v = 0. Furthermore, the prediction order is usually set to a small
value corresponding to twice of the number of formant frequencies
to be modeled.

A. l1-norm regularized HOSpLP

Sparse linear prediction can be used to decrease the emphasis on
the quasi periodic peaks of the residual in LP [4]. To achieve this, the
sparsity of the residual as well as the sparsity of the coefficient vector
can be used. To measure sparsity the ‘/0-norm’ is a natural candidate,
however it is NP hard as it leads to a combinatorial problem. The
f1-norm, p = 1, has been used as a convex relaxation of the ‘/0-
norm’ [4] to alleviate this problem. That is by setting k =1, v # 0
and using a high-order LP, the short-term predictor and the long-term
predictor can be jointly estimated [4]. The requirement of sparsity in
the coefficient vector can be attributed to the fact that a cascade of
the long-term and short-term predictor filters leads to a filter that has
few non-zero coefficients [11].

It has been shown in [4] that for music and speech, the use of the
¢1-norm and high-order linear prediction outperforms conventional
LP in spectral envelope estimation, the sparsity of the prediction
coefficients and the sparsity of prediction residual. It has also been
shown in [10] that the use the ¢1-norm HOSpLP for the restoration
of click degraded audio outperforms conventional LP approaches.

B. (0-norm regularized HOSpLP

The a priori knowledge of the structure of the coefficient vector
resulting from the cascading of the long-term and short-term predictor
filters can also be incorporated as the following optimization problem:

a:argmaion—XaHz s.t. ||aHOSQ 3)

where () is the sum of the order of the long-term and the short-term
prediction filter.

In this formulation, no a priori structure is imposed on the coeffi-
cient vector except that the coefficient vector has a fixed maximum
number of non-zero coefficients. As such, it can put emphasis on
the formant filter coefficients if the frame is composed of speech
and on the tonal components if the frame is composed of music.
To illustrate this in Fig. 1 a plot is shown of the coefficient vector
resulting from solving (3) with @ set to 16 for vowel and music.
It is observed that the coefficient vector obtained for vowel by
solving (3) has more of the non-zero coefficient values for the short
term predictor while having very few non-zero coefficient values
corresponding to the long-term predictor. For music on the other
hand, the coefficient vector has few non-zero coefficients values for
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Figure 1: Coefficient vector resulting from using /0 — norm regu-
larized HOSpLP to obtain high-order all pole model.

the short-term predictor while having more non-zero coefficients
for the long-term predictor distributed over the whole coefficient
vector length. As the location of these non-zero coefficients is neither
incorporated into equation (3) nor dependent on a pitch predictor, a
priori information regarding the type of signal is not needed.

To illustrate that the coefficients solved via (3) model the different
tones in the tonal audio, an audio signal with tonal components at
300Hz, 600Hz, 1000Hz and 2000Hz was synthetically constructed,
white noise was added so that the signal SNR is 5dB and a 5msec
segment of the signal was artificially degraded with clicks. The
conventional LP and ¢0-norm regularized HOSpLP filter coefficients
were obtained by the Levinson-Durbin algorithm and solution to
(3) respectively. A pole plot of the conventional LP and ¢0-norm
regularized HOSpLP filter is shown in Fig. 2. It is seen from Fig. 2
that in the presence of noise and click degradation, the poles of the
conventional LP filter drift away from the actual poles. On the other
hand, the poles of the £0-norm regularized HOSpLP that lie on the
unit circle are accurate in the presence of noise and click degradation.
As such, multiple tones in the music signal are represented more
accurately by using the £0-norm regularized HOSpLP. The other poles
are due to the high-order of the ¢0-norm regularized HOSpLP filter.

Given that problem (3) is non-convex, its relaxation (LASSO),
ie. (1) with p = 2 and £ = 1, is typically solved instead [12].
Nevertheless, proximal gradient methods can solve (3) if a good
initialization is given, e.g., the solution of LASSO [12]. In recent
work, Antonello et al. [12] developed the StructuredOptimization
package for Julia programing language that can solve (3) in a
reasonable time.

III. PROPOSED METHOD OF RESTORATION

In this paper a novel method is proposed for the restoration of
click degraded audio signals that works for speech, tonal audio and
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Figure 2: Pole plot of click degraded tonal audio. ¢ represent actual
pole locations for the original tonal audio. * are the poles of a filter
computed using conventional LP for the click degraded noisy tonal
audio. + are the poles of the ¢0-norm regularized HOSpLP filter
solution to (3) with 16 non-zero coefficients for M = 128 for the
click degraded noisy tonal audio.

music that uses high-order sparse linear prediction coefficients in the
iterative Janssen algorithm for estimating the missing samples. The
Janssen algorithm is used as a framework for the implementation
of the different high-order sparse linear prediction based restoration
approaches [10]. The LP coefficient vector is calculated with the
proposed ¢1-norm regularized HOSpLP and ¢0-norm regularized
HOSPpLP coefficients as well as, for comparison, with conventional
LP and with a Joint optimization of the LP coefficients.

« Conventional LP: obtained via the Levinson-Durbin algorithm.

« Joint optimization of linear predictors: the estimation of the
short-term and long-term predictor filter is formulated as a single
LP problem given the a priori knowledge of the intermediate
residual signal after the inverse formant filter [9].

e {1-norm regularized HOSpLP: the alternating direction
method of multipliers (ADMM) algorithm for solving ¢1-norm
regularized linear regression problem [13] is used to obtain the
HOSpLP coefficients [10].

o {0-norm regularized HOSpLP: In this approach (3) is solved
via the StructuredOptimization Julia package to obtain the ¢0-
norm regularized HOSpLP coefficients.

IV. DATA USED, CLICK NOISE MODEL AND PERFORMANCE
MEASURES

A. Data used

To fairly assess the restoration performance of the proposed meth-
ods the experiments were conducted using the following datasets:
o Speech: ten male and ten female speech of different speakers
from the Voxforge dataset [14]; and
« Music: ten segments consisting of instrument audio, male and fe-
male singing voice signals from the Sparse Models, Algorithms
and Learning for Large-scale data (SMALL) dataset [15].



Table I: Experiment Parameters

No | Description Value

1 Sampling frequency 8 kHz

2 Frame size 256 samples

3 Conventional LP order 12

4 HOSpLP order 128

5 Number of pitch taps 3

6 Click duration 0.25 msec - 10 msec

Each signal is normalized to have comparable degradation among
all signals.

B. Click Degradation Model

Usually, the start, duration and amplitude of each click degradation
is modeled probabilistically. Different probability distributions for the
time between impulses and for their amplitudes can be used [1], [16].
In this work the location of click degradation was set randomly and
the samples during the occurrence of click were replaced with zero-
mean Gaussian noise to obtain a click degraded signal.

C. Performance Measures

To evaluate the restoration performance of the methods Signal-to-
noise ratio (SNR) and perceptual evaluation of audio quality (PEAQ)
are used. The SNR of the click restoration is computed for the click
degraded samples only.

sll®
lls —slI?
Where s is a vector of the undegraded audio samples in the click
duration and § is a vector of the restored audio samples in the click
duration.

PEAQ is used to assess the subjective quality of the restored audio
signal. It predicts the basic audio quality of a signal with respect
to a reference signal by modeling the psychoacoustic properties of
the human auditory system. It has a range of 0 to -4: O representing
imperceptible distortion while -4 means very annoying distortion.
PEAQ has been used for the assessment of click degraded signal
restoration in [17].

SNR(s,s) = 10 * log 4)

V. RESULTS

The Janssen algorithm [10] was used to restore the audio signal
that is artificially click degraded using the four LP based restoration
methods discussed in Section III. The SNR and PEAQ were averaged
over all the audio data for each click duration. Table I lists some of
the experiment parameters.

A. Comparison of Conventional LP, Joint optimization of LP coeffi-
cients and HOSpLP

A comparison of restoration of click degraded audio using the four
methods listed in section 111, is shown in Fig. 3 and Fig. 4 for speech
and music respectively.

Restoration by using ¢0-norm regularized HOSpLP offers the
best (i.e. highest SNR) over most click degradation lengths except
for very short clicks. The SNR obtained with joint optimization
of LP coefficients is seen to be lower than ¢0-norm regularized
HOSpLP. This decrease in performance of the joint optimization
of LP coefficients can be attributed to the fact that the iterative
combined approach does not guarantee that the overall error decreases
monotonically over the iterations. It only guarantees a mean-square
error that is never worse than a conventional sequential solution which
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Figure 3: SNR of the restored signal for speech using conventional
LP, Joint optimized LP, £1-norm and ¢0-norm regularized HOSpLP.
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Figure 4: SNR of the restored signal for music using conventional
LP, Joint optimized LP, £1-norm and ¢0-norm regularized HOSpLP.

is limited by the quasi-periodic nature of the intermediate residual
signal [9]. The joint optimization of LP coefficients is observed to
perform better than ¢1-norm regularized HOSpLP for moderate to
long click durations.

B. Noise Robustness

To assess the noise robustness of the proposed methods, additive
white noise was added so that the SNR of the signal is 10dB, 20dB
and 30dB. The four restoration methods were then used to remove
the click degradation in the presence of background noise. Fig. 5
shows the SNR of the restored noisy signal for male speech.

It is seen that even though the performance of all the restoration
approaches decrease with the addition of noise, the degradation in



20

—+—LP: No Noise

=+ =Joint optimization: No Noise
=-+=L0-norm regularized HOSpLP: No Noise
- L1-norm regularized HOSpLP: No Noise
—&—LP: 30dB

- 8 -Joint optimization: 30dB

--8-L0-norm regularized HOSpLP: 30dB
@+ L1-norm regularized HOSpLP: 30dB
—*—LP: 20dB

-% - Joint optimization: 20dB

-7 -L0-norm regularized HOSpLP: 20dB
-+ L1-norm regularized HOSpLP: 20dB
—©—LP: 10dB

- © -Joint optimization: 10dB

-©-L0-norm regularized HOSpLP: 10dB
~©@-L1-norm regularized HOSpLP: 10dB

SNRin dB

8 "'9‘0-0..0‘0..0.9- 8.
T 8eg -0

Click duration (*0.25 msec)

Figure 5: SNR of the restored signal for male speech in the presence
of background noise.

Table II: Computational time needed to process a frame of length 32
msec

Method Time taken (in msec)
Joint optimization LP 42.3
£1-norm regularized HOSpLP 51.2
£0-norm regularized HOSpLP 86.7

performance is graceful. It is also seen that the /0-norm regularized
HOSpLP performs better for high-SNR background noise cases,
while ¢1-norm regularized HOSpLP method seems to perform better
for the low-SNR cases (10 dB and 20 dB).

C. Perceptual evaluation of audio quality

Fig. 6 and 7 show the PEAQ numbers obtained for speech and
music for each of the four approaches without background noise.
It is seen that both ¢1-norm regularized and ¢0-norm regularized
HOSpLP based restoration achieve better (i.e. higher) PEAQ as
compared to conventional LP and the joint optimization approach
for both speech and music. While the ¢0-norm regularized HOSpLP
based restoration achieves the highest PEAQ for speech, the £1-norm
regularized HOSpLP based restoration achieves the highest PEAQ
for music.

D. Computational complexity

The three methods proposed are iterative; therefore, it is difficult
to mathematically derive their computational complexity. The com-
putational complexity can nevertheless be estimated by measuring
the time needed to process 32 msec of data. This value is averaged
over all the datasets. Table II shows the processing time needed by a
Core-17-4510U dual core CPU running the Windows 10 Professional
operating system and using Julia version 0.6.2.

It is seen that none of the methods are real-time. However,
the ¢1-norm regularized HOSpLP approach is only slightly slower
than joint-optimization of LP coefficients approach while the /0-
norm regularized HOSpLP approach is only twice slower than joint-
optimization of LP coefficients approach.
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Figure 7: PEAQ for music.

VI. CONCLUSION

In this paper a high-order linear prediction based approach is
proposed for the restoration of audio corrupted by click degradation
working for both speech and tonal audio without a priori knowledge
about the type of signal or pitch period. The proposed method
achieves an improvement in SNR and PEAQ over conventional
LP and joint optimization based LP coefficients for all considered
speech and audio data types. Even though both the ¢1-norm and ¢0-
norm regularized HOSpLP based restoration methods are not real
time the processing takes only 2 to 3 times the duration of the
frame in consideration on a present-day general-purpose processor.
Considering the application at hand, which is the restoration of
archived audio media, the processing time is not expected to be a
significant limitation.

Only artificial click degradation was considered in this paper.
Therefore, the performance of the methods should also be assessed
under real click degradation. However, given that the samples during
the occurrence of the click are discarded before restoration, it is
expected that the results obtained in this paper will be valid also for
real click degraded signals provided that the location of the clicks are
known beforehand. In practice, the location of the click is not known
a priori though, and therefore click detection methods are needed.
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