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Nonlinear Filtering with Variable-Bandwidth
Exponential Kernels

Maja Taseska, Toon van Waterschoot, Member, IEEE, Emanuël A. P. Habets Senior Member, IEEE, and
Ronen Talmon, Member, IEEE,

Abstract—Frameworks for efficient and accurate signal pro-

cessing often rely on a suitable representation of measurements

that capture phenomena of interest. Typically, such representa-

tions are high-dimensional vectors obtained by a transformation

of raw sensor signals such as time-frequency transform, lag-

map, etc. In this work, we focus on representation learning

approaches that consider the measurements as the nodes of a

weighted graph, with edge weights computed by a given kernel.
If the kernel is chosen properly, the eigenvectors of the resulting

graph affinity matrix provide suitable representation coordinates

for the measurements. Consequently, tasks such as regression,

classification, and filtering, can be done more efficiently than in

the original signal domain. In this paper, we address the problem

of representation learning from measurements, which besides the

phenomenon of interest contain undesired sources of variability.

We propose data-driven kernels to learn representations that ac-

curately parametrize the phenomenon of interest, while reducing

variations due to other sources of variability. This is a non-linear

filtering problem, which we approach under the assumption that

certain geometric information about the undesired sources can be

extracted from the measurements, e.g., using an auxiliary sensor.

The applicability of the proposed kernels is demonstrated in toy

problems and in a real signal processing task.

Index Terms—manifold learning, non-linear filtering, metric

learning, diffusion kernels

I. INTRODUCTION

In many applications, high-dimensional measured data arise
from physical systems with a small number of degrees of
freedom. Consequently, the number of parameters required to
fully describe the data is much smaller than the data dimen-
sionality [1]. This insight justifies learning of low-dimensional
representations of the data, before addressing tasks such as
function approximation, clustering, signal prediction, etc. An
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important class of algorithms in this context, based on spectral
graph theory [2], start by interpreting the high-dimensional
measurements as nodes of a weighted graph, where the edge
weights of the graph are computed by a suitably chosen kernel.
Subsequently, the leading eigenvectors of the resulting graph
affinity matrix provide coordinates that faithfully represent
information about the underlying physical system [3], [4].
The spectral graph-theoretic view on representation learning
is closely related to manifold learning in Riemannian geom-
etry [2]. In the former, the measurements represent nodes of
a graph, while in the latter, they represent samples from a
low-dimensional Riemannian manifold, smoothly embedded
in the high-dimensional measurement space. The graph can
then be viewed as a discrete approximation of the manifold
and the eigenvectors of the graph affinity matrix converge to
the eigenfunctions of the Laplace-Beltrami Operator (LBO) on
the manifold [5], [6], [7], [8].

The graph affinity matrix, if properly normalized, can be
interpreted as the transition probability matrix of a Markov
chain on the graph [2], [9], [10], which converges to a diffusion
process on the corresponding manifold [10], [11], [12]. The
Markov chain / diffusion perspective provides a theoretically
sound framework for constructing application-dependent and
data-driven kernels. In practice, the measurements are rarely
clean observations of a phenomenon of interest, and often
contain undesired sources of variability. Considering a Markov
chain on the graph, it is intuitively clear that in order to obtain
suitable representation by spectral analysis of the Markov
chain, one needs to construct the transition probability matrix
in such a way that the slowest relaxation processes capture
the geometry of the phenomenon of interest [2], [13]. This
is the underlying idea behind directed diffusions [11], self-
tuning kernels [14], and other kernels with a data-driven
distance metric [15] which are successfully applied to many
applications in the past decade. These applications include
multiscale analysis of dynamical systems [16], [17], [18], mul-
timodal data analysis [19], [20], and non-linear independent
component analysis [21].

In this paper, we address the problem of representation
learning from measurements, which besides the phenomenon
of interest (signal), contain undesired sources of variability
(noise). We propose data-driven kernels, whose corresponding
Markov chains (or diffusion processes) behave as if the data
were sampled from a manifold whose geometry is mainly
determined by the phenomenon of interest. In other words,
our objective is to recover a noise-robust low-dimensional
representation of the measurements, that recovers relevant
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geometric properties of the desired signal. To reach this ob-
jective, we require prior information in the form of a distance
metric that is consistent with the noise component. Although
the requirement of such information might seem restrictive,
we propose a purely data-driven approach to estimate the
required distance metric using an auxiliary sensor. In addition,
we demonstrate that under certain conditions, the proposed
kernels can be applied to enhance weak signals in single-
sensor scenarios, without the need for an auxiliary sensor.

The paper is organized as follows. In Section II, we define
the data model and formulate the problem. In Section III,
we describe the relevant concepts from manifold learning.
Section IV presents the main contribution of this paper,
where we propose data-driven kernels for non-linear filtering.
In Section V, we illustrate the properties of the proposed
kernels with several toy experiments. The non-linear filtering
capability of the kernels is demonstrated in Section VI in a
real signal processing task. Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Data model
Consider two hidden random variables X and V , whose

codomains are the metric spaces (X , gx) and (V, gv), respec-
tively. X and V are related to an observable variable S by an
unknown deterministic function g as follows

S = g(X,V ), g : X ⇥ V ! S. (1)

A realization of S, denoted by s, models a single measure-
ment from a sensor that captures a variable of interest x (a
realization of X) and a nuisance variable v (a realization
of V ). In practice, the measurements are often vectors in
a high-dimensional Euclidean space S ⇢ Rls , where ls is
the dimensionality (e.g. time-frequency transform of a time
series, lag-map, pixels of an image, etc). The function g
comprises the sensor mechanism, and possibly, application-
specific preprocessing transforms. In the following, we refer
to x and v, as signal and noise, respectively.

In modern applications, data is often captured by multiple
sensors. Of interest in this work are auxiliary sensors that can
serve as a noise reference. We model the measurements from
such a sensor by a random variable S(a)

S(a) = g(a)(V, Z), g(a) : V ⇥ Z ! S(a), (2)

where Z is a nuisance variable. Note that in contrast to the
classical data model in signal processing literature, the second
sensor does not provide a clean reference of V : it contains
an additional nuisance variable and an unknown measurement
function g(a), which may be different from g.

We assume that g embeds the product space X ⇥V into Rls

in an approximately isometric fashion. Namely, if ds denotes
the Euclidean distance on Rls , and dxv is a distance on X⇥V ,
then for any (x1,v1) and (x2,v2)

ds(s1, s2) ⇡ dxv ((x1,v1), (x2,v2)) . (3)

A distance on the product X ⇥V can be defined as [22, Ch 1]

dxv ((x1,v1), (x2,v2)) = (dx(x1,x2)
p + dv(v1,v2)

p)
1
p ,

(4)

for any 1  p < 1, where dx and dv are distance functions on
X and V , respectively, induced by the corresponding metrics
gx and gv . The data model of the auxiliary sensor can be
endowed with an analogous distance structure.

For the purpose of our analysis, we assume that the metric
spaces X and V are smooth Riemannian manifolds. In this
case, the product X ⇥V is also a smooth manifold [23, Ch. 1].

B. Problem statement

In the considered two-sensor model, a single realization
of the latent variable triplet (x,v, z) is associated to a pair
of measurements (s, s(a)). Then, given N measurement pairs
(s1, s

(a)
1 ), . . . (sN , s(a)N ), we wish to recover the latent signals

of interest {xi}Ni=1 in the primary sensor.
In our non-parametric and unsupervised setting, classical

estimation of {xi}Ni=1 from the noisy measurements is an
unfeasible task. Instead, we seek to recover a parametrization
of {xi}Ni=1 by a low-dimensional embedding f

f : S ! E , E ✓ Rlx , where lx << ls, (5)

that approximately preserves the local distance relationships
among {xi}Ni=1, as defined by the distance dx on X . Under
certain circumstances, it has been shown that such embed-
dings suffice to approximately reconstruct the latent points
{xi}Ni=1 [24]. We note that construction of manifold em-
beddings with a small local bi-Lipschitz distortion has been
discussed in [8], when the measurements are sampled from
a manifold of interest X without the presence of noise. In
our work, we seek to obtain such embeddings when the
measurements contain an unknown noise component.

III. DIFFUSION KERNELS FOR MANIFOLD LEARNING: A
BRIEF OVERVIEW

Manifold learning approaches are often used for signal
processing by modeling the measurements (signal samples)
{si}Ni=1 2 S as points on or near a low-dimensional manifold
X , embedded in the ambient space S [25]. To learn a meaning-
ful low-dimensional representation, the samples {si}Ni=1 are
interpreted as the nodes of a graph, where a kernel function
k : S⇥S ! R assigns the edge weights (pairwise similarities).
The graph represents a discrete approximation of the manifold
X [6], [26], [27]. This setting is simpler than the signal model
we introduced in Section II, where the measurements are
samples from a product manifold X ⇥V that contains a noise
component. Nevertheless, as kernel-based manifold learning
lays the theoretical basis for our work, we briefly discuss the
main concepts in this section.

A. Diffusion distance and diffusion maps

Consider a positive semi-definite kernel function k, and let
K denote the N ⇥ N kernel matrix with entries K[i, j] =
k(si, sj). A common choice for k is an exponentially decaying
homogeneous and isotropic Gaussian kernel, given by

k"(si, sj) = exp

✓
�ksi � sjk22

"

◆
, (6)
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where " > 0 is the kernel bandwidth. Let a diagonal matrix
D contain the degree of each graph node, i.e.,

D[i, i] =
MX

j=1

k(si, sj) =
MX

j=1

K[i, j]. (7)

A Markov chain on the graph can be constructed by consid-
ering the following normalized kernel matrix, referred to as a
diffusion kernel,

P = D�1 K, (8)

where P represents the transition probability matrix of the
Markov chain [2], [9]. The probability of the Markov chain
that started at si, to be at sj at step t is given by

pt (sj | si) = P t[j, i]. (9)

The Markov chain on the graph leads to a natural definition
of distance between points based on their connectivity, known
as the diffusion distance [10], [11]. If the graph is connected
and non-bipartite, the Markov chain has a unique stationary
distribution given by [2, Ch.1]

⇡o(si) =
D[i, i]P
j D[j, j]

. (10)

The diffusion distance at step t is then defined as

d2t (si, sj) =
NX

l=1

(P t[l, i]� P t[l, j])
2

⇡o(sl)
. (11)

An embedding that is consistent with dt can be constructed
from the eigenvectors of P t [10]. Let { i}M�1

i=0 denote the
right eigenvectors of P , with eigenvalues 1 = �0 > �1 �
. . . > 0. Then, an l-dimensional diffusion maps embedding
 t : S ! Rl, for given t and l is defined as

 t(si) =
⇥
�t
1 1[i], �t

2 2[i], . . . , �t
l  l[i]

⇤T
. (12)

The constant eigenvector  0 is excluded from the embedding.
Due to the intrinsic low-dimensionality of the manifold, an
l-dimensional diffusion map with l << ls, embeds the data
approximately isometrically with respect to dt [11], [28]. The
dimensionality l is chosen by identifying the spectral gap, i.e.,
the number of significant eigenvalues of P t.

The eigenvectors of the isotropic diffusion kernel con-
structed by (6)-(8) are consistent with the manifold geom-
etry only if the measurements are sampled uniformly on
the manifold. In this case, the eigenvectors converge to the
eigenfunctions of the LBO [5]. To maintain this property for
an arbitrary sampling density, an additional normalization of
the kernel K is required as follows [11], [28]

Ko = D�1 KD�1, (13a)
P = D�1

o Ko, (13b)

where Do is a diagonal matrix with Do[i, i] =
PN

j=1 Ko[i, j].

B. Directed diffusion and data-driven kernels
The theory of diffusion maps with isotropic exponential

kernels such as (6), and their ability to recover the manifold
geometry, is valid when the measurements are sampled from
the manifold of interest. In most applications, including the
non-linear filtering problem considered in our work, this is not
the case. Hence, learning a suitable representation of a quantity
of interest in the measurements requires design of data-driven
diffusion kernels. This can be achieved by employing a data-
driven distance function in the kernels.

In the literature, several approaches to metric learning have
been proposed for this task. A class of approaches replace
the Euclidean distance in the kernel with a quadratic forms
defined by a task-driven metric tensor M(i, j) as follows

k",M (si, sj) = exp

✓
� (si � sj)T M(i, j) (si � sj)

"

◆
.

(14)
Such kernel construction has been often used in the past
decade for analysis of dynamical systems [16], image pro-
cessing [29], non-linear independent component analysis [21],
and other applications [25]. Quadratic form distances have
also been used with alternating diffusion kernels in multi-
sensor applications [20]. Other approaches for informed metric
construction based on prior information about the problem at
hand have been proposed in [30], [31], [32].

IV. PROPOSED NOISE-INFORMED DIFFUSION KERNELS FOR
NONLINEAR FILTERING

According to the diffusion maps theory discussed in Sec-
tion III, if the data lie on a manifold, the diffusion distance
associated with a suitable Markov chain is consistent with the
manifold geometry. However, in our problem, the data is sam-
pled from the product manifold X ⇥V , while the objective is
to recover the geometry of X alone. Two problems arise if we
apply the diffusion maps algorithm with a standard Gaussian
kernel to learn parametrization of X . First, we cannot identify
whether a given diffusion maps coordinate corresponds to X ,
V , or a combination thereof. Second, even if we could identify
the relevant coordinates, they might not correspond to leading
eigenvectors of the kernel.1 The second problem is relevant for
implementation of manifold learning algorithms in practice,
as efficient large-scale eigensolvers compute the eigenvectors
of matrices consecutively, starting from the largest ones [35].
Our objective is to design suitable diffusion kernels which
warp the data geometry in a way that information about the
signal of interest concentrates higher in the spectrum (i.e., in
eigenvectors that correspond to larger eigenvalues), compared
to a standard diffusion kernel on X ⇥ V .

A. Kernel construction with noise-informed bandwidth
The type of data-driven kernels that we consider for non-

linear filtering are known as variable-bandwidth (VB) ker-

1The second problem is related to the crucial property of the LBO
eigenvectors, namely, that different eigenvectors may encode the same source
of variability on the manifold. See [33], [34] for more details about this
property and its implications in practice.
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nels [15], where the bandwidth is prescribed by a location-
dependent scalar function b(i, j) as follows

k",b(si, sj) = exp

✓
�ksi � sjk2

" b(i, j)

◆
. (15)

VB kernels have been used for robust spectral clustering [14]
and dynamical system modeling [17], [18]. Here, we show
that with suitably defined bandwidth, they can be applied for
non-linear filtering on product manifolds.

We start by noting that a bandwidth b(i, j) defines a
transformation of the Euclidean distances in S , according to

ds(si, sj) = ksi � sjk 7�! ksi � sjk
b(i, j)

= d̂s(si, sj). (16)

If a kernel implemented with the distance d̂s is to have more
of its leading eigenvectors consistent with the geometry of X
compared to a kernel implemented with ds, the transformed
distance d̂s should be less sensitive to noise than the ob-
servable Euclidean distance ds. To achieve such behavior, we
propose the following noise-informed bandwidth function

b(i, j) = (1 + dv(vi,vj))
2 . (17)

Clearly, the pairwise distances dv(vi,vj) are unobservable in
practice. In Section IV-B, we discuss data-driven methods to
estimate dv(vi,vj) for each pair of observations.

With the non-linear filtering problem in mind, the bandwidth
function in (17) was chosen such that distances in the kernel-
induced geometry 1) are less sensitive to noise than the
Euclidean distances in the measurement space, 2) are robust
to estimation errors in dv , and 3) preserve the geometry of the
desired signal to a certain extent. We formalize these properties
in the following three propositions.

Proposition 1. If (xi,vi) and (xj ,vj) are the hidden vari-
ables corresponding to si and sj , respectively, then

dv(vi,vj) > 0 =) d̂s(si, sj) < ds(si, sj) (18a)

dv(vi,vj) = 0 =) d̂s(si, sj) = dx(xi,xj). (18b)

Proof. The bandwidth function induces a locally scaled Eu-
clidean distance between the measurements, given by

d̂s(si, sj) = ds(si, sj) (1 + dv(vi,vj))
�1 . (19)

It is straightforward that the scaling (1 + dv(vi,vj))
�1 de-

pends on dv as follows

dv(vi,vj) > 0 =) (1 + dv(vi,vj))
�1 < 1 (20a)

dv(vi,vj) = 0 =) (1 + dv(vi,vj))
�1 = 1. (20b)

Furthermore, from the distance properties in (3), (4) we have

dv(vi,vj) = 0 =) ds(si, sj) = dx(xi,xj). (21)

The proof follows by substituting (19), (20), and (21) in (18).

From (18), it follows that if the noise contributes to the
measured distance ds(si, sj), then the distance in the kernel-
induced geometry is smaller than ds(si, sj). In this sense,

the proposed noise-informed bandwidth results in a distance
measure that is less sensitive to noise, compared to ds(si, sj).

As dv has to be estimated from the data, the bandwidth
function needs to be stable under small estimation errors of dv .
Let d̂v(vi,vj) denote the estimate and d̂0s(si, sj) the resulting
scaled Euclidean distance.

Proposition 2. If |dv(vi,vj) � d̂v(vi,vj)| < ✏v , then
|d̂s(si, sj)� d̂0s(si, sj)|  ✏ ds(si, sj)

Proof. To describe the behavior of the scaling factor
(1 + dv(vi,vj))

�1, consider the function f(u) = (1 + u)�1.
The following holds

|f(u)� f(w)|  |u� w|. (22)

Omitting the distance function arguments for brevity, we have

|d̂s � d̂0s| = ds

����
1

1 + dv
� 1

1 + d̂v

����  ds (dv � d̂v), (23)

where the inequality follows from (22). Thus, we conclude
|d̂s(si, sj)� d̂0s(si, sj)|  ✏ ds(si, sj).

Proposition 3. Consider the set of ordered pairs L⇠ =
{(i, j) | dv(vi,vj) = ⇠}, for some constant ⇠ > 0. L⇠

represents a set of measurement pairs for which the pairwise
distance due to noise is constant. Let (i, j), (k, l) 2 L⇠. Then
dx(xi,xj) < dx(xk,xl) =) d̂s(si, sj) < d̂s(sk, sl).

Proof. From the definition of the distance, and the scaling
function, it follows

d̂s(si, sj) = (dx(xi,xj)
p + ⇠p)

1
p (1 + ⇠)�1

d̂s(sk, sl) = (dx(xk,xl)
p + ⇠p)

1
p (1 + ⇠)�1 (24)

It is immediate that for a fixed ⇠, dx(xi,xj) < dx(xk, xl)
implies d̂s(si, sj) < d̂s(sk, sl).

Finally, note that the proposed bandwidth in (17) is not
the only function that satisfies these propositions. In fact, any
smooth monotonic transformation of dv that is locally bi-
Lipschitz has the potential to provide good non-linear filtering
capabilities in the resulting kernels.

B. Estimating the noise distance metric dv

To implement the proposed bandwidth function in (17), the
pairwise distances dv(vi,vj) need to be estimated from the
measurements. Although scenarios with an auxiliary sensor
are our main target, we also discuss a special case where
estimation is possible with a single sensor.

1) Estimating dv with an auxiliary sensor: The recently
proposed alternating diffusion (AD) algorithm extends the dif-
fusion framework to multiple sensors that capture a common
signal, corrupted by sensor-specific variables [36], [37]. In our
problem, the noise is a common signal at the primary and the
auxiliary sensor. Hence, the AD algorithm can be used to find
an embedding that is consistent with the geometry of V , and
provide an estimate of the pairwise distances dv(vi,vj). The
key object of AD is the AD kernel Pad [36], defined as

Pad = P P (a). (25)
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where P and P (a) are the standard sensor-specific diffusion
kernels discussed Section III-A.

Let Pad = U⇤V T, where the columns {vi}Ni=1 of V , are
the right singular vectors, and the entries {�i}Ni=1 of the diag-
onal matrix ⇤, are the singular values (in decreasing order).
Then, an l-dimensional AD embedding  ad : S ⇥ Sa ! Rl

is given by [37]

 ad(si, s
(a)
i ) =

⇥
�1v1[i], �2v2[i], . . . , ,�dvl[i]

⇤T
. (26)

The AD distance dad((si, s
(a)
i ), (sj , s

(a)
j )), denoted by

dad(i, j) for brevity, is defined as

dad(i, j) = k ad(si, s
(a)
i )� ad(sj , s

(a)
j )k2. (27)

According to [36],  ad approximates a diffusion maps embed-
ding that would be obtained if data was sampled directly from
V . As a result,  ad provides a parametrization of the noise
samples {vi}Ni=1, and dad(i, j) can be used to approximate the
pairwise distances dv(vi,vj).

Using the AD distance, we implement the following dis-
tance transform for our proposed kernel

d̂s(si, sj) =
ds(si, sj)

1 + dad(i, j)

=
ksi � sjk2

1 + k ad(si, s
(a)
i )� ad(sj , s

(a)
j )k2

, (28)

which corresponds to a kernel with the bandwidth function

b(i, j) = (1 + dad(i, j))
2. (29)

We note that the dimensionality l of  ad is not very critical.
In theory, all coordinates obtained by the AD algorithm are
consistent with the geometry of V . However, our experiments
suggested that due to estimation errors in practice, it is
preferable to only use the first one or two coordinates in (26).

2) Estimating dv without an auxiliary sensor: If only
the measurements {si}Ni=1 from the primary sensor are given,
we claim that pairwise distance estimates d̂v(vi,vj) can be
obtained, if the signal-to-noise ratio (SNR) of the measure-
ments is lower than 0 dB. Recall the structure of the diffusion
spectrum: the strongest sources of variability correspond to
the slowest relaxation processes of the Markov chain, which
in turn, correspond to the largest eigenvalues of the kernel [2].
Hence, if we consider the one-dimensional diffusion map
obtained with a standard kernel as described in Section III-A,

 1(si) = �1 1[i], (30)

it follows that the Euclidean distance | 1(si) �  1(sj)|
is consistent with dv(vi,vj). Consequently, we propose to
implement the following metric transform for our kernel

d̂s(si, sj) =
ksi � sjk2

1 + | 1(si)� 1(sj)|
, (31)

which corresponds to a kernel with the bandwidth function

b(i, j) = (1 + | 1(si)� 1(sj)|)2 . (32)

We note that the idea of using the first eigenvector of the
diffusion kernel to uncover other sources of variability, has
been previously used for dimensionality reduction [34] and
nonlinear dynamical system analysis [33].

Algorithm 1 Diffusion maps with a noise-informed VB kernel

Input: Measurements {si}Ni=1, and estimated pairwise dis-
tances d̂v(vi,vj) (described in Section IV-B).

1: For each pair (i, j) compute the bandwidth function b(i, j)
in (17), using d̂v(vi,vj)

2: Construct an exponential kernel matrix K with the VB
kernel K[i, j] = exp

⇣
�d(si,sj)

2

"ij b(i,j)

⌘

3: Apply density normalization to K, according to (13a)
4: Compute the diffusion kernel P , according to (13b)
5: Compute the principal lx eigenvectors { i}lxi=1 with

eigenvalues {�}lxi=1 (exclude  0).

Output: The new representation f(si) for each si
. f(si) = [�1 1[i], �2 2[i], . . . , �lx  lx [i]]

T.

C. Summary and practical considerations

In real datasets, distances from nearest neighbors may differ
significantly for different points. As a result, if " is fixed,
some vertexes of the graph can be isolated, while others
highly connected. To take this into account, the scale " can
be location-dependent as well. We used the method suggested
in [36], where for each point i, a local scale "i is introduced
that is equal to the median of the squared distances from
the 200 nearest neighbors. Then, the scale for a pair of
points (i, j) is set to "ij =

p
"i"j . The complete algorithm

that implements diffusion maps with the proposed data-driven
kernels, is summarized in Algorithm 1.

Note that in contrast to the standard diffusion maps algo-
rithm, the spectral gap is not suitable to determine the dimen-
sionality lx of the embedding f . Although the eigenvectors
that parametrize the desired signal are higher in the spectrum
of the proposed kernel, compared to an isotropic kernel, there
is no guarantee that all eigenvectors before the spectral gap
parametrize the desired signal. The relevant eigenvectors, and
hence, the dimensionality lx, could be identified for instance
by calculating the mutual information between the leading
eigenvector of the AD kernel (which provides a noise reference
signal), and the eigenvectors of the proposed kernel.

V. ILLUSTRATIVE EXAMPLES

With the toy examples in this section, we investigate the ef-
fect of the noise-informed bandwidth function on the diffusion
kernel eigenvectors. The goal is to illustrate that the resulting
Markov chain is biased to propagate faster along the directions
of variation that correspond to the noise variable (compared to
an isotropic Markov chain). As a result, the leading eigenvec-
tor of the diffusion kernel provides a representation consistent
with the desired variable X , regardless of the SNR.

A. Two-dimensional strip

Let the measurements {si = [si1, si2]}Ni=1 be samples from
a two-dimensional rectangular strip, with lengths L1 > L2.
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(a) (b) (c)

Fig. 1. Points sampled from a strip. The first four diffusion eigenvectors are shown coded in color (top to bottom: 1st to 4th). (a) Isotropic kernel. (b)

Proposed kernel, when the horizontal coordinate is the desired signal X and the vertical coordinate is the noise V . (c) Proposed kernel, when the vertical
coordinate is the desired signal X and the horizontal coordinate is the noise V .

The eigenvalues of the Laplace-Beltrami operator (with Neu-
mann boundary conditions) can be computed analytically as

µk1,k2 =

✓
k1⇡

L1

◆2

+

✓
k2⇡

L2

◆2

, (33)

for k1, k2 = 0, 1, 2 . . ., with the corresponding eigenfunctions

⇢k1,k2(l1, l2) = cos

✓
k1l1⇡

L1

◆
cos

✓
k2l2⇡

L2

◆
. (34)

Although the eigenfunctions ⇢1,0(l1) = cos(l1⇡/L1) and
⇢0,1(l2) = cos(l2⇡/L2) fully parametrize the strip, they do
not necessarily correspond to the two largest eigenvalues. As
the ratio L1/L2 increases, the more eigenfunctions of the form
⇢k1,0(l1) appear before ⇢0,1(l2) in the spectrum. We uniformly
sampled N = 2880 points from a strip with lengths L1 = L
and L2 = 0.4L. From (33), and (34), it follows that the
leading four eigenfunctions are ⇢0,1, ⇢0,2, ⇢1,0, and ⇢1,1. The
first four coordinates obtained by a standard diffusion maps
algorithm with an isotropic kernel, illustrated in Figure 1(a),
correspond to these four eigenfunctions.

If the two strip coordinates represent X and V , the prop-
erties we desire for a data-driven kernel are i) the leading
eigenvector should parametrize the desired signal X , even
if X corresponds to the shorter strip dimension, and / or
ii) the number of eigenvectors among the leading ones that
parametrize X , is larger than the same number for the standard
kernel. Consider the coordinate-wise distances on the strip

d1(si1, sj1) = |si1 � sj1| (35a)
d2(si2, sj2) = |si2 � sj2|. (35b)

If si1 is the coordinate of interest, then d2 corresponds dv ,
and if si2 is the coordinate of interest, then d1 corresponds to
dv . The associated bandwidth functions are

b1(i, j) = (1 + d1(si1, sj1))
2, (36a)

b2(i, j) = (1 + d2(si1, sj2))
2. (36b)

In these examples, we wish to demonstrate the behavior of
proposed kernels with an ideal estimate of dv . Therefore, we
assume that d1 and d2 are accessible. The first four diffusion
map coordinates obtained with the bandwidths in (36) are
shown in Figure 1(b) and 1(c). In Figure 1(b), bandwidth
is b2(i, j) shrinks vertical variations. As a result all four
eigenvectors are consistent with the horizontal coordinate.
Similarly, in Figure 1(c), the bandwidth b1(i, j) shrinks hor-
izontal variations, and the principal eigenvector parametrizes
the vertical coordinate.

We can visualize the evolution of the Markov chains as fol-
lows. We start from an arbitrary point on the strip by defining
a unit probability vector centered at that point. Propagating
the chain forward corresponds to multiplying the probability
vector from the right by the transition probability matrix. The
probability evolution (the heat diffusion), can be visualized by
a scatter plot of all measurements, with each point colored by
the probability of the Markov chain to be at that point, at a
given step. While the standard kernel is characterized by an
isotropic diffusion, the proposed kernels induce diffusion that
is faster along the undesired coordinate, as seen in Figure 2.

B. Manifolds embedded in R3

In this example, the measurements {si}Ni=1 are N = 2500
points sampled from the surface of a torus embedded in R3.
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(a) (b) (c)

Fig. 2. Heat diffusion on the strip after 5 steps of the Markov chain, starting from the point denoted by ⇥. (a) Isotropic kernel; (b) Proposed kernel when
the horizontal coordinate is the desired signal. The diffusion is then faster along the vertical coordinate; (c) Proposed kernel when the vertical coordinate is
the desired signal. The diffusion is then faster along the horizontal coordinate.

(a) (b) (c)

Fig. 3. Heat diffusion on the torus after 5 steps of the Markov chain, starting from the point denoted by ⇥. (a) Isotropic kernel; (b) Proposed kernel when
the major angle is the desired signal. The diffusion is then faster along the minor angle; (c) Proposed kernel when the minor angle is the desired signal.

(a) Isotropic diffusion (b) Directed diffusion faster in
radial direction (top view)

(c) Directed diffusion faster in
angular direction (top view)

Fig. 4. Heat diffusion on the cone-like surface after 5 steps of the Markov chain, starting from the point denoted by ⇥. (a) Isotropic kernel; (b) Proposed
kernel when the angular position is the desired signal (top view); (c) Proposed kernel when the distance from the cone tip is the desired signal (top view).

Each point on the torus is parametrized as

s(x, v) =

2

6664

(R+ r cos(2⇡v)) cos(2⇡x)

(R+ r cos(2⇡v)) sin(2⇡x)

r sin(2⇡v)

3

7775
, (37)

where R and r are the major and minor radius, and x and v are
the major and minor angle of the torus, respectively. Similarly
as in the strip experiment, we assume that the following
distance is accessible

dv(vi, vj) = knvi � nvjk2, nv = [cos(v), sin(v)]T. (38)

If the minor angle is a desired signal, the kernel is constructed
using dx(xi, xj), defined analogously to (38). The diffusion
on the torus surface resulting from the different kernels is
shown in Figure 3. While the standard kernel is characterized
by an isotropic diffusion, the proposed kernels induce directed
diffusions that are faster along one of the angles.

As a last illustration, we consider points sampled on a
concave cone-like surface in R3, illustrated in Figure 4(a).

Each point is parametrized by the distance r from the cone
tip, and the angle ✓ as follows

s(r, ✓) =
h
r cos(✓), r sin(✓), r0.2 + r0.8

iT
. (39)

If the angular location of a point is the desired signal, we
construct a kernel that induces a heat diffusion that is faster
along the radial direction. This is achieved with the bandwidth

br(i, j) = (1 + dr(ri, rj))
2. (40)

If the distance from the tip is the desired signal, the kernel
bandwidth can be computed similarly as in the torus example.
The heat diffusion induced by the proposed kernels is illus-
trated in Figures 4(b) and 4(c). We show top view of the point
cloud to better illustrate the direction of diffusion.

VI. EXPERIMENTS WITH REAL DATA: FETAL ECG
EXTRACTION

In this section, we apply the proposed VB kernels to esti-
mate the fetal instantaneous heart rate (fIHR) non-invasively,
from abdominal maternal electrocardiogram (mECG) [38],
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Fig. 5. Example signals from Patient 1 in the adfecgdb database. Top: time-domain signals. Bottom: dsSTFT representations.
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Fig. 6. Example signals from Patient 2 in the adfecgdb database. Top: time-domain signals. Bottom: dsSTFT representations.

[39]. We use ECG signals from the PhysioNet collection [40].
The fIHR extraction problem is suitable to demonstrate the
non-linear filtering capability of the proposed kernels with and
without an auxiliary sensor. We note that recovery of the fetal
electrocardiogram (fECG) waveform involves additional steps
after fIHR extraction: beat tracking and median filtering [39].
However, as the overall scheme relies on the fIHR, we only
consider the latter in our experiments.

A. Experiment description
Estimation of fIHR from signals that contain mECG cor-

responds to a multiple frequency detection problem. A time-
frequency transform for this type of problems, known as the
de-shape short-time Fourier transform (dsSTFT), was recently
proposed in [41]. As the fECG in the abdominal signals is an
order of magnitude weaker than the mECG, it is not dominant
in the dsSTFT spectrum, and often not detected at all. The
dsSTFT was employed for fIHR estimation in [39], by first
estimating the mECG and then subtracting this estimate from
the abdominal signal. In the following, we show that using the
proposed kernels, the fIHR can be obtained without estimating
the mECG waveform first. All ECG signals are sampled at

1 kHz with 16-bit resolution. Measurement vectors s are
obtained using a lag-map, by concatenating 256 consecutive
signal samples, with a hop of 10 samples between measure-
ments. Each experiment consists of a 25 seconds signal excerpt
from a given patient, resulting in N = 2500 data points per
experiment. The following pre-processing steps are applied to
the waveforms [39]: low-pass filtering with 100 Hz cut-off to
suppress noise, median filtering with a window length of 0.1
seconds to subtract trends, and normalization to unit variance.

B. Evaluation with a direct fetal ECG reference
In this experiment, we use the Abdominal and Direct Fetal

Electrocardiogram Database (adfecgdb) from PhysioNet [38],
which contains abdominal ECGs from five women between 38
and 40 weeks of pregnancy. A direct fetal ECG recorded with
a fetal scalp lead is included for each patient. Signal excerpts
from two patients with the corresponding dsSTFTs are shown
in Figures 5 and 6. Even if in some signals the fetal heart rate
is detected, the maternal instantaneous heart rate (mIHR) is
always the dominant spectral line. Our objective is to apply
the proposed kernels and obtain a signal representation where
the fIHR is the dominant spectral line.
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Fig. 7. Eigenvectors from the different diffusion kernels for Patient 1. Top: isotropic kernel. Bottom: from proposed kernels without and with an auxiliary
sensor (indicated by 1s and 2s respectively).
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Fig. 8. Eigenvectors from the different diffusion kernels for Patient 2. Top: isotropic kernel. Bottom: from proposed kernels without and with an auxiliary
sensor (indicated by 1s and 2s respectively).

The dsSTFT of the first few leading eigenvectors from two
experiments are shown in Figures 7 and 8. The proposed kernel
was first implemented without an auxiliary sensor, where the
noise distances are estimated as proposed in Section IV-B2.
This scenario is denoted by 1s. Then, the kernel was imple-
mented using a second abdominal ECG as an auxiliary sensor,
where the noise distances are estimated using AD, as proposed
in Section IV-B1. This scenario is denoted by 2s. In both cases,
the early eigenvectors of the proposed kernels recover the
fIHR. In particular, in the 2s scenario, a complete suppression
of the maternal ECG is observed already in the first or second
eigenvector. It is important to mention that the effectiveness
of the proposed kernels is influenced by the fECG strength in
the abdominal ECGs. For instance, for the second patient, the
fECG appears in the dsSTFT of the unprocessed ECG, shown
in Figure 8. However, application of our algorithm ensures
that the fECG is the dominant spectral line.

To obtain a quantitative evaluation, we extracted instan-
taneous heart rate (IHR) curves from each of the first 20
eigenvectors in 9 different experiments, using signal excerpts
from four patients. The IHR was computed from the dsSTFTs
representation using the method presented in [39], and com-
pared to the reference fIHR. From the total of 180 analyzed
eigenvectors for each kernel, we only kept the eigenvectors
that successfully extracted the fIHR. The scatter plot in
Figure 9 shows the mean error in beats-per-second (bps) for
each of these eigenvector. The percentage of eigenvectors
that extracted the fIHR is shown in the accompanying table.
Notice that the percentage is by more than three times larger
for the proposed kernels than for the isotropic one. Even by
considering only the first 10 eigenvectors per experiment, the
fIHR is recovered in more than 50% of the cases. Importantly,
these tend to be higher in the spectrum than the eigenvectors
of an isotropic kernel. We once again emphasize that multiple
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Fig. 10. Signal examples from the nifecgdb dataset. Top row: time-domain
waveforms. Bottom row: dsSTFTs representations.

eigenvectors of the diffusion kernels can encode the same
direction of variability in the data [33]. In fact, as visible in
Figure 9, a large proportion of the leading eigenvectors can
used to estimate the fIHR with a good accuracy. The average
fIHR estimation error (averaged across eigenvectors) of the
proposed kernel in the 2s scenario is 0.5 bps. The error in the
1s scenario is 0.6 bps, while the isotropic kernel is inferior
with an error of 1.2 bps.

It would be of interest to compare the accuracy of the fIHR
to the related dsSTFT-based approach in [39]. However, the
results only report performance from later stages of the fECG
extraction pipeline, after the fIHR estimation takes place.
An in-depth analysis of the influence of the proposed fIHR
estimation method on the complete pipeline is a topic for
future application-dedicated research.

C. Qualitative evaluation without a fetal ECG reference
In this experiment, we use the Non-Invasive Fetal Elec-

trocardiogram Database (nifecgdb) from PhysioNet, which
consists of abdominal ECGs of women between 21 and 40

weeks of pregnancy. The recordings include a thoracic signal
which provides a good reference of the maternal ECG. Sample
waveforms from the database are shown in Figure 10.

In most recordings, we noticed an extremely weak fetal
ECG compared to the mECG, which is visible in Figure 10.
Consequently, the fIHR was not recovered among the top
eigenvectors of an isotropic kernel. However, given the tho-
racic mECG signal as a reference, the proposed kernel is
particularly suited for this scenario: the metric dv can be
accurately estimated with the AD algorithm applied with an
abdominal sensor and the thoracic sensor. The results for
one patient are shown in Figure 11. It can be seen that the
second eigenvector recovers the fIHR, while removing the
mIHR from the spectrum. For this experiment, we only present
a qualitative result, as without a fECG we were unable to
perform quantitative analysis as in Section VI-B, since we do
not have the ground truth.

VII. CONCLUSIONS

In this paper, we developed a non-linear filtering framework
based on diffusion kernels. Distinguishing properties of the
proposed kernels are their non-homogeneity and anisotropy,
determined by a noise-informed kernel bandwidth. Our algo-
rithmic concept is that by extracting geometric information
about the noise signal from the measurements, one can define
a suitable kernel bandwidth function, which is equivalent to
defining a metric that is less sensitive to noise variations that
the Euclidean distance in the measurement space. The findings
in this paper open a few interesting questions for future
research. These include characterization of a broader family
of possible bandwidth functions with filtering capabilities, and
extending the signal representation to new measurements. We
note that extension to new measurements is a weak point
of kernel-based approaches in general, and certain techniques
have already been investigated in the literature. However, the
applicability of these techniques in combination with a data-
driven kernel bandwidth is an important open question. Finally,
the proposed bandwidth function can be combined with other
task-driven metric transforms to devise new kernels for a wider
range of applications.
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