
 

 

 
 

 
 

 

 

Citation/Reference	 Randall	Ali,		Giuliano	Bernardi,	Toon	van	Waterschoot,	Marc	Moonen,	

(2018),	

Methods	of	extending	a	generalized	sidelobe	canceller	with	

external	microphones		

Archived	version	 Author	manuscript:	the	content	is	identical	to	the	content	of	the	published	

paper,	but	without	the	final	typesetting	by	the	publisher	
ftp://ftp.esat.kuleuven.be/pub/SISTA/rali/Reports/18-125.pdf 
	

Published	version	 	https://ieeexplore.ieee.org/document/8720019 

Journal	homepage	 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6570655 
	

Author	contact	 your	email	randall.ali@esat.kuleuven.be	
Klik hier als u tekst wilt invoeren.	

IR	 		

	
(article begins on next page) 



1

Methods of extending a generalised sidelobe
canceller with external microphones

Randall Ali, Giuliano Bernardi, Toon van Waterschoot and Marc Moonen

Abstract—While substantial noise reduction and speech en-
hancement can be achieved with multiple microphones organised
in an array, in some cases, such as when the microphone
spacings are quite close, it can also be quite limited. This
degradation can however be resolved by the introduction of one
or more external microphones (XMs) into the same physical
space as the local microphone array (LMA). In this paper,
three methods of extending an LMA-based generalised sidelobe
canceller (GSC-LMA) with multiple XMs are proposed in such a
manner that the relative transfer function pertaining to the LMA
is treated as a priori knowledge. Two of these methods involve
a procedure for completing an extended blocking matrix, while
the third uses the speech estimate from the GSC-LMA directly
with an orthogonalised version of the XM signals to obtain an
improved speech estimate via a rank-1 generalised eigenvalue
decomposition (GEVD). All three methods were evaluated with
recorded data from an office room and it was found that the third
method could offer the most improvement. It was also shown that
in using this method, the speech estimate from the GSC-LMA
was not compromised and would be available to the listener if so
desired, along with the improved speech estimate that uses both
the LMA and XMs.

Index Terms—Multi-Microphone Noise Reduction, Speech En-
hancement, External Microphone, GSC, beamforming

I. INTRODUCTION

By exploiting their spatial variation, microphones organised
in an array [1] have been successfully used for noise reduction
and speech enhancement in several applications, including,
but not limited to assistive hearing, mobile communication,
and teleconferencing. In some cases, however, particularly for
closely spaced microphone arrays, such as those on a hearing
aid (HA), the spatial characteristics among the microphones
may not be sufficiently distinct and hence the amount of
noise reduction that can be achieved is limited. By introducing
one or more external microphones (XMs) (such as on a
mobile device or a wireless microphone clipped onto a desired
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speaker) into the same physical space as a ‘local’ microphone
array (LMA), the spatial diversity among the microphones
becomes greater, resulting in the potential for an increase in
the amount of achievable noise reduction [2].

This fact has led to considerable research within the field
of wireless acoustic sensor networks (WASNs) [3], where in-
dividual microphones and/or microphone arrays are randomly
arranged in a physical space. For instance, several distributed
speech enhancement algorithms have been developed [2] [4]–
[6], which confirm the advantages of such WASNs.

For a WASN specifically consisting of an LMA (such as on
an HA) and a single XM, early frequency modulation (FM)
systems [7] [8] have been used to simply transmit an XM
signal to a HA user, while disabling the LMA. It was assumed
that the XM was always close to the desired speaker and hence
a cleaner signal could be achieved. It was however noted in
[7] that some subjects expressed concerns of persistent noise
in very noisy environments as well as the problem of spatially
localising the desired speaker.

Recently, though, a number of more sophisticated strategies
have been proposed for this type of WASN. In [9]–[11],
variants of the Multi-Channel Wiener Filter (MWF) [12]
have been used for preservation of binaural cues for HA
users. In [13], the use of the XM as a noise reference for
speech enhancement was analysed while taking into account,
issues associated with the wireless transmission of the audio
signal. For single microphone HAs, the procedure in [14] used
the XM to design a post-filter in order to resolve a front-
back ambiguity. A different approach altogether used an XM
(typically worn on the desired speaker) to estimate the sound
direction of arrival (DoA) and then applied the appropriate
binaural cues onto the “clean” XM signal [15] [16].

In this paper, the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer [17] [18] and its practical im-
plementation, the Generalised Sidelobe Canceller (GSC) [19]
will be considered for noise reduction. An extension of the
previously discussed WASN to one that contains a single
LMA collaborating with one or multiple XMs will also be
considered. It will not be assumed that the XM(s) will always
be close to the desired speaker, but rather that it (they) can
be in any position within the physical space. The MVDR
beamformer and the GSC can be effective provided that a
vector of transfer functions relating the desired speech signal
at a reference microphone to the desired speech signal at
the other microphones, i.e. a vector of the relative transfer
functions (RTFs), is known. In [2], [4]–[6], [9]–[11], the
approach has been to estimate such an RTF vector for all of
the microphones, i.e. for both the LMA and the XMs.

An alternative approach is however considered in this
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work, where available a priori knowledge of the RTF vector
pertaining to only the LMA is explicitly used. For instance,
in some hearing assistive devices it is not uncommon to
assume a frontal location for the desired speaker [14], [20],
which can subsequently be used to compute an a priori RTF
vector for the LMA. It has been shown that designing an
LMA-based noise reduction system for a hearing assistive
device with such an a priori RTF vector can then lead to a
practical and robust approach for the assumed desired speaker
location [21], [22]. In this context, therefore, it is only the
missing part of the RTF vector corresponding to the XMs
that needs to be estimated. The advantage of this approach
is that the XMs can be incorporated in a modular fashion or
as “add-ons” for an improved performance to the LMA-based
noise reduction system. With such modularity, this approach
has a built-in contingency option of reverting to the original
performance of the noise reduction system with the LMAs
in cases where estimation becomes challenging. This is in
contrast to a system where the entire RTF vector is estimated,
since in such cases if the estimation is poor, there are no
alternative options or decisions which can be taken to yield
an acceptable performance.

Within an MVDR beamformer framework, this type of
RTF estimation that uses the a priori information of the RTF
vector of an LMA has already been considered in [23] for
the case of one XM. In this paper, these procedures are
generalised for multiple XMs and also extended to a practical
GSC framework. In particular, three methods will be discussed
and evaluated experimentally, two of which involve a process
of completing a blocking matrix similar to that of [24].
The third method, which will be proven to offer the most
improvement, uses the speech estimate from an LMA-based
GSC (GSC-LMA) directly with an orthogonalised version of
the XM signals to obtain an improved speech estimate via
a rank-1 generalised eigenvalue decomposition (GEVD). This
approach indeed does not compromise an existing GSC-LMA
as both speech estimates, i.e. that from only using the existing
GSC-LMA, and that from using the LMA in co-operation with
the XMs are independently available.

The paper is organised as follows. In section II, the data
model is presented. In section III, a review of processing
schemes using only an LMA for an MVDR beamformer
and a GSC is provided. In section IV, the extension of an
LMA-based MVDR beamformer to include multiple XMs
is introduced. In section V, the method of completing the
blocking matrix for an extension of the GSC-LMA for two
different RTF estimation procedures involving multiple XMs is
discussed. In section VI, an alternative approach to extending
the GSC-LMA is proposed, which involves an orthogonali-
sation of the XM signals and a rank-1 GEVD procedure. In
section VII, the three methods are evaluated with recorded
data taken in a typical office scenario. A summary and general
conclusions are finally drawn in section VIII.

II. DATA MODEL

A noise reduction system consisting of an LMA of Ma

microphones plus Me XMs is considered. It is also assumed

that there is only one desired speech signal in a noisy environ-
ment. In the short-time Fourier transform (STFT) domain, the
received signal at one particular frequency, k, and one time
frame, l, is represented as:

y(k, l) = h(k, l)sa,1(k, l)︸ ︷︷ ︸
x(k,l)

+ n(k, l) (1)

where (dropping the dependency on k and l for brevity) y =

[yT
a yT

e ]
T , ya = [ya,1 ya,2 . . . ya,Ma ]

T are the LMA signals,
ye = [ye,1 ye,2 . . . ye,Me ]

T are the XM signals, x is the speech
contribution, represented by sa,1, the speech signal in the first
microphone of the LMA, filtered with h = [hT

a hT
e ]T , ha is

the RTF vector for the LMA (with the first microphone used as
the reference, i.e. the first component of ha equal to 1), and he

is the RTF vector for the XM signals. Finally, n = [nTa nT
e ]T

represents the noise contribution. Variables with the subscript
“a” refer to the LMA and variables with the subscript “e”
refer to the XMs.

The (Ma + Me) × (Ma + Me) speech-plus-noise, noise-
only, and speech-only spatial correlation matrices are given
respectively as:

Ryy = E{yyH }; Rnn = E{nnH }; Rxx = E{xxH } (2)

where E{.} is the expectation operator and {.}H is the
Hermitian transpose. It is assumed that the speech signal is un-
correlated with the noise signal, and hence Ryy = Rxx+Rnn.
The speech-plus-noise and the noise-only spatial correlation
matrix can also be calculated solely for the LMA signals
respectively as Ryaya = E{yayH

a } and Rnana = E{nanH
a }.

It is assumed that all signal correlations can be estimated as
if all signals were available in a centralised processor, i.e.,
a perfect communication link is assumed between the LMA
and the XM signals with no bandwidth constraints and with
synchronous sampling.

The estimate of the speech component in the first micro-
phone of the LMA, za,1, is then obtained through the linear
filtering of the microphone signals, such that:

za,1 = wHy (3)

where w = [wT
a wT

e ]T is a complex-valued filter.

III. PROCESSING WITH A LOCAL MICROPHONE ARRAY

A. LMA-based MVDR

The MVDR beamformer as proposed in [17] [18] minimises
the total noise power (minimum variance), while preserving
the received signal in a particular direction (distortionless
response). Considering only the LMA, the problem can be
formulated as follows:

min
wa

wH
a Rnanawa

s.t. wH
a h̃a = 1

(4)

where h̃a = [h̃a,1 h̃a,2 . . . h̃a,Ma
]T is the a priori RTF vector

for the LMA that defines the constraint direction for which
the speech is to be preserved. h̃a can be based on a priori
assumptions regarding microphone characteristics, position,
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speaker location and room acoustics (e.g. no reverberation).
The optimal noise reduction filter corresponding to (4) is then
given by:

w̃a =
R−1

nana
h̃a

h̃H
a R−1

nana h̃a

(5)

which is referred to as the MVDR-LMA. The speech estimate,
z̃a,1, is then obtained through the linear filtering of the
microphone signals with the complex-valued filter wa:

z̃a,1 = w̃H
a ya (6)

B. LMA-based GSC

In the practical implementation of the MVDR-LMA as pro-
posed by Griffiths and Jim [19], the constrained minimisation
problem of (4) is converted into an unconstrained one. The
resulting beamformer, an LMA-based GSC (referred to before
as the GSC-LMA), is displayed in Fig. 1. The top branch
provides a speech reference by satisfying the constraint in (4)
through the use of a fixed beamformer, fa. The output of the
top branch is then given by:

yf = fHa ya (7)

The bottom branch provides the noise reference signals
ua = CH

a ya = [ua,1 ua,2 . . . ua,Ma−1 ]T through the Ma ×
(Ma − 1) blocking matrix, Ca, which is defined as being
orthogonal to the corresponding RTFs such that CH

a h̃a = 0.
Therefore, Ca can be defined as follows:

Ca =

[
−h̃∗

a,2 − h̃∗
a,3 . . . − h̃∗

a,Ma

IMa−1

]
(8)

where {.}∗ denotes the complex conjugate and IMa−1 is the
(Ma−1)×(Ma−1) identity matrix (in general Iϑ will denote
the ϑ× ϑ identity matrix).

The adaptive noise cancelling (ANC) filter, va, is then
updated such as to reduce the residual noise in the speech
reference at each time frame, l1, by solving the following
unconstrained optimisation problem:

min
va(l)

E{|fHa ya(l)− vH
a (l)CH

a ya(l)|2} (9)

In order to avoid speech cancellation due to speech leakage
into the noise reference, va is usually updated in frames where
only noise is present. The optimal solution for va is given as:

v̂a(l) = (CH
a Rnana(l)Ca)−1CH

a Rnana(l)fa (10)

from which the filter output representing a speech estimate
follows as:

ẽa,1(l) = fHa ya(l)− v̂H
a (l)CH

a ya(l) (11)

In practice, the solution to (9) is often implemented with a
Normalised Least Mean Squares (NLMS) approach [25].

1The dependency on l will be re-introduced to highlight the importance
of the time dependence on some quantities. These quantities are still per
frequency and the dependency on k will continue to be omitted for brevity.

fa

Ca va

−

+
ya,1

ya,Ma

...

...
...

...

ua,1

ua,Ma−1

yf ẽa,1

Speech
Estimate

Fig. 1: LMA-based Generalised Sidelobe Canceller,
GSC-LMA.

IV. MVDR BEAMFORMER WITH A LOCAL MICROPHONE
ARRAY AND MULTIPLE EXTERNAL MICROPHONES

The MVDR-LMA can be simply extended to include
the XM signals into what is referred to here as the
MVDR-LMA-XM:

min
w

wHRnnw

s.t. wHh = 1
(12)

where h is the RTF vector that consists of Ma components
corresponding to the LMA, ha, and Me components corre-
sponding to the XM signals, he.

As the RTF vector is in general not known, its definition
proves to be a challenging aspect in designing the MVDR
beamformer. The MVDR-LMA as defined in section III-A
imposes a priori assumptions on the RTF vector for the LMA.
In the case of including one or several XMs, however, no such
a priori assumptions can be made on the relative positions of
the XMs in relation to the LMA as they are subject to change
(consider using an XM on a mobile phone for instance).
Consequently, there are two potential approaches that can be
taken in order to define h - (i) only the missing section of
the RTF vector corresponding to that of the XM signals is
estimated, while the a priori assumed RTF vector for the LMA
signals is preserved or (ii) the entire RTF vector is estimated
for the LMA signals and the XM signals.

As discussed in section I, the first of these approaches
is considered as it intends to preserve the reliability of an
existing LMA-based system, while treating the XMs as “add-
ons”. Additionally, it will only be necessary to compute Me

estimates for the missing RTF section (as opposed to Ma+Me

in an entire RTF vector estimation). Such an RTF vector will
therefore be defined as follows:

h̃ = [h̃T
a | ĥT

e ]
T

(13)

where various methods for computing ĥe (in the case of Me =
1) have been presented in [23]. It should also be noted that
although h̃ partially contains an estimated RTF vector, this is
done with respect to the a priori assumptions set by h̃a, and
hence the notation for h̃ is kept to be that of an a priori RTF
vector (i.e. { .̃ }).

Replacing h in (12) with the definition from (13), the
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MVDR-LMA-XM is then given by (similar to (5)):

w̃ =
R−1

nn h̃

h̃H R−1
nn h̃

(14)

with the speech estimate, z̃1 = w̃Hy.
In the following sections, three methods are discussed

for the implementation of the MVDR-LMA-XM in a GSC
framework, referred to here as the GSC-LMA-XM.

V. COMPLETING THE BLOCKING MATRIX

One approach for implementing a GSC structure with a
LMA and multiple XMs is to use the estimate, ĥe to complete
the additional columns of the blocking matrix. In [24], this was
demonstrated (for Me = 1) using a computation of ĥe based
on a cross-correlation method. In this section, this approach of
completing the blocking matrix will be extended for Me ≥ 1
with a further discussion of relevant implementation details.
Two block schemes for a GSC will also be presented: (i) using
the cross-correlation method to compute ĥe, and (ii) using
the EVD method to compute ĥe adopted from [23] (where
Me = 1).

The cost function of (9) is firstly extended to include the
XMs:

min
g

E{|fH (l)y(l)− gH (l)CH (l)y(l)|2} (15)

where f is an (Ma+Me)×1 fixed beamformer acting on both
the LMA and XM signals, g = [gT

a gT
e ]T is the ANC filter to

be designed, and the extended (Ma +Me)× (Ma +Me − 1)
blocking matrix is now given as:

C(l) =


 Ca

−ĥH
e (l)

0(Ma−1)×Me

0Me×(Ma−1) IMe


 (16)

where Ca is defined from (8), the zero blocks are indicated
with their dimensions.

The role of the fixed beamformer within the context of
a GSC is to satisfy the distortionless constraint, which can
be accomplished regardless of the XMs. Consequently, the
fixed beamformer, f , can be readily simplified by setting
f = [fTa 0T(Me×1)]

T , i.e. using the fixed beamformer from (7)
for the LMA signals and an (Me × 1) vector of zeros for
the XM signals, hence fH h̃ = fHa h̃a. As a result, only ĥe(l)
will be required to complete the blocking matrix, C(l), which
requires an update for each time frame. The optimal solution
for g(l) is also computed in noise-only periods in a similar
manner to va(l) for the GSC-LMA, and is given by:

ĝ(l) = (CH (l)Rnn(l)C(l))−1CH (l)Rnn(l)f (17)

On substitution of (16) into (15), and with f =
[fTa 0T(Me×1)]

T , the new speech estimate then follows as:

ẽ1(l) = fHa ya(l)− ĝH
a (l) CH

a ya(l)︸ ︷︷ ︸
ua(l)︸ ︷︷ ︸

LMA contribution, ε̃a(l)

− ĝH
e (l) ĈH

e (l)

[
y1(l)
ye(l)

]

︸ ︷︷ ︸
ue(l)︸ ︷︷ ︸

XM contribution, ε̃e(l)

(18)

where Ĉe(l) is defined as:

Ĉe(l) =

[
−ĥH

e (l)
IMe

]
(19)

and ua(l) and ue(l) are the noise reference signals corre-
sponding to the LMA and the XM signals respectively. It is
apparent that there are two sets of updates that are required
- (i) an update for ĥe(l), which will subsequently be used to
complete the blocking matrix C(l), by defining Ĉe(l), and (ii)
an update for the ANC filter, ĝ(l).

It is also evident that the speech estimate in (18) consists
of two distinct components, ε̃a, as a result of the contribution
from the LMA signals, and ε̃e, from the contribution from the
XM signals. It is clear that when ĝe = 0, the contribution from
the XM signals is disabled and the error or speech estimate
will be identical to that of the GSC-LMA in (11), i.e. ĝa = v̂a,
and hence ε̃a = ẽa,1. However, in general, ε̃a 6= ẽa,1 as two
different errors are minimised from (9) and (15).

Whereas in practice an NLMS approach could be used for
updating v̂a in the GSC-LMA, care should be taken for the
approach used for updating ĝ. This is because the power of
the noise references from the XMs could be quite different as
opposed to the case of the LMA, where it would be expected
that the power of noise references from the LMA would be
similar. Consequently, it is suggested that a diagonal step
size normalised by the respective noise references be used
in an NLMS context, or that a recursive least squares (RLS)
[25] algorithm be used for updating ĝ. A further analysis of
adaptive techniques and their respective trade-offs is outside
the scope of this paper.

A. Cross Correlation RTF estimate

In [24], using the cross-correlation method to compute ĥe

(for Me = 1), a GSC method as previously described was
presented. The signal, ε̃a from (18), is used as a speech
reference in order to carry out a cross-correlation with the
XM signal for computing the RTF estimate. As opposed to
ε̃a, an alternative speech reference may be the output from
the fixed beamformer, i.e. yf = fHa ya. Although this signal
would be more noisy than ε̃a, it will still be preferred to ε̃a
due to its stability, i.e., it would be fixed and not time-varying
due to adaptation. It should be noted however, that in using
such a speech reference, this estimator takes into consideration
the a priori information of the LMA. Hence, for Me ≥ 1, the
update of the ith component of ĥe,cc follows as:

ĥe,i,cc(l) =

{
rea,i (l)
raa,i (l)

speech frames

ĥe,i,cc(l − 1) otherwise
(20)

where

rea,i(l) = αe,i rea,i(l − 1) + (1− αe,i) ye,i(l) y∗
f (l) (21)

raa,i(l) = αe,i raa,i(l − 1) + (1− αe,i) |yf(l)|2 (22)

are computed in frames where speech is present and αe,i ∈
[0, 1] is a forgetting factor for the ith XM component. Al-
though this estimator is of low complexity, it is a biased
estimator due to the presence of noise in yf .
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This GSC that uses the cross-correlation RTF estimate for
the XM signals is referred to here as the GSC-LMA-XM-CC
and can be encapsulated by the block diagram as shown in
Fig. 2, similar to [24], except that yf is used as opposed to ε̃a
for updating ĥe,i,cc. It is reiterated here that the top branch
remains unchanged from the GSC-LMA, and hence only
changes are made to the lower branch. The cross-correlation
RTF estimation procedure is used to complete the blocking
matrix, C (i.e. define Ĉe) and generate the extended set of
noise references, u = [uT

a uT
e ]T . The block diagram also

intuitively depicts the two separate components of (18), with
the speech estimate denoted as ẽ1,cc. A further advantage
of such a block scheme is that it does not compromise the
initial structure of the GSC-LMA and can be interpreted as
an “add-on” since it can easily be seen that if ge = 0, the
GSC-LMA-XM-CC is reduced to the GSC-LMA.

fa

Ca ga

ge

CC est.
(20)

Ce

−

+

−

+
y1

yMa

...

...
...

...
...

...

...

...

ye,1

ye,Me

ua,1

ua,Ma−1

ue,1

ue,Me

yf ε̃a

ε̃e

ẽ1,cc

Speech
Estimate

Fig. 2: GSC-LMA extended with XMs and using the cross
corrleation method of estimating the missing RTF component
for the XMs, GSC-LMA-XM-CC.

B. EVD RTF estimate

As a natural extension from [26] (i.e. from using an LMA
to an LMA with XMs), a rank-1 model, Rx,r1, for the speech-
only correlation matrix, Rxx, can be found from an eigenvalue
decomposition (EVD) of the matrix (Ryy − Rnn), where
the associated RTF vector is computed from the principal
eigenvector. However, as shown in [23], for the case where
the RTF vector for the LMA is known, such additional a
priori knowledge can also be included on top of the rank-1
approximation for Rxx, which can then be expressed as:

Rx,r1 = σ̂2
xa,1

h̃h̃H = σ̂2
xa,1

[
h̃a

ĥe

] [
h̃H

a ĥH
e

]
(23)

where σ̂2
xa,1

is the estimated speech power in the first mi-
crophone of the LMA. Hence, computing ĥe reduces to the
following estimation problem:

min
σ̂2
xa,1

, ĥe

||(Ryy −Rnn)− σ̂2
xa,1

[
h̃a

ĥe

] [
h̃H

a ĥH
e

]
||2F

(24)
where ||.||F is the Frobenius norm. In [23], for Me = 1,
it has been demonstrated that by introducing a transform,
(24) is further simplified and ĥe can be computed from a

2 × 2 correlation matrix. In the following, this procedure is
generalised for the case of Me ≥ 1.

Proceeding to solve (24), an Ma × (Ma−1) blocking matrix
Ba and a specific Ma × 1 fixed beamformer, ba are defined
such that:

BH
a h̃a = 0; ba =

h̃a

||h̃a||
(25)

where BH
a Ba = I(Ma−1). It should be noted that Ba can be

computed from a QR decomposition of Ca. Using Ba and ba,
an (Ma + Me) × (Ma + Me) unitary transformation matrix,
T, can be subsequently defined:

T =

[
Ta 0
0 IMe

]
(26)

where Ta = [Ba ba], TH
a Ta = IMa , and hence THT =

I(Ma+Me). As the Frobenius norm is invariant under a unitary
transformation [27], (24) can be rewritten as:

min
σ̂2
xa,1

, ĥe

||TH ((Ryy −Rnn)− σ̂2
xa,1

[
h̃a

ĥe

] [
h̃H

a ĥH
e

]
)T||2F

(27)
By using (25) and (26), it can be seen that a transformed
version of the RTF vector can be expressed as follows:

TH

[
h̃a

ĥe

]
=




BH
a h̃a

bH
a h̃a

ĥe


 =




0

||h̃a||
ĥe


 (28)

and hence the expansion of (27) becomes:

min
σ̂2
xa,1

, ĥe

||
[

Ka− KH
c

Kc Ke+

]
−
[

0 0
0 Kx,r1

]
||2F (29)

where Ka− is an (Ma−1) × (Ma−1) matrix, Kc an (Me+1)
× (Ma − 1) matrix and Ke+

and Kx,r1 are (Me + 1) ×
(Me + 1) matrices realised as:

Ke+ =

[
bH
a 0
0 IMe

]
(Ryy −Rnn)

[
ba 0
0 IMe

]

= E
{[

bH
a ya

ye

] [
yH
a ba yH

e

]}
− E

{[
bH
a na

ne

] [
nH
a ba nH

e

]}

(30)

Kx,r1 = σ̂2
xa,1

[
||h̃a||
ĥe

] [
||h̃a|| ĥH

e

]
(31)

From (29), it can be seen that the additional a priori
knowledge of a known h̃a reduces the estimation problem
further to:

min
σ̂2
xa,1

, ĥe

||Ke+
−Kx,r1||2F (32)

which is that of a rank-1 approximation of the (Me + 1) ×
(Me + 1) matrix, Ke+

. Computing ĥe follows by initially
extracting the principal eigenvector, kmax = [ka kT

e ]
T ,

corresponding to the largest eigenvalue of Ke+ . Applying the
appropriate scaling and normalisation of the elements in kmax,
ĥe is then given by:

ĥe,evd =
||h̃a|| ke

ka
(33)
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This EVD-based RTF estimation method can easily be re-
alised in a GSC scheme similar to that of the cross-correlation
method as illustrated in Fig. 3, which will be referred to as the
GSC-LMA-XM-EVD. In this case, however, a specific fixed
beamformer of fa = ba is required. The output from the fixed
beamformer, yf , and XM signals, ye, are then used to generate
the correlation matrix Ke+

from (30). The first term of (30) is
updated when speech is active, and the second term updated
in noise-only periods. ĥe,evd is computed accordingly and
used to generate the extra noise reference, which completes
the missing part of the blocking matrix, Ĉe. It is also noted
that although another blocking matrix is defined in (25),
this is only used for the derivation in computing ĥe,evd.
Consequently, the GSC-LMA-XM-EVD scheme as depicted
in Fig. 3 still uses Ca and Ĉe as the blocking matrices, and
the procedure of completing the blocking matrix follows as
previously described, with the speech estimate, ẽ1,evd.

ba

Ca ga

ge

EVD est.
(33)

Ce

−

+

−

+
y1

yMa

...

...
...

...
...

...

...

...

ye,1

ye,Me

ua,1

ua,Ma−1

ue,1

ue,Me

yf ε̃a

ε̃e

ẽ1,evd

Speech
Estimate

Fig. 3: GSC-LMA extended with XMs and using the EVD
method of estimating the missing RTF component for the
XMs, GSC-LMA-XM-EVD.

VI. RANK-1 GEVD METHOD

In [23], a method of computing ĥe (for Me = 1) using
covariance whitening, or equivalently, a GEVD has been
presented. In this section, some modifications will be made
to this method, as well as an extension for the general case of
Me ≥ 1, which will lead to an alternative scheme compared
to the previous section. This new scheme will still make use
of the GSC-LMA, and the inclusion of the XM will once
again be used as an “add-on” to the noise reduction system.
As the mathematical derivations involved may detract from
the conceptual aspect of this method, an overview of the
resulting scheme and its utility is firstly presented in this
section, followed by the relevant mathematical details.

A. Overview of the method

Fig. 4 reveals the resulting scheme, which will be referred to
as the GSC-LMA-XM-GEVD. Firstly, the (Ma+ Me) signals
will undergo the transformation from (39), which is simply
the application of the fixed beamformer, fa, and the blocking
matrix, Ca on the LMA signals as is done in the GSC-LMA,
along with the unmodified XM signals.

fa

Ca va

ve,1

ve,Me

w

−

+

+

−

+

−

y1

yMa

ye,1

ye,Me

...

...
...

...

...

...

...

. . .

...

ua,1

ua,Ma−1

yf

Speech Estimate
(GSC-LMA), ẽa,1

ee,1
ee,Me

ẽ1,gevd

Speech
Estimate

Fig. 4: GSC-LMA extended with XMs involving
a rank-1 GEVD-based RTF estimation procedure,
GSC-LMA-XM-GEVD.

This is then followed by the orthogonalisation of the noise
components of yf and ye onto the noise components of ua.
Such an orthogonalisation can be performed in noise-only
periods by using adaptive filters. The resulting (Me+1) signals
after this orthogonalisation procedure are then denoted as:

y(l) =
[
ẽa,1(l) ee,1(l) . . . ee,Me(l)

]T
(34)

consisting of the speech output from a GSC-LMA, ẽa,1(l),
and the vector of XM signals who have had their noise
components orthogonalised onto the noise components of ua,[
ee,1(l) . . . ee,Me(l)

]T
. Since the orthogonalisation of the

noise components of yf onto the noise components of ua

is equivalent to considering the optimisation equation of (9)
from the GSC-LMA, the speech output from a GSC-LMA,
ẽa,1 corresponds to the first element in y.

For the orthogonalisation involving the XM signals, a
separate (Ma − 1) × 1 adaptive filter, ve,i will have to be
introduced for each of the ith XMs, such that it minimises the
same equation as in (9), but with ye,i as the desired signal.
Therefore, the optimal filter for ve,i can be computed in noise-
only frames as:

v̂e,i(l) = (CH
a Rnana(l)Ca)−1CH

a Rnane,i (l) (35)

where Rnane,i = E{nan∗
e,i} The resulting error from this

orthogonalisation step for the ith XM is then:

ee,i(l) = ye,i(l)− vH
e,i(l)C

H
a ya(l) (36)

Finally, the filter, w, which involves a GEVD procedure (de-
rived in the following section), can be used to filter the signals
y in the corresponding time frame to yield the corresponding
speech estimate, ẽ1,gevd.

From Fig. 4, it can easily be observed that the XMs are truly
incorporated in a modular fashion or as “add-ons” to an ex-
isting GSC-LMA. One advantage of this implementation over
the previously described approach of completing the blocking
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matrix is that the speech estimate, ẽa,1 is still available and
could be reverted to in cases where using the XM signals may
yield undesirable behaviour.

Furthermore, as will be demonstrated in (62), w
is a low dimensional MVDR beamformer, which uses
a rank-1 GEVD-based RTF estimate. Consequently, the
GSC-LMA-XM-GEVD represents a combination of a
GSC-LMA and an MVDR with a rank-1 GEVD-based RTF
estimate, which encompasses a variety of filtering schemes.
In particular, for Me = 0, the GSC-LMA-XM-GEVD is
equivalent to the GSC-LMA, and for Ma = 1,Me 6= 0,
the GSC-LMA-XM-GEVD is a MVDR with a rank-1 GEVD-
based RTF estimate, which uses the single local microphone
as the reference signal.

In the sections that follow, a derivation is firstly given
for computing ĥe, followed by how this is incorporated into
the MVDR-LMA-XM from section IV in order to yield the
GSC-LMA-XM-GEVD depicted in Fig. 4.

B. GEVD-based RTF estimation

In order to extend the estimation problem of (24) to a
GEVD, a spatial pre-whitening (or orthogonalisation) oper-
ation is firstly defined from the noise-only correlation matrix
using the Cholesky decomposition:

Rnn = R
1/2

nn R
H/2

nn (37)

where R
1/2

nn is a lower triangular matrix, and R
H/2

nn is its
hermitian transpose. Spatial pre-whitening is then performed
by pre-multiplying the signal vector of interest by R

−1/2

nn . For
an autocorrelation matrix, spatial pre-whitening is performed
by pre-multiplying it by R

−1/2

nn and post-multiplying it by
R

−H/2

nn . Therefore, the pre-whitened version of (24) becomes:

min
σ̂2
xa,1

, ĥe

||R
−1/2

nn ((Ryy −Rnn)− σ̂2
xa,1

[
h̃a

ĥe

] [
h̃H
a ĥH

e

]
)R

−H/2

nn ||2F

(38)
In [23], an appropriate transformation matrix has been defined
and then (38) is solved (for Me = 1) by performing an EVD
on a 2× 2 pre-whitened correlation matrix.

An alternative approach can however be taken to solve (38)
that will yield a practical scheme and include the general case
of Me ≥ 1. Firstly, using the blocking matrix, Ca from (8),
and the fixed beamformer, fa, the (Ma + Me) × (Ma + Me)
transformation matrix, Υ1, can be defined:

Υ1 =

[
[Ca fa] 0

0 IMe

]
(39)

from which the transformed speech-plus-noise signals and the
transformed noise-only signals are defined respectively as:

ΥH
1 y =




CH
a ya

fHa ya

ye


 ; ΥH

1 n =




CH
a na

fHa na

ne


 (40)

consisting of the blocking matrix signals from the LMA, the
fixed beamformer output signal, and the XM signals.

Another spatial pre-whitening operation can be subse-
quently defined from the noise-only correlation matrix of the
transformed noise-only signals, similar to that of (37):

E{(ΥH
1 n)(ΥH

1 n)H } = LLH (41)

where L is an (Ma+Me)×(Ma+Me) lower triangular matrix:

L =

[
La− 0
Lc Le+

]
(42)

whose block dimensions are such that La− is an (Ma − 1) ×
(Ma−1) lower triangular matrix, Lc an (Me+1) × (Ma−1),
and Le+

is an (Me + 1)× (Me + 1) lower triangular matrix.
By computing the block inverse of L in (42), L−1 is then:

L−1 =

[
L−1

a−
0

−L−1
e+

Lc L−1
a−

L−1
e+

]

=

[
L−1

a−
0

0 L−1
e+

]

︸ ︷︷ ︸
ΥH

3

[
IMa−1 0
−Lc L−1

a−
IMe+1

]

︸ ︷︷ ︸
ΥH

2

(43)

which is split into two separate orthogonalisations, ΥH
2 , which

will orthogonalise the noise components from the last (Me +
1) signals onto the first (Ma − 1) signals, and ΥH

3 , which
will complete the entire orthogonalisation operation. A second
transformation of the transformed speech-plus-noise and the
noise-only signals from (40) can then be defined respectively
such that:

y = ΥH
2ΥH

1y; n = ΥH
2ΥH

1n (44)

which can be interpreted as the same set of transformed signals
from (40), but with the noise components from the fixed
beamformer output as well as the XM signals orthogonalised
onto the noise components of the blocking matrix signals from
the LMA (i.e. orthogonalised onto ua).

With the relevant transformations defined, the estimation
problem from (38) can be subsequently re-formulated as:

min
σ̂2
xa,1

, ĥe

||R−1/2

nn Υ−H
1 Υ−H

2 ΥH
2ΥH

1 ((Ryy −Rnn)

− σ̂2
xa,1

[
h̃a

ĥe

] [
h̃H

a ĥH
e

]
)Υ1Υ2Υ−1

2 Υ−1
1 R

−H/2

nn ||2F
(45)

which can be simplified by realising:

R
−1/2

nn Υ−H
1 Υ−H

2 = (ΥH
1R

1/2

nn)−1Υ−H
2

= (LΘ)−1Υ−H
2

= ΘH L−1Υ−H
2︸ ︷︷ ︸

ΥH
3

(46)

where Θ is some unitary matrix. Since the Frobenius norm is
invariant under a unitary transformation, (45) can be re-written
as:

min
σ̂2
xa,1

, ĥe

||ΥH
3(Ryy −Rnn)Υ3

−ΥH
3ΥH

2ΥH
1(σ̂2

xa,1

[
h̃a

ĥe

] [
h̃H

a ĥH
e

]
)Υ1Υ2Υ3||2F

(47)
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where:

Ryy = ΥH
2ΥH

1RyyΥ1Υ2 = E{yyH } (48)

Rnn = ΥH
2ΥH

1RnnΥ1Υ2 =

[
La−LH

a−
0

0 Le+
LH

e+

]
(49)

and also since CH
a h̃a = 0:

ΥH
2ΥH

1

[
h̃a

ĥe

]
=




0
da

ĥe


 (50)

which consists of a vector with (Ma − 1) zeros, together
with da = fHa h̃a and the RTF vector for the XM signals to
be estimated. Upon substitution of (50) into (47), it can be
observed that the dimensionality of (47) can be reduced to a
lower order of (Me + 1), similarly to what was done in the
EVD method of section V-B. The lower order (Me+1) speech-
plus-noise and noise-only signals can be defined as follows,
denoted with the double underbar:

y =
[
0(Me+1)×(Ma−1) IMe+1

]
y (51)

n =
[
0(Me+1)×(Ma−1) IMe+1

]
n (52)

which consists of the single fixed beamformer output signal
and the Me XM signals, both of which have had their noise
components orthogonalised onto the blocking matrix signals.
Therefore, (47) can be reduced to:

min
σ̂2
xa,1

, ĥe

||L−1
e+((Ryy

−R
nn

)− (σ̂2
xa,1

[
da

ĥe

] [
d∗
a ĥH

e

]
))L−H

e+ ||
2
F

(53)
where the (Me + 1)× (Me + 1) matrices R

yy
and R

nn
are:

R
yy

= E{yyH }; R
nn

= E{nnH } = Le+LH
e+

(54)

and hence L−1
e+

R
nn

L−H
e+

= IMe+1.
The solution then follows from a GEVD of the matrix pencil

{R
yy
,R

nn
}, where a joint diagonalisation is done:

R
yy

= QΣyQH ; R
nn

= QΣnQH (55)

where Q is a full-rank, (Me + 1) × (Me + 1) invertible
matrix, Σy and Σn are real valued (Me + 1) × (Me + 1)
diagonal matrices arranged in descending order according to
the magnitude of the generalised eigenvalues, i.e. Σ−1

n Σy.
Using the principal eigenvalue and corresponding eigenvector
from the matrix, (R

yy
−R

nn
), it then evident that:

σ̂2
xa,1

[
da

ĥe

] [
d∗
a ĥH

e

]
= Qe1eT

1 (Σy −Σn)e1eT
1 QH (56)

where the (Me + 1)× 1 vector, e1 = [ 1 0 . . . 0 ]T . The lower
dimensional RTF vector then follows as:

[
da

ĥe

]
=

Qe1 da

eT
1 Qe1

(57)

This GEVD-based ĥe from (57) could then, in fact, be used as
a third option for completing the blocking matrix as was done
in section V. However, as will be demonstrated in the follow-
ing section, a substitution of (57) into the MVDR-LMA-XM

beamformer will reveal a convenient sequence of operations
that leads to the alternative practical implementation depicted
in Fig. 4 that does not affect the output of the GSC-LMA.

C. MVDR-LMA-XM beamformer

Using the definitions from (41), and the result of (57), the
numerator of (14) can firstly be written as:

R−1
nnh̃ = Υ1L−HL−1ΥH

1

[
h̃a

ĥe

]
(58)

Using (42), (43), (54), and (57) eventually results in:

R−1
nnh̃ = Υ1

[ −L−H
a−

LH
c

IMe+1

]
Q−HΣ−1

n

e1 da

eT
1 Qe1

(59)

Finally, making the relevant substitutions in the denominator
of (14), the MVDR-LMA-XM beamformer becomes:

w̃ = Υ1︸︷︷︸
Trans

[ −L−H
a−

LH
c

IMe+1

]

︸ ︷︷ ︸
Orthogonalisation

Q−He1︸ ︷︷ ︸
GEVD

eT
1 QH e1

da︸ ︷︷ ︸
scaling

(60)

which reveals the distinct operations that are required in order
to implement the scheme of Fig. 4. Namely, it consists of
the transformation operation from (39), the orthogonalisation
operation onto the noise components of the blocking matrix
signals from the LMA, the GEVD operation and the appro-
priate scaling.

Consequently, the resulting speech estimate, i.e. wHy, is
then computed as:

ẽ1,gevd =
eT
1 Qe1

da
eT
1 Q−1

︸ ︷︷ ︸
wH

[−Lc L−1
a−
| IMe+1]




CH
a ya

fHa ya

ye




︸ ︷︷ ︸
y

(61)
which can be realised as a lower dimensional [(Me + 1)
tap] beamformer, w that acts directly on the transformed,
orthogonalised signals, y (see (34)). It is also noted that w can
be equivalently formulated in the familiar MVDR beamformer
structure as:

w =
R−1

nn
h̃

h̃
H

R−1

nn
h̃

(62)

where the lower dimensional RTF vector, h̃ =
[
da ĥe

]T
.

VII. EVALUATION AND DISCUSSION

The various algorithms were evaluated on audio recordings
made in an office room of dimensions 5.4 m× 3.5 m× 2.5 m
with an estimated broadband reverberation time of 0.3 s.
The scenario under which audio recordings were made is
depicted in Fig. 5. At the centre of the scenario, a test
subject wore a single dummy behind-the-ear (BTE) hearing aid
(HA) equipped with two microphones spaced approximately
1.3 cm apart, which served as the LMA. The test subject
was instructed to always face towards the direction of 0°,
i.e. in the direction of the speech source, which was placed
1 m away. Four XMs were distributed as shown, with XM3
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being worn by the test subject, clipped onto the chest. AKG-
CK-97-O microphones were used for XM1 and XM3, and
AKG-CK-32 microphones were used for XM2 and XM4. A
Genelec 8020C loudspeaker was used to generate the speech
signal (SS1), which was that of a male speaker from [28].
Several loudspeakers to serve as noise sources (NS) were also
distributed as shown, also 1 m away from the test subject.
NS1 and NS2 were JBL Control 1 Pro loudspeakers, and
NS3 and NS4 were Harman-Kardon HK206 loudspeakers. The
noise signals considered were two uncorrelated excerpts of
multitalker babble noise (bb1 and bb2) from [29], speech-
shaped noise (sn1) constructed from a 12-coefficient linear
predictive coder (LPC) using the male speaker from [28], and
noise from the interior of a busy coffee shop (cc1) [30]. With
the test subject facing toward 0°, each of these noises played
through each of the NS positions was recorded separately.
The speech signal from SS1 was also separately recorded. All
recorded signals had a duration of 60 s. With this database
of speech and noises, subsets of several scenarios stemming
from that of Fig. 5 could then be constructed and analysed
accordingly.

For the processing of the algorithms in the various acoustic
scenarios, the Weighted Overlap and Add (WOLA) method
[31], with a Discrete Fourier Transform (DFT) size of 256,
50 % overlap, a square-root Hanning window, and sampling
frequency of 16 kHz was used. Separate experiments were
done using either a perfect voice activity detector (VAD)
or an imperfect VAD (using the minimum statistics method
from [32]) to indicate the time frames where speech was
present. All RTF estimates were performed in time frames
where periods where the speech was present (as indicated by
the respective VAD) and all the relevant correlation matrices
were computed using a forgetting factor corresponding to an
averaging time of 1 s. For all experiments, the correlation
matrices were initialised such that all elements were set to
zero. It should be noted that these VADs were applied on the
time domain noisy signal of the microphone, LM1. Hence if
it was detected that a certain time frame contained speech,
all frequency bins were subsequently treated as such. As not
all frequency bins will truly contain speech, the use of the
word “perfect” in this context is somewhat of a misnomer. It
is rather used to distinguish two instances of estimating the
correlation matrices, i.e. one which is better (“perfect”) and
another that does not perform as well (“imperfect”). Further
to this point, the “imperfect” VAD from [32] is just one option
of a realistic VAD, and one may choose from other methods
such as the speech presence probability [33]. The results that
ensue are only meant to give an idea of the potential range in
performance one can expect from using the various algorithms
depending on how well the relevant correlation matrices are
estimated.

The performance of the algorithms was also evaluated using
two different procedures for defining the a priori RTF vector,
h̃a, for the LMA. In the first procedure, a white noise signal
of 60 s was played through SS1, which was subsequently used
to compute a rank-1 correlation matrix per frequency. With
the frontal microphone of the LMA, LM1, as the reference
microphone, an EVD on the correlation matrix was performed

−90◦

−75◦

−60◦

−45◦

−30◦
−15◦0◦15◦

30◦

45◦

60◦

75◦

90◦
LM1

LM2

XM1

XM2

XM3

XM4
SS1

NS1

NS2

NS3 NS4

1.0 m

Fig. 5: Acoustic scenario illustrating the spatial distribution of
the speech source (SS1), the noise sources (NS1 - NS4), the
LMA (LM1, LM2), and the XMs (XM1 - XM4).

and the resulting principal eigenvector was used to define h̃a.
In the following, this definition of h̃a will be referred to as
h̃wn

a . In the second procedure, only the direct path of the RTF
vector was used for defining h̃a and will be referred to as
h̃dp

a . Hence h̃dp
a = [1 e−jωτ2(θ)]T , where τ2(θ) is the relative

time delay between the two microphones of the LMA, and θ
is the a priori assumed location of the source with respect to
the LMA, which was 0o in the experiments that follow.

The metrics used to evaluate the following experiments were
the change in Speech Intelligibility-weighted SNR improve-
ment [34] (∆ SI-SNR) from the input SI-SNR at LM1, and
the change in short-time objective intelligibility (∆ STOI) [35]
from the unprocessed speech only signal in LM1. The ∆ SI-
SNR was calculated as:

∆SI-SNR =
∑

i

Ii (SNRi,out − SNRi,in) (63)

where the band importance function Ii expresses the impor-
tance of the i-th one-third octave band with centre frequency,
f ci for intelligibility, SNRi,in is the input SNR (dB), and
SNRi,out is the output SNR (dB) in the i-th one-third octave
band. The centre frequencies, f ci and the values for Ii are
defined in [36]. The input SNR was computed accordingly
using the unprocessed speech only and unprocessed noise only
components in the discrete time domain at LM1, and the
output SNR from the individually processed speech-only and
processed noise-only components in the discrete time domain
resulting from the particular algorithm. For the ∆ STOI, higher
values indicate an improved speech intelligibility.

In addition to the GSC algorithms, the metrics were also
computed on the particular XMs used in the various acoustic
scenarios. As the XM signals can be considered as speech
estimates, they were also treated as separate algorithms. It
should be reiterated that throughout this paper, the question
being addressed was that of how XMs could be incorporated
into an existing LMA-based noise reduction system, i.e. when
an a priori RTF vector, h̃a, is available. As such, in this
section, the interest is only in that of a relative comparison
among the GSC-LMA, the XMs themselves, and the proposed
algorithms that extend the GSC-LMA with XMs. In this
context, a comparison with a system where the entire RTF
vector is estimated is not provided and left for future work.
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A. Single XM, Single SS, Single NS

In the first experiment, only SS1 and NS1 were considered
(i.e. a single correlated noise) along with the LMA and a
single XM, hence 3 microphones in total. The single XM was
chosen to be either XM1, XM2 or XM3 in order to observe
the impact of the SNR of the XM signal on the performance
of the algorithms. The input signal created was a combination
of the speech signal (i.e. the male speaker from [28]) and
the bb1 noise. As these noises were recorded separately
from the speech, each noise signal was also scaled such as
to vary the unweighted input SNR at LM1 from −5 dB to
5 dB. This unweighted SNR (as opposed to an input SI-SNR)

was computed simply from the ratio of the variance of the
unprocessed speech signal to the variance of the unprocessed
noise signal.

The algorithms evaluated were the GSC-LMA
from section III-B, GSC-LMA-XM-CC from section
V-A, GSC-LMA-XM-EVD from section V-B, and
GSC-LMA-XM-GEVD from section VI-C, as well as
the individual XM signals. For each of the GSC methods,
the optimal filters were used for the computation of
the ANC filters, i.e. (10) for v̂a (in the GSC-LMA
and GSC-LMA-XM-GEVD), (17) for ĝ (in the
GSC-LMA-XM-CC and GSC-LMA-XM-EVD) and
(35) for v̂e,i (in the GSC-LMA-XM-GEVD). For the
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GSC-LMA-XM-GEVD, w was computed using (61) with
R

yy
and R

nn
computed per frame using the same forgetting

factor of 1 s. Since the GSC-LMA-XM-EVD is the only
algorithm that requires a strict definition of its fixed
beamformer, i.e. ba (see (25)), the fixed beamformers of all
other algorithms were also set to ba, i.e. fa = ba so as to
provide an unambiguous comparison between the methods.
Finally, despite the input signals having a duration of 60 s,
only the latter 30 s of the processed signals were used for
evaluation to avoid any transient behaviour that may have
resulted from the convergence of the covariance estimates in
computing the filters.

Figure 6 compiles the results from this experiment when
a perfect VAD and an imperfect VAD was used. Each of the
three sub-plots within the particular metric uses a different XM
as indicated. Each group of 2 bars for a particular algorithm
represents the processing as performed with either h̃wn

a or
h̃dp

a as the a priori RTF vector for the LMA. The x-axis
indicates the unweighted input SNR of LM1 at which all of
the algorithms were evaluated.

Focusing on the left-hand plots of Fig. 6 for the perfect
VAD, in terms of ∆ SI-SNR, it is clear that all of the algo-
rithms which use the XM have an improved performance over
that of the GSC-LMA as well as the XM for all input SNRs.
The GSC-LMA-XM-GEVD also seems to offer a better perfor-
mance than the GSC-LMA-XM-CC or GSC-LMA-XM-EVD
algorithms. In terms of ∆-STOI, it is once again evident
that the algorithms which use the XM have an improved
performance over that of the GSC-LMA as well as the XM for
all input SNRs. Among these algorithms which use the XM,
however, the GSC-LMA-XM-CC and GSC-LMA-XM-GEVD
have similar intelligibility improvements and are both mostly
better than the GSC-LMA-XM-EVD. It is not surprising, how-
ever that the GSC-LMA-XM-EVD exhibits a poorer perfor-
mance, as it is known that estimating RTFs from a subtraction
of correlation matrices is prone to error at low input SNRs
[4] [26]. It is also noted at the highest input SNR that the ∆-
STOI values are generally smaller as the input signal would
have already been fairly intelligible. In general, it can also be
observed that the best improvements in terms of both metrics
is obtained when XM1 is used, which is close to the source
and hence subject to a high SNR. Additionally, improvements
are also evident even in cases where the SNR of the XM
is quite low as in the case of XM2. In such a case the XMs
would have the potential to act as a noise references and hence
improve performance. Finally, using either h̃wn

a or h̃dp
a did not

demonstrate any considerable differences in performance, but
using h̃wn

a was in most cases slightly preferred to h̃dp
a .

Focusing on the right-hand plots of Figure 6 where an
imperfect VAD was now used, as expected, the absolute values
of the metrics have decreased. However, for both metrics the
algorithms using an XM still demonstrate an improvement
over the GSC-LMA as well as the XM except for lower
input SNRs when XM1 is used. At an input SNR of −5 dB
for instance, the ∆ SI-SNR is better than all the other algo-
rithms, however the ∆-STOI indicates that the intelligibility
is still on the order of using the GSC-LMA-XM-GEVD.
Among the algorithms that use the XM, in terms of ∆ SI-

SNR, the GSC-LMA-XM-GEVD performs better than the
GSC-LMA-XM-CC or GSC-LMA-XM-EVD particularly at
higher input SNRs and when the SNR of the XM is higher,
for instance for the case of XM1 or XM3. Apart from such
conditions, the differences between the GSC-LMA-XM-CC
and GSC-LMA-XM-GEVD are less pronounced and bet-
ter than the GSC-LMA-XM-EVD. In terms of ∆ STOI,
the GSC-LMA-XM-CC and GSC-LMA-XM-GEVD are again
similar and better than the GSC-LMA-XM-EVD. The differ-
ence in performance from using either h̃wn

a or h̃dp
a is now

more evident, more so in terms of the intelligibility, where
h̃wn

a would be preferred to h̃dp
a .

From these results of Fig. 6, the concluding point would
be that the proposed algorithms that use the XM can indeed
be beneficial as opposed to using only a GSC-LMA or an
XM alone despite imperfect estimation of the relevant corre-
lation matrices. Furthermore, there is the most benefit to be
gained from GSC-LMA-XM-GEVD algorithm as it performs
either equally well or better than the GSC-LMA-XM-CC or
GSC-LMA-XM-EVD algorithms depending on the acoustic
conditions.

The processed audio files from all of the algorithms, the
reference, and the XM signals can be listened to for a personal
subjective evaluation at [37].

B. Multiple XM combinations

In this section, the full scenario of Fig. 5 was now con-
sidered with the single speech source and the four noise
sources active. The noise signals, bb1, bb2, cc1, and sn1,
were used respectively for NS1, NS2, NS3, and NS4. The
sum of these noises were scaled such that the unweighted
input SNR at LM1 was 0 dB. Using the optimal filters, the
GSC-LMA, GSC-LMA-XM-CC, GSC-LMA-XM-EVD, and
GSC-LMA-XM-GEVD algorithms were once again evaluated,
however using all the possible permutations from the set of
XM signals available. Hence, for the four XMs that were
available, there were 15 possible XM combinations to choose
from for use with the LMA.

Figure 7 displays the results of this experiment when using
either h̃wn

a or h̃dp
a as the a priori RTF vector for the LMA,

as well as when using a perfect VAD. The x-axis indicates
which set of XMs was used and is grouped by the number
of XMs used in the respective algorithm. So for instance, the
first four points indicate that only one XM was used, while
the second set of six points indicates that two XMs were used.
The numbers indicated in these groupings correspond to the
XM positions as depicted in Fig. 5. The corresponding ∆ SI-
SNR and ∆ STOI metrics for the individual XMs used are
also displayed in Table I.

TABLE I: Corresponding metrics for the individual XMs used
for the algorithms corresponding to Fig. 7 and Fig. 8.

XM1 XM2 XM3 XM4

∆ SI-SNR 7.1 −1.8 1.6 3.2
∆ STOI 0.12 −0.2 −0.02 0.05
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Fig. 7: Objective metrics from the acoustic scenario of Fig. 5 with one speech source and four noise sources, as a function of
various combinations of XMs when using a perfect VAD.
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Fig. 8: Objective metrics from the acoustic scenario of Fig. 5 with one speech source and four noise sources, as a function of
various combinations of XMs when using an imperfect VAD.

Focusing on the left-hand plot of Fig. 7 when h̃wn
a was

used, it can be observed that the GSC-LMA-XM-GEVD
outperforms the GSC-LMA, GSC-LMA-XM-CC,
GSC-LMA-XM-EVD as well as any of the XMs (upon
comparison with the metrics in Table I). In general, a greater

improvement can be achieved with the addition of more
XMs. The relative position of the XM to the speech source
is also observed to have an influence, where XMs closer
to the speech source are more beneficial. This can be seen
by the increase in the metrics whenever XM1 is included
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as one of the XMs in the respective algorithm. Such results
are indeed consistent with previous findings such as in [2].
Focusing now on the right-hand plot of Fig. 7 when h̃dp

a

was used, the performance of the GSC-LMA-XM-GEVD
is quite similar to that when using h̃wn

a and the trend
is maintianed in most cases where it outperforms the
GSC-LMA, GSC-LMA-XM-CC, GSC-LMA-XM-EVD as
well as any of the XMs. In terms of ∆ STOI, however,
the GSC-LMA-XM-GEVD and GSC-LMA-XM-EVD
demonstrate a similar performance. In general, the
GSC-LMA-XM-CC and GSC-LMA-XM-EVD algorithms
appear to be more sensitive than the GSC-LMA-XM-GEVD
to the choice of either h̃wn

a or h̃dp
a as the a priori RTF vector

for the LMA.
Figure 8 now displays the results of the experiment when

using either h̃wn
a or h̃dp

a as the a priori RTF vector for
the LMA, but when using an imperfect VAD. Focusing
on the left-hand plot of Fig. 8 when h̃wn

a was used, the
reduction in the absolute performance can immediately be
seen due to the misclassification of frames where speech
was present. Nevertheless, the GSC-LMA-XM-GEVD algo-
rithm maintains its trend of outperforming the GSC-LMA,
GSC-LMA-XM-CC, GSC-LMA-XM-EVD. In terms of ∆ SI-
SNR, however, XM1 now offers a better performance (in
cases when it is used), but the intelligibility improvement
as indicated by its ∆ STOI is still on the order of that of
the GSC-LMA-XM-GEVD algorithm. On the right-hand plot
of Fig. 8 when h̃dp

a was used, it can be observed that the
∆ SI-SNR maintains a similar trend for all algorithms. In
terms of intelligibility improvement however, all algorithms
have a reduced performance, with GSC-LMA-XM-GEVD and
GSC-LMA-XM-EVD demonstrating a similar improvement
(similar to the right-hand plot of Fig. 7). Furthermore, in
cases where XM1 is used, this XM may offer some intelli-
gibility improvement over the other algorithms. However, the
GSC-LMA-XM-EVD and GSC-LMA-XM-GEVD still offer
intelligibility improvements over the other XMs, for instance
in cases when XM2 and XM3 or XM2, XM3, and XM4 are
used.

The processed audio files from all of the algorithms, the
reference, and the XM signals for this experiment can be
listened to for a personal subjective evaluation at [37].

C. Switching XMs

In this experiment, the impact of instantaneously switching
between different XMs over time was investigated. Such a
scenario can occur for instance if an XM on a mobile device
is being used and then one moves the mobile device from one
location to the other. As demonstrated in the previous two
sections, the GSC-LMA-XM-GEVD has the potential for the
best performance among all the algorithms that use the XMs.
Hence, a comparison will only be considered only for this
algorithm will along with the GSC-LMA (using either h̃wn

a

or h̃dp
a ), as well as the XMs in this section.

The scenario as depicted in Fig. 9 was considered. The
speech and noise signals used were identical to that of section
VII-B, however only two XMs were used along with the LMA.
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Fig. 9: Acoustic scenario analagous to that of Fig 5, except
with two XMs. After 20 s, XM4 was switched to XM3 as indi-
cated by the arrow XM-SWITCH-1, and after 40 s, XM1 was
switched to XM1 as indicated by the arrow XM-SWITCH-2.

Initially both XM1 and XM4 were used. After 20 s, XM4 was
switched to XM3 as indicated by the arrow XM-SWITCH-1,
and after 40 s, XM1 was switched to XM2 as indicated by the
arrow XM-SWITCH-2.

For both the GSC-LMA and the GSC-LMA-XM-GEVD,
an NLMS procedure was used to compute the adaptive fil-
ters va and ve,i . As a comparison was not done with the
GSC-LMA-XM-EVD, the fixed beamformer was now set such
that fa = h̃a/||h̃a||2, which is generally more of a common
choice as it is a matched filter. The difference between this
definition and ba is simply a scaling and does not affect the
relative comparison of the various algorithms. With the input
SNR at the LM1 scaled to 0 dB, the metrics of ∆ SI-SNR and
∆ STOI were computed over time in 3 s frames with a 50 %
overlap.

Figure 10 displays the results of this experiment when
using a perfect VAD (left) and an imperfect VAD (right). The
uppermost plot displays the reference speech signal at LM1
with the respective VAD superimposed, while the bottom two
plots display the ∆ SI-SNR and ∆ STOI metrics. Focusing
on the left-hand plot of Fig. 10, i.e., with the perfect VAD,
it can firstly be observed that at the points of switching,
both of the XMs transition from having a higher SI-SNR and
intelligibility improvement to a lower SI-SNR and intelligi-
bility improvement. This transition obviously does not affect
the GSC-LMA, whose SNR and intelligibility improvement
remain relatively constant over time. It is also clear that the
GSC-LMA-XM-GEVD results in the best performance regard-
less of which XMs are used for processing. Additionally, it can
also be seen that using XM1 results in the most improvement
(in line with the previous results) since at 40 s, when XM1
switches to XM3, the absolute values of the metrics for the
GSC-LMA-XM-GEVD are reduced. In terms of the different
a priori RTF vectors for the LMA, there was no significant
difference between using either h̃wn

a or h̃dp
a .

Focusing now on the right-hand plot of Fig. 10, i.e., with the
imperfect VAD, the missclassification of the time periods for
which speech was present can be observed from the uppermost
plot. For the GSC-LMA and GSC-LMA-XM-GEVD that use
h̃wn

a , it can be seen that the GSC-LMA-XM-GEVD suffers a
reduction in performance in both SI-SNR and STOI improve-
ment, but still performs better than the GSC-LMA in most
cases. During the first 40 s, the GSC-LMA-XM-GEVD also
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Fig. 10: Performance of the algorithms when switching between different XMs over time using a perfect VAD (left) and
an imperfect VAD (right). The uppermost plots display the clean speech reference signal in LM1 with the respective VAD
superimposed. The middle plots show the ∆ SI-SNR metric and the final row of plots show the ∆ STOI metric. Both ∆ SI-SNR
and ∆ STOI metrics were computed with 3 s frames with a 50 % overlap. The markers for the XMs correspond to the middle
of these time frames. Markers were not used for the other plots for clarity. The vertical dotted line at 20 s indicate the switching
of XMs from XM-SWITCH-1 and the vertical dotted line at 40 s indicate the switching of XMs from XM-SWITCH-2.

exhibits a performance on the order of XM1, being slightly
better or slightly worse at times. However, when any of the
other XMs are used, the GSC-LMA-XM-GEVD maintains
a better performance. When using h̃dp

a , the relative trends
among the algorithms and the XMs are maintained in com-
parison with using h̃wn

a , except that the absolute intelligibility
has been reduced.

The processed audio files from all of the algorithms, the
reference, and the XM signals for this experiment can be
listened to for a personal subjective evaluation at [37].

VIII. CONCLUSIONS

Three methods of extending a local-microphone-array-based
Generalised Sidelobe Canceller (GSC-LMA) with external
microphones (XMs) have been presented. These methods
have considered the relative transfer functions (RTF) for the
GSC-LMA as a priori knowledge, upon which the comple-
mentary RTFs for the XMs could be estimated. Such an
approach has intended to preserve the reliability of an existing

GSC-LMA, while including the XMs as “add-ons” that could
improve the performance.

Two of the methods presented, the GSC-LMA-XM-CC
and the GSC-LMA-XM-EVD, involved a procedure for com-
pleting an extended blocking matrix using either a cross-
correlation or an eigenvalue decomposition (EVD) respec-
tively. The third method, GSC-LMA-XM-GEVD, proposed
an alternative approach, where the speech estimate from an
GSC-LMA is directly used along with an orthogonalised
version of the XM signals to obtain an improved speech
estimate via a generalised eigenvalue decomposition (GEVD).
When a perfect VAD was used to estimate the relevant
correlation matrices, it was found that all of these meth-
ods offered an improvement over the GSC-LMA, with the
GSC-LMA-XM-GEVD having the best performance. In cases
of imperfect estimation of the relevant correlation matrices,
the performance of these algorithms was inevitably reduced,
but the GSC-LMA-XM-GEVD continued to maintain its per-
formance above the GSC-LMA and the XMs, unless the XMs



15

were very close to the speech source. As it is not expected that
the XM will always be close to the speech source, using the
GSC-LMA-XM-GEVD would then be the preferable option
for a consistent performance when the XMs are subject to
movement.

One final point to re-iterate is that the speech estimate
from the GSC-LMA has not been compromised in any way
(as illustrated in Fig 4) and if so desired, this signal is still
available as an option to the listener. In extreme cases of poor
estimation with the XMs, the GSC-LMA-XM-GEVD offers a
contingency option of simply using the LMA-based solution
(which was what would be used in the absence of XMs), and
hence the XMs can be truly be treated in a modular fashion
or as ”add-ons”.
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[10] N. Gößling, D. Marquardt, and S. Doclo, “Comparison of RTF Estima-
tion Methods between a Head-Mounted Binaural Hearing Device and an
External Microphone,” in Proc. International Workshop on Challenges
in Hearing Assistive Technology (CHAT), Stockholm, Sweden, August
2017, pp. 101–106.
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