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ABSTRACT

Recent data-driven approaches for binaural source localization
are able to learn the non-linear functions that map measured bin-
aural cues to source locations. This is done either by learning a
parametric map directly using training data, or by learning a low-
dimensional representation (embedding) of the binaural cues that
is consistent with the source locations. In this paper, we adopt the
second approach and propose a parametric embedding to map the
binaural cues to a low-dimensional space, where localization can be
done with a nearest-neighbor regression. We implement the embed-
ding using a neural network, optimized to map points that are close
in the latent space (the space of source azimuths or elevations) to
nearby points in the embedding. We show that the proposed em-
bedding generalizes well in acoustic conditions different from those
encountered during training, and provides better results than unsu-
pervised embeddings previously used for localization.

Index Terms— binaural source localization, manifold learning,
supervised embedding.

1. INTRODUCTION

To localize sources, the human auditory system uses binaural fea-
tures extracted from acoustic signals, such as the Interaural Phase
Differences (IPDs) and Interaural Level Differences (ILDs) [1].
Computational localization algorithms in robot audition [2], hearing
aids, virtual reality [3], etc., try to mimic this process and estimate
the binaural cues from microphone signals. However, the acous-
tic channels introduce uncertainties in the binaural cues due to re-
verberation, making source localization challenging. Traditionally,
robustness to reverberation has been tackled with statistical model-
based approaches [4–6].

In contrast, data-driven approaches are able to learn the non-
linear functions that map binaural cues to source locations, without
an acoustic propagation model or a lookup table. A multilayer per-
ceptron was used to model the nonlinear map already in the mid-
nineties [7]. Recently, deep neural networks were used to learn
the relationship between azimuth and binaural cues in [8], by ex-
ploiting head movements to resolve the front-back ambiguity. A
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different data-driven approach was used in [9, 10], where the rela-
tionship between source locations and binaural cues was modeled
with a probabilistic piecewise linear function. By learning the func-
tion parameters, sources can be localized by probabilistic inversion.
An implicit assumption of the piecewise linear model in [9, 10] is
that similar source locations result in similar binaural cues. The
same assumption is also used in non-parametric source localization
algorithms based on manifold learning in [11, 12]. In this paper,
we focus on data-driven source localization approaches, inspired by
low-dimensional manifold learning [11, 12].

Manifold learning methods that rely on smoothness in measure-
ment space with respect to the underlying source locations, might
generalize poorly to varying acoustic conditions. The uncertain-
ties in the binaural cue measurements introduced by reverberation,
introduce variations in the measurement space neighborhoods that
might not be consistent with source locations. In this paper, we
propose a parametric embedding to map the binaural cues to a low-
dimensional space, where localization can be done with a nearest-
neighbor regression. This paradigm is often used in the machine
learning community as a pretraining stage for classifiers [13]. We
implement the embedding with a neural network, optimized with
a contrastive loss function [14], such that binaural cues recorded
from signals with similar source locations, have a small Euclidean
distance in the embedding. This approach generalizes better to un-
seen acoustic conditions than unsupervised manifold learning used
in [11, 12]. The paper is organized as follows. In Section 2, we
revise the binaural cue extraction and we formulate the problem. In
Section 3, we provide a brief overview of related work. The pro-
posed method is presented in Section 4 and experimental results are
shown in Section 5.

2. DATA MODEL AND PROBLEM FORMULATION

Let s1(τ) and s2(τ) denote the signals captured at the left and right
microphones in a binaural recording setup in a reverberant environ-
ment. In this work, we extract the binaural cues in the Short-time
Fourier Transform (STFT) domain, as in [10, 15]. Let S1(t, k) and
S2(t, k) denote the STFT coefficients of s1(τ) and s2(τ), where
t and k are the time and frequency index, respectively. At a time-
frequency bin (t, k) an ILD αtk and an IPD φtk are defined as

αtk = 20 log10
|S1(t, k)|
|S2(t, k)|

, φtk = ∠
S1(t, k)

S2(t, k)
. (1)

Assuming that a single sound source is active, we follow the bin-
aural feature extraction approach from [10], and compute time-
averaged ILDs and IPDs across T frames as follows

ak = T−1
T∑
t=1

αtk, pk = T−1
T∑
t=1

exp(jφtk). (2)



By concatenating the ILDs, and the real and imaginary parts of the
IPDs in selected frequency ranges [k1, k2] and [k3, k4], the binaural
information is summarized in a measurement vector x ∈ X ⊂ RD ,

x = [ak1 , . . . , ak2 , R{pk3}, I{pk3}, . . . ,R{pk4}, I{pk4}]
T.
(3)

It is known that IPDs carry reliable location cues below 2 kHz [1],
while ILDs contribute to localization at higher frequencies as
well [10]. Hence, we used the ranges [k1, k2] = [200, 7000] Hz
and [k3, k4] = [200, 2500] Hz. For an STFT window of 1024 sam-
ples at 16 kHz, this results in a 729-dimensional vector x.

Hence, a pair of signals s1(τ) and s2(τ) is associated to a vec-
tor x ∈ X . We refer to X as the measurement space. Let the un-
known source location be denoted by u ∈ U . We refer to U as the
latent space. U is one-dimensional if one considers azimuth or ele-
vation separately, and two-dimensional if the angles are considered
simultaneously. Given a training set ofN pairs T = {(xi, ui)}Ni=1,
the localization problem consists of finding a function h

û = h(x), h : X → U . (4)

that accurately maps measurements to latent variables. In this
work, we implement h in a non-parametric fashion, using Nearest-
Neighbor (NN) regression in a suitable low-dimensional space.
Therefore, our main objective is to learn an embedding function f
that maps the vectors x to a low-dimensional space which preserves
latent space neighborhoods, i.e.,

z = f(x), f : X → Z ⊂ Rd, d << D. (5)

We propose a supervised framework to learn a parametric function
f that satisfies these properties, when the source azimuth, or eleva-
tion are the latent variables. Distance estimation is not considered.
A NN regression function h : Z → U is then used for localization.

3. BACKGROUND AND PRIOR WORK

If the microphone location in a given room is fixed, the authors
in [12] showed that features extracted from binaural signals can be
embedded in a low-dimensional space Z , in a way that recovers
source locations. The framework in [12] is based on unsupervised
manifold learning, in particular, Laplacian eigenmaps (LEM) [16].

Unsupervised manifold learning approaches often start by com-
puting a similarity matrixK ∈ RN×N , with entriesK[i, j] related
to the Euclidean distances ‖xi − xj‖2. One way to compute K is
using nearest-neighbors, i.e.,K[i, j] =K[j, i] = 1 if xi is among
the M nearest neighbors of xj , or if xj is among the M nearest
neighbors of xi (in Euclidean distance). A second way is using an
exponentially decaying kernel function, such as the Gaussian

K[i, j] = exp

(
−‖xi − xj‖

2
2

ε

)
, (6)

where ε is the kernel bandwidth. Such kernel was used for
source localization in [12]. Given the similarity matrix K, the
neighborhood-preserving cost function of LEM is given by [16]

arg min
z1,...,zN

N∑
i,j=1

‖zi − zj‖22 K[i, j], (7)

which enforces that points with large affinity K[i, j], are to be
mapped to points with a small Euclidean distance ‖zi − zj‖2.

The cost function has a closed-form solution, given by the
largest eigenvectors of P =D−1K, whereD is a diagonal matrix
with entriesD[i, i] =

∑N
j=1K[i, j]. If {ψi}Ni=1 denote the eigen-

vectors of P , with eigenvalues 1 = λ1 > λ2 ≥ . . . ,≥ λN , the
d-dimensional LEM embedding is given by [16]

zi = f(xi) = [ψ2[i], ψ3[i], . . . , ψd+1[i]]
T , (8)

where the constant eigenvector ψ1 is not included [16, 17]. The
LEM embedding f is non-parametric, and the low-dimensional rep-
resentation z of a new measurement x is obtained as a linear com-
bination of the training points {zi}Ni=1 [18]. However, this proce-
dure is often insufficiently accurate and represents a disadvantage
of LEM and of spectral embeddings in general.

Besides the promising performance of spectral embeddings for
localization [11, 12, 19], their major drawback is the assumption
that neighborhoods in the measurement space are consistent with
the source locations. Although the assumption was shown to hold
when all signals are recorded in one room, for fixed microphone lo-
cations [9, 12, 19], this is not the case when the signals are filtered
by various acoustic channels in different enclosures.

4. SUPERVISED EMBEDDING FOR LOCALIZATION

We propose a parametric embedding, designed to preserve neigh-
borhoods in terms of source locations. The framework consists
of defining the neighborhoods and a suitable cost function (Sec-
tion 4.1), and training a neural network to implement the embed-
ding (Section 4.2). Note that a similar supervised approach is used
for various classification tasks in machine learning [14, 20–22].

4.1. Supervised neighborhoods and contrastive loss

Consider two labeled measurements (xi, ui) and (xj , uj). Let
du(ui, uj) = |ui − uj | denote the distance in the one-dimensional
latent space U , where ui, uj corresponds to the source azimuth or
elevation. A neighborhood indicator yij ∈ {0, 1} is defined as

yij =

{
0, if du(ui, uj) > εu

1, if du(ui, uj) ≤ εu,
(9)

for a neighborhood size εu. We seek to learn a parametric function
fW : X → Z ⊂ Rd, with parameters W , that maps xi and xj to
their low-dimensional images zi and zj . If yij = 1, the Euclidean
distance ‖zi−zj‖2 should be small, and if yij = 0, then ‖zi−zj‖2
should be large. For a given embedding function fW , we have

‖zi − zj‖2 = ‖fW (xi)− fW (xj)‖2. (10)

A contrastive loss function over the parameters W , tailored for
neighborhood preservation has been proposed in [14] for non-linear
dimensionality reduction, and is given by

L(W ) =

N∑
i=1

N∑
j=1

(
yij ‖fW (xi)− fW (xj)‖22

+ (1− yij)max(0, µij − ‖fW (xi)− fW (xj)‖2)2
)
. (11)

The parameter µij is a positive real-valued margin, such that µij/2
can be interpreted as the radius of circles centered on zi and zj .
If the circles intersect and yij = 0, the two dissimilar pairs are



too close in the embedding space, thus increasing the contrastive
loss in (11). On the other hand, if yij = 1, large distances are
penalized, enforcing fW to preserve neighborhoods. It is important
to note that in [14], where the contrastive loss was first proposed for
classification, µij ≡ µ is a constant margin. In our application, the
latent space of azimuths or elevations is continuous. To accurately
preserve its geometry, we propose an adaptive margin, based on the
distance in the latent space, as follows

µij =
exp (du(ui, uj))

exp (du(ui, uj)) + 1
. (12)

Thus, as du(ui, uj) decreases, the margin µij decreases as well.

4.2. Learning the embedding and NN localization

We implement fW with a neural network with two fully connected
hidden layers with 4D and 2D neurons, respectively. The output
layer has 3 neurons, corresponding to a 3-dimensional embedding
space i.e., d = 3. The hidden neurons have a ReLU, and the out-
put neurons have a linear activation. Training scheme for minimiz-
ing (11), called siamese architecture, was proposed in [21] and used
for various tasks in [14,20]. It consists of two identical branches that
implement fW , taking a pair (xi,xj) as an input. The measure-
ments xi and xj are passed through the branches (one per branch),
and the cost is evaluated in (11) using yij and the outputs zi and zj
of the branches. To avoid overfitting, we used dropout layers. The
dropout rate after the input layer was in the range [0.1, 0.2], and af-
ter the hidden layers it was in the range [0.2, 0.3]. The dropout rates
were fine-tuned using a line search, based on the performance on a
validation set.

A key aspect of the Siamese scheme is the selection of pairs
(xi,xj) for training. For small datasets, one could consider all
pairs and proceed with training on randomized batches of data.
However the polynomial growth of the number of pairs results in
memory problems even for moderately large datasets. To solve this
problem, we implemented pair selection during training as follows.
First, we create B pairs from each batch. Then we randomly select
L ≤ B/2 similar pairs (i.e. yij = 1) and L dissimilar pairs (i.e.
yij = 0), ensuring that the number of similar and dissimilar pairs
is balanced in each batch. By training a large number of epochs,
all pairs will be eventually considered in the optimization process
with a large probability. An important direction for future research
is to explore and understand different strategies of pair selection,
and their effect on the embedding properties.

Once the weights of fW are optimized, we compute the em-
bedding of a new x by a forward-pass through the network. Let
z1, . . . ,zK denote the K nearest neighbors of z in the training set.
The latent variable (azimuth or elevation) is then estimated as

û =
K∑
i=1

wiui, with wi =
exp

(
− ‖z−zi‖22

ε

)
∑K
j=1 exp

(
− ‖z−zj‖22

ε

) . (13)

The bandwidth ε of the exponential kernel is obtained as the median
of the squared distances from the K neighbors, i.e.,

ε = median
(
‖z − z1‖22, . . . , ‖z − zK‖22

)
. (14)

Note that if the embedding is accurately preserving neighborhoods,
the choice of regression weights is not critical. For instance wi can
be inversely proportional to ‖z − zi‖22. However, in our experi-
ments, the latter generally leads to less accurate location estimates
than exponentially decaying weights.
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Figure 1: Localization accuracy for azimuth (az) and elevation (el)
on the CAMIL dataset, for different sizes of the training set.

5. EXPERIMENTS

The proposed supervised contrastive embedding (SCE) is compared
to the Laplacian eigenmaps (LEM) in a NN localization framework.
As the neighborhoods for LEM are defined in the input space, a sin-
gle embedding is used to estimate both azimuth and elevation. Al-
though a single SCE embedding can be trained to estimate azimuth
and elevation simultaneously as well, a system with two separately
trained embeddings provided better results for the same amount of
data. This result is not unexpected, as each system is trained to learn
a simpler 1-dimensional latent space. For the NN-regression in (13),
50 neighbors are used in all experiments. The margin εu in (9) is
set to 3◦ both for azimuth and elevation. We implemented the LEM
using a nearest neighbor matrix K, which in our experiments, pro-
vided better results than the Gaussian kernel used in [12, 19].

5.1. Fixed acoustic conditions

In this experiment, we used the CAMIL dataset [10] of binaural
recordings, made with a dummy head in a reverberant room. The
source is at a fixed position, 2.7 m from the head, while sounds are
recorded for 10800 pan-tilt states of the head. This results in source
azimuth and elevation in the range [−180◦, 180◦] and [−60◦, 60◦],
respectively, (with 2◦ resolution). Training was done using white
noise (1 s per recording) in three experiments, by using 50%, 25%,
and 10% randomly selected pan-tilt states. We used STFT window
length of 1024 samples at 16 kHz. The test set contains recordings
of 1-5 s speech samples from the TIMIT corpus [23]. In addition,
15 dB spatially uncorrelated white noise was added. The angle es-
timation error statistics are summarized in Figure 1. The proposed
SCE outperforms the LEM in all cases, achieving lower median es-
timation error, and significantly lower variance. Notably, the LEM
performance deteriorates for small training sets, with a median error
of 9.5◦ in azimuth and 6.8◦ in elevation, for the 10% training set.
The proposed SCE maintains low median errors of 0.7◦, 1.1◦, and
1.8◦ in azimuth and 0.8◦, 0.9◦, and 1.7◦ in elevation, for the three
training sets, respectively. The embeddings for the 50% training set
are shown in Figure 2, where the consistency with source locations
is visible both in terms of azimuth and elevation.

5.2. Varying acoustic conditions

To evaluate the embeddings in varying acoustic conditions, we
used the VAST dataset [24] of simulated binaural room impulse
responses of a KEMAR dummy head [25, 26]. The training set
consists of 15 rooms with reverberation time 0.1-0.4 s. Each room
contains spherical grids of positions with radii 1, 1.5, and 2 meters,
centered at 9 positions. Two test sets are provided: in the first set,



Figure 2: Scatter plot of the embeddings of the CAMIL training and test sets. The latent azimuth and elevation are coded in color.

Figure 3: Scatter plot of the embeddings of the VAST training and test sets. The latent azimuth and elevation are coded in color.
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Figure 4: Localization accuracy for azimuth (az) and elevation (el)
on the VAST dataset, for binaural cues consisting of both ILD and
IPD (denoted by bin), and only IPD.

the source and receiver are placed at random positions in the same
15 rooms. In the second set, the source and receiver are placed in
rooms of random width and length between 3× 2 m and 10× 4 m,
with absorption profiles randomly picked from those of the train-
ing rooms. The receiver’s height is fixed to 1.7 m. As done in the
sample experiments published with the VAST dataset [24], we lim-
ited the azimuth to frontal angles [−90◦, 90◦], and the elevation to
[−45◦, 45◦], resulting in 23523 training recordings. To focus on the
influence of the varying room acoustics while exciting all frequen-
cies, only white noise source signals were considered in this exper-
iment. Due to the longer acoustic channels, compared to those in
Section 5.1, we used an STFT window of 2048 samples.

The angle estimation error statistics are shown in Figure 4. The

SCE outperforms the LEM embedding for both test sets. We also
evaluated the embeddings of measurement vectors that only consist
of IPDs. The results are similar for both types of measurements,
with a median error difference of 0.3◦-0.4◦ for azimuth and 0.8◦-2◦

for elevation. Although this might indicate that the ILDs are incon-
sistent location cues across different acoustic channels, the claim
is to be further investigated in more experiments. The embeddings
for the first test set are shown in Figure 3. It can be seen that the
elevation embedding generalizes somewhat poorly to the test set.
Nonetheless, there are visible correctly embedded clusters which
enable us to reach median errors of only 2◦-2.5◦ worse than for
azimuth (Figure 4). We believe that in future work, the elevation
embedding can be improved with a better training strategy.

6. CONCLUSIONS

We proposed a framework for supervised dimensionality reduc-
tion of binaural cue measurements, followed by a nearest-neighbor
source localization. Our work is based on recent results that apply
manifold learning to extract source locations from binaural record-
ings, and the power of supervised learning to parametrize these
manifolds. We used a contrastive training approach of a siamese
architecture, to learn a parametric embedding that preserves local
structure in terms of azimuth or elevation. We demonstrated promis-
ing results that show better generalization to varying acoustic condi-
tions than unsupervised approaches. Problems to address in future
work include neighborhood selection strategies, incorporating noise
robustness during training, and investigating influence of different
dummy heads.
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