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Abstract—For blind speech dereverberation, two frameworks
are commonly used: on the one hand, the multi-channel linear
prediction (MCLP) framework, and on the other hand, data-
dependent beamforming, e.g., the generalized sidelobe canceler
(GSC) framework. The MCLP framework is designed to perform
deconvolution and hence has gained increased prominence in
blind speech dereverberation. The GSC framework is commonly
used for noise reduction, but may be applied for dereverberation
as well. In previous work we have shown that for the noiseless
case, MCLP and the GSC yield in theory mathematically equiva-
lent results in terms of dereverberation. In this paper, we assume
additional coherent- as well as incoherent-noise components and
formally analyze and compare both frameworks in terms of dere-
verberation and noise reduction performance. Both the theoreti-
cal analysis and time domain simulation results demonstrate that
unlike the GSC, MCLP expectably shows limited performance
in terms of noise reduction, while both perform equally well in
terms of dereverberation, provided that the GSC blocking ma-
trix achieves complete blocking of the early reverberant-speech
component and sufficiently many microphones are available. In
case of incomplete blocking, however, the GSC performs inferior
to MCLP in terms of dereverberation, as shown in short-time
Fourier transform (STFT) domain simulations.

Index Terms—Multi-channel linear prediction, data-dependent
beamforming, dereverberation, noise reduction.

I. INTRODUCTION

IT is well known that reverberation, caused by reflections
against room boundaries and objects, and background noise

may have a deteriorating effect on the quality and intelligibility
of a speech signal recorded by a microphone [1]. Speech
dereverberation accompanied by noise reduction is therefore
needed in many applications ranging from hands-free mobile
telephony to distant automatic speech recognition.

Dereverberation approaches based on multiple microphones
take advantage of spatial diversity and, according to the mul-
tiple input/output inverse theorem (MINT) [2], theoretically
allow complete inversion of the (presumed time-invariant)
room impulse responses (RIRs) between the speech source and
the microphone array, provided that the corresponding transfer
functions do not share common zeros. In practical applications
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however, the RIRs are unknown – and since MINT is very
sensitive to RIR estimation errors [3], which are unavoidable
in practice, especially in noisy environments [4], [5], explicit
inversion is not favorable. In recent years instead, assuming
no or limited prior knowledge on the RIRs, multi-channel
linear prediction (MCLP) [6]–[17], beamforming [18]–[25]
and combinations thereof [26]–[28] have been most commonly
and successfully used for (blind) speech dereverberation, while
partly including noise reduction [17], [21], [22], [25]–[28]. In
the following, we briefly review these approaches.

The MCLP framework is designed to perform deconvo-
lution, and is hence suited for dereverberation, while noise
reduction is not targeted. It operates blindly on the microphone
signals, i.e. does not require any prior knowledge on the RIRs.
A block diagram of MCLP is shown in Fig. 1. The framework
relies on the premise that the reverberant component to be
canceled can be modeled as a filtered version of the delayed
microphone signals, i.e. as a linear prediction component. The
prediction delay is a design parameter defining the number of
early reflections to be maintained. The sole task in MCLP
therefore consists in estimating the multi-channel prediction
filter from the microphone signals. When the prediction filter
is of sufficient order, MCLP is theoretically able to completely
equalize the RIRs [7]. Nowadays, MCLP is commonly imple-
mented in frequency sub-bands using the short-time Fourier
transform (STFT) [8]–[17], [26]–[28]. Incorporating the power
spectral density (PSD) of the speech-source signal in the cost
function has been shown to be beneficial, as, e.g., in the
weighted prediction error (WPE) method [10], [11], where
the speech-source signal is modeled as time-varying Gaussian
[8]–[11] or using sparse priors [13]. Adaptive approaches
based on recursive least squares [12], [15] and the Kalman
filter [14], [16], [17], [28] have been proposed. In [17], given
noisy microphone signals, the reverberant-speech component
and the prediction-filter coefficients are estimated in an alter-
nating fashion. To reduce noise after dereverberation, it has
been proposed to cascade MCLP with minimum-variance dis-
tortionless response (MVDR) beamforming [26], [27], which
became a popular approach in the recent CHiME-5 challenge
[29].

Beamforming is designed to perform spatial filtering, and
is hence commonly used for noise reduction, but may also
be applied for dereverberation [30]. One can distinguish
between data-independent (e.g., superdirective) beamforming
and data-dependent (e.g., MVDR) beamforming. Although
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Fig. 1: The MCLP framework employing the prediction delay
δ in the data-dependent filter path.
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Fig. 2: The GSC framework employing the blocking matrix
B in the data-dependent filter path.

beamforming traditionally does not target channel inversion,
it may be considered equivalent to MINT if the (presumably
known) RIRs are incorporated in the filter design [18]. The
so-called MINTFormer [20] provides a trade-off between the
performance of MINT and the robustness of beamforming.
In [25], a MINT-based multi-channel Wiener filter for joint
dereverberation and noise reduction has been proposed. The
analysis in [19] shows that for MVDR beamforming incorpo-
rating known RIRs, an inherent performance trade-off exists
between dereverberation and noise reduction in case of inco-
herent as well as mixed coherent- and incoherent-noise fields.
In this work, we are mainly concerned with the generalized
sidelobe canceller (GSC) [31], [32], an implementation of the
minimum-power distortionless response (MPDR) beamformer
and widely employed in noise reduction. Fig. 2 depicts a block
diagram of the GSC, which consists of three components:
a filter-and-sum beamformer (FSB) steering a beam into
the target direction, a blocking matrix blocking the speech
component, and a data-dependent filter minimizing the output
power and thereby suppressing residual noise components. The
ability to block the speech component is essential to the GSC,
as speech leakage through the blocking matrix may lead to
partial speech cancellation. Employing the GSC for dereverb-
eration, the blocking matrix should block the early (but not
the late) reverberant-speech component. In [21] therefore a
blocking matrix is used incorporating the relative early transfer
functions (RETFs) of the speech source in order to jointly
perform dereverberation and noise reduction. In the nested
GSC [22], an inner GSC is employed for dereverberation and
an outer GSC for noise reduction. In [28], we have proposed
to integrate the GSC and MCLP in a parallel manner, and
compared to the corresponding MCLP-GSC cascade, cf. also
[26], [27].

A comparison of the block diagrams in Fig. 1 and 2 readily
reveals the major difference between the two frameworks,
which is due to their different objective. Where MCLP –
designed for deconvolution – applies a simple delay to the
microphone signals in the data-dependent filter path, the GSC

instead – designed for spatial filtering – applies a blocking
matrix. On the one hand, regarding dereverberation, the need
for a blocking matrix is certainly a drawback of the GSC as
compared to MCLP, as its design requires prior knowledge. On
the other hand, regarding noise reduction, the blocking matrix
distinguishes the speech source from potential localized noise
sources, which is not possible in MCLP. For the noiseless
dereverberation task, we have shown in [24] that the MCLP
and GSC framework theoretically lead to the mathematically
equivalent results for stationary source signals. In practice,
additional noise may always be present. In this paper therefore,
using pre-whitened least squares (LS) filter estimates, we for-
mally analyze and compare the behavior of both frameworks
in case of noise, both in terms of dereverberation and noise
reduction. The main intention is to provide a better under-
standing of the theoretical performance limitations of both
frameworks depending on a number of boundary conditions,
such as noise levels, filter length and number of microphones,
which cannot be done by naive comparison. In our theo-
retical analysis, we assume complete blocking of the early
reverberant-speech component in the GSC blocking matrix,
which requires prior knowledge of the early part of the speech-
source RIRs or the RETFs. We derive that if the number
of microphones is sufficiently large, the GSC theoretically
achieves complete coherent-noise cancellation if incoherent
noise is absent, while MCLP cancels the late coherent-noise
components only, as expected by design. Further, in case of
complete blocking, the GSC performs equally well as MCLP
in terms of dereverberation; theoretically achieving complete
reverberation cancellation if incoherent noise is absent. These
theoretical findings are confirmed by time domain simulations.
In addition, in case of incomplete blocking, based on STFT
domain simulations using estimated RETFs, we show that
the GSC instead performs inferior to MCLP in terms of
dereverberation.

In Sec. II, the signal model for both frameworks is pre-
sented. In Sec. III, the filter estimation is discussed. Sec. IV
and V proceed with the performance analysis of the MCLP
and the GSC framework, respectively. A comparative summary
of the two frameworks is presented in Sec. VI, followed by
simulation results in Sec. VII.

II. SIGNAL MODEL

In this section, we define the signal model for both MCLP
and the GSC. For simplicity, we employ the same notation for
those signals and filters that correspond in both frameworks,
cf. Fig. 1 and 2. As outlined before, the major difference
between both consists in the use of a prediction delay δ in
MCLP (cf. Fig. 1) and a blocking matrix B in the GSC
(cf. Fig. 2) in the data-dependent filter path. In addition,
the GSC speech reference is typically created by applying
an FSB, whereas in MCLP a particular microphone signal
is traditionally selected [6]–[16], [26], [27]. Both cases are
covered generically by the filter g (cf. Fig. 1 and 2). The
signal model equivalently applies in the time domain and
the STFT domain, where l respectively denotes the time or
frame index. In case of the STFT domain, throughout the
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paper, the frequency sub-band index is omitted as we treat
all frequency sub-bands independently. Subsequently, vectors
are denoted by lower-case boldface letters, matrices by upper-
case boldface letters, IL×L and 0L1×L2 denote identity and
zero matrices with the (optional) superscript indicating their
dimensions, A∗, AT , AH , A+, and E

[
A
]

denote the complex
conjugate, the transpose, the complex conjugate transpose,
the pseudoinverse and the expected value of a matrix A,
blkdiag

[
A1, . . . , AN

]
constructs a block-diagonal matrix

from its arguments, and tplz
[
a, L

]
creates a Toeplitz matrix

of L columns with the first column defined by the vector(
aT 01×(L−1)

)T
.

The acoustic scenario is presented in Sec. II-A, while in Sec.
II-B the speech reference signal and its individual components
are defined. In Sec. II-C and Sec. II-D, the data-dependent
filter input signal is discussed for MCLP and the GSC,
respectively. In Sec. II-E, the filter output and the enhanced
signal are generically defined.

A. Acoustic Scenario

We assume an acoustic scenario comprising one speech
source emitting the signal s1(l), and N − 1 localized noise
sources emitting the signals sn(l), n = 2 . . . N, in a reverber-
ant environment with M microphones. The mth microphone
signal ym(l), m = 1 . . .M , consists of the reverberant-
speech component, reverberant-noise components, referred
to as coherent-noise components hereafter, as well as an
incoherent-noise component (originating from spatially uncor-
related noise, e.g., sensor noise), i.e.

ym(l) =

N∑
n=1

Lh−1∑
k=0

h∗n,m(k)sn(l−k)︸ ︷︷ ︸
xn,m(l)

+ vm(l), (1)

with hn,m(k) denoting the time-invariant (sub-band) RIR
between the nth source and the mth microphone of length Lh

(neglecting the dead time common to all RIRs), k the tap in-
dex, xn,m(l) the reverberant components (reverberant-speech
and coherent-noise components), and vm(l) the incoherent-
noise component. Note that in the STFT case, the sub-band
convolution model in (1) poses an approximation of the time-
domain convolution [33], where the sub-band RIR length Lh

is roughly RSTFT times smaller than the corresponding time
domain RIR length, with RSTFT denoting the hop size in the
STFT analysis [33]. We define the stacked multi-microphone
vector y(l) ∈ CMLy ,

y(l) =
(
yT
1 (l) · · · yT

M (l)
)T
, (2)

ym(l) =
(
ym(l) · · · ym(l−Ly+1)

)T
, (3)

with Ly the number of samples/frames per microphone. With
xn(l) and v(l) defined in a similar manner as in (2), we obtain

y(l) =

N∑
n=1

xn(l) + v(l) = x(l) + v(l). (4)

With the blockwise Toeplitz matrix H ∈ CNLs×MLy and the
stacked source-signal vector s(l) ∈ CNLs defined by

H =

H1,1 · · · H1,M

...
...

HN,1 · · · HN,M

 =

H1

...
HN

 , (5)

Hn,m = tplz
[(
hn,m(0) · · · hn,m(Lh − 1)

)T
, Ly

]
, (6)

s(l) =
(
sT1 (l) · · · sTN (l)

)T
, (7)

sn(l) =
(
sn(l) · · · sn(l−Ls+1)

)T
, (8)

Ls = Lh + Ly − 1, (9)

the vector x(l) can then be written as

x(l) =

N∑
n=1

HH
n sn(l) = HHs(l). (10)

We assume sn(l) and v(l) to be mutually independent, i.e.
with the correlation matrices Ψsn(l) = E

[
sn(l)s

H
n (l)

]
and

Ψv(l) equivalently, using (4), (7), (10), we find

Ψs(l) = blkdiag
[
Ψs1(l), . . . , ΨsN (l)

]
, (11)

Ψx(l) = HHΨs(l)H, (12)
Ψy(l) = Ψx(l) +Ψv(l). (13)

The matrices Ψsn(l) are assumed to be invertible, such that
Ψ−1

s (l) = blkdiag
[
Ψ−1

s1 (l), . . . , Ψ−1
sN (l)

]
. Note that in the

STFT domain, it is commonly assumed that E
[
s1(l)s

∗
1(l −

k)
]
= 0 for k 6= 0 if the STFT hop size is sufficiently large,

i.e. Ψs1(l) becomes a diagonal matrix. Similar assumptions
could be made for other source signals, but are not required
in our analysis.

B. Speech Reference Signal

With the filter g ∈ CMLy , we define the speech reference
signal q(l) for both frameworks as

q(l) = gHy(l)

=

N∑
n=1

(Hng)
Hsn(l)︸ ︷︷ ︸

qsn(l)

+gHv(l)︸ ︷︷ ︸
qv(l)

, (14)

where qsn(l) and qv(l) denote the individual source compo-
nents of q(l). Defining the parameter d� Lh as the boundary
between early and late reverberation, the reverberant-speech
and coherent-noise components qsn(l) may further be decom-
posed into early and late components q̇sn(l) and q̈sn(l), i.e.

qsn(l) = (ĊHng)
Hsn(l)︸ ︷︷ ︸

q̇sn(l)

+ (C̈Hng)
Hsn(l)︸ ︷︷ ︸

q̈sn(l)

, (15)

with Ċ ∈ CLs×Ls and its complement C̈ defined as

Ċ =

(
Id×d 0d×(Ls−d)

0(Ls−d)×d 0(Ls−d)×(Ls−d)

)
, (16)

C̈ = ILs×Ls − Ċ. (17)
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For later derivations throughout Sec. IV and Sec. V, we note
that q̈sn(l) in (15) may alternatively be expressed as

q̈sn(l) = (C̈dHng)
Hsn(l−d), (18)

where C̈d is derived from C̈ by shifting d rows upwards , i.e.

C̈d =

(
0(Ls−d)×d I(Ls−d)×(Ls−d)

0d×d 0d×(Ls−d)

)
. (19)

Based on the above definitions, the (sub-band) impulse re-
sponse (IR) relating sn(l) and qsn(l) is graphically represented
in Fig. 3. The parameter d can be controlled by design choices
in the MCLP and the GSC framework, as shown in Sec. II-C
and Sec. II-D, respectively.

We now define the early reverberant-speech component
q̇s1(l) as the target component to be maintained, and the
remaining late reverberant-speech component plus all noise
components q̈s1(l)+

∑N
n=2 qsn(l)+qv(l) as the component to

be canceled. Note that in a different acoustic scenario, e.g.,
with N speech sources instead of one speech source plus
N − 1 noise sources, the target component could be defined
differently, e.g., by

∑N
n=1 q̇sn(l).

C. MCLP Filter Input

In the MCLP framework, the filter input signal u(l) ∈
CMLw is a delayed version of the microphone signals y(l).
The prediction delay δ is chosen as δ = d, i.e.

u(l) = y(l−d)
= HHs(l−d) + v(l−d). (20)

Hence, the length Ly in (9) equals the length Lw of a single
filter channel of the data-dependent filter w, i.e.

Ly = Lw. (21)

With (9), (21), we determine that H ∈ CNLs×MLy is a fat
matrix if the MCLP filter length Lw satisfies the condition

Lw ≥ N(Lh − 1)

M −N
, (22)

which obviously requires M > N microphones. If Lw is
chosen according to (22) and the (sub-band) RIRs meet
the MINT requirements (i.e. no common zeros), which is
commonly assumed [2], [7], then the system is invertible and
H has full row rank [2]. As it is crucial for our derivations in
Sec. IV-B, full row rank of H is assumed in the remainder.
Since our simulation results in Sec. VII support our theoretical
conclusions in Sec. IV, we consider this assumption to be
reasonable.

D. GSC Filter Input

In the GSC framework, the filter input signal u(l) ∈
C(M−1)Lw is constructed by applying a blocking matrix
B ∈ CMLy×(M−1)Lw to the microphone signal, i.e.

u(l) = BHy(l)

= (HB)Hs(l) +BHv(l), (23)

0 d− 1 Ls − 1

0

tap index

po
w

er

Fig. 3: Schematic of the (sub-band) IR relating sn(l) and
qsn(l), separated in early part ĊHng [ ] applied to sn(l)
and late part C̈dHng [ ] applied to sn(l−d).

where Lw again describes the length of a single filter channel
of the filter w. Eq. (23) is the GSC counterpart to (20) for
MCLP. We intend to completely block all components in
x1(l) = HH

1 s1(l) correlated to the target component q̇s1(l)
as defined in (15). A matrix B satisfying1 this condition may
be defined in the following manner,

B =

(
−Ḣ1,2 · · · −Ḣ1,M

blkdiag
[
Ḣ1,1, . . . , Ḣ1,1

]) , (24)

Ḣ1,m = tplz
[(
h1,m(0) · · · h1,m(Lb − 1)

)T
, Lw

]
, (25)

where Lb denotes the length of the blocking filters, such that
in the GSC, we find for Ly in (9),

Ly = Lb + Lw − 1. (26)

The definition in (24)–(25) ensures that all components corre-
sponding to the first d ≥ Lb taps of the speech-source (sub-
band) RIRs h1,m(k) are nullified, where the case d > Lb

occurs if the first Lb taps of h1,m(k) are succeeded by one or
more zeros. The product HB takes the form

HB =

(
0d×(M−1)Lw

HB

)
, (27)

where, using (9), (26), HB ∈ CNLs−d×(M−1)Lw is a fat
matrix if the GSC filter length Lw satisfies the condition

Lw ≥ N(Lh − 2) + (N − 1)d

M −N − 1
, (28)

which obviously requires M > N + 1 microphones. If Lw is
chosen according to (28) and the M − 1 (sub-band) impulse
responses in HB meet the MINT requirements, i.e. the nullity
of (HB)H does not exceed d, then HB has full row rank
according to the rank-nullity theorem [34]. As it is crucial for
our derivations in Sec. V-B1, full row rank of HB is assumed
in the remainder. Since our simulation results in Sec. VII
support our theoretical conclusions in Sec. V, we consider this
assumption to be reasonable. Comparing Lw for the GSC and
MCLP in (28) and (22), respectively, we find that the GSC
requires longer filters. Note however that the GSC employs
one filter channel less.

1Many definitions of B achieving complete blocking exist. In the STFT
domain, for Lb = 1, the blocking matrix may also be defined using RETFs
[21]. If the target component is instead defined as

∑N
n=1 q̇sn (l) as in the

different acoustic scenario mentioned in Sec. II-B, then also the definition of
B needs to change accordingly.
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E. Enhanced signal

For both frameworks, the filter output signal z(l) and the
enhanced signal e(l) are given by

z(l) = wHu(l), (29)
e(l) = q(l)− z(l), (30)

with u(l) given by (20) in MCLP or (23) in the GSC.
For MCLP, z(l) is the linear prediction of q(l), and e(l)
accordingly the linear prediction residual. The estimation of
the filter w is discussed in Sec. III.

III. FILTER ESTIMATION

We now present the pre-whitened LS estimate of w in Sec.
III-A and discuss the choice of the pre-whitening matrix in
Sec. III-B. In Sec. III-C, we present the corresponding Wiener
solution, which is then used in the theoretical analysis in the
subsequent Sec. IV and Sec. V.

A. Pre-whitened LS

With l = 0 . . . Lobs −1 and Lobs denoting the number of ob-
servations used in the filter estimation, let q(··) ∈ C1×Lobs and
U(··) ∈ CMLw×Lobs denote correspondingly stacked versions
of q(l) and u(l), i.e.

q(··) =
(
q(0) · · · q(Lobs −1)

)
, (31)

U(··) =
(
u(0) · · · u(Lobs −1)

)
, (32)

and let Y(··), S(··), Sn|(··), and V(··) be defined equivalently
to U(··) in (32). Further, let Ω

−1/2
(··) ∈ CLobs×Lobs denote

some pre-whitening matrix with Ω(··) = Ω
H/2
(··) Ω

1/2
(··) to be

defined explicitly in Sec. III-B. Let Ũ(··) and q̃(··) denote
correspondingly pre-whitened versions of U(··) and q(··), i.e.

q̃(··) = q(··)Ω
−1/2
(··) =

(
q̃(0) · · · q̃(Lobs −1)

)T
, (33)

Ũ(··) = U(··)Ω
−1/2
(··) =

(
ũ(0) · · · ũ(Lobs −1)

)
, (34)

and let Ỹ(··), S̃(··), S̃n|(··), and Ṽ(··) as well as their respective
column vectors ỹ(l), s̃(l), s̃n(l), and ṽ(l) be defined equiva-
lently to (34). Based on these definitions, the pre-whitened data
q̃(l) and ũ(l) may be expressed equivalently to q(l) in (14)
and u(l) in (20), (23), where ỹ(l), s̃(l), and ṽ(l) replace y(l),
s(l), and v(l), respectively. Based on (29)–(30), (33)–(34), we
generically define the LS cost function,

JLS(w) =
∥∥q̃(··) −wHŨ(··)︸ ︷︷ ︸

ẽ(··) =
(
ẽ(0) · · · ẽ(Lobs −1)

)
∥∥2
2
, (35)

leading to the the LS filter estimate wLS,

wLS = arg min
w
JLS(w)

=
(
Ũ(··)Ũ

H
(··)

)−1
Ũ(··)q̃

H
(··)

=
(
U(··)Ω

−1
(··)U

H
(··)

)−1
U(··)Ω

−1
(··)q

H
(··). (36)

Note that with (33)–(34), wLS in (36) may alternatively be
written as

wLS =

(
Lobs−1∑
l=0

ũ(l)ũH(l)

)−1 Lobs−1∑
l=0

ũ(l)q̃∗(l). (37)

B. Choice of pre-whitening matrix

The pre-whitening matrix Ω
−1/2
(··) may be used to mitigate

an estimation bias due to the speech source-signal statistics.
E.g., for the two cases ε(··) ∈ {q̇s1|(··), s1|(··)} with q̇s1|(··)
and s1|(··) defined equivalently to (31), an unbiased estimate
is achieved if

Ω(··) = Ψε|(··), (38)

where Ψε|(··) = E
[
εH(··)ε(··)

]
. Eq. (36) then corresponds to the

(unbiased) generalized LS estimator of w for the data model
q(··) = wHU(··) + ε(··), where ε(··) resembles the observation
noise. In the time domain, Ψq̇s1 |(··) and Ψs1|(··) are generally
non-diagonal. The choice Ω(··) = Ψs1|(··) here corresponds to
the pre-whitening paradigms proposed in [6] for MCLP and
[23] for the GSC. The choice Ω(··) = I generally yields a
biased estimate, as demonstrated in the simulations in Sec.
VII-B1.

In the STFT domain, Ψq̇s1 |(··) may be modeled as a matrix
with 2d−1 non-zero diagonals and Ψs1|(··) may be modeled as
a fully diagonal matrix, cf. Sec. II-A, where the lth diagonal el-
ement of Ψs1|(··) corresponds to the PSD ψs1(l) = E

[
|s1(l)|2

]
.

In this case, with (31)–(32), wLS in (36) may therefore be
written as

wLS =

(
Lobs−1∑
l=0

u(l)uH(l)

ψs1(l)

)−1 Lobs−1∑
l=0

u(l)q∗(l)

ψs1(l)
, (39)

i.e. each frame q(l) and u(l) is weighted by the inverse of
ψs1(l), which, in case of MCLP, corresponds to the WPE
criterion [10], [11]. Note that ψs1(l) varies over time for non-
stationary source signals.

In Sec. VII-B2, we present STFT-domain simulations for
d = 1 and Ω(··) = Ψq̇s1 |(··) ∝ Ψs1|(··). Herein, prior to
estimating w according to (36), the PSDs ψq̇s1

(l) on the
diagonal of Ψq̇s1 |(··) are estimated as proposed in [28], [35],
i.e. by applying the generalized eigenvalue decomposition
(GEVD) to the spatial correlation matrix of the microphone
signals in each frame l, where it is assumed that the spatial
coherence matrix of the late reverberant component may be
modeled as diffuse, cf. Sec. VII-A3.

Note that in the different acoustic scenario mentioned in
Sec. II-B with the target component defined as

∑N
n=1 q̇sn(l)

instead of q̇s1(l), in order to achieve an unbiased filter
estimate, one has to change Ω(··) accordingly, e.g., using
ε(··) =

∑N
n=1 q̇sn|(··) in (38).

C. Convergence to Wiener filter solution
For the purpose of the analysis in Sec. IV and Sec. V, we

assume wide-sense stationarity for the pre-whitened signals
ũ(l) and q̃(l), i.e. their statistics are independent of l. Then, for
Lobs → ∞, the estimate wLS in (37) converges to the Wiener
filter solution wWF,

wWF = Ψ+
ũψũq̃, (40)

with Ψũ = E
[
ũ(l)ũH(l)

]
and ψũq̃ = E

[
ũ(l)q̃∗(l)

]
. Here, the

inverse in (37) is replaced by the pseudoinverse, as in the GSC,
Ψũ becomes rank-deficient in absence of incoherent noise and
in case of complete blocking, i.e. if (27) holds, cf. Sec. V-B1
and Appendix A-1.
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(a) correlation matrix Ψs̃n

d

(b) correlation matrix Ψs̃n|d

Fig. 4: Schematic of the correlation matrices Ψs̃n and Ψs̃n|d
as different submatrices of a larger correlation matrix.

IV. MCLP ANALYSIS

For w = wWF, we now derive the MCLP filter output signal
z(l) in Sec. IV-A and then derive and discuss the enhanced
signal e(l) under different noise conditions in Sec. IV-B.

A. MCLP Filter Output

Using (14), (20), and noting that E
[
ỹ(l−d)ỹH(l−d)

]
=

E
[
ỹ(l)ỹH(l)

]
, the terms Ψũ and ψũq̃ in (40) become

Ψũ = Ψỹ, (41)
ψũq̃ = Ψỹ|dg, (42)

Ψỹ|d = E
[
ỹ(l−d)ỹH(l)

]
. (43)

Inserting (20) in (29) and substituting w by wWF in (40), we
obtain for the filter output signal,

z(l) = (Ψ+
ỹ Ψỹ|dg)

Hy(l−d). (44)

Let the shifted correlation matrices Ψs̃n|d, Ψs̃|d, and Ψṽ|d be
defined equivalently to Ψỹ|d in (43), with relations equivalent
to (11)–(13). We now introduce the following relation between
Ψs̃n|d and Ψs̃n , which is used in the subsequent derivations
in Sec. IV-B. For this, note that we can interpret Ψs̃n|d and
Ψs̃n as different submatrices of a larger correlation matrix, as
shown in Fig. 4. The submatrix defining Ψs̃n|d is shifted left
by d columns as compared to the submatrix defining Ψs̃n .
Noting that the autocorrelation width of s̃n(l) is typically
much smaller than Lh in both the time and STFT domain,
we assume that the autocorrelation of s̃n(l) is zero for lags
greater than Ls−d, where Ls−d ≥ M

M−N (Lh − 1) − d and
d� Lh, cf. (9), (21)–(22). Using (16), (19), we then express
Ψs̃n|d in terms of Ψs̃n by

Ψs̃n|d = Ψs̃nC̈d + C̈dΨs̃nĊ. (45)

The product Ψs̃nC̈d shifts the elements in Ψs̃n right by d
columns. The product C̈dΨs̃nC replaces the resulting zero
columns by the first d columns of Ψs̃n shifted up by d rows.

B. MCLP Enhancement

We now analyze the behavior of MCLP considering two
scenarios: absence and presence of incoherent noise.

1) Absence of Incoherent Noise: The absence of incoherent
noise corresponds to v(l) = 0, i.e. y(l) = x(l). In this case,
using (10) and relations equivalent to (11)–(13), the individual
terms in (44) are equal to y(l−d) = HHs(l−d), Ψỹ =
HHΨs̃H, and Ψỹ|d = HHΨs̃|dH. Inserting these in (44)
and noting that H+ = HH(HHH)−1 and hence HH+ = I
since H is assumed to have full row rank yields

z(l) = (Ψ+
s̃ Ψs̃|dHg)Hs(l−d), (46)

which, using (11), (45), (14)–(15), may be written as

z(l) =

N∑
n=1

(
q̈sn(l) + ϑ

H
n|dsn(l−d)

)
,

with ϑn|d = Ψ−1
s̃n

C̈dΨs̃nĊHng.

(47)

(48)

As apparent from (47)–(48), all reverberant source components
are treated mutually independently and equally. This holds as
long as (22) is satisfied and H has full row rank. Inserting
(47) into (30) yields the MCLP output signal,

e(l) =

N∑
n=1

(
q̇sn(l)− ϑ

H
n|dsn(l−d)︸ ︷︷ ︸

esn(l)

)
. (49)

From (49), we observe that e(l) equals the sum of the early
components q̇sn(l) and a (potential) bias term −ϑH

n|dsn(l−d)
per source, with ϑn|d ∈ CLs and Ls = Lh + Lw − 1
according to (9), (26). Therefore, as only the late components
q̈sn(l) are canceled, the MCLP framework suits best in the
different acoustic scenario mentioned in Sec. II-B with the
target component defined as

∑N
n=1 q̇sn(l) instead of q̇s1(l).

Combining (15) and (18), we can compare the individual
components esn(l) in (49) to

qsn(l) = q̇sn(l) + (C̈dHng)
Hsn(l−d), (50)

i.e. the bias term replaces the late component q̈sn(l) =
(C̈dHng)

Hsn(l−d). Similarly as for the (sub-band) IR Hng
relating sn(l) and qsn(l) in Fig. 3, we visualize the (sub-band)
IR relating sn(l) and esn(l), composed of the early part ĊHng
and the bias part −ϑn|d, in Fig. 5. In the following we interpret
the bias term in more detail, which has also partly been done
in our previous work [24]. Firstly, from ĊHng in (48), we
observe that the bias term −ϑH

n|dsn(l−d) depends on the first
d taps of Hng only, i.e. on its early part, but not its late
part. Secondly, we note that ϑn|d depends on the correlation
matrix Ψs̃n of the pre-whitened version s̃n(l) of sn(l), cf.
Sec. III-A. We can hence argue that for Ω(··) = Ψq̇s1 |(··) as
defined in (38), with q̇s1(l) = (ĊH1g)

Hs1(l), cf. (15), the
coloration of the pre-whitened speech-source signal s̃1(l) is
inverse to the filter ĊH1g, such that only the first element of
the vector Ψs̃1ĊH1g is non-zero. Similarly, we can argue that
for Ω(··) = Ψs1|(··), the matrix Ψs̃1 becomes diagonal, such
that only the first d elements of Ψs̃1ĊH1g are non-zero. In
both cases, with C̈d as in (19), we find C̈dΨs̃1ĊH1g = 0,
and therefore ϑ1|d = 0 in (48) and finally es1(l) = q̇s1(l)
in (49). Hence, the estimator is indeed unbiased for Ω(··) ∈
{Ψq̇s1 |(··), Ψs1|(··)}, as anticipated in Sec. III.

Note that the remaining early components may still be
biased, i.e. ϑn|d 6= 0 for n 6= 1. In general, for Ω(··) = I, the
term ϑH

n|dsn(l−d) in (49) represents a (delayed) linear pre-
diction component of q̇sn(l), i.e. the output signal component
esn(l) may be understood as a (partially) whitened version of
q̇sn(l). This effect is also known as excessive whitening [7].

2) Presence of Incoherent Noise: If additional incoherent
noise v(l) 6= 0 is present, the pseudoinverse of the sum
Ψỹ = Ψx̃ + Ψṽ in the filter Ψ+

ỹ Ψỹ|dg in (44) cannot be
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Fig. 5: Schematic of the (sub-band) IR relating sn(l) and
esn(l), separated in early part ĊHng [ ] applied to sn(l)
and bias part −ϑn|d [ ] applied to sn(l−d).

decomposed into its individual components, such that further
simplification of (44) is not possible. In this more general case,
MCLP cancels the linear prediction of the sum of gHx(l)
and gHv(l). Noting that the incoherent noise acts as M
additional independent sources, we find that the condition (22)
for complete linear prediction in the MCLP framework, where
M is required to exceed the number of independent sources
N , cannot be fulfilled, resulting in decreased performance.

V. GSC ANALYSIS

Similarly to Sec. IV, for w = wWF, we now derive the GSC
filter output signal z(l) in Sec. V-A and then derive and discuss
the enhanced signal e(l) under different noise conditions in
Sec. V-B.

A. GSC Filter Output

Following a derivation similar to Sec. IV-A, using (14) and
(23), Ψũ and ψũq̃ in (40) can be written as

Ψũ = BHΨỹB, (51)

ψũq̃ = BHΨỹg. (52)

Inserting (23) in (29) and substituting w by wWF in (40), we
obtain for the filter output signal,

z(l) =
(
B(BHΨỹB)+BHΨỹg

)H
y(l). (53)

B. GSC Enhancement

Similarly to Sec. IV-B, we now analyze the behavior of the
GSC, again considering two scenarios: absence and presence
of incoherent noise.

1) Absence of Incoherent Noise: For the case v(l) = 0, i.e.
y(l) = x(l), using (10) and relations equivalent to (11)–(13),
the individual terms in (53) are equal to y(l) = HHs(l) and
Ψỹ = HHΨs̃H. Inserting in (53) yields

z(l) =
(
HB

(
(HB)HΨs̃HB

)+
(HB)HΨs̃Hg

)H
s(l). (54)

In Appendix A-1, assuming complete blocking such that (27)
holds, it is shown that (54) can be reformulated as

z(l) = q̈s1(l) + ϑ
H
1|ds1(l−d) +

N∑
n=2

qsn(l),

with ϑ1|d = (C̈dΨs̃1C̈
H
d )+C̈dΨs̃1ĊH0g.

(55)

(56)

Inserting (55) into (30) yields the GSC output signal,

e(l) = q̇s1(l)− ϑ
H
1|ds1(l−d). (57)

Eqs. (55)–(57) form the GSC counterpart to (47)–(49) for
MCLP. From (57), we observe that e(l) consists of two terms:
the target component q̇s1(l) and a bias term −ϑH

1|ds1(l−d).
This implies that not only the late reverberant-speech compo-
nent, but also the coherent-noise components are completely
canceled in the GSC, which is in contrast to MCLP, where
only the late, but not the early coherent-noise components
could be canceled. In Appendix A-2, it is shown that ϑ1|d
in (56) for the GSC is indeed equal to ϑ1|d in (48) for
MCLP. Hence, the discussion on the bias term in MCLP
in Sec. IV-B1 similarly applies to the GSC, implying that
for Ω(··) ∈ {Ψq̇s1 |(··), Ψs1|(··)} in (36), we find ϑ1|d = 0
and e(l) = q̇s1(l), i.e. we achieve complete and unbiased
cancellation. Note that if the target component was defined
as
∑N

n=1 q̇sn(l) instead of q̇s1(l) as in the different acoustic
scenario mentioned in Sec. II-B and B was changed accord-
ingly, for the same Ω(··), the GSC would yield the same
result as MCLP. Also note that the above conclusions hold
for complete blocking, i.e. if (27) is satisfied. For incomplete
blocking, partial speech cancellation may appear. In Sec. VII,
we simulate both cases.

2) Presence of Incoherent Noise: Similarly to the MCLP
framework, if additional incoherent noise v(l) 6= 0 is present,
a simplification of (53) is not possible. We may therefore
apply the same reasoning as in Sec. IV-B2. Noting that
the incoherent noise acts as M additional independent noise
sources, we find that the condition for complete cancellation
in the GSC framework (28), where M−1 is required to exceed
the number of independent sources N , cannot be fulfilled,
resulting in decreased performance. These conclusions are
compliant with the analysis in [19], which demonstrates that
in MVDR beamforming, there is an inherent trade-off between
dereverberation and noise reduction for incoherent and mixed-
coherent-plus-incoherent noise fields.

VI. COMPARATIVE SUMMARY

Table I summarizes the theoretical findings from Sec. IV
and Sec. V. For a given pre-whitening matrix Ω

−1/2
(··) , MCLP

does not further distinguish between the speech source and the
localized noise sources, while the GSC does so by means of
the spatial pre-processing in the blocking matrix. MCLP hence
treats all source components qsn(l) the same, suppressing the
late components q̈sn(l), but none of the early components
q̇sn(l). By contrast, the GSC suppresses all coherent-noise
components qsn(l) on the one hand, and the late reverberant-
speech component q̈s1(l) on the other hand, provided that
the blocking matrix B achieves complete blocking of the
early reverberant-speech component. In both frameworks, an
unbiased speech component with ϑ1|d = 0 may be obtained
by pre-whitening q(l) and u(l) accordingly. The presence of
incoherent noise decreases the performance.

The spatial pre-processing of the GSC naturally comes at a
cost. The blocking matrix requires spatial information, which
needs to be acquired in practice. Further, as to be demonstrated
in simulations, cf. Sec. VII-B, in case of incomplete blocking,
the GSC performs inferior in terms of dereverberation as com-
pared to MCLP. Compared to MCLP, the minimum number
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Property MCLP framework GSC framework

spatial knowledge not required required in B, cf. (24)–(25)

filter input signal u(l) = y(l−d) u(l) = BHy(l)

filter length required for
complete∗ cancellation Lw ≥

N(Lh − 1)

M −N
, requires M > N Lw ≥

N(Lh − 2) + (N − 1)d

M −N − 1
, requires M > N + 1

output signal∗ e(l) =

N∑
n=1

q̇sn (l)− ϑH
n|dsn(l−d) e(l) = q̇s1 (l)− ϑH

1|ds0(l−d)

∗ if incoherent noise absent (reduced performance otherwise)

TABLE I: Comparative summary of the MCLP framework versus the GSC framework.

of required microphones is increased by one, as the blocking
matrix creates M − 1 independent output signals only from
M input signals. In the GSC, the number of filter channels is
accordingly decreased by one, where a higher filter length Lw

is required per channel.

VII. SIMULATIONS

In this section, we present simulation results comparing
MCLP and the GSC in terms of dereverberation and noise
reduction performance. The simulation setup is described in
VII-A, and the results are discussed in VII-B.

A. Simulation Setup

In order to confirm the theory in Sec. IV–V and to further
assess the practical relevance we respectively perform simu-
lations for time domain and STFT domain implementations.
The reasons for this are as follows: in the time domain, using
oracle knowledge on the early RIRs, complete blocking can be
simulated for the GSC, cf. Sec. VII-A3a. Further, unweighted
global power-ratio measures can be well defined and evaluated,
cf. Sec. VII-A4a. Therefore, in order to confirm the theory,
we perform simulations on the time domain implementation,
employing an ideal blocking matrix in the GSC yielding com-
plete blocking, and evaluate the performance using unweighted
global power-ratio measures. In the STFT domain, complete
blocking cannot be simulated, since the sub-band convolution
model in (1) poses an approximation of the time-domain
convolution only [33]. Instead of using oracle knowledge in the
blocking matrix, we estimate the RETFs from the microphone
signals, such that the GSC performance also depends on the
estimation quality of the RETFs, cf. Sec. VII-A3b. As, due
to incomplete blocking, power-ratio measures equivalent to
those used in the time domain cannot be well defined, and
as unweighted global power-ratio measures are further known
to relate comparably poorly to the perceived speech quality,
we instead use perceptually motivated freqeuncy-weighted
segmental power-ratio measures [36]. Therefore, in order to
address the practical relevance, we perform simulations on
the STFT domain implementation, employing an estimated
blocking matrix in the GSC yielding incomplete blocking, and
evaluate the performance using weighted segmental power-
ratio measures.

1) Acoustic Scenario: In order to generate multi-channel
RIRs, the randomized image method [37] is used at a sampling
frequency of 16 kHz, whereby the image sources are randomly
displaced within a sphere of 8 cm. Multi-channel RIRs are
generated using the randomized image method [37] at a sam-
pling frequency of 16 kHz, with the image sources randomly
displaced within a sphere of 8 cm. A fractional delay low-pass
filter with a relative cut-off frequency of 0.9 and a length of
11 taps is applied, such that the energy of each acoustic wave,
i.e. of the direct component and each reflection, is spread
over 11 samples. The room dimensions are 5×4×3 m, the
reverberation time is 0.5 s. The room impulse responses are
truncated after 8000 taps. A linear array of 8 microphones
with inter-microphone distances of (4, 4, 4, 8, 4, 4, 4) cm
is used. The simulations comprise one speech source and one
localized noise source. In total, 128 scenarios are generated. In
each scenario, the position and orientation of the microphone
array is randomized. The speech source is located at a random
position in broadside direction at 2 m distance to the center of
the microphone array (i.e. on a circle around its axis). The
position of the localized noise source is randomized, with the
constraint that the distance to the center of the microphone
array is at least 1 m and the angle between the localized noise
source and the speech source, seen from the center of the
microphone array, is at least 15 ◦.

2) Source Signals: We define two different source signal
settings. In the first one, both the speech-source signal and
the localized noise source signal are chosen to be temporally
correlated, i.e. colored signals. The (non-stationary) speech-
source signal s1(l) is composed of male and female speech
of in total 51 s duration [38], while for the localized noise
source signal s2(l), stationary pink noise is used. This setting
is evaluated for both the time domain and the STFT domain
implementations. In the time domain, for the chosen setup,
cf. Sec. VII-A3, the coloration of the source signals causes a
biased filter estimate. In the second setting, both s1(l) and
s2(l) are chosen to be temporally uncorrelated, i.e. white,
stationary signals, and have been generated independently
from the source signals in the first setting. This setting is
evaluated in the time domain implementations only, leading
to an unbiased filter estimate and serving as a reference in
order to illustrate the effect of the bias in the first setting.
Since sensor noise is always present in practice, spatially and
temporally uncorrelated noise v(l) is added in all simulations.
Note that due to the incoherent noise, the time domain simu-
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lation results may at most approximately reach the theoretical
limits discussed in Sec. IV-B1 and Sec. V-B1.

The power of the noise components is defined via the signal-
to-coherent-noise ratio SNR coh

y and the signal-to-incoherent-
noise ratio SNR inc

y in the first microphone, i.e.

SNR coh
y = 10 log10

∑
l |x1,1(l)|2∑
l |x2,1(l)|2

dB, (58)

SNR inc
y = 10 log10

∑
l |x1,1(l)|2∑
l |v1(l)|2

dB, (59)

where the reverberant-speech component x1,1(l) in the first
microphone is considered to be the useful signal.

3) MCLP and GSC implementation:
a) Time Domain: In the time domain, we define the

direct speech component to be the target component, i.e. we
choose δ = Lb = 11 samples, corresponding to the energy
spread of a single acoustic wave, cf. Sec. VII-A1, yielding
d = 11 for MCLP and d ≥ 11 for the GSC, cf. Sec. II-C and
Sec. II-D. An ideal GSC blocking matrix B was designed, cf.
(24)–(25). The filter g is chosen to be a matched filter (MF)
such that BHg = 0, both for the GSC and MCLP. We choose
Ω(··) = I in (36), leading to a biased filter estimate for colored
source signals. The effect of the bias is shown by comparing
the performance for both colored and white source signals.

b) STFT Domain: In the STFT domain, using square-
root-Hann windows of 512 samples with 50% overlap, we
choose δ = Lb = 1 frame. The GSC blocking matrix B uses
an estimate of the RETFs, which we obtain as presented in
[28], [35], [39]: we estimate the average spatial correlation
matrix of the microphone signals using the whole batch, and
the spatial correlation matrix of the stationary noise compo-
nents using 5 s noise-only frames, such that the spatial speech-
component correlation matrix can be estimated by subtraction.
Then, from the spatial speech-component correlation matrix
estimate, the RETF relative to the first microphone is estimated
using the GEVD, assuming that the spatial coherence matrix
of the late reverberant-speech component in frame l may be
modeled as diffuse [28], [35]. Again, the filter g is chosen to
be an MF with BHg = 0, i.e. g is a normalized version of
the RETF estimate. For Ω(··) in (36), we use an estimate of
Ψq̇s1 |(··), which in the STFT domain is diagonal for d = 1,
cf. Sec. III-B. Since g is a normalized version of the RETF
estimate, estimating the PSDs ψq̇s1

(l) in Ψq̇s1 |(··) corresponds
to estimating the early-reverberant speech component in the
first microphone. Again, this can be done using the GEVD
[28], [35], now applied to a recursive estimate of the spatial
speech-component correlation matrix in frame l. See, e.g.,
[28], [35] for a detailed and more formal discussion on GEVD-
based RETF and PSD estimation.

4) Performance Measures:
a) Time Domain: In the time domain, equivalently to

qs1(l), qs2(l), qv(l) and q̇s1(l), we define the individual source
components of e(n) as es1(l), es2(l), ev(l) and ės1(l), where
ės1(l) = q̇s1(l), cf. (49), (57). With σ ∈ {q, e}, the signal-
to-coherent-noise ratio SNR coh

σ , the signal-to-incoherent-noise
ratio SNR inc

σ , the signal-to-total-noise ratio SNR tot
σ , and the

signal-to-reverberation ratio SRRσ at the MF output and the
MCLP and GSC output are defined as

SNR tot
σ = 10 log10

∑
l |σ̇s1(l)|2∑

l |σs2(l) + σv(l)|2
dB, (60)

SRRσ = 10 log10

∑
l |σ̇s1(l)|2∑

l |σs1(l)− σ̇s1(l)|2
dB, (61)

where the component σ̇s1(l) is considered to be the useful
signal. Please note that q(l), and hence for σ = q also
the measures in (58)–(61), are independent of the particular
framework. Further, note that in the denominator of (61), for
σ = q, the difference qs1(l)−q̇s1(l) equals the late reverberant-
speech component q̈s1(l), while for σ = e, the difference
es1(l)− ės1(l) comprises not only residual reverberation, but
also a bias term in the general case. For evaluation, we use
the improvement in SNR tot and SRR, i.e.

∆SNR tot = SNR tot
e − SNR tot

q , (62)

∆SRR = SRRe − SRRq. (63)

b) STFT Domain: In the STFT domain, the target com-
ponent q̇s1(l) cannot be observed separately, since the sub-
band convolution model in (1) poses an approximation of the
time-domain convolution only [33]. Further, due to overlap-
ping frames in the STFT processing and incomplete blocking
in the GSC, the target component q̇s1(l) may not be completely
maintained in e(l), such that the measures in (60)–(63) are not
suitable in the STFT domain. Instead, we define the direct-
component in q(l) as a reference signal, which cannot be
assumed to be equivalent to q̇s1(l). Then, with σ ∈ {q, e},
for σ(l) and σs1(l), respectively, we compute the frequency-
weighted segmental signal-to-noise-plus-reverberation ratio
and the frequency-weighted segmental signal-to-reverberation
ratio [36], denoted as SNRR fwseg and SRR fwseg and indicating
the dereverberation-plus-noise-reduction performance and the
dereverberation-only performance.

5) Varied Parameters: In the time domain, simulations are
carried out for different values of the following parameters:
SNR coh

y , SNR inc
y , Lw, and M . The filter length Lw is pre-

sented relatively to the theoretical minimum given in (22),
(28), denoted by Lrel

w . While one parameter is varied, the others
are fixed at SNR coh

q = 0 dB, SNR inc
q = 90 dB, Lrel

w = 1, and
M = 8, i.e. all simulations intersect at this point. For N = 2,
the minimum number of microphones required by MCLP and
the GSC is given by M = 3 and M = 4, respectively,
cf. (22), (28). If the number of microphones M falls below
this required minimum, the filter length is computed setting
the denominators in (22), (28) to one. Simulations posing
nearly ideal conditions, i.e. sufficiently high SNR inc

q , Lrel
w ≥ 1

and sufficiently many microphones M , validate the theoretical
results in Sec. IV and Sec. V, with minor deviations occurring
due to the LS approximation in (36) of the Wiener solution in
(40) and remaining low-level incoherent noise.

In the STFT domain, simulations are carried out for different
values of SNR coh

y only, with SNR inc
q = 90 dB, Lrel

w = 1, and
M = 8. Since complete blocking is not achieved in the STFT
domain, decreased performance is expected for the GSC.
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Fig. 6: Dereverberation/noise reduction performance ∆SRR/∆SNR tot versus (a)/(e) the signal-to-coherent-noise ratio SNR coh
q ,

(b)/(f) the signal-to-incoherent-noise ratio SNR inc
q , (c)/(g) the relative filter length Lrel

w and (d)/(h) the number of microphones
M for colored and white source signals of the MCLP framework, respectively denoted by [ ] and [ ], and the GSC
framework, respectively denoted by [ ] and [ ]. The vertical grid lines indicate the intersection point of the individual
subplots. The shaded areas represent the standard deviation.

B. Simulation Results

We now discuss the time and STFT domain simulation
results in Sec. VII-B1 and Sec. VII-B2, respectively.

1) Time Domain: The performance of both frameworks in
terms of ∆SRR and ∆SNR tot are shown in Fig. 6. We first
discuss the dereverberation performance, followed by the noise
reduction performance.

a) Dereverberation: From Fig. 6 (a)–(d) we observe
that under favorable conditions with predominantly late-
reverberant-speech interference, i.e. for high SNR coh

y , high
SNR inc

y , Lrel
w ≥ 1 and sufficiently high M , the SRR improve-

ment of both MCLP and GSC converge to the same value of
around 31 dB for white source signals, respectively denoted by
[ ] and [ ]. This upper limit is determined by the LS
approximation (36) of the Wiener Solution of the (40). In all
conditions, for colored source signals, the target component
q̇s1(l) is partially whitened due to the biased filter estimate,
leading to a performance drop for both MCLP [ ] and the
GSC [ ], cf. Sec. IV-B1 and Sec. V-B1 and Table I. The
GSC reaches up to 18 dB ∆SRR, outperforming MCLP by

3 dB. This is due to the potential delay between the direct
component and the first reflection, increasing d for the GSC
and thereby decreasing the bias, cf. Sec. VII-A3. The higher
standard deviation of ∆SRR for the GSC is a result of the
variation of this delay over different source and microphone
array positions.

As can be seen in Fig. 6 (a), for white source signals,
MCLP shows a rather high sensitivity towards coherent noise
for SNR coh

y < 10 dB, whereas the GSC is somewhat less
sensitive. This can be explained by the limited number of
observations Lobs used in the LS approximation (36) of the
Wiener solution (40), causing LS to focus on the suppression
of components with higher power, i.e. here on (late) coherent-
noise suppression. For colored source signals, the effect is less
pronounced in both frameworks.

While it can be observed from Fig. 6 (b) that both MCLP
and GSC are highly sensitive to incoherent noise, the results
also indicate an up to 2.5 dB lower performance of the GSC
as compared to MCLP for SNR inc

y < 90 dB and < 55 dB for
white and colored source signals, respectively. The reason for
this may lie in the GSC blocking matrix, which by construction
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causes a cross-correlation of the incoherent-noise components
in the data-dependent filter input u(l), as opposed to the
mere delay in MCLP. Hence, for the GSC, not only the
autocorrelation submatrices of Ψũ are affected by incoherent
noise, but also the cross-correlation submatrices.

As shown in Fig. 6 (c), ∆SRR saturates for both MCLP
and GSC above Lrel

w = 1, both for white and colored source
signals, as expected from theory. The GSC performs slightly
better than MCLP if Lrel

w < 1. We may however state that for
both frameworks, undermodeling is not extremely critical, as
even at Lrel

w = 0.7, we obtain ∆SRR values above 22 dB for
white source signals, while the performance is hardly affected
for colored source signals.

From Fig. 6 (d), we note that ∆SRR drops sharply for both
MCLP and GSC if the number of microphones is smaller than
required, i.e. M < 3 and M < 4, respectively. This holds
for both white and colored source signals. MCLP reaches
saturation at M = 3, while the GSC saturates at M = 5 only
instead of M = 4. This may be caused by remaining low-
level incoherent noise and possibly nearly common zeros in
the transfer functions corresponding to HB in (27) for M = 4.

b) Noise Reduction: From Fig. 6 (e)–(h) we observe that
under favorable conditions with predominantly coherent-noise
interference, i.e. for low SNR coh

y , high SNR inc
y , Lrel

w ≥ 1 and
sufficiently high M , the GSC [ , ] shows increasing
improvement in terms of ∆SNR tot for decreasing values of
SNR coh

y , while for MCLP [ , ], ∆SNR tot is limited
to at most 15 dB. the GSC [ , ] clearly outperforms
MCLP [ , ] in terms of ∆SNR tot. This is due to the
GSC suppressing the entire coherent-noise component qs2(l),
while MCLP suppresses the late coherent-noise component
q̈s2(l) only, cf. (47)–(49), (55)–(57) and Table I. Note that
MCLP exhibits a stronger standard deviation in ∆SNR tot

than the GSC. This is caused by the varying power of the
early coherent-noise component q̇s2(l), as the power of the
individual direct components at the output of the MF may be
distributed over a range potentially larger than d, depending
on the angle between the speech source and the coherent-noise
source. In all conditions, the GSC performs somewhat worse
for colored signals than white signals, while no significant
difference is found for MCLP.

Fig. 6 (e) indicates that the GSC exceeds MCLP for
SNR coh

y < 20 dB, while both frameworks perform similarly
for high SNR coh

y values. For the GSC, ∆SNR tot decreases
at a rate of slightly less than 10 dB ∆SNR tot per 10 dB
SNR coh

y , such that the noise power at the output is almost
constant throughout the simulated range. This implies that for
SNR coh

y ≥ 35 dB, the total noise power is in fact even boosted
as compared to the output of the MF, both for MCLP and the
GSC. Again, this effect can be explained by the limited number
of observations Lobs in the LS estimate (36), here causing LS
to focus on reverberant-speech suppression.

As can be seen from Fig. 6 (f), for both white and colored
source signals, the GSC exceeds MCLP for higher SNR inc

y

values, while the difference reduces for lower values.
As shown in Fig. 6 (g), for both white and colored source

signals, both MCLP and the GSC again saturate for Lrel
w ≥ 1.

Again, undermodeling does not appear to be extremely critical.
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Fig. 7: (a) dereverberation-only/(b) dereverberation-plus-noise-
reduction performance in terms of SRR fwseg/SNRR fwseg ver-
sus the signal-to-coherent-noise ratio SNR coh

y of the MF,
the MCLP and the GSC framework, respectively denoted by
[ ], [ ], and [ ]. The shaded areas represent the
standard deviation.

From Fig. 6 (h), for both white and colored source signals,
we once more find a sharp performance drop for both MCLP
and the GSC if M < 3 and M < 4, respectively. Again,
saturation is reached at M = 3 and M = 5, respectively.

2) STFT Domain: The performance of both frameworks in
terms of SRR fwseg and SNRR fwseg are shown in Fig. 7, where
the performance of the MF serves as a reference.

From Fig. 7 (a), we note that the dereverberation-only
performance of the MF [ ] in terms of SRR fwseg re-
mains almost constant around 4.1 dB. At high SNR coh

y val-
ues with predominantly late-reverberant-speech interference,
MCLP [ ] and the GSC [ ] outperform the MF by
up to 3.1 dB and 4.1 dB, respectively. Note that in theory,
for complete blocking, i.e. if (27) is satisfied, the GSC is
expected to perform as effectively as MCLP in terms of
dereverberation, cf. (47)–(49), (55)–(57), Table I, and the time
domain simulation results in Sec. VII-B1. However, since the
sub-band convolution model in (1) poses an approximation
of the time-domain convolution only, and since the RETFs
used in the GSC blocking matrix are subject to estimation
errors, cf. Sec. VII-A3b, complete blocking is not achieved
in the STFT domain. Due to incomplete blocking, the GSC
hence suffers from some amount of early reverberant-speech
cancellation and in addition from incomplete prediction of the
late reverberant-speech component q̈s1(l), leading to reduced
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dereverberation performance in comparison to MCLP. At low
SNR coh

y values with predominantly coherent-noise interfer-
ence, we find that both MCLP and the GSC perform worse
than the MF, indicating speech distortion. Again, this effect
can be explained by the limited number of observations Lobs
used in the LS estimate (36), causing LS to focus on (late)
coherent-noise suppression, cf. Sec. VII-B1. Since the GSC
is able to suppress the early coherent-noise component q̇s2(l)
also, the GSC performance is less affected.

From Fig. 7 (b), we note that the dereverberation-plus-noise-
reduction performance of the MF in terms of SNRR fwseg

ranges between −8 dB for SNR coh
y = −20 dB and 2.6 dB

for SNR coh
y = 40 dB, where the upper limit is still affected

by the noise component, as can be seen by comparison to
the dereverberation-only performance in Fig. 7 (a). At high
SNR coh

y values MCLP and the GSC outperform the MF by up
to 32.8 dB and 2.1 dB, respectively. At low SNR coh

y values,
MCLP performs only somewhat better than the MF, while
the GSC in contrast outperforms the MF by up to 5.1 dB.
This difference at low SNR coh

y values is expected as MCLP
suppresses the late coherent-noise component q̇s2(l) only,
while the GSC suppresses the entire coherent-noise component
qs2(l), cf. (47)–(49), (55)–(57), Table I, and the time domain
simulation results in Sec. VII-B1. Audio examples of the STFT
domain simulations are available online [40].

VIII. CONCLUSION

In this paper, we formally analyzed and compared the
MCLP and GSC frameworks in terms of blind dereverb-
eration and noise reduction performance. Both frameworks
are theoretically able to perform complete dereverberation
if incoherent noise is absent. Due to the use of a blocking
matrix, the GSC is theoretically able to completely cancel
coherent noise in the absence of incoherent noise, while MCLP
cancels the late coherent-noise component only. For complete
cancellation, the GSC requires one additional microphone as
compared to MCLP. Furthermore, the blocking matrix design
requires spatial information in form of the early speech-source
RIR or the RETF, which needs to be acquired in practice.
In order to confirm the theory and to assess the practical
relevance of the theoretical findings, we carried out time
domain simulations using oracle knowledge on the early RIRs,
resulting in complete blocking of the early reverberant-speech
component, and STFT domain simulations using estimated
REFTs, resulting in incomplete blocking.

The simulation results confirm that in terms of noise reduc-
tion, as opposed to the GSC performance, the performance
of MCLP is limited. In terms of dereverberation, the GSC
performs equally well if complete blocking is achieved, as
expected from the theoretical analysis, but performs inferior
for incomplete blocking. Both MCLP and the GSC exhibit
strong sensitivity to incoherent noise. For both frameworks,
dereverberation and noise reduction performance reach their
maximum at a relative filter length of about one, while
moderate undermodeling of the filter length does not appear
to be extremely critical. The simulations further confirm that
for one coherent-noise component, the GSC requires four
microphones, while MCLP requires three microphones only.

In summary, we can state that if sufficiently many mi-
crophones are available and complete blocking is achieved,
the GSC performs superior to MCLP in terms of noise
reduction and equally well in terms of dereverberation, but
inferior in terms of dereverberation for incomplete blocking.
In practice therefore, in acoustic conditions with only mild
noise but predominantly late-reverberant-speech interference,
MCLP is to be preferred, while in case of predominantly noise
but mild to moderate late-reverberant-speech interference, the
GSC is to be preferred. In acoustic conditions with both strong
reverberation and strong noise, combined schemes may be
most appropriate.

APPENDIX A

1): Analogously to (16)–(17), let Ċ ∈ C(NLs×NLs) and its
counterpart C̈ be defined by

Ċ =

Id×d 0d×(NLs−d)

0(NLs−d)×d 0d×(NLs−d)

 , (64)

C̈ = INLs×NLs − Ċ, (65)

and let Ψs̃ ∈ CNLs−d×NLs−d be the submatrix of Ψs̃

spanning its last NLs − d rows and columns, such that

C̈Ψs̃C̈ =

0d×d 0d×(NLs−d)

0(NLs−d)×d Ψs̃

 . (66)

With HB as given in (27), the expression
(
(HB)HΨs̃HB

)+
in (54) can then be written as(

(HB)HΨs̃HB
)+

= (HH
BΨs̃HB)

+

= H+
BΨ

−1
s̃ H+T

B . (67)

Inserting (27) and (67) in (54) while noting that HBH
+
B = I

since HB is assumed to have full row rank, and further using
(66) and Lemma 1 from Appendix B, we obtain

z(l) =
(
HB

(
(HB)HΨs̃HB

)+
(HB)HΨs̃Hg

)H
s(l)

=

0d×d 0d×(NLs−d)

0(NLs−d)×d Ψ−1
s̃

Ψs̃Hg

H

s(l)

=
(
(C̈Ψs̃C̈)+Ψs̃Hg

)H
s(l). (68)

With Ċ+ C̈ = I, the matrix Ψs̃ may be written as

Ψs̃ = ĊΨs̃ + C̈Ψs̃

= ĊΨs̃ + C̈Ψs̃C̈+ C̈Ψs̃Ċ. (69)

Substituting (69) in (68), we find (C̈Ψs̃C̈)+(C̈Ψs̃C̈) =
C̈ from (66), while (C̈Ψs̃C̈)+ĊΨs̃ = 0, such that
(C̈Ψs̃C̈)+Ψs̃ in (68) becomes

(C̈Ψs̃C̈)+Ψs̃ = C̈+ (C̈Ψs̃C̈)+C̈Ψs̃Ċ. (70)

Using (64)–(65), (16)–(17), and Lemma 1 from Appendix B,
the term (C̈Ψs̃C̈)+C̈Ψs̃Ċ in (70) takes the form

(C̈Ψs̃C̈)+C̈Ψs̃Ċ
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=

(C̈Ψs̃1C̈)+C̈Ψs̃1Ċ 0Ls×(N−1)Ls

0(N−1)Ls×Ls 0(N−1)Ls×(N−1)Ls

 . (71)

Inserting (70) in (68), multiplying out, using (64)–(65) and
(14)–(17), it can be shown that

z(l) = (C̈Hg)Hs(l) +
(
(C̈Ψs̃C̈)+C̈Ψs̃ĊHg

)H
s(l)

=

N∑
n=2

qsn(l) + q̈s1(l)

+
(
(C̈Ψs̃1C̈)+C̈Ψs̃1ĊH1g

)H
s0(l). (72)

With Lemma 1 from Appendix B and C̈d defined in (19),
(C̈0Ψs̃0C̈0)

+ can be written as

(C̈1Ψs̃1C̈1)
+ = C̈H

d (C̈dΨs̃1C̈
H
d )C̈d, (73)

Substituting (73) into (72) and extracting C̈H
d on the left, we

obtain (55)–(56).
2): With Lemma 1 in Appendix B, the first term in (56),

(C̈dΨs̃0C̈
H
d )+, can be written as

(C̈dΨs̃1C̈
H
d )+ =

Ψ−1
s̃1

0(Ls−d)×d

0d×(Ls−d) 0d×d

 , (74)

where Ψs̃1
∈ CLs−d×Ls−d is the submatrix of Ψs̃1 spanning

the last Ls − d rows and columns, matching the first term in
(48) for n = 1. Note that for d = Lb, Ψ−1

s̃1
∈ CLs−d×Ls−d

in (74) and Ψ−1
s̃1

∈ CLs×Ls in (48) also correspond in terms
of dimensions: inserting (26) into (9) yields Ls − d = Lh +
Lw − 1 in the GSC, while inserting (21) into (9) yields Ls =
Lh+Lw −1 in MCLP. Finally, since the second term in (56),
C̈dΨs̃1ĊH1g, is equivalent to the second term in (48), both
expressions (56) and (48) yield the same bias component.

APPENDIX B

Lemma 1: The pseudoinverse A+ of a block-diagonal
matrix A defined by the blocks An, n = 1 . . . N , on its
diagonal is given by a block-diagonal matrix composed of
the pseudoinverses A+

n of the individual blocks, i.e.

if A = blkdiag
[
A1, . . . , AN

]
,

then A+ = blkdiag
[
A+

1 , . . . , A+
N

]
.

This lemma can be proven easily by verifying the four criteria
defining the pseudoinverse A+ of the matrix A, i.e. AA+A =
A, A+AA+ = A+, (AA+)

H
= AA+, and (A+A)

H
=

A+A. It is further important to note that the pseudoinverse of
a zero matrix is equal to its transpose.
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